Nothing Special   »   [go: up one dir, main page]

Biogeochemistry of Wetlands Science and Applicatio

Download as pdf or txt
Download as pdf or txt
You are on page 1of 75

See discussions, stats, and author profiles for this publication at: https://www.researchgate.

net/publication/364158488

Biogeochemistry of Wetlands: Science and Applications

Book · October 2022


DOI: 10.1201/9780429155833

CITATIONS READS

34 907

3 authors:

Konda Ramesh Reddy Ronald D Delaune


University of Florida Louisiana State University
435 PUBLICATIONS 24,978 CITATIONS 519 PUBLICATIONS 24,914 CITATIONS

SEE PROFILE SEE PROFILE

Patrick W. Inglett
University of Florida
108 PUBLICATIONS 2,905 CITATIONS

SEE PROFILE

All content following this page was uploaded by Patrick W. Inglett on 18 May 2023.

The user has requested enhancement of the downloaded file.


Biogeochemistry of Wetlands
The globally important nature of wetland ecosystems has led to their increased protection and
restoration as well as their use in engineered systems. Underpinning the beneficial functions of
wetlands are a unique suite of physical, chemical, and biological processes that regulate elemental
cycling in soils and the water column. This book provides an in-­depth coverage of these wetland
biogeochemical processes related to the cycling of macroelements, including carbon, nitrogen,
phosphorus, and sulfur; secondary and trace elements; and toxic organic compounds.
In this synthesis, the authors combine more than 100 years of experience studying wetlands and
biogeochemistry to look inside the black box of elemental transformations in wetland ecosystems.
This new edition is updated throughout to include more topics and provide an integrated view of
the coupled nature of biogeochemical cycles in wetland systems. The influence of the elemental
cycles is discussed at a range of scales in the context of environmental change including climate,
sea level rise, and water quality. Frequent examples of key methods and major case studies are also
included to help the reader extend the basic theories for application in their own system. Some of
the major topics discussed are:

• Flooded soil and sediment characteristics


• Aerobic-­anaerobic interfaces
• Redox chemistry in flooded soil and sediment systems
• Anaerobic microbial metabolism
• Plant adaptations to reducing conditions
• Regulators of organic matter decomposition and accretion
• Major nutrient sources and sinks
• Greenhouse gas production and emission
• Elemental flux processes
• Remediation of contaminated soils and sediments
• Coupled C-­N-­P-­S processes
• Consequences of environmental change in wetlands

The book provides the foundation for a basic understanding of key biogeochemical processes and its
applications to solve real-­world problems. It is detailed, but also assists the reader with box inserts,
artfully designed diagrams, and summary tables all supported by numerous current references. This
book is an excellent resource for senior undergraduates and graduate students studying ecosystem
biogeochemistry with a focus in wetlands and aquatic systems.
Biogeochemistry of Wetlands
Science and Applications

Second Edition

K. Ramesh Reddy, Ronald D. DeLaune and


Patrick W. Inglett
Cover image: Shutterstock
Second edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487–2742
and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN
CRC Press is an imprint of Taylor & Francis Group, LLC
© 2023 K. Ramesh Reddy, Ronald D. DeLaune and Patrick W. Inglett
First edition published by CRC Press 2008
Reasonable efforts have been made to publish reliable data and information, but the
author and publisher cannot assume responsibility for the validity of all materials or the
consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if
permission to publish in this form has not been obtained. If any copyright material has not
been acknowledged please write and let us know so we may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other
means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission
from the publishers.
For permission to photocopy or use material electronically from this work, access www.
copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978–750–8400. For works that are not available on CCC
please contact mpkbookspermissions@tandf.co.uk
Trademark notice: Product or corporate names may be trademarks or registered trademarks
and are used only for identification and explanation without intent to infringe.
ISBN: 978-­1-­4987-­6455-­1 (hbk)
ISBN: 978-­1-­032-­32235-­3 (pbk)
ISBN: 978-­0-­429-­15583-­3 (ebk)
DOI: 10.1201/9780429155833
Typeset in Times New Roman
by Apex CoVantage, LLC
Contents Contents Biogeochemistry

Preface���������������������������������������������������������������������������������������������������������������������������������������������xv
Acknowledgments�������������������������������������������������������������������������������������������������������������������������xvii
Authors��������������������������������������������������������������������������������������������������������������������������������������������xix

Chapter 1 Introduction������������������������������������������������������������������������������������������������������������������1

Chapter 2 Basic Concepts and Terminology��������������������������������������������������������������������������������9


2.1 Introduction�������������������������������������������������������������������������������������������������������9
2.2 Chemistry����������������������������������������������������������������������������������������������������������9
2.2.1 Aqueous Chemistry����������������������������������������������������������������������������� 9
2.2.1.1 Concentration Units������������������������������������������������������������ 10
2.2.2 Acids and Bases��������������������������������������������������������������������������������� 10
2.2.3 Equilibrium Constant������������������������������������������������������������������������� 11
2.2.4 Thermodynamics������������������������������������������������������������������������������� 11
2.2.4.1 Influence of pH������������������������������������������������������������������� 14
2.2.5 Oxidation–Reduction Reactions�������������������������������������������������������� 15
2.2.5.1 Oxidation–Reduction��������������������������������������������������������� 15
2.2.5.2 Oxidation State or Number������������������������������������������������ 15
2.2.6 Balancing Oxidation–Reduction Reactions��������������������������������������� 16
2.3 Biology������������������������������������������������������������������������������������������������������������ 18
2.3.1 Microbial Cell������������������������������������������������������������������������������������ 18
2.3.2 Microbial Classification��������������������������������������������������������������������� 18
2.3.3 Chemistry of Biological Molecules��������������������������������������������������� 19
2.3.4 Metabolic Reactions��������������������������������������������������������������������������� 19
2.3.5 Enzymes��������������������������������������������������������������������������������������������� 20
2.3.6 Biochemical Kinetics������������������������������������������������������������������������� 20
2.4 Isotopes������������������������������������������������������������������������������������������������������������ 21
2.4.1 Radioactive Isotopes and Decay�������������������������������������������������������� 21
2.4.2 Half-­Life��������������������������������������������������������������������������������������������� 21
2.4.3 Stable Isotopes����������������������������������������������������������������������������������� 22
2.5 Terminology in Soil Science��������������������������������������������������������������������������� 24
2.5.1 Master Soil Horizon��������������������������������������������������������������������������� 24
2.5.2 Properties Used in Soil Description�������������������������������������������������� 25
2.5.3 Soil Taxonomy����������������������������������������������������������������������������������� 25
2.5.4 Physical Properties����������������������������������������������������������������������������� 28
2.5.5 Chemical Properties��������������������������������������������������������������������������� 28
2.6 Units���������������������������������������������������������������������������������������������������������������� 29
Study Questions���������������������������������������������������������������������������������������������������������� 30
Further Readings��������������������������������������������������������������������������������������������������������31

Chapter 3 Biogeochemical Characteristics��������������������������������������������������������������������������������� 33


3.1 Introduction����������������������������������������������������������������������������������������������������� 33
3.2 Types of Wetlands������������������������������������������������������������������������������������������� 38
3.2.1 Coastal Wetlands�������������������������������������������������������������������������������� 38
3.2.2 Inland Wetlands��������������������������������������������������������������������������������� 39

v
vi Contents

3.3 Wetland Hydrology����������������������������������������������������������������������������������������� 41


3.4 Wetland Soils��������������������������������������������������������������������������������������������������� 42
3.4.1 Physical Characteristics��������������������������������������������������������������������� 43
3.4.2 Biochemical Characteristics�������������������������������������������������������������� 45
3.4.3 Biological Characteristics������������������������������������������������������������������ 48
3.5 Wetland Vegetation����������������������������������������������������������������������������������������� 48
3.6 Biogeochemical Features of Wetlands������������������������������������������������������������ 49
3.6.1 Presence of Molecular Oxygen in Restricted Zones������������������������� 49
3.6.2 Sequential Reduction of Other Inorganic Electron Acceptors���������� 50
3.6.3 Aerobic Soil–Floodwater Interface���������������������������������������������������� 52
3.6.4 Exchanges at the Soil–Water Interface���������������������������������������������� 52
3.6.5 Presence of Hydrophytic Vegetation������������������������������������������������� 54
3.7 Types of Wetland/Hydric Soils����������������������������������������������������������������������� 55
3.7.1 Waterlogged Mineral Soils���������������������������������������������������������������� 55
3.7.2 Organic Soils (Histosols)������������������������������������������������������������������� 59
3.7.3 Marsh Soils����������������������������������������������������������������������������������������� 61
3.7.4 Paddy Soils����������������������������������������������������������������������������������������� 62
3.7.5 Subaqueous Soils������������������������������������������������������������������������������� 62
3.7.6 Hydric Soils���������������������������������������������������������������������������������������� 63
3.8 Summary���������������������������������������������������������������������������������������������������������64
Study Questions���������������������������������������������������������������������������������������������������������� 66
Further Readings��������������������������������������������������������������������������������������������������������67

Chapter 4 Electrochemical Properties���������������������������������������������������������������������������������������� 69


4.1 Introduction����������������������������������������������������������������������������������������������������� 69
4.2 Theoretical Relationships�������������������������������������������������������������������������������� 72
4.2.1 E° vs. log K����������������������������������������������������������������������������������������80
4.2.2 pe vs. Eh��������������������������������������������������������������������������������������������� 81
4.3 Measurement of Eh�����������������������������������������������������������������������������������������84
4.4 Eh–pH Relationships��������������������������������������������������������������������������������������� 85
4.5 Buffering of Redox Potential (Poise)��������������������������������������������������������������� 89
4.6 Measurement of Redox Potentials������������������������������������������������������������������� 89
4.6.1 Construction of Platinum Electrodes������������������������������������������������� 89
4.6.2 Standardization of Electrodes������������������������������������������������������������92
4.6.3 Redox Potentials in Soils������������������������������������������������������������������� 93
4.7 pH�������������������������������������������������������������������������������������������������������������������� 97
4.7.1 Soil pH������������������������������������������������������������������������������������������������ 98
4.7.2 Floodwater pH���������������������������������������������������������������������������������� 100
4.7.3 pH Effects����������������������������������������������������������������������������������������� 101
4.8 Redox Couples in Wetlands�������������������������������������������������������������������������� 103
4.8.1 Intensity�������������������������������������������������������������������������������������������� 103
4.8.2 Capacity������������������������������������������������������������������������������������������� 104
4.9 Redox Gradients in Soils������������������������������������������������������������������������������� 105
4.10 Specific Conductance������������������������������������������������������������������������������������ 112
4.11 Summary������������������������������������������������������������������������������������������������������� 112
Study Questions�������������������������������������������������������������������������������������������������������� 114
Further Readings������������������������������������������������������������������������������������������������������ 116
Contents vii

Chapter 5 Carbon�����������������������������������������������������������������������������������������������������������������������117
5.1 Introduction����������������������������������������������������������������������������������������������������117
5.2 Major Components of the Carbon Cycle in Wetlands���������������������������������� 119
5.2.1 Plant Biomass Carbon (Net Primary Productivity)������������������������� 120
5.2.2 Particulate Organic Matter (Detrital and Soil)�������������������������������� 122
5.2.3 Microbial Biomass Carbon�������������������������������������������������������������� 123
5.2.4 Dissolved Organic Matter���������������������������������������������������������������� 124
5.2.5 Gaseous Forms of Carbon���������������������������������������������������������������� 125
5.3 Organic Matter Accumulation���������������������������������������������������������������������� 126
5.4 Characteristics of Detritus and Soil Organic Matter������������������������������������ 128
5.4.1 Non-­Humic Substances�������������������������������������������������������������������� 130
5.4.1.1 Carbohydrates������������������������������������������������������������������� 130
5.4.2 Phenolic Substances������������������������������������������������������������������������� 131
5.4.3 Humic Substances���������������������������������������������������������������������������� 134
5.5 Decomposition����������������������������������������������������������������������������������������������� 138
5.5.1 Leaching and Fragmentation����������������������������������������������������������� 138
5.5.2 Photolysis����������������������������������������������������������������������������������������� 139
5.5.3 Extracellular Enzyme Hydrolysis���������������������������������������������������� 141
5.5.4 Catabolic Activity���������������������������������������������������������������������������� 146
5.5.4.1 Aerobic Catabolism���������������������������������������������������������� 148
5.5.4.2 Anaerobic Catabolism������������������������������������������������������ 151
5.5.4.3 Aerobic vs. Anaerobic Catabolism����������������������������������� 160
5.6 Organic Matter Turnover������������������������������������������������������������������������������ 162
5.6.1 Decomposition Rates����������������������������������������������������������������������� 162
5.7 Regulators of Organic Matter Decomposition���������������������������������������������� 166
5.7.1 Quality and Quantity of Organic Matter����������������������������������������� 167
5.7.2 Microbial Communities and Biomass��������������������������������������������� 170
5.7.3 Water Table or Soil Aeration Status������������������������������������������������� 171
5.7.4 Availability of Electron Acceptors with Higher
Reduction Potentials������������������������������������������������������������������������ 174
5.7.5 Nutrient Availability������������������������������������������������������������������������ 177
5.7.6 Temperature������������������������������������������������������������������������������������� 180
5.8 Environmental and Ecological Significance������������������������������������������������� 186
5.9 Functions of Organic Matter in Soils������������������������������������������������������������ 193
5.10 Summary������������������������������������������������������������������������������������������������������� 197
Study Questions�������������������������������������������������������������������������������������������������������� 199
Further Readings������������������������������������������������������������������������������������������������������200

Chapter 6 Oxygen��������������������������������������������������������������������������������������������������������������������� 203


6.1 Introduction��������������������������������������������������������������������������������������������������� 203
6.2 Soil Gases������������������������������������������������������������������������������������������������������204
6.3 Oxygen–H2O Redox Couple�������������������������������������������������������������������������209
6.3.1 Oxygen Diffusion Rate�������������������������������������������������������������������� 213
6.3.2 Soil Oxygen Content������������������������������������������������������������������������ 216
6.4 Sources of Oxygen���������������������������������������������������������������������������������������� 222
6.5 Aerobic-­A naerobic Interfaces����������������������������������������������������������������������� 225
6.6 Oxygen Consumption������������������������������������������������������������������������������������ 228
6.6.1 Oxygen as a Reactant����������������������������������������������������������������������� 228
6.6.2 Oxygen as an Electron Acceptor����������������������������������������������������� 229
viii Contents

6.7 Summary������������������������������������������������������������������������������������������������������� 235


Study Questions�������������������������������������������������������������������������������������������������������� 236
Further Readings������������������������������������������������������������������������������������������������������237

