Nothing Special   »   [go: up one dir, main page]

Module 46375

Download as pdf or txt
Download as pdf or txt
You are on page 1of 9

TS358

Dual Differential Input Operational Amplifiers

Low power drain


operational amplifier
DIP-8 SOP-8

General Description
Utilizing the circuit designs perfected for recently introduced Quad Operational Amplifiers, these
dual operational amplifiers feature 1) low power drain, 2) a common mode input voltage range
extending to ground/VEE, 3) Single Supply or Split Supply operation, and 4) pin outs compatible with
the popular MC1558 dual operational amplifier.
These amplifiers have several distinct advantages over standard operational amplifier types in single
supply applications . They can operate at supply voltages as low as 3.0 Volts or as high as 32 Volts
with quiescent currents about one fifth of those associated with the LM741 (on a pet amplifier basis).
The common mode input range includes the negative supply, thereby eliminating the necessity for
external biasing components in many applications.
The output voltage range also includes the negative power supply voltage.

Features
Short circuit protected outputs Internally compensated
True differential input stage Common mode range extends to negative
Single supply operation : 3.0 V to 32 Volts supply
Low input bias currents Single and split supply operation
Similar performance to the popular MC1558
Pin Configuration Ordering Information
DIP-8 SOP-8
OPERATING TEMPERATURE
DEVICE PACKAGE
(Ambient)
TS358CD DIP-8
-20 to +85
8 5 8 5 TS358CS SOP-8

1 4
1 4

PIN : 1. Output A 5. Input B


2. Input A 6. Input B
3. Input A 7. Output B
4. VEE /Gnd 8. VCC
Absolute Maximum Ratings
o
TA=25 C, VCC = 5V, unless otherwise noted.

RATING SYMBOL VALUE UNIT

Power Supply Voltage Single Supply VCC 32


Vdc
Split Supplies VCC, VEE ±16
Input Differential Voltage Range (1) VIDR ±32 Vdc
Input Common Mode Voltage Range (2) VICR -0.3 to 32 Vdc
Input forward current (3) (VI --0.3V) IIF 50 mA
Output Short Circuit Duration tS Continuous
Junction Temperature Plastic Packages TJ 150 
Junction Temperature (Ambient) TA -20 to +85 
Storage Temperature Range Plastic Packages Tstg -55 to +125 
Note:
1. Split Power Supplies.
2. For supply voltages less than 32V for the TS358 the absolute maximum input voltage is equal to the supply voltage.
3. This input curent will only exist when the voltage is negative at any of the input teads. Normal output states will
retablish when the input voltage returns to a voltage greater than -0.3V.
Electrical Characteristics
o
TA=25 C, VCC = 5V, unless otherwise noted.

CHARACTERISTIC SYMBOL MIN TYP MAX UNIT

Input Offset Voltage


VCC = 5.0V to 30V
VIC =0V to Vcc -1.7 V, Vo =1.4V, RS =0W VIO

TA =25 -- 2 5 mV
TA =85 to -20 -- -- 7
Average Temperature Coefficient of Input Offset Voltage
IIO/T -- 7 -- µV/
TA =85 to -20
Input Offset Current -- 5 50
IIO nA
TA =85 to -20 -- -- 150
Average Temperature Coefficient of input Offset Current
IIO/T -- 10 -- pA/
TA =85 to -20
Input Bias Current 45 -250
IIB -- µA
TA =85  to -20 50 -500
Input Common-Mode Voltage Range (Note1)
VCC = 30 V VICR 0 -- 28.3 V
VCC = 30 V , (TA =85 to -10) 0 -- 28
Differential Input Voltage Range VIDR -- -- VCC V
Large Siginal Open-Loop Voltage Gain
RL = 2.0K , VCC =15V, For Large VO Swing, AVOL 25 100 -- V/mV
TA =85 to -20 15 -- --
Channel Separation
-- -- -120 -- dB
1.0 Khz to 20khz, Input Referenced
Electrical Characteristics(contd.)
o
TA=25 C, VCC = 5V, unless otherwise noted.

