Nothing Special   »   [go: up one dir, main page]

Chemistry P22 F - M 2024

Download as pdf or txt
Download as pdf or txt
You are on page 1of 16

Cambridge International AS & A Level

* 6 8 4 0 7 5 2 3 0 5 *

CHEMISTRY 9701/22
Paper 2 AS Level Structured Questions February/March 2024

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS
● Answer all questions.
● Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
● Write your name, centre number and candidate number in the boxes at the top of the page.
● Write your answer to each question in the space provided.
● Do not use an erasable pen or correction fluid.
● Do not write on any bar codes.
● You may use a calculator.
● You should show all your working and use appropriate units.

INFORMATION
● The total mark for this paper is 60.
● The number of marks for each question or part question is shown in brackets [ ].
● The Periodic Table is printed in the question paper.
● Important values, constants and standards are printed in the question paper.

This document has 16 pages. Any blank pages are indicated.

DC (LK/SG) 326112/5
© UCLES 2024 [Turn over
2

1 Bismuth is an element in Group 15 of the Periodic Table.

(a) Bismuth has metallic bonding.

Draw a labelled diagram to show the metallic bonding in bismuth.

[1]

(b) Bismuth reduces water to form bismuth oxide, Bi2O3. A colourless gas that ignites with a
squeaky pop also forms.

(i) Construct an equation for the reduction of water by bismuth.

..................................................................................................................................... [1]

(ii) Bi2O3 is a yellow insoluble solid that melts at 1090 K. The molten compound conducts
electricity.

Deduce the structure and bonding of Bi2O3. Explain your answer.

...........................................................................................................................................

...........................................................................................................................................

..................................................................................................................................... [2]

(c) Bi2O3 can be used to form NaBiO3, as shown in equation 1.

equation 1 Na2O + Bi2O3 + O2 2NaBiO3

(i) Deduce the oxidation number of Bi in Bi2O3 and in NaBiO3.

oxidation number of Bi:

in Bi2O3 ................................................. in NaBiO3 ...........................................................


[1]

(ii) Identify the reducing agent in equation 1.

..................................................................................................................................... [1]

© UCLES 2024 9701/22/F/M/24


3

(d) NaBiO3 is an oxidising agent with similar properties to KMnO4.

Fig. 1.1 shows an example of the use of NaBiO3 as an oxidising agent.

X Y Z
OH
O
NaBiO3
+
O H
OH

Fig. 1.1

(i) Explain the term oxidising agent.

...........................................................................................................................................

..................................................................................................................................... [1]

(ii) Compound X forms when methylbut-2-ene reacts with KMnO4.

State the essential conditions for this reaction.

..................................................................................................................................... [1]

(iii) Complete Table 1.1 to show what is observed when compounds Y and Z react separately
with the named reagents.

Table 1.1

reagent observation with Y observation with Z

Na2CO3(aq) no reaction

alkaline I2(aq)

2,4-dinitrophenylhydrazine
(2,4-DNPH)

Tollens’ reagent

[4]

(iv) Construct an equation for the reaction of Z with NaBH4.

Use [H] to represent an atom of hydrogen from the reducing agent.

..................................................................................................................................... [1]

© UCLES 2024 9701/22/F/M/24 [Turn over


4

(e) NaBiO3 can be used to determine the concentration of Mn2+(aq). The ionic equation for the
reaction is shown in equation 2.

equation 2 2Mn2+ + 5BiO3– + 14H+ 2MnO4– + 5Bi3+ + 7H2O

A student uses the following procedure in an experiment.

• Add 100.0 cm3 of a saturated solution of Mn2+(aq) to a volumetric flask.


• Add distilled water to the flask to make a 1.00 dm3 diluted solution.
• Titrate a 25.00 cm3 sample of the diluted solution with 0.100 mol dm–3 NaBiO3(aq).

The 25.00 cm3 sample of the diluted solution of Mn2+(aq) reacts completely with exactly
21.50 cm3 of 0.100 mol dm–3 NaBiO3(aq).

Calculate the concentration, in mol dm–3, of Mn2+(aq) in the saturated solution.

Show your working.

concentration of Mn2+(aq) in the saturated solution = ......................................... mol dm–3 [3]

[Total: 16]

© UCLES 2024 9701/22/F/M/24


5

2 Chlorine, Cl 2, reacts with many elements and compounds to form chlorides.

Table 2.1 shows information about some chlorides of Period 3 elements.

Table 2.1

Na Mg Si

formula of chloride

structure of chloride giant

bonding of chloride covalent

pH of solution formed
on addition of 6.2
chloride to water

(a) Complete Table 2.1. [3]

(b) When Cl 2 reacts with cold NaOH(aq), Cl 2 is both oxidised and reduced. The products are
NaCl and G.

(i) State the type of redox reaction in which the same species is both oxidised and reduced.

