The Earth's magnetic field is generated in its interior and protects life from solar winds and radiation. It has a north and south pole that can flip positions irregularly. The magnetic field is caused by convection currents in the Earth's molten iron core and shields the atmosphere from erosion by the solar wind.
The Earth's magnetic field is generated in its interior and protects life from solar winds and radiation. It has a north and south pole that can flip positions irregularly. The magnetic field is caused by convection currents in the Earth's molten iron core and shields the atmosphere from erosion by the solar wind.
The Earth's magnetic field is generated in its interior and protects life from solar winds and radiation. It has a north and south pole that can flip positions irregularly. The magnetic field is caused by convection currents in the Earth's molten iron core and shields the atmosphere from erosion by the solar wind.
The Earth's magnetic field is generated in its interior and protects life from solar winds and radiation. It has a north and south pole that can flip positions irregularly. The magnetic field is caused by convection currents in the Earth's molten iron core and shields the atmosphere from erosion by the solar wind.
Download as DOCX, PDF, TXT or read online from Scribd
Download as docx, pdf, or txt
You are on page 1of 3
The Earth’s Magnetic Field
Earth's magnetic field — also known as the
geomagnetic field — is generated in our planet's interior and extends out into space, creating a region known as the magnetosphere. Without the magnetic field, life on Earth as we know it would not be possible as it shields us all from the constant bombardment by charged particles emitted from the sun — the solar wind. (To learn what happens to a planet when it loses its magnetic field, you only need to look at Mars.) Earth has two sets of poles, geographic pole and magnetic poles. Earth's magnetic field can be visualized if you imagine a large bar magnet inside our planet, roughly aligned with Earth's axis. Each end of the magnet lies relatively close (about 10 degrees) to the geographic North and South poles. Earth's invisible magnetic field lines travel in a closed, continuous loop and are nearly vertical at each magnetic pole. And just to make things that little more confusing, what we call the North Magnetic Pole is actually a south magnetic pole… bear with me on this. Magnetic field sources are dipolar, meaning they have a north and south pole. And when it comes to magnets, opposite poles (N and S) attract while other poles (N and N, S and S) repel. So when a compass points north, it is actually attracted to the south magnetic pole which lies close to the Geographic North Pole, according to Physicist Christopher Baird's science FAQ website(opens in new tab) Unlike the geographic poles, Earth's magnetic poles are not fixed and tend to wander over time. British polar explorer James Clark Ross first identified the Magnetic North Pole on the Boothis Peninsula in Canada's Nunavut territory in 1831, according to the Antarctic travel site Antarctic Logistics Since its discovery, the magnetic north pole moves about 25 miles (40 kilometers) a year in a northwest direction according to the Royal Museums Greenwich(opens in new tab). Whats more, Earth's magnetic poles have also 'flipped' whereby north becomes south and south becomes north. These magnetic reversals occur at irregular intervals every 200,000 years or so. CAUSES OF EARTH’S MAGNETIC FIELD Earth's magnetic field is generated by what is known as the geodynamo process. According to National Geographic(opens in new tab), for a planet to generate its own magnetic field by the geodynamo process, it must have the following characteristics: The planet rotates fast enough Its interior must have a fluid medium The interior fluid must have the ability to conduct electricity The core must have an internal source of energy that propels convection currents in the liquid interior. The generation of Earth's magnetic field occurs deep within the Earth's interior, in a layer known as the outer core to be precise. Here the convective energy from the slow-moving molten iron is converted to electrical and magnetic energy, according to the U.S. Geological Survey(opens in new tab). The magnetic field then induces electric currents which in turn generate their own magnetic field which induces more electric currents, in a positive feedback loop. HOW EARTH’S FIELD PROTECTS LIFE Our protective magnetic "bubble," known as the magnetosphere, protects us from harmful space weather such as solar wind. Without the magnetosphere, the solar wind would erode our atmosphere, devoiding our planet of the life-giving air we breathe. According to NASA(opens in new tab), the magnetosphere also protects Earth from large quantities of particle radiation emitted during coronal mass ejection (CME) events and also from cosmic rays — atom fragments — raining down on Earth from deep space. The magnetosphere repels harmful energy away from Earth and traps it in zones called the Van Allen radiation belts. These donut-shaped belts of radiation can swell when the sun's activity increases. But our protective shield is not completely invincible. During particularly strong space weather events such as high solar winds or large CMEs, Earth's magnetic field is disturbed and geomagnetic storms can penetrate the magnetosphere and lead to widespread radio and power blackouts as well as endangering astronauts and Earth-orbiting satellites. In 1859, a large solar storm known as the Carrington Event caused widespread telegraph system failures and in 1989, a CME accompanied a solar flare and plunged the entire province of Quebec, Canada into an electrical blackout that lasted around 12 hours according to a NASA statement(ope MAGNETIC POLES REVERSALS According to Science Daily(opens in new tab), in the last 200 million years alone, Earth's magnetic poles have reversed hundreds of times in a process where north becomes south and south becomes north. The magnetic poles flip approximately every 200,000 to 300,000 years(opens in new tab) according to NASA, though it has been more than twice that long since the last reversal. Earth's most recent magnetic reversal occurred approximately 790,000 years ago so we are rather overdue for another. But don't worry, the magnetic poles won't just switch overnight, it can take hundreds or even thousands of years for the poles to flip. MAGNETIC FIELDS IN OTHER PLANETS Earth is not the only planet in the solar system to possess a magnetic field. Jupiter, Saturn, Uranus and Neptune all exhibit magnetic fields far stronger than Earth's, according to Union University(opens in new tab), though the underlying mechanisms driving these magnetic fields are not yet completely understood. Not every planet is fortunate enough to have a protective magnetic layer. Mars does not have enough inner heat nor does it possess the liquid interior required to generate a magnetic field. Venus, on the other hand, has a liquid core but does not spin fast enough to generate a magnetic field.