CHARACTERISTIC SYMBOL MIN TYP MAX UNIT

Common Mode Rejection Ratio


CMRR 65 70 -- dB
RS ƙ10 kΩ

Power Supply Rejection Ratio PSRR 65 100 -- dB


Output Voltage Range RL = 2KΩ VOR 0 -- 3.3 V
Output Voltage -- High Limit , (TA =70 to 0)
VCC = 30 V, RL = 2 kΩ VOH 26 -- -- V
VCC = 30 V, RL = 10 kΩ 27 28 --
Output Voltage -- Low Limit , (TA =70 to 0)
VOL -- 5 20 mV
VCC = 5.0 V, RL = 10 kΩ
Output Source Current VID=+1.0V,VCC=15V IO+ 20 40 -- mA
Output Sink Current
VID = -1.0 V, VCC = 15 V IO- 10 20 -- mA
VID = -1.0 V, VO = 200 mV 12 50 -- µA
Output Short Circuit to Ground (Note 2) Ios -- 40 60 mA
Power Supply Current , (TA =-20  to 85)
VCC = 30 V,VO = 0 V, RL = ∞ ICC -- 1.5 3.0 mA
VCC = 5.0 V, VO = 0 V, RL = ∞ -- 0.7 1.2

Note:
1. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than
0.3 V. The upper end of the common mode voltage range is Vcc 17V, but either or both inputs can go to +32V .
2. Short circuits from the output to Vcc can cause excessive heating and eventual destruction. Destructive
dissipation can result from simultaneous shorts on all amplifiers.
3.0 V to VCC(max)
VCC VCC

1.5 V to VCC(max)
1 1

2 2
1.5 V to VEE(max)
VEE
VEE /Gnd
Single Supply Split Supplies
REPRESENTATIVE CIRCUIT SCHEMATIC
Bias Circuitry
Common to Both
Output Amplifiers
VCC
Q15
Q16 Q14 Q22
Q13
40k
Q19

5.0 pF Q12 Q24


25 Q23

Q18 Q20
Inputs
Q11
Q9
Q17 Q21
Q6 Q7 Q25
Q2 Q5 Q1 2.4k
Q8 Q10
Q3 Q4 Q26
2.0k
VEE /Gnd

CIRCUIT DESCRIPTION
The TS358 series made using two internally compensated,two-stage operational amplifiers.
The first stage of each consists of differential input devices Q20 and Q18 with input buffer
transistors Q21 and Q17 and differential to single ended converter Q3 and Q4. The first stage
performs not only the first stage gain function but also performs the level shifting and
transconductance reduction functions. By reducing the transconductance, a smaller compen-
sation capacitor (only 5.0pF) can be empllyed, thus saving chip area. The transconductance
reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this
input stage is that the input common mode range can include the negative supply or ground, in
single supply operation, without saturating either the input devices or the differential to single-
ended converter. The second stage consists of a standard current source load amplifier stage.
Each amplifier is biased from an internal-voltage regulator which has a low temperature coeffi-
cient thus giving each amplifier good temperature chatacteristics as well as excellent power
supply rejection.
20
VCC= 15 Vdc 18
RL = 2.0 kΩ

VI , INPUT VOLTAGE (V)


TA = 25 oC 16
14
1.0 V/DIV

12
10
Negative
8.0
Positive
6.0
4.0
2.0
0
5.0µs/DIV 0 2.0 4.0 6.0 8.0 10 12 14 16 18 20
VCC /VEE, POWER SUPPLY VOLTAGES (V)
Figure 1. Large Signal Voltage
Follower Response Figure 2. Input Voltage Range
AVOL , OPEN LOOP VOLTAGE GAIN (dB)

VOR , OUTPUT VOLTAGE RANGE (Vpp)

120 14
VCC= 15 V RL = 2.0 kΩ
100 VEE = Gnd 12 VCC = 15 V
o
TA = 25 C VEE = Gnd
80 10 Gain = -100
RI = 1.0 k Ω
60 8.0 RF = 100 k Ω

40 6.0

20 4.0

0 2.0

-20 0
1.0 10 100 1.0 k 10 k 100 k 1.0 M 1.0 10 100 1000
f, FREQUENCY (Hz) f, FREQUENCY (kHz)

Figure 3. Large-Signal Open Loop Voltage Gain Figure 4. Large-Signal Frequency Response
ICC , POWER SUPPLY CURRENT(mA)

550 2.4
VCC = 30 V o
VO , OUTPUT VOLTAGE (mV)

VEE = Gnd 2.1 TA = 25 C


500 RL = ∞
TA = 25 oC
450 Input CL = 50 pF 1.8

400 1.5
Output
1.2
350
300 0.9

250 0.6

200 0.3
0 0
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 0 5.0 10 15 20 25 30 35
t, TIME (ms) VCC , POWER SUPPLY VOLTAGE (V)