Chapter 7 Adaptation of Plants to Soil Anaerobiosis��������������������������������������������������������������� 239


7.1 Introduction��������������������������������������������������������������������������������������������������� 239
7.2 Distribution of Wetland Plants���������������������������������������������������������������������� 241
7.3 Mechanisms of Flood Tolerance������������������������������������������������������������������� 242
7.3.1 Metabolic Adaptations��������������������������������������������������������������������� 242
7.3.2 Morphological/Anatomical Adaptations������������������������������������������ 245
7.3.2.1 Roots��������������������������������������������������������������������������������� 245
7.3.2.2 Pneumatophores��������������������������������������������������������������� 245
7.3.2.3 Lenticels���������������������������������������������������������������������������� 245
7.3.2.4 Intercellular Airspaces����������������������������������������������������� 245
7.3.3 Aerenchyma Formation��������������������������������������������������������������������246
7.3.4 Intercellular Oxygen Concentration������������������������������������������������ 249
7.4 Mechanisms of Oxygen Movement in Wetland Plants��������������������������������� 251
7.4.1 Diffusion������������������������������������������������������������������������������������������� 251
7.4.2 Mass Flow���������������������������������������������������������������������������������������� 252
7.5 Oxygen Release by Plants����������������������������������������������������������������������������� 260
7.6 Measurement of Radial Oxygen Loss����������������������������������������������������������� 261
7.7 Soil Phytotoxic Accumulation Effects on Plant Growth�������������������������������264
7.7.1 Greenhouse Gas Emissions: Methane��������������������������������������������� 267
7.7.2 Greenhouse Gas Emissions: Nitrous Oxide������������������������������������ 269
7.8 Oxidizing Power of Plant Roots�������������������������������������������������������������������� 270
7.8.1 Root Iron Plaque Formation������������������������������������������������������������� 271
7.9 Effect of Intensity and Capacity of Soil Reduction on Wetland
Plant Functions���������������������������������������������������������������������������������������������� 272
7.9.1 Effect of Soil Reduction Intensity���������������������������������������������������� 273
7.9.2 Relationship of Reduction Intensity with Root Porosity
and Radial Oxygen Loss������������������������������������������������������������������ 275
7.9.3 Effect of Soil Reduction Intensity on Nutrient Uptake�������������������� 276
7.9.4 Soil Reduction Capacity Effects on Carbon Assimilation
and Radial Oxygen Loss������������������������������������������������������������������ 276
7.10 Summary������������������������������������������������������������������������������������������������������� 278
Study Questions�������������������������������������������������������������������������������������������������������� 279
Further Readings������������������������������������������������������������������������������������������������������279

Chapter 8 Nitrogen�������������������������������������������������������������������������������������������������������������������� 281


8.1 Introduction��������������������������������������������������������������������������������������������������� 281
8.2 Forms of Nitrogen����������������������������������������������������������������������������������������� 281
8.2.1 Inorganic Nitrogen��������������������������������������������������������������������������� 281
8.2.2 Organic Nitrogen������������������������������������������������������������������������������ 282
8.3 Major Storage Compartments����������������������������������������������������������������������� 282
8.3.1 Plant Biomass Nitrogen��������������������������������������������������������������������284
8.3.2 Particulate Organic Nitrogen�����������������������������������������������������������284
8.3.3 Microbial Biomass Nitrogen������������������������������������������������������������ 285
8.3.4 Dissolved Organic Nitrogen������������������������������������������������������������� 285
Contents ix

8.3.5 Inorganic Forms of Nitrogen������������������������������������������������������������ 285


8.3.6 Gaseous Forms of Nitrogen������������������������������������������������������������� 286
8.4 Redox Transformations of Nitrogen�������������������������������������������������������������� 286
8.5 Nitrogen Fixation������������������������������������������������������������������������������������������ 287
8.5.1 Regulators of Dinitrogen Fixation��������������������������������������������������� 289
8.5.2 Nitrogen Fixation Rates������������������������������������������������������������������� 292
8.6 Nitrogen Assimilation by Vegetation������������������������������������������������������������ 293
8.7 Organic Nitrogen Accumulation������������������������������������������������������������������� 296
8.8 Mineralization of Organic Nitrogen������������������������������������������������������������� 297
8.8.1 Chemical Composition of Organic Nitrogen����������������������������������� 298
8.8.2 C:N Ratio Concept��������������������������������������������������������������������������� 305
8.8.3 Microbial Degradation of Organic Nitrogen����������������������������������� 308
8.8.4 Regulators of Organic Nitrogen Mineralization������������������������������ 312
8.9 Ammonia Adsorption–Desorption��������������������������������������������������������������� 314
8.10 Ammonia Fixation���������������������������������������������������������������������������������������� 316
8.11 Ammonia Volatilization���������������������������������������������������������������������������������317
8.11.1 Physicochemical Reaction��������������������������������������������������������������� 318
8.11.2 Regulators of Ammonia Volatilization�������������������������������������������� 320
8.12 Aerobic Ammonia Oxidation������������������������������������������������������������������������ 323
8.12.1 Chemoautotrophic Prokaryotes������������������������������������������������������� 324
8.12.2 Methane-­Oxidizing Bacteria����������������������������������������������������������� 325
8.12.3 Heterotrophic Bacteria and Fungi���������������������������������������������������� 326
8.12.4 Regulators of Ammonium Oxidation���������������������������������������������� 326
8.13 Anaerobic Ammonium Oxidation���������������������������������������������������������������� 328
8.13.1 Other Processes of Anaerobic Ammonium Oxidation�������������������� 330
8.14 Nitrate Reduction������������������������������������������������������������������������������������������ 332
8.14.1 Denitrification���������������������������������������������������������������������������������� 334
8.14.2 Nitrifier Denitrification�������������������������������������������������������������������� 337
8.14.3 Aerobic Denitrification�������������������������������������������������������������������� 338
8.14.4 Chemodenitrification����������������������������������������������������������������������� 339
8.14.5 Dissimilatory Nitrate Reduction to Ammonia��������������������������������340
8.14.6 Regulators of Nitrate Reduction������������������������������������������������������ 341
8.14.7 Nitrate Reduction Rates in Wetlands and Aquatic Systems������������344
8.15 Nitrogen Processing by Wetlands�����������������������������������������������������������������346
8.15.1 Ammonium Flux������������������������������������������������������������������������������ 347
8.15.2 Nitrate Flux�������������������������������������������������������������������������������������� 347
8.16 Environmental and Ecological Significance������������������������������������������������� 350
8.17 Summary������������������������������������������������������������������������������������������������������� 352
Study Questions�������������������������������������������������������������������������������������������������������� 353
Further Readings������������������������������������������������������������������������������������������������������354

Chapter 9 Phosphorus��������������������������������������������������������������������������������������������������������������� 355


9.1 Introduction��������������������������������������������������������������������������������������������������� 355
9.2 Phosphorus Accumulation in Soils��������������������������������������������������������������� 357
9.2.1 Why Does Phosphorus Added to Wetlands Accumulate
in Soils?�������������������������������������������������������������������������������������������� 357
9.3 Phosphorus Forms in the Water Column and Soil���������������������������������������� 359
9.3.1 Phosphorus Speciation��������������������������������������������������������������������� 359
9.3.2 Water Column���������������������������������������������������������������������������������� 360
x Contents

9.3.2 Soil��������������������������������������������������������������������������������������������������� 362


9.4 Inorganic Phosphorus������������������������������������������������������������������������������������364
9.5 Phosphorus Sorption by Soils����������������������������������������������������������������������� 370
9.5.1 Adsorption–Desorption������������������������������������������������������������������� 373
9.5.1.1 Isotherm Concepts������������������������������������������������������������ 375
9.5.2 Phosphorus Sorption Isotherms������������������������������������������������������� 377
9.5.2.1 Linear Equation���������������������������������������������������������������� 378
9.5.2.2 Freundlich Equation��������������������������������������������������������� 378
9.5.2.3 Langmuir Equation����������������������������������������������������������� 379
9.5.2.4 Single-­Point Isotherm������������������������������������������������������� 379
9.5.2.5 Quantity (Q)/Intensity (I) Relationships�������������������������� 380
9.5.3 Precipitation and Dissolution����������������������������������������������������������� 380
9.5.4 Regulators of Phosphorus Retention and Release��������������������������� 383
9.6 Organic Phosphorus�������������������������������������������������������������������������������������� 387
9.6.1 Forms of Organic Phosphorus��������������������������������������������������������� 387
9.6.2 Chemical Characterization of Organic Phosphorus������������������������ 391
9.7 Phosphorus Uptake and Storage in Biotic Communities������������������������������ 394
9.7.1 Microorganisms������������������������������������������������������������������������������� 394
9.7.2 Periphyton���������������������������������������������������������������������������������������� 396
9.7.3 Vegetation����������������������������������������������������������������������������������������� 396
9.8 Mineralization of Organic Phosphorus���������������������������������������������������������400
9.8.1 Abiotic Degradation and Stabilization of Organic Phosphorus������ 401
9.8.1.1 Leaching of Soluble Organic Phosphorus������������������������ 401
9.8.1.2 Noncatalyzed Hydrolysis of Phosphate Esters����������������� 401
9.8.1.3 Photolysis��������������������������������������������������������������������������402
9.8.1.4 Stabilization of Organic Phosphorus��������������������������������402
9.8.2 Enzymatic Hydrolysis of Organic Phosphorus��������������������������������402
9.8.2.1 Phosphatases or Monoesterases���������������������������������������404
9.8.2.2 Phosphodiesterases����������������������������������������������������������� 405
9.8.3 Microbial Activities and Phosphorus Release��������������������������������� 405
9.8.4 Regulators of Organic Phosphorus Mineralization������������������������� 410
9.9 Biotic and Abiotic Interactions on Phosphorus Mobilization����������������������� 412
9.9.1 Phosphorus–Iron–Sulfur Interactions��������������������������������������������� 412
9.9.2 Periphyton–Phosphate Interactions������������������������������������������������� 414
9.9.3 Biotic and Abiotic Interactions of Fe and Ca with Phosphorus������� 417
9.9.4 Gaseous Loss of Phosphorus����������������������������������������������������������� 418
9.10 Phosphorus Exchange between Soil and Overlying Water Column������������� 419
9.11 Phosphorus Memory by Soils and Sediments���������������������������������������������� 421
9.12 Summary������������������������������������������������������������������������������������������������������� 425
Study Questions�������������������������������������������������������������������������������������������������������� 427
Further Readings������������������������������������������������������������������������������������������������������427

Chapter 10 Iron and Manganese������������������������������������������������������������������������������������������������� 429


10.1 Introduction��������������������������������������������������������������������������������������������������� 429
10.2 Storage and Distribution������������������������������������������������������������������������������� 429
10.3 Eh–pH Relationships������������������������������������������������������������������������������������� 432
10.3.1 Iron��������������������������������������������������������������������������������������������������� 433
10.3.2 Manganese��������������������������������������������������������������������������������������� 435
Contents xi

10.4 Reduction of Iron and Manganese���������������������������������������������������������������� 435


10.4.1 Microbial Communities������������������������������������������������������������������� 437
10.4.2 Biotic and Abiotic Reduction����������������������������������������������������������� 439
10.4.2.1 Biotic Reduction���������������������������������������������������������������440
10.4.2.2 Abiotic Reduction������������������������������������������������������������� 441
10.4.3 Forms of Iron and Manganese���������������������������������������������������������446
10.4.3.1 Iron������������������������������������������������������������������������������������446
10.4.3.2 Manganese������������������������������������������������������������������������448
10.4.3.3 Complexation of Iron and Manganese with
Dissolved Organic Matter������������������������������������������������ 449
10.4.3.4 Mobile and Immobile Pools of Iron and Manganese������� 449
10.5 Oxidation of Iron and Manganese����������������������������������������������������������������� 452
10.5.1 Microbial Communities������������������������������������������������������������������� 453
10.5.2 Biotic and Abiotic Oxidation����������������������������������������������������������� 454
10.5.2.1 Iron������������������������������������������������������������������������������������ 454
10.5.2.2 Manganese������������������������������������������������������������������������ 458
10.6 Mobility of Iron and Manganese������������������������������������������������������������������� 458
10.7 Ecological Significance��������������������������������������������������������������������������������� 462
10.7.1 Nutrient Regeneration/Immobilization������������������������������������������� 462
10.7.1.1 Organic Matter Decomposition and Nutrient Release����� 462
10.7.1.2 Phosphorus Release or Retention������������������������������������� 463
10.7.1.3 Coprecipitation of Trace Elements with Iron and
Manganese Oxides�����������������������������������������������������������464
10.7.1.4 Siderophores and Complexation of Iron and
Manganese Oxides�����������������������������������������������������������464
10.7.2 Ferromanganese Nodules����������������������������������������������������������������� 465
10.7.3 Root Plaque Formation��������������������������������������������������������������������466
10.7.4 Wetting and Drying: Hydrologic Fluctuations��������������������������������466
10.7.5 Ferrolysis������������������������������������������������������������������������������������������ 467
10.7.6 Methane Emissions�������������������������������������������������������������������������� 467
10.8 Summary������������������������������������������������������������������������������������������������������� 469
Study Questions�������������������������������������������������������������������������������������������������������� 470
Further Readings������������������������������������������������������������������������������������������������������470

Chapter 11 Sulfur������������������������������������������������������������������������������������������������������������������������ 473


11.1 Introduction��������������������������������������������������������������������������������������������������� 473
11.2 Major Storage Compartments����������������������������������������������������������������������� 474
11.3 Forms of Sulfur��������������������������������������������������������������������������������������������� 474
11.4 Oxidation–Reduction of Sulfur��������������������������������������������������������������������� 477
11.5 Assimilatory Sulfate and Elemental Sulfur Reduction�������������������������������� 480
11.6 Mineralization of Organic Sulfur����������������������������������������������������������������� 482
11.7 Electron Acceptor–Reduction of Inorganic Sulfur��������������������������������������� 483
11.7.1 Dissimilatory Sulfate Reduction������������������������������������������������������484
11.7.2 Role of Sulfur in Energy Flow��������������������������������������������������������� 488
11.7.3 Measurement of Sulfate Reduction in Wetland Soils���������������������� 488
11.7.4 Regulators of Sulfate Reductions���������������������������������������������������� 490
11.8 Sulfide Toxicity��������������������������������������������������������������������������������������������� 492
11.9 Electron Donor–Oxidation of Sulfur Compounds��������������������������������������� 493
xii Contents

