Lesson 1: The Basics of C++: Getting Set Up - C++ Compilers
Lesson 1: The Basics of C++: Getting Set Up - C++ Compilers
Lesson 1: The Basics of C++: Getting Set Up - C++ Compilers
By Alex Allain This tutorial series is designed for everyone: even if you've never programmed before or if you have extensive experience programming in other languages and want to expand into C++! It is for everyone who wants the feeling of accomplishment from a working program. What do I mean? C++ is a programming language--it will allow you to control your computer, making it do what you want it to do. This programming tutorial series is all about helping you take advantage of C++.
1 2 3 4 5 6 7 8
int main() { cout<<"HEY, you, I'm alive! Oh, and Hello World!\n"; cin.get(); }
9
Let's look at the elements of the program. The #include is a "preprocessor" directive that tells the compiler to put code from the header called iostream into our program before actually creating the executable. By including header files, you gain access to many different functions. For example, the cout function requires iostream. Following the include is the statement, "using namespace std;". This line tells the compiler to use a group of functions that are part of the standard library (std). By including this line at the top of a file, you allow the program to use functions such as cout. The semicolon is part of the syntax of C++. It tells the compiler that you're at the end of a command. You will see later that the semicolon is used to end most commands in C++. The next important line is int main(). This line tells the compiler that there is a function named main, and that the function returns an integer, hence int. The "curly braces" ({ and }) signal the beginning and end of functions and other code blocks. You can think of them as meaning BEGIN and END. The next line of the program may seem strange. If you have programmed in another language, you might expect that print would be the function used to display text. In C++, however, the cout object is used to display text (pronounced "C out"). It uses the << symbols, known as "insertion operators", to indicate what to output. cout<< results in a function call with the ensuing text as an argument to the function. The quotes tell the compiler that you want to output the literal string as-is. The '\n' sequence is actually treated as a single character that stands for a newline (we'll talk about this later in more detail). It moves the cursor on your screen to the next line. Again, notice the semicolon: it is added onto the end of most lines, such as function calls, in C++. The next command is cin.get(). This is another function call: it reads in input and expects the user to hit the return key. Many compiler environments will open a new console window, run the program, and then close the window. This command keeps that window from closing because the program is not done yet because it waits for you to hit enter. Including that line gives you time to see the program run. Upon reaching the end of main, the closing brace, our program will return the value of 0 (and integer, hence why we told main to return an int) to the operating system. This return value is important as it can be used to tell the OS whether our program succeeded or not. A return value of 0 means success and is returned automatically (but only for main, other functions require you to manually return a value), but if we wanted to return something else, such as 1, we would have to do it with a return statement:
1 2 3 4 5 6 7 8 9 10 11
#include <iostream> using namespace std; int main() { cout<<"HEY, you, I'm alive! Oh, and Hello World!\n"; cin.get(); return 1; }
The final brace closes off the function. You should try compiling this program and running it. You can cut and paste the code into a file, save it as a .cpp file. Our Code::Blocks tutorial actually takes you through creating a simple program, so check it out if you're confused. If you are not using Code::Blocks, you should read the compiler instructions for information on how to compile. Once you've got your first program running, why don't you try playing around with the cout function to get used to writing C++?
1 2 3 1
It is permissible to declare multiple variables of the same type on the same line; each one should be separated by a comma.
int a, b, c, d;
If you were watching closely, you might have seen that declaration of a variable is always followed by a semicolon (note that this is the same procedure used when you call a function).
Case Sensitivity
Now is a good time to talk about an important concept that can easily throw you off: case sensitivity. Basically, in C++, whether you use uppercase or lowercase letters matters. The words Cat and cat mean different things to the compiler. In C++, all language keywords, all functions and all variables are case sensitive. A difference in case between your variable declaration and the use of the variable is one reason you might get an undeclared variable error.
Using Variables
Ok, so you now know how to tell the compiler about variables, but what about using them? Here is a sample program demonstrating the use of a variable:
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#include <iostream> using namespace std; int main() { int thisisanumber; cout<<"Please enter a number: "; cin>> thisisanumber; cin.ignore(); cout<<"You entered: "<< thisisanumber <<"\n"; cin.get(); }
Let's break apart this program and examine it line by line. The keyword int declares thisisanumber to be an integer. The function cin>> reads a value into thisisanumber; the user must press enter before the number is read by the program. cin.ignore() is another function that reads and discards a character. Remember that when you type input into a program, it takes the enter key too. We don't need this, so we throw it away. Keep in mind that the variable was declared an integer; if the user attempts to type in a decimal number, it will be truncated (that is, the decimal component of the number will be ignored). Try typing in a sequence of characters or a decimal number when you run the example program; the response will vary from input to input, but in no case is it particularly pretty. Notice that when printing out a variable quotation marks are not used. Were there quotation marks, the output would be "You Entered: thisisanumber." The lack of quotation marks informs the compiler that there is a variable, and therefore that the program should check the value of the variable in order to replace the variable name with the variable when executing the output function. Do not be confused by the inclusion of two separate insertion operators on one line. Including multiple insertion operators on one line is perfectly acceptable and all of the output will go to the same place. In fact, you must separate string literals (strings enclosed in quotation marks) and variables by giving each its own insertion operators (<<). Trying to put two variables together with only one << will give you an error message, do not try it. Do not forget to end functions and declarations with a semicolon. If you forget the semicolon, the compiler will give you an error message when you attempt to compile the program.
1 2 3
a = 4 * 6; // (Note use of comments and of semicolon) a is 24 a = a + 5; // a equals the original value of a with five added to it a == 5 // Does NOT assign five to a. Rather, it checks to see if a equals 5.
The other form of equal, ==, is not a way to assign a value to a variable. Rather, it checks to see if the variables are equal. It is useful in other areas of C++; for example, you will often use == in such constructions as conditional statements and loops. You can probably guess how < and > function. They are greater than and less than operators. For example:
1 2 3
a < 5 // Checks to see if a is less than five a > 5 // Checks to see if a is greater than five a == 5 // Checks to see if a equals five, for good measure
Comparing variables isn't really useful until you have some way of using the results--that's what lesson 2, on if statements is all about. If you enjoyed this tutorial, check out the Cprogramming.com ebook, Jumping into C++. It contains all the information in this tutorial, plus much much more, in one convenient place, along with tons of sample code and practice problems. Buy Jumping into C++ today! Quiz yourself Next: If Statements - Conditionally Changing Program Behavior Back to Back to the C++ Tutorial Index You might also be interested in these beginner C++ training videos. We've found these training videos to be an excellent way to master the fundamentals of C++ Programming. Taught by a Professor Mike McMillian, these training videos come with practical working files that allow you to learn at your own pace. Try a free demo today! If you're having some trouble following the tutorial, try some expert help.