Nothing Special   »   [go: up one dir, main page]

Question Bank for Calculus

Download as docx, pdf, or txt
Download as docx, pdf, or txt
You are on page 1of 2

QUESTION BANK FOR CALCULUS

1.Verify Rolle’s theorem for the function f(x)= (x−a)m ( x−b )n where m, n are positive integers in [a,
mb+ na
b]. ANS (c= )
m+ n

2. Verify Rolle’s theorem for f(x) = log ( x 2+ ab


x (a+b) )
in [a, b], a>0, b>0. ANS (c=√ ab )

3. Verify Rolle’s theorem for f(x) = |x| in [-1, 1]. ANS (LHD≠ RHD f(x) is not derivable at x=0 .Hence
Rolle’s theorem is not applicable.

sin x −x π
4. Verify Rolle’s theorem for f(x) = x or e sin x in [0, π ¿ . ANS(c= )
e 4
5. Verify Rolle’s theorem can be applied to the following functions in the intervals cited.

(i) f(x) = tan x in [0, π ¿. ANS (Rolle’s not applicable)

1
(ii) f(x) = 2 in [-1,1]. ANS (Rolle’s not applicable)
x
(iii) f(x) = x 3 in [1,3]. ANS (Rolle’s not applicable)

6. Verify Rolle’s theorem for(i) f(x)= 2 x 3+ x 2-4x-2 in [√ 3, -√ 3]

(ii)f(x)= 2 x 3+ x 2-4x-2 in [√ 2 , -√ 2 ¿ .

7. Verify Lagrange’s mean value theorem for

1+ √37
(i) f(x) = x3-x2-5x+3 in [0,4].ANS (c= )
4
(ii) f(x) = log ex in [1,e]. ANS (c=e-1)

π
(iii) f(x)= cos x in [0, ]. ANS(c=sin-12 π )
2
b−a -1 -1
b−a
8. If a<b, prove that 2 < tan b -tan a < 2 using Lagrange’s mean value theorem .
(1+b ) (1+a )
Deduce the following :

π 3 4 π 1
(i) + < tan-1 < +
4 25 3 4 6
5π+4 π+2
(ii) < tan-12 < .
20 4
π 1 π 1
9. Prove that (i) + < sin-1( 3/5 ) < + .
6 5 √3 6 8

(ii)
π
-
1
3 5 √3
> cos-1 ()
3 π 1
> - .
5 3 8
10. Show that for any x>0, 1+x< ex< 1+xex.

11. Find c of Cauchy’s mean value theorem for

1
(i) f(x) = √ x and g(x) = in [a, b]. ANS(c=√ ab )
√x
a+b
(ii) f(x)= ex and g(x)=e-x. on [a, b] .ANS (c= ) and f(x)= ex and g(x)=e-x on [3,7]ANS (c=5)
2
π π
(iii) f(x) =sin x and g(x)= cos x on [0, ]. ANS (c= )
2 4
log b−log a
12. If f(x) = log x and g(x) =x2 in [a, b] with b>a>1, using Cauchy’s theorem prove that =
b−a
2
(a+ b)/2 c .
13. Verify Cauchy’s mean value theorem for the functions f(x) and f’(x) in (1,e) given f(x) =logx.

e
ANS (c= )
e−1
14. Obtain the Taylor’s series expansion for

(i) f(x)=ex about x=-1.

π
(ii) f(x) = sin2x in powers of x -
4
π
(iii) sin x in powers of x -
4
5
15. Verify Taylor’s theorem for f(x)= (1−x ) 2 with Lagrange’s form of remainder upto 2 terms in the
interval [0.1].
5
16. Verify Taylor’s theorem for f(x)= (1−x ) 2 with Lagrange’s form of remainder upto 3 terms in the
interval [0.1].

17. Obtain Maclaurin’s series expansion of the following function

(i) ex (ii) cos x (iii) sin x (iv) cos hx (v) sin hx (vi) log e(1+x)
−1 3
sin x x
18. Show that = x+4 +……….
√1−x 2 3!
x
x x2 x 4 e 1 x x3
19.Show t5hat log(1+x) = log2 + + - + ……. Hence deduce that x = + - +……….
2 8 192 e + 1 2 4 48

You might also like