11.10 Biogenic Emission of Reduced Sulfur Gases����������������������������������������������� 496


11.11 Sulfur–Metal Interactions����������������������������������������������������������������������������� 498
11.12 Exchange between Soil and Water Column�������������������������������������������������� 503
11.13 Sulfur Sinks���������������������������������������������������������������������������������������������������504
11.14 Environmental and Ecological Significance������������������������������������������������� 506
11.15 Summary������������������������������������������������������������������������������������������������������� 506
Study Questions�������������������������������������������������������������������������������������������������������� 507
Further Readings������������������������������������������������������������������������������������������������������507

Chapter 12 Metals/Metalloids���������������������������������������������������������������������������������������������������� 509


12.1 Introduction��������������������������������������������������������������������������������������������������� 509
12.2 Biogeochemical Regulators of Metal Availability and
Transformation���������������������������������������������������������������������������������������������� 509
12.2.1 Sorption and Precipitation��������������������������������������������������������������� 511
12.2.2 Interaction with Organic Matter������������������������������������������������������ 511
12.2.3 Interaction with Clay Minerals�������������������������������������������������������� 512
12.2.4 Biotic Transformations��������������������������������������������������������������������� 513
12.2.5 Redox Potential and pH of Soils and Sediments����������������������������� 513
12.3 Mercury–Methyl Mercury���������������������������������������������������������������������������� 515
12.4 Arsenic���������������������������������������������������������������������������������������������������������� 519
12.5 Copper����������������������������������������������������������������������������������������������������������� 525
12.6 Zinc���������������������������������������������������������������������������������������������������������������� 528
12.7 Selenium�������������������������������������������������������������������������������������������������������� 529
12.8 Chromium����������������������������������������������������������������������������������������������������� 532
12.9 Cadmium������������������������������������������������������������������������������������������������������� 535
12.10 Lead��������������������������������������������������������������������������������������������������������������� 537
12.11 Nickel������������������������������������������������������������������������������������������������������������� 538
12.12 Summary�������������������������������������������������������������������������������������������������������540
Study Questions�������������������������������������������������������������������������������������������������������� 540
Further Readings������������������������������������������������������������������������������������������������������541

Chapter 13 Toxic Organic Compounds�������������������������������������������������������������������������������������� 543


13.1 Introduction��������������������������������������������������������������������������������������������������� 543
13.2 Abiotic Pathways������������������������������������������������������������������������������������������� 554
13.2.1 Redox Potential–pH������������������������������������������������������������������������� 554
13.2.2 Hydrolysis���������������������������������������������������������������������������������������� 555
13.2.3 Sorption to Suspended Solids and the Substrate Bed���������������������� 555
13.2.3.1 Effect of Colloidal Organic Matter in Surface
Water on Sorption in Wetlands���������������������������������������� 557
13.2.4 Photolysis����������������������������������������������������������������������������������������� 558
13.3 Biotic Pathways��������������������������������������������������������������������������������������������� 559
13.3.1 Acclimation�������������������������������������������������������������������������������������� 560
13.3.2 Biodegradation��������������������������������������������������������������������������������� 560
13.3.3 Cometabolism���������������������������������������������������������������������������������� 560
13.3.4 Microbial Accumulation������������������������������������������������������������������ 560
13.3.5 Polymerization and Conjugation������������������������������������������������������ 561
13.4 Metabolism of Organic Compounds������������������������������������������������������������� 561
13.4.1 Hydrolysis���������������������������������������������������������������������������������������� 561
13.4.2 Oxidation������������������������������������������������������������������������������������������ 562
Contents xiii

13.4.2.1 Hydroxylation�������������������������������������������������������������������564
13.4.2.2 Dealkylation���������������������������������������������������������������������564
13.4.2.3 β-­Oxidation����������������������������������������������������������������������564
13.4.2.4 Decarboxylation���������������������������������������������������������������564
13.4.2.5 Cleavage of Ether Linkage����������������������������������������������� 565
13.4.2.6 Epoxidation����������������������������������������������������������������������� 565
13.4.2.7 Oxidative Coupling���������������������������������������������������������� 565
13.4.2.8 Aromatic Ring Cleavage�������������������������������������������������� 565
13.4.2.9 Heterocyclic Ring Cleavage��������������������������������������������� 565
13.4.2.10 Sulfoxidation�������������������������������������������������������������������� 565
13.5.3 Reduction����������������������������������������������������������������������������������������� 566
13.4.3.1 Reductive Dehalogenation������������������������������������������������ 566
13.4.4 Synthesis������������������������������������������������������������������������������������������ 566
13.5 Plant and Microbial Uptake��������������������������������������������������������������������������� 568
13.6 Transport Processes�������������������������������������������������������������������������������������� 568
13.6.1 Exchange between Soil and Water Column������������������������������������� 568
13.6.2 Settling and Burial of Particulate Contaminants����������������������������� 569
13.6.3 Volatilization������������������������������������������������������������������������������������ 569
13.6.4 Runoff and Leaching������������������������������������������������������������������������ 570
13.7 Regulators������������������������������������������������������������������������������������������������������ 570
13.7.1 Effect of Electron Acceptors on Toxic Organic Degradation���������� 570
13.7.2 Bacterial Groups������������������������������������������������������������������������������ 571
13.7.3 Effect of Soil Redox–pH Conditions on Degradation���������������������� 572
13.7.4 Burial������������������������������������������������������������������������������������������������ 577
13.8 Summary������������������������������������������������������������������������������������������������������� 577
Study Questions�������������������������������������������������������������������������������������������������������� 578
Further Readings������������������������������������������������������������������������������������������������������578

Chapter 14 Soil and Floodwater Exchange Processes���������������������������������������������������������������� 579


14.1 Introduction��������������������������������������������������������������������������������������������������� 579
14.2 Advective Flux���������������������������������������������������������������������������������������������� 581
14.2.1 Advective Flux Processes���������������������������������������������������������������� 581
14.2.2 Measurement of Advective Flux������������������������������������������������������ 583
14.2.2.1 Seepage Meters����������������������������������������������������������������� 584
14.2.2.2 Piezometer������������������������������������������������������������������������ 584
14.2.2.3 Salinity/Conductivity������������������������������������������������������� 584
14.2.2.4 Radium/Radon Isotopes��������������������������������������������������� 585
14.2.2.5 Dyes���������������������������������������������������������������������������������� 585
14.3 Diffusive Flux������������������������������������������������������������������������������������������������ 585
14.3.1 Diffusive Flux Processes������������������������������������������������������������������ 585
14.4 Bioturbation��������������������������������������������������������������������������������������������������� 591
14.4.1 Macrobenthos Communities������������������������������������������������������������ 592
14.4.2 Benthic Invertebrates and Sediment–Water Interactions���������������� 593
14.5 Wind Mixing and Resuspension������������������������������������������������������������������� 594
14.6 Exchange of Dissolved Solutes Between Soil/Sediment
and the Water Column����������������������������������������������������������������������������������� 595
14.6.1 Gradient-­Based Measurements�������������������������������������������������������� 596
14.6.2 Overlying Water Incubations����������������������������������������������������������� 597
14.6.2.1 Benthic Chambers������������������������������������������������������������ 597
14.6.2.2 Intact Core Flux���������������������������������������������������������������� 598
xiv Contents

14.7 Sediment Transport Processes����������������������������������������������������������������������600


14.7.1 Sediment/Organic Matter Accretion in Wetlands��������������������������� 601
14.7.2 Measurement of Sedimentation or Accretion Rates������������������������ 605
14.7.2.1 Filter Pad Traps�����������������������������������������������������������������607
14.7.2.2 Artificial Marker Horizons�����������������������������������������������608
14.7.2.3 Sedimentation–Erosion Table������������������������������������������608
14.7.2.4 Beryllium-­7 Dating����������������������������������������������������������� 610
14.7.2.5 Lead-­210 Dating��������������������������������������������������������������� 610
14.7.2.6 Cesium-­137 Dating����������������������������������������������������������� 613
14.7.2.7 Carbon-­14 Dating������������������������������������������������������������� 613
14.7.2.8 Application of Sediment Dating��������������������������������������� 614
14.8 Vegetative Flux/Detrital Export������������������������������������������������������������������� 614
14.9 Air–Water Exchange������������������������������������������������������������������������������������� 616
14.10 Biogeochemical Regulation of Exchange Processes������������������������������������� 617
14.11 Summary������������������������������������������������������������������������������������������������������� 619
Study Questions�������������������������������������������������������������������������������������������������������� 619
Further Readings������������������������������������������������������������������������������������������������������620

Chapter 15 Coupled Biogeochemical Cycles: An Integrative Approach����������������������������������� 621


15.1 Introduction��������������������������������������������������������������������������������������������������� 621
15.2 Biotic Communities and Interactions����������������������������������������������������������� 623
15.2.1 Microbial Communities������������������������������������������������������������������� 624
15.2.2 Periphyton���������������������������������������������������������������������������������������� 625
15.2.3 Vegetation����������������������������������������������������������������������������������������� 627
15.3 Coupled Biogeochemical Processes�������������������������������������������������������������� 628
15.3.1 Carbon���������������������������������������������������������������������������������������������� 628
15.3.2 Nitrogen�������������������������������������������������������������������������������������������� 631
15.3.3 Phosphorus��������������������������������������������������������������������������������������� 636
15.3.4 Sulfur������������������������������������������������������������������������������������������������ 639
15.4 Ecological and Environmental Significance������������������������������������������������� 642
15.4.1 Wetlands and Climate Change��������������������������������������������������������� 642
15.4.2 Wetlands and Sea Level Rise�����������������������������������������������������������644
15.4.3 Wetlands and Water Quality������������������������������������������������������������ 649
15.5 Summary������������������������������������������������������������������������������������������������������� 656
15.6 Future Directions and Perspectives�������������������������������������������������������������� 656

References������������������������������������������������������������������������������������������������������������������������������������� 661
Index���������������������������������������������������������������������������������������������������������������������������������������������� 704
Preface Preface Biogeochemistry

Wetland science has now emerged as a discipline where hydrologists, biogeochemists, pedologists,
ecologists, microbiologists, and scientists from various other disciplines are working individually
and together to improve our understanding of the functions and ecosystem services of wetlands.
The idea for this book came during the early 1980s when the first author began teaching a new
course entitled “Biogeochemistry of Wetlands” at the University of Florida. A similar course was
also taught at Louisiana State University during the early 1970s under the title of “Chemistry
of Flooded Soils,” and later in the 1980s the course title was changed to “Biogeochemistry of
Wetland Soils and Sediments.” Requests for a book were constant by the 1000+ students who took
this course before the first edition of the book was published in 2008. A similar interest to have
a wetland biogeochemistry reference book was also expressed by colleagues working with other
universities, governmental agencies, and other organizations.
The 2008 edition of the book primarily focused on the role of biogeochemistry as the key “oper-
ating system” that regulates the physical, chemical, and biological processes of elemental cycles
within a wetland, thereby affecting large-­scale ecosystem services. We focused on “organic mat-
ter” as a hub of biogeochemistry and oxidation–reduction reactions as primary drivers of biogeo-
chemical processes. Wetlands are unique in that a range of soil–sediment conditions, from strongly
reducing (anaerobic) to oxidizing (aerobic), can be found at a range of spatial and temporal scales.
These environments include a wide range of systems such as tidal freshwater and salt marshes,
inland freshwater marshes and northern peat lands, swamp and bottomland forests, and ripar-
ian wetlands and estuaries. In certain topical areas, we relied heavily on the biogeochemistry of
aquatic systems because a limited amount of information was available on wetlands.
The first edition was written as both a reference and a text for a graduate-­level course. Individuals
with an interest in environmental science, biology, chemistry, ecology, and environmental engi-
neering would also find this book useful. The book is highly cited by researchers from various
disciplines. The impact of soil redox processes on elemental cycling, biotransformation, and heavy
metal chemistry was emphasized. The book includes chapters dealing with terminology and elec-
trochemical properties describing basic biogeochemical processes that drive transformation pro-
cesses in wetlands. Detailed chapters included carbon, oxygen, nitrogen, phosphorus, sulfur, iron
and manganese, metals and metalloids, and toxic organics. In other chapters, we discussed plant
adaptation to wetland conditions, climate change, greenhouse gas emissions, and case studies
where extensive advancements have been made.
We wrote the second edition because the revisions to the first edition were long overdue. Our
revision was based on the feedback from colleagues and from the many University of Florida stu-
dents who used the first edition book in the “Biogeochemistry of Wetlands” course. As a result of
this feedback, many corrections and changes were made in the second edition. First and foremost,
we added a third author (Patrick Inglett) to the book to have an impact and thinking of the next
generation of wetland science experts. In the second edition, we added some new concepts and
helped streamline some of the topic areas for better application to emerging areas of research.
During revisions, we removed the last five chapters from the first edition and reincorporated some
of those key messages into other chapters. The second edition is also significantly improved with
the addition of many new references, special topic boxes to improve the teaching quality, and all
images are now in color.
The focus of the second edition was to provide an integrative approach to wetland biogeochemi-
cal cycles and the coupling and decoupling of macroelements (carbon, nitrogen, phosphorus, and
sulfur) as related to climate change, sea level rise, and water quality. We added a new synthesis
chapter that presents an integrative approach to coupled biogeochemical cycles and its environ-
mental and ecological significance. We sincerely hope the second edition provides state-­of-­the-­art

xv
xvi Preface

scientific information involving wetland and aquatic systems biogeochemistry. As always, when
we wrote this book, we learned even more and made our best attempt to convey a contemporary
message on all aspects of wetland biogeochemistry. For those who read this book as a student, or as
an instructor, or others using it as reference material, we appreciate your comments and feedback
to help guide the next edition (planned in the next three to four years). We hope this book builds
on the first edition and continues to unite scientists of all disciplines in the study of wetlands and
serves as a foundation for building and inspiring the next generation of wetland professionals.
Acknowledgments Acknowledgments Biogeochemistry

We extend our sincere thanks to many of our colleagues who reviewed the content of the first edi-
tion, provided information to support the chapters, and helped to improve the quality of the book.
These include M. Clark, R. Corstanje, E. D’Angelo, W. F. DeBusk, M. Fisher, W. Hurt (deceased),
R. Gambrell, K. S. Inglett, J. Jawitz, T. Osborne, J. White, and many graduate students, postdoc-
toral fellows, and visiting scientists of the Wetland Biogeochemistry Laboratory at the University
of Florida. Many illustrations presented in this book were originally developed as part of a gradu-
ate course taught at the University of Florida, but the first two authors appreciate Patrick W. Inglett
for his efforts to create, update, and redraw the figures in both the first and second editions. All
three of us sincerely appreciate the contributions of those who came before us (on whose shoulders
we stand), as well as the creativity and hard work of the many students and post-­docs we have
advised. Lastly, we gratefully acknowledge the support and love of our spouses (Sulochana Reddy,
Carole DeLaune [deceased], and Kanika Inglett) and families, without which this type of effort
simply would not be possible, or nearly as rewarding.