..................................................................................................................................... [1]

(ii) Identify G.

..................................................................................................................................... [1]

(iii) Write an equation for the reaction between Cl2 and hot NaOH(aq).

..................................................................................................................................... [1]

(iv) Describe fully what is observed when AgNO3(aq) is added to the aqueous solution of the
chloride of sodium, followed by dilute NH3(aq).

...........................................................................................................................................

..................................................................................................................................... [2]

© UCLES 2024 9701/22/F/M/24 [Turn over


6

(c) An excess of Cl 2 reacts with phosphorus to form PCl 5.

(i) PCl 5 is a simple molecule in the gas phase.

It also exists in a solid form as two ions, PCl4+ and PCl 6–.

Complete Table 2.2 to identify the shapes of each of these species.

Table 2.2

species PCl5 PCl4+ PCl6–

shape tetrahedral

[2]

(ii) PCl5 reacts with J to form H3PO4.

Identify J and state the type of reaction.

J ................................. type of reaction .............................................................................


[2]

© UCLES 2024 9701/22/F/M/24


7

(d) Cl 2 reacts readily with propene to form K, 1,2-dichloropropane.

K can be used to form L.

propene K L

Cl Cl
Cl2

reaction 1 reaction 2

Cl

Fig. 2.1

(i) Complete Fig. 2.2 to show the mechanism for the reaction of Cl 2 with propene in
reaction 1.

Include charges, dipoles, lone pairs of electrons and curly arrows, as appropriate.

H H H H

C C H C C CH3
H CH3
Cl Cl

Cl

Cl

Fig. 2.2 [4]

(ii) Identify the reagent and conditions for reaction 2.

..................................................................................................................................... [1]

(iii) Draw one repeat unit of the addition polymer that forms from L.

[1]

[Total: 18]

© UCLES 2024 9701/22/F/M/24 [Turn over


8

3 Nitrogen, N2, is generally an unreactive molecule but it does react under certain conditions.

(a) Give two reasons to explain the lack of reactivity of nitrogen.

1 ................................................................................................................................................

2 ................................................................................................................................................
[2]

(b) N2 can react with oxygen in an internal combustion engine to form a mixture of NO and NO2.
Fig. 3.1 shows a reaction scheme involving N2.

O2
reaction 1 N2 NO and NO2

H 2O
reaction 2 NO2 products

unburned hydrocarbons
reaction 3 NO2 peroxyacetyl nitrate (PAN)

Fig. 3.1

(i) Write an equation to show the formation of a mixture of NO and NO2 in reaction 1.

..................................................................................................................................... [1]

(ii) Give the formulae of the products of reaction 2.

..................................................................................................................................... [1]

(iii) State one environmental consequence of reaction 3.

..................................................................................................................................... [1]

© UCLES 2024 9701/22/F/M/24


9

(c) The Haber process involves the reaction of N2 and H2 to form ammonia, NH3.

A catalyst is used, which allows the process to be carried out at a lower temperature and
pressure.

N2(g) + 3H2(g) 2NH3(g) ΔH = –92 kJ mol–1

(i) Use the information in (c) to complete Table 3.1.

Table 3.1

enthalpy change of
compound
formation, ΔHf / kJ mol–1
N2
H2
NH3
[2]

(ii) Explain how the presence of a catalyst affects the reaction.

...........................................................................................................................................

...........................................................................................................................................

..................................................................................................................................... [1]

(iii) State and explain the effect, if any, on the rate of the Haber process as the pressure is
lowered.

...........................................................................................................................................

...........................................................................................................................................

...........................................................................................................................................

..................................................................................................................................... [2]

© UCLES 2024 9701/22/F/M/24 [Turn over


10

(d) The N2F2 molecule has a double covalent bond between its nitrogen atoms. This consists of
a σ and a π bond.

(i) Complete Fig. 3.2 to show the dot-and-cross diagram for N2F2.

Show outer electrons only.

F N N F

Fig. 3.2
[2]

(ii) Deduce the hybridisation of the N atoms in N2F2.

..................................................................................................................................... [1]

(iii) Draw a diagram of the π bond between the N atoms in N2F2 and describe how it
forms.

...........................................................................................................................................

...........................................................................................................................................
[2]

[Total: 15]

© UCLES 2024 9701/22/F/M/24


11

4 Compound S is used in food flavourings. A possible synthesis of S is shown in Fig. 4.1.

P R S

HBr KCN in ethanol H+(aq)


Q
reaction 1 reaction 2 CN reaction 3 COOH

Fig. 4.1

(a) P, Q, R and S show stereoisomerism.

Complete Table 4.1 by identifying with a tick (3) the type of stereoisomerism that each
molecule shows.

The type of stereoisomerism shown by Q is given.

Table 4.1

P Q R S
geometrical
isomerism
optical
3
isomerism
[2]

(b) (i) Give the structural formula of Q.

