Bolt Group 01
Bolt Group 01
Bolt Group 01
(206)623-9646
Project: Subject:
YP 17-Sep
Project # Page:
Units:
US
Problem Description:
INPUT Vertical Force Horizontal Force Py, kip -2 Px, kip 10 ex, in -5 ey, in 0
Ultimate Shear =
Angle to horizon, b = True eccentricity, e = Solved !
85.57 kip
-11.31 deg 5.527 in
Yakov Polyakov, PE
yakov@yakpol.net
http://yakpol.net
Bolt description: A325 SH, 3/4" Dia. Single bolt shear capacity fRn = 15.9 kip Bolt Location X Y in in 1 0 0 2 0 3 3 0 6 4 0 9 5 3 0 6 3 3 7 3 6 8 3 9 9 6 0 10 6 3 11 6 6
174.9 Y
Bolt ##
12
10
IC
Px e b
CG
Py P
5 10
ey
Px
0 -10 -5
Py
-2
ex
X
Bolts Instantenious Center of rotation Group Center Applied Force diagonal scale
Connection is concentrically loaded Vertical Force Py = Horizontal Force Px = Bolt Parmeters fRn = 15.90 kip Rmax= 15.61 kip dmax = 7.83 in -2.00 kip 10.00 kip
Theory
-0.197 5.527 -0.197 5.527 rad in rad in
Angle b = Eccen. e = Adjusted b = Adjusted e = Instant. Center (IC) Bolt Group Center (CG) Xo Yo Xc Yc 3.153 7.169 2.727 4.091
S(Rsinq) S(Rcosq) S(R*d) Bolt Location Bolt ## 1 2 3 4 5 6 7 8 9 10 11 X in 0 0 0 0 3 3 3 3 6 6 6 Y in 0 3 6 9 0 3 6 9 0 3 6 Bolt force angle to horizon q rad -3.56 -3.79 -4.36 1.04 -3.16 -3.18 -3.27 0.08 -2.76 -2.54 -1.96 Bolt to IC Distance d in 7.83 5.23 3.36 3.65 7.17 4.17 1.18 1.84 7.71 5.05 3.08 Bolt Shear Force R kip 15.61 14.97 13.75 14.01 15.51 14.41 9.61 11.44 15.59 14.90 13.44 Bolt Displ. D, in in 0.34 0.23 0.15 0.16 0.31 0.18 0.05 0.08 0.33 0.22 0.13 16.78 Rsinq kip 6.28 9.03 12.89 12.12 0.33 0.53 1.25 0.95 -5.75 -8.40 -12.44 -83.91 Rcosq kip -14.29 -11.94 -4.78 7.04 -15.50 -14.40 -9.53 11.40 -14.49 -12.30 -5.11 738.32 R*d kip-in 122.22 78.26 46.23 51.08 111.19 60.13 11.33 21.02 120.26 75.21 41.38
Solver
SRsin( q)/sin(d)
-5.382
SRcos(q)/cos(d)
-5.382 SR*d/(e+lo)
5.382
-1.055 1.06
Pcos(b ) SRcos(q)
5.28 -5.28
P*lo SR*d
0.0000 Difference Po lo mo
Single bolt capacity multiplier Dist. From 0,0 to Inst. Center Sideways dist. to Inst. Center
For calculation purposes external force (Po) is always positive and rotates boltgroup contrclockwise about it's center (Xc,Yc). Eccentricity (e) is always positive as well. The distance (lo) from boltgroup center to instantenious center (Xo,Yo) can be negative but not less than -e.
Definition of Ranges
BestGuess_lo =Details!$R$8 BestGuess_po =Details!$R$7 betta =Details!$I$8 BigX =Details!$B$19:$B$68 ConcentricConnection =Details!$E$4 d =SQRT((X-Xo)^2+(Y-Yo)^2) dmax =Details!$B$12 e =Details!$I$9 ex =Details!$F$6 ey =Details!$F$7 lo =Details!$P$8 mo =Details!$P$9 Mustbe0 =Details!$R$5 Po =Details!$P$7 Print_Area =Details!$A$1:$R$46 Px =Details!$C$7 Py =Details!$C$6 Rn =(1-EXP(-10*d/dmax*0.34))^0.55 Rult =Details!$B$10 SumRcos =Details!$O$4 SumRd =Details!$Q$4 SumRsin =Details!$M$4 theta =IF(Y-Yo=0,0,ATAN2(X-Xo,Y-Yo))-PI()/2 UnitForce =IF(Units="US","kip","kN") UnitLength =IF(Units="US","in","mm") Units =Input!$B$8 X =OFFSET(BigX,0,0,COUNT(BigX),1) Xc =Details!$F$12 Xo =Details!$D$12
ECCENTRICALLY LOADED BOLT GROUP ULTIMATE STRENGTH METHOD This spreadsheet is using the Instantenious Center of Rotation Method to determine shear capacity of bolt group. This method is described in LRFD Code (2nd Edition, Volume II, p. 8-28). In theory, the bolt group rotates around IC, and the displacements of each bolt is proportional to the distance to IC. The load deformation relationship of the bolt: R=Rult(1-exp(-10D)0.55), where Rult = fRn bolt ultimate shear strength. D = total deformation of the bolt (inches), experementally determined Dmax = 0.34 inches. Solving the system of three equilibrium equations we can find location of IC and ultimate shear force of bolt group. Please, be aware of possibly wrong solution when instantenious center is too far from bolt group center.
Pu
Py Input Details b
Input Data: Shear force application: Px Py ex ey Bolt locations: Xi Yi Single bolt shear capacity: fRn Equlibrium equations: (1) (2) (3) SRisin(qi) + Pusin(b) = 0 SRicos(qi) + Pucos(b) = 0 SRidi + Pu(e+lo) = 0
Spreadsheet Formulas: Xc = AVERAGE(Xi) Yc = AVERAGE(Yi) Xo = -losin(b) - mocos(b) + Xc Yo = locos(b) - mosin(b) + Yc e = - (ey-Yc)cos(b) + (ex-Xc)sin(b) qi = atan((Yi-Yo)/(Xi-Xo)) - p/2 di = sqrt((Yi-Yo)^2+(Xi-Xo)2) dmax = max(di) Dmax = 0.34 inches Di = Dmax(di/dmax) Ri = fRn(1-exp(-10Di))0.55