K. Ramesh Reddy
University of Florida
Institute of Food and Agricultural Sciences
School of Natural Resources and Environment &
Wetland Biogeochemistry Laboratory
Soil, Water and Ecosystem Sciences Department
Gainesville, Florida

Ronald D. DeLaune
Louisiana State University
Wetland Biogeochemistry Institute
Department of Oceanography and Coastal Sciences
School of the Coast and Environment
Baton Rouge, Louisiana

Patrick W. Inglett
University of Florida
Institute of Food and Agricultural Sciences
Wetland Biogeochemistry Laboratory
Soil, Water and Ecosystem Sciences Department
Gainesville, Florida

xvii
Authors Authors Biogeochemistry

K. Ramesh Reddy is a graduate research professor and director (2019 to present) of the School of
Natural Resources and Environment at the University of Florida (UF). Dr. Reddy served as chair
(2000–2018) of the UF Soil and Water Sciences Department. Dr. Reddy carried out research for
five decades on biogeochemical cycling of nutrients in natural and managed ecosystems as related
to water quality, carbon and nutrient sequestration, and greenhouse gas emission. Dr. Reddy taught
the “Biogeochemistry of Wetlands” course at UF for 40+ years. Dr. Reddy published 420+ refereed
journal articles and book chapters and edited five books. During his tenure at UF, Dr. Reddy served
as major advisor for 34 PhD and 20 MS students and served on 120+ graduate student committees.
Dr. Reddy has served on numerous advisory committees at state, national, and international levels.
Dr. Reddy’s select awards and honors include 1993: appointed as UF Graduate Research Profes-
sor (distinguished professorship); UF Doctoral Dissertation Advisory/Mentoring Award; Environ-
mental Quality Research Award, American Society of Agronomy; Soil Science Applied Research
Award, Soil Science Society of America; Fellow, American Association for the Advancement of
Science; Fellow–Soil Science Society of America; Fellow–American Society of Agronomy; 2012
Lifetime Achievement Award–INTECOL–Wetlands; 2016 National Wetlands Award-­Research–
Environmental Law Institute, Washington DC; and 2016 Lifetime Achievement Award–Society of
Wetland Scientists. Dr. Reddy obtained a BS and MS from A.P. Agricultural University, India, and
a PhD (1976) from Louisiana State University.

Ronald D. DeLauneis an emeritus research professor in the Wetland Biogeochemistry Group,


Department of Oceanography and Coastal Sciences, School of the Coast and Environment,
Louisiana State University, Baton Rouge, Louisiana. His research interests include nutrient cycling
in agriculture and wetland ecosystems, role of wetlands in global biogeochemical cycles, wet-
land soil–plant interactions, coastal restoration and processes governing marsh stability, redox
chemistry of flooded soil and sediment, water quality of aquatic environments, greenhouse gas
emissions from wetlands, and the fate of organic pollutants and toxic heavy metals entering wet-
lands. Dr. DeLaune has served as associate editor or on the editorial board of numerous scientific
journals. He has authored more than 350 scientific papers in peer-­reviewed journals. Dr. Delaune
is also a fellow in the Soil Science Society of America. Dr. DeLaune received his BS and MS from
Louisiana State University, and PhD from University of Wageningen, The Netherlands.

Patrick W. Inglettfirst became involved in wetlands when he worked in the Wetlands Protection
Section at the U.S. Environmental Protection Agency in Atlanta, Georgia. His interest was the sci-
ence behind the conservation and regulatory process for these unique ecosystems. He received his
BS in applied biology with a minor in earth and atmospheric sciences from the Georgia Institute
of Technology, and later, his MS and PhD from the University of Florida. Dr. Inglett is currently
a professor of biogeochemistry in the Soil and Water Sciences Department at the University of
Florida, where he also serves as the director of the Wetland Biogeochemistry Laboratory core
analytical and research facility. His research interests include nutrient cycling processes related to
ecosystem function and restoration, particularly aquatic systems. He specializes in nitrogen and
phosphorus limitation, enzymes, nitrogen fixation, temperature sensitivity of microbial processes,
greenhouse gas production, and the use of stable isotopes. For the last 15 years, Dr. Inglett has
taught both undergraduate and graduate courses in Environmental Biogeochemistry, Advanced
Biogeochemistry, and on occasion, the Wetlands Biogeochemistry course. He has advised more
than 50 graduate and undergraduate students, post-­docs, and visiting scholars, and he is the author
of more than 60 journal articles and book chapters.

xix
1 Introduction

Wetlands are unique ecosystems located in areas with comparatively low elevation and a high
water table. Wetlands can include marshes, swamps, bogs, and similar areas that are poorly drained
and retain water during rainy periods. Globally, wetlands can be found in all climates, from tropi-
cal to tundra, with the exception of Antarctica. Approximately 6% of Earth’s land surface, which
equals approximately 1,200 million ha., is covered by wetlands (Ramsar Convention on Wetlands,
2018; Davidson and Finlayson, 2018). The United States alone accounts for approximately 10% of
the global wetlands, or 115 million ha. of wetlands, with Alaska representing approximately 62%
of the total wetland area. The conterminous United States accounts for approximately 44 mil-
lion ha., which includes 95% freshwater wetlands and 5% intertidal coastal wetlands (Dahl, 2011).
The Convention on Wetlands, signed in Ramsar, Iran, in 1971, is an intergovernmental treaty that
provides the framework for national action and international cooperation for the conservation and
wise use of wetlands and their resources. There are presently 158 contracting parties to the conven-
tion, with 1,723 wetland sites, totaling 160 million ha., designated for inclusion in the Ramsar List
of Wetlands of International Importance (http://www.ramsar.org/).
The value and function of wetlands are well recognized, as evidenced by national and
international policies to preserve wetland ecosystems. Why are wetlands so worthy of protec-
tion? Wetlands are complex ecosystems with functions driven by interactions of many physi-
cal, chemical, and biological processes. Wetlands are some of the most biologically productive
ecosystems on Earth; their productivity can exceed that of terrestrial and aquatic systems.
Wetlands not only serve to promote and sustain biota in many forms but also serve as living fil-
ters that process pollutants from terrestrial runoff and atmospheric deposition. Biodegradation
of organic compounds, elemental cycling, atmospheric exchange, hydrologic processing and
capacity, and plant response are controlled by the unique conditions found in the wetland envi-
ronment (Figure 1.1).
In the past, scientists often described wetland ecosystems on the basis of their disciplinary
bias, with an emphasis on one of the specialties such as hydrology, chemistry, wildlife, micro-
biology, or vegetation; however, no one discipline or specialization can describe these complex
processes. This was like the fabled group of blind men trying to describe an elephant by each
touching a different part, such as the side or the trunk or the tail. When the blind men compared
their notes, they were in complete disagreement in describing an elephant. The one who had
touched the elephant’s side claimed an elephant was like a wall; the man who had felt the tail
said an elephant was like a rope. It took the whole group of blind men to accurately describe the
elephant. Similarly, it has become very clear that no single discipline can adequately describe
a complex ecosystem such as wetlands. Instead, describing a wetland ecosystem requires an
interdisciplinary approach linking various specializations—biology, biogeochemistry, ecology,
environmental science, hydrology, and so on. Understanding must also draw on disciplines out-
side these fields. For example, much of the chemical and microbiological processes measured
in wetland soils is based on studies of saturated soils, which began around the turn of the 20th
century with research into nutrient behavior in paddy soils and processes measured in lake and
marine sediments.
In landscapes, wetlands typically occur between upland and aquatic ecosystems. Because
uplands are often the source of water to wetlands, components within runoff are also supplied
from uplands. In the absence of wetlands, contaminants added to or generated within upland areas
are directly transported into receiving aquatic ecosystems. Several physical, chemical, and bio-
logical processes functioning in the soil of uplands and wetlands are involved in regulating the

DOI: 10.1201/9780429155833-1 1
2 Biogeochemistry of Wetlands

Fertilizers, Animal Wastes


Biosolids, Wastewater

Uplands
Sink/source

Wetlands
Sink/source

Aquatic Systems
Sink/source

FIGURE 1.1 Linkages between uplands, wetlands, and aquatic systems.

fate (availability) of contaminants. For example, uplands and wetlands can serve as both “sinks,”
“sources,” and “transformers” for contaminants:

• Sink: Contaminants are transformed into biologically unavailable forms within the sys-
tem. For example, wetlands can convert nitrate to N2 gas through a biological reaction
called denitrification (this process is discussed in detail in Chapter 8).
• Source: Contaminants are transported from one ecosystem to another. For example,
uplands can serve as a “source” for suspended solids, nutrients, and other contaminants to
wetlands. Similarly, eutrophic wetlands can be a “source” of contaminants or nutrients to
adjacent aquatic systems such as streams, rivers, lakes, and estuaries.
• Transformer: Contaminants added to a wetland can also be transformed and released as
different or complexed compounds, or as new compounds to the aquatic ecosystem down-
stream. Because wetlands receive runoff from upland ecosystems, the changes in wetlands
can be used as an indicator of an upland ecosystem’s “health.”

Because wetland soils can serve as sinks, sources, and transformers of nutrients and other chemical
contaminants, they have a significant impact on water quality and ecosystem productivity.
The functions of wetlands in regulating nutrient and elemental storages and transformations are
captured in the study of biogeochemistry. Biogeochemistry is defined as the study of the exchange
or flux of materials between living and nonliving components of the biosphere [Box 1.1]. Like
the study of wetlands, biogeochemistry is also an interdisciplinary science, involving the interac-
tion of complex physical, chemical, and biological processes in various components of the ecosys-
tem, including the exchange of materials between biotic and abiotic. As defined, biogeochemistry
encompasses interactions from the smallest scale to the global scale encompassing the biosphere.
Wetland biogeochemistry, as the focus of this book, principally relates to small-­scale exchanges
from the particle and microbial scale to the field scale. However, the cumulative impact of these
Introduction 3

small-­scale processes on a landscape and on global reservoirs can be significant and will also be
addressed.

BOX 1.1 A BRIEF HISTORY OF BIOGEOCHEMISTRY


Contrary to most opinions, the idea of biogeochemistry or elemental cycling in earth systems
is not a very recent concept. You may be surprised to find that while the term biogeochemis-
try was first coined only in the early 20th century, the concept and foundation for this disci-
pline are found centuries earlier.
The roots of biogeochemistry began with the strong need for scientific achievement in
food production and agriculture. Many of the early scientists were also pioneers of science
itself, and nature, soils, and plants were often the subject matter for their basic physics and
chemical theories. As early as 1720, the derivation of materials for living biota were known to
come from gaseous and soil components, and the pioneer of chemistry, Lavoisier, correctly
found that according to conservation of mass, the gaseous material required for living plants
(carbon dioxide) was derived from the decomposition of plant biomass. In essence, this is the
first documented biogeochemical cycle. Later work by von Liebig and others properly related
the role of soil solution in supplying other water and particular or limiting nutrients to plant
growth. Liebig’s work was so important that his “law of the minimum” remains one of the
central concepts of nutrient limitation theory in biogeochemistry.
With the connection between plants and soils established, the concept of biogeochemis-
try gained more direction through the work of the founding fathers of soil science, includ-
ing Vasily Dokuchaev, who linked the composition and creation of soil materials with the
biota growing on them. Many of these scientists were interested in mineral composition and
diagenesis, so their studies centered on the relationship between biota living in ecosystems
with the mineral matter of the rocks and soils on which they were based. In 1875, Eduard
Suess coined the term “biosphere” and gave us the idea that soils and their associated biota
were really an intermediate in the flow of materials between the lithosphere, hydrosphere,
and atmosphere. These global cycling concepts were reinforced by advancements in geology,
including concepts of the rock cycle pioneered by James Hutton in the late 18th century, but
only gaining wide acceptance almost 100 years later. It was also at the end of the 19th century
that Walther Nernst established the thermodynamic principles of reduction and oxidation
chemistry leading to the creation of the Nernst equation.
Almost at the same time in the later part of the 19th century, important discoveries were
being made on a much, much smaller scale. These were the great advancements leading to
the birth of modern microbial ecology. After discoveries that microorganisms were involved
in the putrefaction of organic matter and fermentation, scientists like Winogradsky and
Beijerinck properly tied microbial identity and function to global elemental cycles with the
discovery of processes like nitrogen fixation, nitrification and denitrification, and sulfate
reduction. These process discoveries were pivotal in completing our understanding of the
cyclic nature of elements, and particularly that of nitrogen. Early work of Waksman, a bio-
chemist and microbiologist, expanded on the application of microbial processes with studies
on microorganisms and soil fertility, decomposition of plant and animal residues, formation
of humus, and the occurrence and role of bacteria in marine processes.
The discoveries of microbial ecology were earth shattering, leading scientists to begin
to see the cycles and spheres of the earth as having the ability to be sustainable or self-­
regulating. In the early 1900s, a mineralogist and geochemist, Vladimir Vernadsky, saw
the importance of these types of processes as they related to the recycling of elements at the

(Continued)
4 Biogeochemistry of Wetlands

(Continued)

Atmosphere

Biosphere

Hydrosphere Lithosphere

FIGURE 1.2 Conceptual diagram of the study of biogeochemistry as an interaction of the non-­living
earth spheres (lithosphere, hydrosphere, and atmosphere) with life in the biosphere.