Figure 5. Small Signal Voltage Follower Figure 6. Power Supply Current versus
Pulse Response (Noninverting) Power Supply Voltage
IIB , INPUT BIAS CURRENT(nA)

90

80

70
0 2.0 4.0 6.0 8.0 10 12 14 16 18 20
VCC , POWER SUPPLY VOLTAGE (V)

Figure 7. Input Bias Current versus


Supply Voltage

50k
R1

VCC
VCC 5.0 k
R2 -
10k VCC
1/2 -
VO Vref 1/2
TS358 VO
MC1403 + TS358
2.5V + 1
fo =
1 2 π RC
Vref = V
2 CC
For: fo = 1.0 kHz
R1 R = 16 kΩ
VO = 2.5 V (1 + ) R C
R2 R C = 0.01 µF
C

Figure 8. Voltage Reference Figure 9. Wien Bridge Oscillator

+ 1
e1
1/2 CR R
TS358 R2 Hysteresis
- VOH

R1 VO
- Vref +
a R1 1/2
R1 eo 1/2
TS358 TS358
+ Vin - VO
b R1 VOL
1 VinL VinH
- CR R1
1/2 Vref
VinL = (V - V ) + Vref
TS358 R1 + R2 OL ref
e2 + R R1
VinH = (V - V ) + Vref
R1 + R2 OH ref
eo = C (1 + a + b) (e 2 - e1) R1
H= (V - V )
R1 + R2 OH OL

Figure 10. High Impedance Differential Amplifier Figure 11. Comparator with Hysteresis
1
R fo = 2 π RC
R 100 k
R1 = QR
1
Vin C1 R2 Vref = V
-
C C R2 = R1 2 CC
1/2 R TBP
TS358 - 100 k
1/2 - R3 = TNR2
+ TS358 1/2 C1 = 10 C
+ TS358
Vref + For: fo = 1.0 kHz
Bandpass Vref Q = 10
Vref R3 TBP = 1
Output
R1 TN = 1
R2 - C1
1/2
TS358 Notch Output R = 160 kΩ
+ C = 0.001µ F
R1 = 1.6 MΩ
Vref Where: TBP = Center Frequency Gain R2 = 1.6 MΩ
TN = Passband Notch Gain R3 = 1.6 MΩ

Figure 12. Bi-Quad Filter

1 Triangle Wave
Vref = V R2
2 CC Output VCC
300k R3
Vref + C
R3 R1 C
1/2 + Vin -
TS358 75k 1/2 1/2
- TS358 VO
R1 100k TS358 Square
- + CO
Wave R2
Vref Output CO = 10 C
C
Vref 1
Rf Vref = 2 VCC
R1 + R C R2 R1
f = if, R3 =
4 CR f R1 R2 + R1 Given: f o = center frequency
A(f o ) = gain at center frequency
Figure 13. Function Generator
Choose value fo , C
Q
Then: R3 =
π fo C
R3
R1 =
2 A(f o )
R1 R3
R2 =
4Q 2 R1 -R3
Qo f o
For less than 10% error from operational amplifier
. < 0.1
BW
Where f o and BW are expressed in Hz.

If source impedance varies, filter may be preceded with voltage


follower buffer to stabilize filter parameters.

Figure 14. Multiple Feedback Bandpass Filter


DIP-8 MILLIMETERS INCHES
SYMBOL
MIN MAX MIN MAX
8 5 A 9.07 9.32 0.357 0.367
B B 6.22 6.48 0.245 0.255
1 4
C 3.18 3.43 0.125 0.135
D 0.48 0.51 0.019 0.020
G 2.54BSC 0.10BSC
A J 0.29 0.31 0.011 0.012
L
K 3.25 3.35 0.128 0.132
L 7.75 8.00 0.305 0.315
C
M - 10° - 10°
J

M
D K
G

MILLIMETERS INCHES
SOP-8 SYMBOL
MIN MAX MIN MAX
A 4.80 5.00 0.189 0.196
A
B 3.80 4.00 0.150 0.157
C 1.35 1.75 0.054 0.068
8 5
D 0.35 0.49 0.014 0.019
B P
F 0.40 1.25 0.016 0.049
1 4
G 1.27BSC 0.05BSC
K 0.10 0.25 0.004 0.009
G M 0° 7° 0° 7°
P 5.80 6.20 0.229 0.244
C R X 45
O

R 0.25 0.50 0.010 0.019

F
K M J
D

You might also like