..................................................................................................................................... [1]

(ii) Name the mechanism in reaction 2.

..................................................................................................................................... [1]

(iii) Complete the equation for reaction 3. R is represented as C4H9CN.

C4H9CN + .................................................................................................................... [1]

© UCLES 2024 9701/22/F/M/24 [Turn over


12

(c) Compounds S and T react to form organic compound U, which has a single functional group.

+ T U + H2 O
COOH

Table 4.2 shows some data from the mass spectrum of U.

Table 4.2

peak relative abundance


M+ 7.2
[M+1]+ 0.55

(i) Use the data from Table 4.2 to show that U contains 7 carbon atoms.

Show your working.

[2]

(ii) Fig. 4.2 shows the infrared spectrum of U.

100

80

60
transmittance / %
40

20

0
4000 3000 2000 1500 1000 500
wavenumber / cm–1

Fig. 4.2

© UCLES 2024 9701/22/F/M/24


13

Table 4.3

bond functional groups containing the bond characteristic infrared absorption


range (in wavenumbers) / cm–1
C–O hydroxy, ester 1040–1300
C=C aromatic compound, alkene 1500–1680
C=O amide 1640–1690
carbonyl, carboxyl 1670–1740
ester 1710–1750
C≡N nitrile 2200–2250
C–H alkane 2850–2950
N–H amine, amide 3300–3500
O–H carboxyl 2500–3000
hydroxy 3200–3650

Use Fig. 4.2 and Table 4.3 to identify the functional group present in U.

Explain your answer fully.

functional group .................................................................................................................

explanation ........................................................................................................................

...........................................................................................................................................

...........................................................................................................................................

...........................................................................................................................................
[2]

(iii) T also has a single functional group.

Use the information in (c)(i) and your answer to (c)(ii) to identify T and U.

Draw the structures of T and U in the boxes.

T U

[2]

[Total: 11]

© UCLES 2024 9701/22/F/M/24


14

BLANK PAGE

© UCLES 2024 9701/22/F/M/24


15

Important values, constants and standards

molar gas constant R = 8.31 J K–1 mol–1


Faraday constant F = 9.65 × 104 C mol–1
Avogadro constant L = 6.022 × 1023 mol–1
electronic charge e = –1.60 × 10–19 C
molar volume of gas Vm = 22.4 dm3 mol–1 at s.t.p. (101 kPa and 273 K)
Vm = 24.0 dm3 mol–1 at room conditions
ionic product of water Kw = 1.00 × 10–14 mol2 dm–6 (at 298 K (25 °C))
specific heat capacity of water c = 4.18 kJ kg–1 K–1 (4.18 J g–1 K–1)

© UCLES 2024 9701/22/F/M/24


© UCLES 2024
The Periodic Table of Elements
Group
1 2 13 14 15 16 17 18
1 2

H He
hydrogen helium
Key 1.0 4.0
3 4 atomic number 5 6 7 8 9 10

Li Be atomic symbol B C N O F Ne
lithium beryllium name boron carbon nitrogen oxygen fluorine neon
6.9 9.0 relative atomic mass 10.8 12.0 14.0 16.0 19.0 20.2
11 12 13 14 15 16 17 18
Na Mg Al Si P S Cl Ar
sodium magnesium aluminium silicon phosphorus sulfur chlorine argon
23.0 24.3 3 4 5 6 7 8 9 10 11 12 27.0 28.1 31.0 32.1 35.5 39.9
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

at www.cambridgeinternational.org after the live examination series.


K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton
39.1 40.1 45.0 47.9 50.9 52.0 54.9 55.8 58.9 58.7 63.5 65.4 69.7 72.6 74.9 79.0 79.9 83.8
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
16

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
rubidium strontium yttrium zirconium niobium molybdenum technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine xenon
85.5 87.6 88.9 91.2 92.9 95.9 – 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3

9701/22/F/M/24
55 56 57–71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
lanthanoids
Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
caesium barium hafnium tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine radon
132.9 137.3 178.5 180.9 183.8 186.2 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 – – –
87 88 89–103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
actinoids
Fr Ra Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
francium radium rutherfordium dubnium seaborgium bohrium hassium meitnerium darmstadtium roentgenium copernicium nihonium flerovium moscovium livermorium tennessine oganesson
– – – – – – – – – – – – – – – – –

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
lanthanoids La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
lanthanum cerium praseodymium neodymium promethium samarium europium gadolinium terbium dysprosium holmium erbium thulium ytterbium lutetium
138.9 140.1 140.9 144.2 – 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.1 175.0
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
actinoids Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
actinium thorium protactinium uranium neptunium plutonium americium curium berkelium californium einsteinium fermium mendelevium nobelium lawrencium
– 232.0 231.0 238.0 – – – – – – – – – – –

Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge

You might also like