FIGURE 1.3 Vladimir Vernadsky, the father of modern biogeochemistry, used the early disciplines
of geochemistry and soil science to expand the concept of the biosphere and elemental cycling through
biota.

ecosystem and global scales. His theories expanded on the biosphere concept of Suess, where
he not only acknowledged that biota were “geologic force” but added that the biosphere was
in unity with the cycling of elements through the other geologic spheres (the lithosphere, the
atmosphere, and the hydrosphere). This idea is still at work today through concepts such as
Gaia, where the earth is viewed as a living organism.
Introduction 5

Because of his advancement of the biosphere concept and his original studies of element
budgets in ecosystems, Vernadsky is often credited as the father of modern biogeochemistry.
But it was not until a few more pieces of the puzzle were added that our modern view of bio-
geochemistry was truly realized. Following the acceptance of continental drift theory in the
1930s and 1940s, the final pieces of the modern biogeochemical puzzle were added with the
emergence of ecology in the 1950s and 1960s with scientists like Hutchinson and Redfield
and later Odum, who linked the populations of biota in ecosystems with their physical and
chemical environments.
It was also in that time that the study of oxidation-­reduction coupled to biogeochemical
processes of paddy soils, lake and marine sediments, waterlogged, and poorly drained soils
began to be appreciated by early scientists in the 1930s to 1950s, including Sturgis, Pearsall,
Mortimer, Patrick, Ponnamperuma, and many others not included. The next generation of
scientists in the early 1970s (including the authors of this book) and their subsequent discov-
eries have expanded the discipline with major wetland biogeochemistry research programs
at several universities in the United States and in other countries. In the 1990s and through
today, we have seen the emergence of wetland and aquatic systems biogeochemistry as a
proper scientific discipline complete with dedicated journals, textbooks, and scientists will-
ing to label themselves as biogeochemists.
Many of the problems being addressed by biogeochemistry are large in nature (e.g., ocean
productivity, climate change), and some may hold an elitist view that biogeochemistry is only
defined at the global scale. However, as demonstrated in this brief history of the concept,
many scales are involved in the coupled cycling of elements, from microbes to continents.
All of these related disciplines and their discoveries are to be credited with developing this
notion to understand the interaction of life with the physical and chemical environments of
the Earth.

Biogeochemical cycles are influenced by various processes that result in exchange of materi-
als between two storage pools. The amount of a given constituent in these pools depends on its
residence time, which is simply the amount of that material in the reservoir divided by the rate
at which it is removed or added to the reservoir or the rate at which it is transformed. Living
components in wetland soils can act as exchange or cycling pools, with rapid turnover and flow
between the organisms in the pool and their immediate environment. The exchange or cycling
pool can encompass up to 20% of the total amount of a given compound of a system and turn over
rapidly, immobilizing and remobilizing compounds in a short time. Reservoir pools, which are
larger with slower turnover, provide long-­term storage. The reservoir pool typically contains the
majority of a given compound in a system, is less reactive, and provides long-­term storage. As an
example, when wetlands are used for wastewater treatment, designs that increase the percentage
of contaminants in the reservoir pool are more desirable because this provides long-­term removal
of the contaminant.
Wetland biogeochemistry involves processes by which an element or a compound is trans-
formed within wetlands, including means by which various forms are interchanged between
the solid, liquid, and gaseous phases. Thus, the broader ecosystem biogeochemistry definition
is also applied to wetland biogeochemistry, which focuses on surface or near-­surface processes
in wetlands that govern biogeochemical cycles, plant production, microbial transformations,
nutrient availability, pollutant removal, heavy metal chemistry, atmospheric exchange, and sedi-
ment transport. In this way, wetland biogeochemistry has its parentage in biology, soil science,
chemistry, and geology and now takes its place along with the bio-­and geosciences in provid-
ing the knowledge needed to develop solutions to the challenges faced by wetland and global
ecosystems.
6 Biogeochemistry of Wetlands

Biogeochemical processes in wetlands involve a host of complex microbial communities,


periphyton, and vegetation, and interaction and mutual dependency among these communities.
Biogeochemical processes also quantify the exchange and transport of elements or compounds
within wetlands, including those to other systems (e.g., the atmosphere). Wetland biogeochemical
processes provide overviews of the environmental factors and alterations in wetlands that control
or affect functioning at the local, regional, and global level and can have both positive and negative
feedbacks. Nitrogen and carbon cycles are good examples of biogeochemical processes that affect
processes at the local level (e.g., plant growth and soil accretion, regional level (water quality), and
the global level (greenhouse gas emissions and carbon storage). Wetland biogeochemical cycles
can have global significance as follows (Figure 1.4):

• Eutrophication of oligotrophic wetlands resulting from increased nutrient loads can


enhance primary productivity.
• High nutrient loads can affect species composition and food webs, leading to a dominance
of fast-­growing, high-­reproduction organisms.
• High primary productivity can result in increased rates of organic matter accumulation,
providing a sink for carbon (increased carbon sequestration).
• High rates of carbon accumulation can enhance microbial activities in soil and the water
column, leading to increased nutrient regeneration and biotic growth.
• Increased rates of microbial activities can increase the production of greenhouse gases,
and increased levels of greenhouse gases can have a negative impact on climate.

As we walk through a wetland, we all admire beautiful plants, flowers, birds and other wildlife,
and flowing water, but we rarely think about the “living soil” under our feet. The biogeochemical

Physical
Processes

Chemical Biological
Organic Matter Processes Processes

N C P

Climate
S Change

Carbon Eutrophication
Sequestration

FIGURE 1.4 Linkages between physical, chemical, and biological processes and global-­scale processes in
the biosphere.
Introduction 7

processes in the soil control many functions and ecosystem services provided by wetlands. This
is similar to the “brain” orchestrating the many functions of the human body. The type of biogeo-
chemical transformation occurring in wetlands, in contrast to upland systems, is strongly gov-
erned by hydrology. Transformations that occur in wetlands involve both anaerobic and aerobic
processes. The chapters presented in this book focus on the role excess water and soil oxidation–
reduction processes play in elemental cycling, heavy metal transformation, wetland plant response,
and toxic organic transformation. The “hub” for biogeochemistry is organic matter, which contains
macroelements including carbon, nitrogen, phosphorus, potassium, and sulfur (Figure 1.5). The
cycling of these macroelements in the aerobic and anaerobic zones of the soil and water column is
a primary driver supporting ecosystem processes and is far more interesting and important than
any other constituent of wetlands.
Nutrients such as nitrogen, phosphorus, and sulfur are primary components of soil organic mat-
ter, and the cycling of these nutrients is always coupled with carbon cycling. The rate and extent
of many of these reactions in the soil and the water column, involving carbon, nitrogen, phospho-
rus, and sulfur, are mediated by microbial communities and associated physicochemical reactions.
These cycles are coupled, and there is considerable mutual dependency of one cycle on another
(feedbacks and controls) or one organism on another (microbes, algae, and vegetation). There is a
strong linkage between biogeochemical processes and biotic communities (vegetation, algae, and
microbes). These coupled cycles operate at different spatial and temporal scales from the molecular
to landscape level.
As you can see, wetlands and their biogeochemical processes are key drivers of several ecosys-
tem functions associated with wetland values (e.g., water quality improvement through denitrifi-
cation and long-­term nutrient or carbon storage in the organic matter; Figure 1.5). Wetlands are

Plant Community Loading Hydroperiod

Carbon (productivity)

S P

Metals

Stable Organic Matter


(P Accretion/Stability)
(Accretion/Stability)

FIGURE 1.5 Relationship between coupled biogeochemical cycles and organic matter accretion in wetlands.
8 Biogeochemistry of Wetlands

atmospheric sources of carbon dioxide, methane, and nitrous oxide, and due to flooded or reducing
conditions, wetlands also limit organic matter turnover to serve as important global carbon sinks.
Thus, biogeochemical processes in wetlands are also important in global issues, such as global
warming, carbon sequestration, and eutrophication and water quality. For these reasons, knowl-
edge of wetland biogeochemical processes is useful both for understanding the ecology of these
systems leading to their preservation and to help us manage and predict the environmental fate and
transport of elements and compounds from natural or anthropogenic sources. In both ways, the
study of wetland biogeochemistry from the micro-­to the macro-­scale is of critical importance for
the challenging issues we face today.
Basic Concepts and Terminology
Madigan, M. T. , K. S. Bender , D. H. Buckley , W. M. Sattley , and D. A. Stahl . 2019. Brock Biology of
Microorganisms. 15th Edition. Pearson Prentice Hall, Upper Saddle River, NJ. 1064 pp.
Segel, I. H. 1976. Biochemical Calculations. 2nd Edition. Wiley, New York.
Stumm, W. and J. J. Morgan . 2012. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (Vol.
126). John Wiley & Sons, New York, NY.
Weil, R. R. and N. C. Brady . 2017. The Nature and Properties of Soils. 15th Edition. Prentice Hall, Upper
Saddle River, NJ. 960 pp.

Biogeochemical Characteristics
Alexander, L. C. , B. Autrey , J. DeMeester , K. M. Fritz , H. E. Golden , D. C. Goodrich , W. G. Kepner , C. R.
Lane , S. D. LeDuc , S. G. Leibowitz , and M. G. McManus . 2015. Connectivity of Streams and Wetlands to
Downstream Waters: A Review and Synthesis of the Scientific Evidence. US Environmental Protection Agency,
Washington, DC. EPA/600/R-14/475F
Batzer, D. P. and R. R. Sharitz (eds.). 2006. Ecology of Freshwater and Estuarine Wetlands. University of
California Press, Berkeley/Los Angeles, CA.
Brinson, M. M. 1993. A Hydrogeomorphic Classification of Wetlands. Technical Report; WRP-DE-4, U.S. Army
Corps. 79 pp.
Cowardin, L. M. , V. Carter , F. C. Golet , and E. T. LaRoe . 1979. Classification of Wetlands and Deepwater
Habitats of the United States. Fish and Wildlife Service, U.S. Department of Interior, Washington, DC.
Faulkner. S. P. and C. J. Richardson . 1989. Physical and Chemical Characteristics of Freshwater Wetland
Soils. Chapter 4, In Constructed Wetlands for Wastewater Treatment Municipal, Industrial, and Agricultural (1st
ed.). (Editor, D. A. Hammer ). CRC Press. https://doi.org/10.1201/9781003069850
Federal Register . 1994. Changes in hydric soils of the United States. Washington, DC.
Jackson, C. R. , J. A. Thompson , and R. K. Kolka . 2014. Wetland soils, hydrology, and geomorphology. In D.
P. Batzer and R. R. Sharitz (eds.) Ecology of Freshwater and Estuarine Wetlands. University of California
Press. https://doi.org/10.1525/9780520959118-004.
Lewis, W. M. 1995. Wetlands—Characteristics and Boundaries. National Research Council, National Academy
Press, Washington, DC. 306 pp.
Mitsch, W. J. and J. G. Gosselink . 2007. Wetlands. 4th Edition, Wiley, New York. 920 pp.
Van der Walk, A. G. 2012. The Biology of Freshwater Wetlands. Oxford University Press, Oxford. p. 279.
Vepraskas, M. J. and C. B. Craft . 2016. Wetland Soils: Genesis, Hydrology, Landscapes, and Classification.
CRC Press, Boca Raton, FL. 507pp.

Electrochemical Properties
Baas Becking, L. G. M. , I. R. Kaplan , and D. Moore . 1960. Limits of the natural environment in terms of pH
and oxidation—reduction potentials. J. Geol. 68:243–284.
Bartlett, R. J. and B. R. James . 1991. Redox chemistry of soils. Adv. Agron. 50:151–208.
Bohn, H. L. , B. L. McNeal , and G. A. O’Connor . 1985. Soil Chemistry. Wiley, New York. 341 pp.
Garrels, R. M. and C. L. Christ . 1965. Solutions, Minerals, and Equilibria. Harper & Row, New York. 450 pp.
Lindsay, W. L. 1979. Chemical Equilibria in Soils. Wiley, New York. 449 pp.
Nielsen, L. P. and N. Risgaard-Petersen . 2015. Rethinking sediment biogeochemistry after the discovery of
electric currents. Annu. Rev. Mar. Sci. 7:425–442.
Peiffer, S. , A. Kappler , S. B. Haderlein et al. 2021. A biogeochemical—hydrological framework for the role of
redox-active compounds in aquatic systems. Nat. Geosci. 14:264–272. https://doi.org/10.1038/s41561-021-
00742-z.
Ponnamperuma, F. N. 1972. The chemistry of submerged soils. Adv. Agron. 24:29–96.
Pennisi, E. 2020. The mud is electric. Science. 369(6506): 902–905. DOI: 10.1126/science.369.6506.902.
Quispel, A. 1998. Lourens G. M. Baas Becking (1895–1963), Inspirator for many (micro)biologists. International
Microbiol. 1:69–72. This article provides life-story of BaasBecking, who inspired many of us about the use of
redox potentials in environment.
Revil, A. , C. A. Mendonc¸a , E. A. Atekwana , B. Kulessa , S. S. Hubbard , and K. J. Bohlen . 2010.
Understanding biogeobatteries: Where geophysics meets microbiology. J. Geophys. Res. 115:G00G02.
doi:10.1029/2009JG001065.
Rowell, D. L. 1981. Oxidation and reduction. In D. J. Greenland and M. H. B. Hayes (eds.) The Chemistry of
Soil Processes. Wiley, New York. pp. 401–461.
Stefansson, A. , S. Arnorsson , and A. E. Sveinbjornsdottir . 2005. Redox reactions and potentials in natural
waters at disequilibrium. Chem. Geol. 221:289–311.

Carbon
Anderson, T. H. and K. H. Domsch . 1993. The metabolic quotient for CO2 (Q co 2) as a specifi c activity
parameter to assess the effects of environmental-conditions, such as pH, on the microbial biomass of forest
soils. Soil Biol. Biochem. 25:393–395.
Arnosti, C. 1998. Rapid potential rates of extracellular enzymatic hydrolysis in Arctic sediments. Limnol.
Oceanogr. 43:315–324.
Gopal, B. and V. Masing . 1990. Biology and ecology. In B. C. Pattan et al. (eds.) Wetlands and Shallow
Continental Water Bodies. Vol. 1. SPB Academic Publishing, the Netherlands. pp. 91–239.
Jackson, R. B. , M. Saunois , P. Bousquet , J. G. Canadell , B. Poulter , A. R. Stavert , P. Bergamaschi , Y.
Niwa , A. Segers , and A. Tsuruta . 2020. Increasing anthropogenic methane emissions arise equally from
agricultural and fossil fuel sources. Environ. Res. Lett. 15:071002. https://doi.org/10.1088/1748-9326/ab9ed2.
Gopal, B. and V. Masing . 1990. Biology and ecology. In B. C. Pattan et al. (eds.) Wetlands and Shallow
Continental Water Bodies. Vol. 1. SPB Academic Publishing, The Netherlands. pp. 91–239.
Inglett, K. S. , Chanton, J. P. and Inglett, P. W. , 2013. Methanogenesis and methane oxidation in wetland soils.
Methods in Biogeochemistry of Wetlands, 10, pp. 407–425.
Krause, S. J. E. and T. Treude . 2021. Deciphering cryptic methane cycling: Coupling of methylotrophic
methanogenesis and anaerobic oxidation of methane in hypersaline coastal wetland sediment. Geochimica et
Cosmochimica Acta. 302:160–174.
Leu, A. O. , C. Cai , S. J. McIlroy , G. Southam , V. J. Orphan , Z. Yuan , S. Hu , and G. W. Tyson . 2020.
Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae.
ISME J. 14:1030–1041. https://doi.org/10.1038/s41396-020-0590-x.
Madigan, M. T. and J. M. Martinko . 2006. Brock Biology of Microorganisms. 11th Edition. Pearson Prentice
Hall, Upper Saddle River, NJ.
Megonigal, J. P. , M. E. Hines , and P. T. Visscher . 2004. Anaerobic metabolism: linkages to trace gases and
aerobic processes. In W. H. Schlesinger (ed.) Biogeochemistry. Elsevier-Pergamon, Oxford, UK. pp. 317–424.
Normand , 2017. Global peatland soil organic carbon chemical composition and greenhouse gas production.
Ph.D. Dissertation, University of Florida. 211 pages.
Segers, R. 1998. Methane production and methane consumption: a review of processes underlying wetland
methane fluxes. Biogeochemistry. 41:23–51.
Sparling, G. P. 1992. Ratio of microbial biomass carbon to soil organic-carbon as a sensitive indicator of
changes in soil organic-matter. Aust. J. Soil Res. 30:195–207.
Stevenson, F. J. 1986. Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients. Wiley, New York.
380 pp.
Veldkamp, E. , A. M. Weitz , and M. Keller . 2001. Management effects on methane fluxes in humid tropical
pasture soils. Soil Biol. Biochem. 33:1493–1489.
Volk, B. G. 1973. Everglades histosol subsidence 1: CO2 evolution as affected by soil type, temperature, and
moisture. Soil Crop Sci. Soc. Fla. Proc. 32:132–135.
Westermann, P. 1993. Wetland and swamp microbiology. In T. E. Ford (ed.) Aquatic Microbiology. Blackwell
Scientific, Oxford, pp. 215–238.
Wetzel, R. G. 2001. Limnology: Lake and River Ecosystems. Chapters 11 and 23. Academic Press, New York.
1006 pp.

Oxygen
Aller, R. C. 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water.
In P. L. McCall and M. J. S. Tevesz (eds.) Animal—Sediment Relations: The Biogenic Alteration of Sediments.
Plenum Press, New York. pp. 53–102.
Elberling, B. , M. Kühl , R. N. Glud , C. J. Jørgensen , L. Askaer , L. F. Rickelt , H. P. Joensen , M. Larsen , and
L. Liengaard . 2013. Methods to assess high-resolution subsurface gas concentrations and gas fluxes in
wetland ecosystems. Chapter 49:433–454. In R. D. DeLaune , K. R. Reddy , C. J. Richardson , and J. P.
Megonigal (eds.) Methods in Biogeochemistry of Wetlands. SSSA Book Series, no. 10. Soil Science Society of
America, Madison, WI.
Kammann, C. , L. Grunhage , and H.-J. Jager . 2009. A new sampling technique to monitor concentrations of
CH4, N2O and CO2 in air at well-defined depths in soils with varied water potential. Eur. J. Soil Sci.
52:297–303. doi:10.1046/j.1365-2389.2001.00380.x
Madigan, M. T. , J. M. Martinko , and J. Parker . 2000. Brock Biology of Microorganisms. 9th Edition. Prentice
Hall, Upper Saddle River, NJ.
McIntyre, D. S. 1970. The platinum microelectrode method for soil aeration measurement. Adv. Agron.
22:235–285.
Mortimer, C. H. 1941. The exchange of dissolved substances between mud and water in lakes. J. Ecol.
29:280–329.
Reddy, K. R. , M.W. Clark , R.D. DeLaune , and M. Kongchum . 2013. Physicochemical Characterization of
Wetland Soils. Chapter 3, page 41–52. In: R. D. DeLaune , K. R. Reddy , C. J. Richardson , and P. J.
Megonigal , eds. Methods in Biogeochemistry of Wetlands, Soil Science Society of America. Madison, WI. 1024
pp.
Revsbech, N. P. 1989. An oxygen microelectrode with a guard cathode. Limnol. Oceanogr. 34:474–476.
Revsbech, N. P. , B. B. Jørgensen , T. H. Blackburn , and Y. Cohen . 1983. Microelectrode studies of the
photosynthesis and O2, H2S, and pH profiles of a microbial mat. Limnol. Oceanogr. 28:1062–1074.

Adaptation of Plants to Soil Anaerobiosis


Armstrong, J. , Afreen-Zobayed, F. , Armstrong, W. 1996a. Phragmites die-back: sulphide- and acetic acid-
induced bud and root death, lignifications, and blockages with the aeration and vascular systems. New
Phytologist. 134:601–614.
Armstrong, J. , Armstrong, W. , Van der Putten, W.H. 1996b. Phragmites die-back: bud and root death,
blockages within the aeration and vascular systems and the possible role of phytotoxins. New Phytologist.
133:399–414.
Armstrong, J. , Armstrong, W. 1999. Phragmites die-back: toxic effects of propionic, butyric and caproic acids in
relation to pH. New Phytologist. 142:201–218.
Armstrong, J. , Armstrong, W. 2001. Rice and Phragmites: effects of organic acids on growth, root permeability,
and radial oxygen loss to the rhizosphere. American Journal of Botany. 88:1359–1370.
Armstrong, J. and W. Armstrong . 2005. Rice: Sulfide-induced barriers to root radial oxygen loss, Fe2+ and
Water uptake, and lateral root emergence. Annals of Bot. 96:625–638. doi:10.1093/aob/mci215.
Andresen, C. G. , M. J. Lara , C. E. Tweedie , and V. L. Lougheed . 2017. Rising plant-mediated methane
emissions from arctic wetlands. Global Change Biology. 23:1128–1139, doi:10.1111/gcb.13469.
Askaer, L. , B. Elberling , C. J. Jørgensen , T. Friborg , and B. U. Hansen . 2011. Plant-mediated CH4 transport
and C gas dynamics quantified in situ in a Phalaris arundinacea-dominant wetland. Plant Soil.
doi:10.1007/s11104-011-0718-x.
Carmichael, M. J. , E. S. Bernhardt , S. L. Brauer , and W. K. Smith . 2014. The role of vegetation in methane
flux to the atmosphere: should vegetation be included as a distinct category in the global methane budget?
Biogeochemsitry. 107:97–106.
Colmer, T. D. 2003. Long-distance transport of gases in plants: A perspective on internal aeration and radial
oxygen loss from roots. Plant, Cell Environ. 26:17–36.
DeLaune, R. D. , S. R. Pezeshki , and C. W. Lindau . 1998. Influence of soil redox potential on nitrogen uptake
and growth of wetland oak seedlings. J. Plant Nutr. 21:757–768.
Grosse, W. 1989. Thermoosmotic Air Transport in Aquatic Plants Affecting Growth Activities and Oxygen
Diffusion to Wetland Soils. In Constructed Wetlands for Wastewater Treatment (Editor. D. A. Hammer ). pp
469–476. Lewis Publishers, CRC Press, Boca Raton, Florida.
Hamilton, S. K. , S. J. Sippel , J. P. Chanton , and J. M. Melack . 2014. Plant-mediated transport and isotopic
composition of methane from shallow tropical wetlands. Inland Waters. 4:369–376.
Kludze, H. K. , S. R. Pezeshki , and R. D. Delaune . 1994a. Evaluation of root oxygenation and growth in bald
cypress in response to short-term soil hypoxia. Can. J. Forest. Res. 24:804–809.
Neori, A. and M. Agami . 2017. The functioning of rhizosphere biota in Wetlands—a review. Wetlands.
37:615–633. doi:10.1007/s13157-016-0757-4.
Pangala, S. R. , E. R. C. Hornibrook , and V. Gauci . 2013. Trees are major conduits from for methane egress
from tropical forested wetlands. New Phytologist. 197:524–531.
Philippot, L. , J. M. Raaijmakers , P. Lemanceau , and W. H. van der Putten . 2013. Going back to the roots:
The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11:789–799.
Short, F. T. , S. Kosten , P. A. Morganc , S. Malone , and G. E. Moore . 2016. Impacts of climate change on
submerged and emergent wetland plants. Aquat. Bot. 135:3–17.
Tanaka, N. , K. Yutani , T. Aye , and K. B. S. N. Jinadasa . 2007. Effect of broken dead culms of Phragmites
australis on radial oxygen loss in relation to radiation and temperature. Hydrobiol. 583:165–172.
doi:10.1007/s10750-006-0483-7.
Yamauchi, T. , S. Shimamura , M. Nakazonoa , and T. Mochizuki . 2013. Aerenchyma formation in crop
species: A review. Field Crops Res. 152:8–16.
Nitrogen
Buresh, R. J. , M. E. Casselman , and W. H. Patrick, Jr . 1980. Nitrogen fixation in flooded soil systems—a
review. Adv. Agron. 33:149–192.
Devol, A. H. 2015. Denitrification, anammox, and N2 production in marine sediments. Annu. Rev. Mar. Sci.
7:403–423. doi:10.1146/annurev-marine-010213-135040.
Groffman, P. M. , M. A. Altabet , J. K. Böhlke , K. Butterbach-Bahl , M. B. David , M. K. Firestone , A. E. Giblin ,
T. M. Kana , L. P. Nielsen , and M. A. Voytek . 2006. Methods for measuring denitrification: Diverse approaches
to a difficult problem. Ecol Appl. Dec, 16(6):2091–2122. doi:10.1890/1051-
0761(2006)016[2091:mfmdda]2.0.co;2. PMID:17205891.
Howarth, R. W. , R. Marino , J. Lane , and J. J. Cole . 1988. Nitrogen fixation in freshwater, estuarine, and
marine ecosystems, 1: Rates and importance. Limnol. Oceanogr. 33:669–687.
Koch, H. , M. A. H. J. van Kessel 1, and S. Lücke , 2019. Complete nitrification: Insights into the ecophysiology
of comammox Nitrospira . Appl. Microbiol. Biotechnol. 103:177–189. doi.org/10.1007/s00253-018-9486-3.
Nieder, R. , D. K. Benbi , and H. W. Scherer . 2011. Fixation and defixation of ammonium in soils: A review. Biol
Fertil Soils. 47:1–14. DOI 10.1007/s00374-010-0506-4.
Schmidt-Rohr, K. , J. D. Mao , and D. C. Olk . 2014. Nitrogen-bonded aromatics in soil organic matter and their
implications for a yield decline in intensive rice cropping. Proc. National Acad. Sci. 101:6351–6354.
Stevenson, F. J. 1994. Humus Chemistry. 2nd Edition. Wiley, New York. 496 pp.

Phosphorus
Baldwin, D. S. 2013. Organic phosphorus in the aquatic environment. Environ. Chem. 10:439–454.
http://dx.doi.org/10.1071/EN13151.
Burns, R. G. and R. P. Dick . 2002. Enzymes in the Environment. Marcel Dekker, New York. 614 pp.
Chang, S. C. and M. L. Jackson . 1957. Fractionation of soil phosphorus. J. Soil Sci. 84:133–144.
Essington, M. E. 2004. Soil and Water Chemistry. CRC Press, Boca Raton, FL. 534 pp.
Haygarth, P. , M. H. P. Jarvie , S. M. Powers , A. N. Sharpley , J. J. Elser , J. Shen , H. M. Peterson , N. Chan ,
N. J. K. Howden , T. Burt , F. Worrall , F. Zhang , and X. Liu . 2014. Sustainable Phosphorus Management and
the Need for a Long-Term Perspective: The Legacy Hypothesis. Environ. Sci. Technol. 2014, 48:8417−8419.
Heath, R. T. 2004. Microbial turnover of organic phosphorus in aquatic environments. In B. L. Turner , E.
Frossard , and D. S. Baldwin (eds.) Organic Phosphorus in the Environment. CAB Publishing, Cambridge, MA.
pp. 185–204.
Hieltjes, H. M. and L. Lijklema . 1980. Fractionation of inorganic phosphates in calcareous sediments. J.
Environ. Qual. 9:405–407.
Hogue, B. , and P. W. Inglett . 2012. Characterization of combustion residues obtained from natural and
simulated fires of varying intensity. Science of the Total Environment. 431:9–19.
Pettersson, K. 1986. The fractional composition of phosphorus in lake sediments of different characteristics. In
P. G. Sly (ed.) Sediment and Water Interactions. Springer-Verlag, Berlin. pp. 149–155.
Psenner, R. and R. Pucsko . 1988. Phosphorus fractionation: advantages and limits of the method for the study
of sediment P origins and interactions. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30:43–59.
Reddy, K. R. , M. R. Overcash , R. Khaleel , and P. W. Westerman . 1980b. Phosphorus adsorption-desorption
characteristics of two soils utilized for disposal of animal wastes. J. Environ. Qual. 9:86–92.
Reddy, K. R. , R. G. Wetzel , and R. Kadlec . 2005. Biogeochemistry of phosphorus in wetlands. In J. T. Sims
and A. N. Sharpley (eds.) Phosphorus: Agriculture and the Environment. Soil Science Society of America,
Madison, WI. pp. 263–316.
Reddy, K. R. , S. Grunwald , V. D. Nair , and Y. Wang . 2007. Baseline Soil Characterization of the Taylor
Creek Pilot Stormwater Treatment Area (STA) in the Lake Okeechobee Watershed. 2007. Final Report
submitted to South Florida Water Management District, West Palm Beach, Florida. 75 pages.
Reynolds, C. S. and P. S. Davis . 2001. Sources and bioavailability of phosphorus fractions in freshwaters: A
British perspective. Biol. Rev. 76:27–64.
Ruttenberg, K. C. 1992. Development of sequential extraction method for different forms of phosphorus in
marine sediments. Limnol. Oceanogr. 37:1460–1482.
Stevenson, F. J. 1986. Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients. Wiley, New York.
380 pp.
van Eck, G. T. M. 1982. Forms of phosphorus in particulate matter from the Hollands Diep/Haringvliet, the
Netherlands. Hydrobiologia 92:665–681.
Turner, B. L. , E. Frossard , and D. D. Baldwin . 2004. Organic Phosphorus in the Environment. CAB
Publishing, Cambridge, MA. 389 pp.
Iron and Manganese
Borch, T. , R. Kretzschmar , A. Kappler , P. van Cappellen , M. Ginder-Vogel , A. Voegelin , and K. Campbello .
2010. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol.
44:15–23.
Ehrlich, H. L. 2002. Geomicrobiology. Marcel Dekker, New York (Chapters 15 and 16).
Emerson, S. , E. Roden , and B. Twining . 2012. The microbial ferrous wheel: Iron cycling in terrestrial,
freshwater, and marine environments. Front. Microbiol. Special Issue. 3:1–216 pages.
doi:10.3389/fmicb.2012.00383.
Gu, Y. , Lensu, A. , Perämäki, S. , Ojala, A. , Vähätalo, A. V. Iron and pH Regulating the Photochemical
Mineralization of Dissolved Organic Carbon. ACS Omega. 2017 May 9; 2(5):1905–1914. doi:
10.1021/acsomega.7b00453. PMID: 31457550; PMCID: PMC6641020.
Hall, S. J. and W. Huang . 2017. Iron reduction: A mechanism for dynamic cycling of occluded cations in
tropical forest soils? Biogeochemistry. 136:91–102. doi:10.1007/s10533-017-0383-0.
Kappler, A. , C. Bryce , M. Mansor , U. Lueder , J. M. Byrne , and E. D. Swanner . 2021. An evolving view on
biogeochemical cycling of iron. Nat. Rev. 19:360–374.
Karimian, N. , S. G. Johnston , and E. Burton . 2018. Iron and sulfur cycling in acid sulfate soil wetlands under
dynamic redox conditions: A review. Chemosphere. 197:803–816.
Kramer, J. , Ö. Ozkaya , and R. Kümmerli . 2020. Bacterial siderophores in community and host interactions.
Nat. Rev. Microbiol. 18:152–160.
Lovley, D. R. 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microbiol. Physiol. 49:219–286.
Madigan, M. and J. Martinko . 2006. Brock Biology of Microorganisms. 11th Edition. Benjamin Cummings, San
Francisco, CA.
Nealson, K. and D. Saffarini . 1994. Iron and manganese in anaerobic respiration. Annu. Rev. Microbiol.
48:311–343.
Straub, K. L. , M. Benz , and B. Schink . 2001. Iron metabolism in anoxic environments at near neutral pH.
FEMS Microbiol. Ecol. 34:181–186.
Thamdrup, B. 2000. Bacterial manganese and iron reduction in aquatic sediments. In B. Schink (ed.) Advances
in Microbial Ecology. Vol. 16. Kluwer Academic/Plenum Publishers, New York. pp. 41–84.
Weber, K. A. , L. A. Achenbach , and J. D. Coats . 2006. Microorganisms pumping iron: Anerobic microbial iron
oxidation and reduction. Nat. Rev. Microbiol. 4:752–764.

Sulfur
Canfield, D. E. and R. Raiswell . 1999. The evolution of sulfur cycle. Amer. J. Sci. 299:697–723.
Favas, P. J. C. , Sarkar, S. K. , Rakshit, D. , Venkatachalam P. , Prasad, M.N.V. 2016c. AMDs from abandoned
mines: hydrochemistry, environmental impact, resource recovery, and prevention of pollution. In: Prasad MNV ,
Shih K , editors: Environmental materials and waste: resource recovery and pollution prevention, Elsevier,
Academic Press, pp. 413–462.
Fike, D. A. , A. S. Bradley , and C. V. Rose . 2015. Rethinking the ancient sulfur cycle. Annu. Rev. Earth Planet.
Sci. 43:593–622.
Howarth, R. W. , J. W. B. Stewart , and M. V. Ivanov (eds.). 1992. Sulfur Cycling on the Continents: Wetlands,
Terrestrial Ecosystems and Associated Water Bodies, SCOPE Report 48. Wiley, Chichester, England. 350 pp.
Jorgensen, B. B. 1982. Mineralization of organic matter in the seabed: The role of sulfate reduction. Nature.
296:643–645.
Jørgensen, B. B. , A. J. Findlay , and A. Pellerin . 2019. The biogeochemical sulfur cycle of marine sediments.
Front. Microbiol. 10:849. doi:10.3389/fmicb.2019.00849.
Karimian, N. and S. G. Johnston , and E. Burton . 2018. Iron and sulfur cycling in acid sulfate soil wetlands
under dynamic redox conditions: A review. Chemosphere. 197:803–816.
Pester, M. , K. Knorr , M. W. Friedrich , M. Wagner , and A. Loy . 2012. Sulfate-reducing microorganisms in
wetlands—fameless actors in carbon cycling and climate change. Front. Microbiol. 3. Article 72.1–19 pages.
doi:10.3389/fmicb.2012.00072.

Metals/Metalloids
Caporale, A. G. and A. Violante . 2016. Chemical processes affecting the mobility of heavy metals and
metalloids in soil environments. Curr. Pollution Rep. 2:15–27. doi:10.1007/s40726-015-0024-y.
Du Laing, G. , J. Rinklebe , B. Vandecasteele , E. Meers , and F. M. G. Tack . 2009. Trace metal behavior in
estuarine and riverine floodplain soils and sediments: A review. Sci Total Environ. 407:3972–3985.
Fendorf, S. , B. W. Wielinga , and C. M. Hansel . 2000. Chromium transformations in natural environments: The
role of biological and abiological processes in chromium(VI) reduction. Int. Geol. Rev. 42:8, 691–701.
doi:10.1080/00206810009465107.
Frohne, T. , J. Rinklebe , and R. A. Diaz-Bone . 2014. Contamination of Floodplain Soils along the Wupper
River, Germany, with As, Co, Cu, Ni, Sb, and Zn and the impact of pre-definite redox variations on the mobility
of these elements. Soil and Sediment Contaminat: An Int. J. 23:7, 779–799.
doi:10.1080/15320383.2014.872597.
Garrels, R. M. and Christ, C. L. , Minerals, Solutions and Equilibria, Harper and Rowley, New York, 1965.
Khalid, R. A. , Gambrell, R. P. , and Patrick, W. H., Jr. , J. Environ. Qual. 10, 523, 1981.
LeMonte, J. J. , J. W. Stuckey , J. Z. Sanchez , R. Tappero , J. Rinklebe , and D. L. Sparks . 2017. Sea level
rise induced arsenic release from historically contaminated coastal soils. Front Microbiol. 51:5913–5922.
doi:10.1021/acs.est.6b06152.
Masscheleyn, P. H. , DeLaune, R. D. , and Patrick, W. H., Jr. , Environ. Sci. Technol., 25(8), 1414, 1991.
Masscheleyn, P. H. , DeLaune, R. D. , and Patrick, W. H., Jr. , Environ. Qual., 20, 1991.
Modified from Brookins, D. G. , Eh–pH Diagrams for Geochemistry, Spring-Verlag, Heidelberg, 1988.
Nancharaiah, Y. V. and P. N. L. Lensa . 2015. Ecology and biotechnology of selenium-respiring bacteria.
Microbiol. Mol. Biol Rev. 79:61–80.
Reddy, C. N. and Patrick, W. H., Jr. , Soil Sci. Soc.Am. Proc., 38, 66, 1977.
Rinklebe, J. , A. S. Knox , and M. Paller . 2016. Trace Elements in Waterlogged Soils and Sediments. CRC
Press, Boca Raton, FL.
Stumm, W. and J. J. Morgan . 2012. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Vol.
126. John Wiley & Sons, New York.
Young, S. D. 2013. Chemistry of heavy metals and metalloids in soils. In B. J. Alloway (ed.) Heavy Metals in
Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, Environmental Pollution 22. Chapter
3:51–95. doi:10.1007/978-94-007-4470-7_3, Springer Science+Business Media Dordrecht 201.

Toxic Organic Compounds


Alexander, M. 1994. Biodegradation and Bioremediation. Academic Press, New York. 302 pp.
Cheng, N. N. (ed.). 1990. Pesticides in the Soil Environment: Processes Impacts and Modeling. SSSA Book
Series No. 2. Soil Science Society of America, Madison, WI. 530 pp.
D’Angelo, E. M. 2003. Wetlands: Biodegradation of organic pollutants. In G. Bitton (ed.) Encyclopedia of
Environmental Microbiology. Wiley, New York.
Klaus, K. (ed.). 2004. Pharmaceuticals in the Environment: Sources, Fate, Effects and Risk. 2nd Edition.
Springer, New York. 528 pp.
Kummerer, K. (ed.). 2004. Pharmaceuticals in the Environment: Sources, Fate, Effects and Risk. 2nd Edition.
Springer, Berlin. 528 pp.
Manahan, S. E. 2000. Environmental Chemistry. 7th Edition. Lewis Publishers, Boca Raton, FL. 898 pp.

Soil and Floodwater Exchange Processes


Aller, R. C. 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water.
In P. L. McCall and M. J. S. Tevesz (eds.) Animal-Sediment Relations. Plenum Press, New York. pp. 53–102.
Berner, R. A. 1980. Early Diagenesis. A Theoretical Approach. Princeton University Press, Princeton, NJ. 481
pp.
Boudreau, B. P. 1997. Diagenic Models and Their Implementation. Springer-Verlag, Berlin. 414 pp.
Boudreau, B. P. and B. B. Jorgensen . 2001. The Benthic Boundary Layer. Oxford University Press, New York.
403 pp.
Hemond, H. F. and E. J. Fechner . 1994. Chemical Fate and Transport in the Environment. Academic Press,
New York. 338 pp.
Ishikawa, M. and Nishimura, H. 1989. Mathematical model of phosphate release rate from sediments
considering the effect of dissolved oxygen in overlying water. Water Res. 23(3):351–359.
Lerman, A. 1979. Geochemical Processes; Water and Sediment Environments. Wiley, New York. 481 pp.
Winter, T. C. 1999. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol. J.
7:28–45.
References
Adams, G. O. , P. T. Fufeyin , S. E. Okoro , and I. Ehinomen . 2015. Bioremediation, biostimulation and
bioaugmention: A review. Int. J. Environ. Bioremediat. Biodegrad. 3:28–39. doi:10.12691/ijebb-3-1-5.
Aelion, M. C. and D. C. Cresi . 1999. Impact of land use on microbial transformation of atrazine. J. Environ.
Qual. 28:683–691.
Aftring, R. P. , B. E. Chalker , and B. F. Taylor . 1981. Degradation of phthalic acids by denitrifying mixed
cultures of bacteria. Appl. Environ. Microbiol. 41:1177–1183.
Aitkenhead, J. A. and W. H. McDowell . 2000. Soil C:N ratio as a predictor of annual riverine DOC flux at local
and global scale. Global Biogeochem. Cycles. 14:127–138.
Aleem, M. I. H. , H. Lees , and D. J. D. Nicholas . 1963. Adenosine triphosphate-dependent reduction of
nicotinamide adenine dinucleotide by ferro-cytochrome c in chemoautotrophic bacteria. Nature. 200:759–761.
Alexander, L. C. , K. M. Fritz , K. A. Schofield , B. C. Autrey , J. E. DeMeester , H. E. Golden , D. C. Goodrich ,
W. G. Kepner , H. R. Kiperwas , C. R. Lane , S. D. LeDuc , S. G. Leibowitz , M. G. McManus , A. I. Pollard , C.
E. Ridley , M. K. Vanderhoof , and P. J. Wigington . 2018. Featured collection introduction: Connectivity of
streams and wetlands to downstream waters. JAWRA. 54:287–297. doi:10.1111/1752–1688.12630.
Alexander, M. 1994. Biodegradation and Bioremediation. Academic Press, New York. 302 pp.
Allan, S. E. , B. W. Smith , and K. A. Anderson . 2012. Impact of the deepwater horizon oil spill on bioavailable
polycyclic aromatic hydrocarbons in Gulf of Mexico coastal waters. Environ. Sci. Technol. 46:2033–2039.
doi:10.1021/es202942q.
Aller, R. C. 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water.
In P. L. McCall and M. J. S. Tevesz (eds.) Animal-Sediment Relations: The Biogenic Alteration of Sediments.
Plenum Press, New York. pp. 53–102.
Aller, R. C. 1983. The importance of the diffusive permeability of animal burrow linings in determining marine
sediment chemistry. J. Mar. Res. 41:299–322.
Aller, R. C. and J. Y. Aller . 1992. Meiofauna and solute transport in marine muds. Limnol. Oceanogr.
37:1018–1033.
Anderson, T. H. and K. H. Domsch . 1993. The metabolic quotient for CO2 (Q CO2) as a specific activity
parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest
soils. Soil Biol. Biochem. 25:393–395.
Andersen, M. R. , K. Sand-Jensen , R. I. WoolwayIan , and D. Jones . 2017. Sediment resuspension in two
adjacent shallow coastal lakes: controlling factors and consequences on phosphate dynamics. Aquat. Sci.
72:21–31. doi:10.1007/s00027-009-0107-1.
Anisfeld, S. C. , M. Tobin , and G. Benoit . 1999. Sedimentation rates in flow-restricted and restored salt
marshes in Long Island Sound. Estuaries. 22:231–244.
Ann, Y. , K. R. Reddy , and J. J. Delfino . 2000a. Influence of chemical amendments on P retention in a
constructed wetland. Ecol. Eng. 14:157–167.
Ann, Y. , K. R. Reddy , and J. J. Delfino . 2000b. Influence of redox potential on P solubility in chemically
amended wetland soils. Ecol. Eng. 14:169–180.
Anschutz, P. , K. Dedieu , F. Desmazes , and G. Chaillou . 2005. Speciation, oxidation state and reactivity of
particulate manganese in marine sediments. Chem. Geol. 218(3–4):265–279.
Antić-Mladenović, S. , J. Rinklebe , T. Frohne , H. Stärk , R. Wennrich , Z. Tomić , and V. Ličin . 2011. Impact of
controlled redox conditions on nickel in a serpentine soil. J. Soils Sediments. 11:406–415.
https://doi.org/10.1007/s11368-010-0325-0.
Antweiler, R. C. , D. A. Goolsby , and H. E. Taylor . 1995. Nutrients in the Mississippi River. In R. H. Meade
(ed.) Contaminants in the Mississippi River: 1987–1992. U.S. Geology Survey Circular 1133, 140 pp.
APHA . 2005. Standard Methods for the Examination of Water and Wastewater. 21st Edition. American Public
Health Association. Washington, DC.
Armentano, T. V. and E. S. Menges . 1986. Patterns of change in the carbon balance of organic soil wetlands
of the temperate zone. J. Ecol. 74:755–774.
Armstrong, J. and W. Armstrong . 1991. A convective through-flow of gases in Phragmites australis (Cav.) Trin
ex Steud. Aquat. Bot. 39:75–88.
Armstrong, J. and W. Armstrong . 2005. Rice: Sulfide-induced barriers to root radial oxygen loss, Fe2+ and
water uptake, and lateral root emergence. Ann. Bot. 96:625–638. doi:10.1093/aob/mci215.
Armstrong, J. , W. Armstrong , and P. M. Beckett . 1992. Phragmites australis: Venturi- and humidity-induced
pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytol. 114:197–207.
Armstrong, J. , Afreen-Zobayed, F. , Armstrong, W. 1996a. Phragmites die-back: sulphide- and acetic acid-
induced bud and root death, lignifications, and blockages with the aeration and vascular systems. New
Phytologist. 134:601–614.
Armstrong, J. , Armstrong, W. , Van der Putten, W.H. 1996b. Phragmites die-back: bud and root death,
blockages within the aeration and vascular systems and the possible role of phytotoxins. New Phytologist.
133:399–414.
Armstrong, J. , Armstrong, W. 1999. Phragmites die-back: toxic effects of propionic, butyric and caproic acids in
relation to pH. New Phytologist. 142:201–218.
Armstrong, J. , Armstrong, W. 2001. Rice and Phragmites: effects of organic acids on growth, root permeability,
and radial oxygen loss to the rhizosphere. American Journal of Botany. 88:1359–1370.
Armstrong, J. and W. Armstrong . 2005. Rice: Sulfide-induced barriers to root radial oxygen loss, Fe2+ and
Water uptake, and lateral root emergence. Annals of Bot. 96:625–638. doi:10.1093/aob/mci215.
Armstrong, W. 1967a. The use of polarography in the assay of oxygen from roots in anaerobic medium.
Physiol. Plants. 20:540–553.
Armstrong, W. 1967b. The oxidizing activity of roots in waterlogged soils. Physiol. Plant. 20:920–926.
Armstrong, W. 1968. Oxygen diffusion from roots of woody species. Physiol. Plant. 21:539–543.
Armstrong, W. 1971. Radial oxygen losses from intact rice roots as affected by distance from the apex,
respiration and water logging. Physiol. Plant. 25:192–197.
Armstrong, W. 1978. Root aeration in wetland conditions. In D. D. Hook and R. M. M. Crawford (eds.) Plant Life
in Anaerobic Environments. Ann Arbor Science, Ann Arbor, MI. pp. 269–297.
Armstrong, W. 1979. Aeration in higher plants. Adv. Bot. Res. 7:225–329.
Armstrong, W. , J. Armstrong , P. M. Beckett , and S. H. F. W. Justin . 1991a. Convective gas-flows in wetland
plant aeration. In M. B. Jackson , D. D. Davies , and H. Lambers (eds.) Plant Life Under Oxygen Deprivation.
SPB Academic Publishing, The Hague, The Netherlands. pp. 283–302.
Armstrong, W. and P. M. Beckett . 1987. Internal aeration and the development of stellar anoxia in submerged
roots. New Phytol. 105:221–245.
Armstrong, W. and P. M. Beckett . 1996. Pressurized aeration in wetland macrophytes: Some theoretical
aspects of humidity-induced convection and thermal transpiration. Folia Geobot. Phytotaxinom. 31:25–36.
Armstrong, W. , P. M. Beckett , S. H. F. W. Justin , and S. Lythe . 1991b. Modelling and other aspects of root
aeration by diffusion. In M. B. Jackson , D. D. Davies , and H. Lambers (eds.) Plant Life Under Oxygen
Deprivation. SPB Academic Publishing, The Hague, The Netherlands. pp. 267–282.
Armstrong, W. and D. J. Boatman . 1967. Some field observations relating to growth of bog plants to conditions
of soil aeration. J. Ecol. 55:101–110.
Armstrong, W. , R. Brandle , and M. B. Jackson . 1994. Mechanisms of flood tolerance in plants. Acta Bot.
Neerland. 43:307–358.
Armstrong, W. and D. J. Gaynard . 1976. The critical oxygen pressures for respiration in intact plants. Physiol.
Plant. 37:200–206.
Armstrong, W. , T. Webb , M. Darwent , and P. M. Beckett . 2009. Measuring and interpreting respiratory critical
oxygen pressures in roots. Ann. Bot. 103:281–293. doi:10.1093/aob/mcn177.
Ashworth, D. D. , J. Moore , and G. Shaw . 2008. Effects of soil type, moisture content, redox potential and
methyl bromide fumigation on K d values of radio-selenium in soil. J. Environ. Radioact. 99:1136–1142.
Askaer, L. , B. Elberling , T. Friborg , C. J. Jørgensen , and B. U. Hansen . 2011. Carbon dioxide and methane
fluxes linked to oxygen availability in a graminoid dominant temperate northern peatland. Plant Soil.
343:287–301. doi:10.1007/s11104-011-0718-x.
Askaer, L. , B. Elberling , R. N. Glud , M. Kühl , F. Lauritsen , and H. P. Joensen . 2010. Soil heterogeneity
control on the distribution of oxygen and resultant methane emissions from wetlands: Assessed by 2-D planar
optodes and membrane inlet mass spectrometry. Soil Biol. Biochem. 42:2254–2265.
doi:10.1016/j.soilbio.2010.08.026.
Askaer, L. , B. Elberling , C. J. Jørgensen , T. Friborg , and B. U. Hansen . 2011. Plant-mediated CH4 transport
and C gas dynamics quantified in situ in a Phalaris arundinacea-dominant wetland. Plant Soil.
doi:10.1007/s11104-011-0718-x.
Avnimelech, Y. 1980. Calcium-carbonate-phosphate surface complex in calcareous systems. Nature.
266:255–257.
Axt, J. R. and M. R. Walbridge . 1999. Phosphate removal capacity of palustrine forested wetlands and
adjacent uplands in Virginia. Soil Sci. Soc. Am. J. 63:1019–1031.
Baas Becking, L. G. M. , I. R. Kaplan , and D. Moore . 1960. Limits of the natural environment in terms of pH
and oxidation—reduction potentials. J. Geol. 68:243–284.
Bacha, R. E. and L. R. Hossner . 1977. Characteristics of coatings formed on rice roots as affected by iron and
manganese additions. Soil Sci. Soc. Am. J. 41:931–935.
Bache, B. W. and E. G. Williams . 1971. A phosphate sorption index for soils. J. Soil Sci. 22:289–301.
Bagley, D. and J. Gosset . 1990. Tetrachloroethylene transformation to trichloroethylene and cis-1,2-
dichloroethylene by sulfate-reducing enrichment cultures. Appl. Environ. Microbiol. 56:2511–2516.
Bains, W. , J. J. Petkowski , C. Sousa-Silva , and S. Seager . 2019. New environmental modelfor
thermodynamic ecology of biological phosphine production. Sci. Total Environ. 658:521–536.
Baken, S. , F. Degryse , L. Verheyen , R. Merckx , and E. Smolders . 2011. Metal complexation properties of
freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands. Environ. Sci.
Technol. 45:2584–2590. doi:10.1021/es103532a.
Baldwin, D. S. 1996. Effects of exposure to air and subsequent drying on the phosphate sorption characteristics
of sediments from a eutrophic reservoir. Limnol. Oceanogr. 41:1725–1732.
Baldwin, D. S. 2013. Organic phosphorus in the aquatic environment. Environ. Chem. 10:439–454.
http://dx.doi.org/10.1071/EN13151.
Balistrieri, L. S. , J. W. Murray , and B. Paul . 1992. The biogeochemical cycling of trace metals in the water
column of Lake Sammamish, Washington: response to seasonally anoxic conditions. Limnol. Oceanogr.
37:529–548.
Banerjee, M. R. and S. J. Chapman . 1996. The significance of microbial biomass sulfur in soil. Biol. Fert. Soils.
22:116–125.
Barbier, E. B. , S. D. Hacker , C. Kennedy , E. W. Koch , A. C. Stier , and B. R. Silliman . 2011. The value of
estuarine and coastal ecosystem services. Ecol. Monogr. 81:169–193.
Bardgett, R. D. , C. Freeman , and N. J. Ostle . 2008. Microbial contributions to climate change through carbon
cycle feedbacks. ISME J. 2:805–814.
Barrow, N. J. and T. C. Shaw . 1980. Effect of drying on the measurement of phosphate adsorption. Commun.
Soil Sci. Plant Anal. 11:347–353.
Bartlett, R. J. and B. R. James . 1991. Redox chemistry of soils. Adv. Agron. 50:151–208.
Bartlett, R. J. , R. J. G. Mortimer , and K. Morris . 2008. Anoxic nitrification: Evidence from humber estuary
sediments (UK). Chem. Geol. 250:29–39.
Bartol, T and C. Brown . 2016. Lake Apopka soil remediation project. Professional Paper SJ2016-PP1. St.
Johns River Water Management District, Palatka, Florida.
Battin, T. J. , K. Besemer , M. M. Bengtsson , A. M. Romani , and A. I. Packmann . 2016. The ecology and
biogeochemistry of stream biofilms. 14:251–263. doi:10.1038/nrmicro.2016.15.
Batzer, D. P. , R. B. Rader , and S. A. Wissinger . 1999. Invertebrates in Freshwater Wetlands of North
America: Ecology and Management. Wiley, New York.
Batzer, D. P. and R. R. Sharitz (eds.). 2006. Ecology of Freshwater and Estuarine Wetlands. University of
California Press, Berkley and Los Angeles, CA. 568 pp.
Beare, M. H. , C. L. Neely , D. C. Coleman , and W. L. Hargrove . 1990. A substrate-induced respiration (SIR)
method for measurement of fungal and bacterial biomass on plant residues. Soil Biol. Biochem. 22:585–594.
Beckers, F. and J. Rinklebe . 2017. Cycling of mercury in the environment: Sources, fate, and human health
implications: A review. Crit. Rev. Environ. Sci. Technol. 47:693–794.
Beckett, P. M. , W. Armstrong , F. W. Justin , and J. Armstrong . 1988. On the relative importance of convective
and diffusive gas-flows in plant aeration. New Phytol. 110:463–469.
Bedford, B. L. , D. R. Bouldin , and B. D. Beliveau . 1991. Net oxygen and carbon dioxide balances in solution
bathing roots of wetland plants. J. Ecol. 79:943–959.
Bedford, B. L. , M. R. Walbridge , and A. Aldous . 1999. Patterns in nutrient availability and plant diversity of
temperate North American wetlands. Ecology. 80:2170–2181.
Begg, C. B. M. , G. J. D. Kirk , A. F. Mackenzie , and H. U. Neue . 1994. Root-induced iron oxidation and pH
changes in the lowland rice rhizosphere. New Phytol. 128:469–477.
Bennett, E. M. , Carpenter, S. R. and Caraco, N. F. 2001. Human impact on erodable phosphorus and
eutrophication: A global perspective. Bioscience. 51:227–234.
Benoit, J.M. , C.C. Gilmour , R.P. Mason and A. Heyes . 1999. Sulfide Controls on Mercury
Speciation and Bioavailability in Sediment Pore Waters. Environ. Sci. Technol., 33: 951–957.
Beiyuan, J. , Y. M. Awad , F. Beckers , D. C. W. Tsang , Y. S. Ok , and J. Rinklebe . 2017. Mobility and
phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of
redox conditions. Chemosphere. 178:110–118.
Belden, J. B. , B. R. Hanson , S. T. McMurry , L. M. Smith , and D. A. Haukos . 2012. Assessment of the effects
of farming and conservation programs on pesticide deposition in high plains wetlands. Environ. Sci. and
Technol. 36:3424–3432. doi:10.1021/es300316q.
Benner, R. , A. E. Maccubbin , and R. E. Hodson . 1984. Anaerobic biodegradation of the lignin polysaccharide
components of lignocellulose and synthetic lignin by sediment microflora. Appl. Environ. Microbiol.
47:998–1004.
Benner, R. , M. A. Moran , and R. E. Hodson . 1985. Effect of pH and plant source on lignocellulose
biodegradation rates in two wetland ecosystems, the Okefenokee Swamp and Georgia salt marsh. Limnol.
Oceanogr. 30:489–499.
Benoit, J. M. , C. C. Gilmour , R. P. Mason , and A. Heyes . 1999. Sulfide controls on mercury speciation and
bioavailability in sediment pore waters. Environ. Sci. Technol. 33:951–957.
Benz, B. R. , J. M. Rhode , and M. B. Cruzan . 2007. Aerenchyma development and elevated alcohol
dehydrogenase activity as alternative responses to hypoxic soils in the Piriqueta Caroliniana complex. Amer. J.
Bot. 94:542–550.
Benz, M. , A. Brune , and B. Schink . 1998. Anaerobic and aerobic oxidation of ferrous iron at neutral pH by
chemoheterotrophic nitrate-reducing bacteria. Arch. Microbiol. 169:159–165.
Berg, P. , S. Rysgaard , P. Funch , and M. K. Sejr . 2001. Effects of bioturbation on solutes and solids in marine
sediments. Aquatic Microbiol. AME. 26:81–94. doi:10.3354/ame026081.
Berkheiser, V. E. , J. J. Street , P. S. C. Rao , and T. L. Yuan . 1980. Partitioning of inorganic orthophosphate in
soil—water systems. Crit. Rev. Environ. Sci. Technol. 10:179–224.
Berkowitz, J. F. , M. J. Vepraskas , K. L. Vaughan , and L. M. Vasilas . 2021. Development and application of
the hydric soil technical standard. Soil Sci. Soc. Am. 85:469–487. doi:10.1002/saj2.20202.
Berner, R. A. 1970. Sedimentary pyrite formation. Am. J. Sci. 268:1–23.
Berner, R. A. 1971. Principles of Chemical Sedimentology. McGraw-Hill, New York. 240 pp.
Berner, R. A. 1980. Early Diagenesis. A Theoretical Approach. Princeton University Press, Princeton, NJ. 481
pp.
Berry, L. U. and W. Norris . 1949. Studies of onion root respiration. 1. Velocity of oxygen consumption in
different segments of root at different temperatures as a function of partial pressure of oxygen. Biochim Biophys
Acta. 3:593–606.
Beyer, J. , H. C. Trannum , T. Bakkea , P. V. Hodson , and T. K. Collier . 2016. Environmental effects of the
Deepwater Horizon oil spill: A review. Mar. Pollut. Bulletin 110:28–51.
Bhomia, R. K. , P. W. Inglett , and K. R. Reddy . 2015. Soil and phosphorus accretion rates in sub-tropical
wetlands: Everglades Stormwater treatment areas as a case example. Sci. Total Environ. 533:297–306.
Billett, M. F. , S. M. Palmer , D. Hope , C. Deacon , R. Storeton-West , K. J. Hargreaves , C. Flechard , and D.
Fowler . 2004. Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. Glob. Biogeochem.
Cycles. 18:GB1024. https://doi.org/10.1029/2003GB002058.
Billings, W. D. 1987. Carbon balance of Alaskan tundra and taiga ecosystems—past, present and future. Quat.
Sci. Rev. 6:165–177.
Bittig, H. C. , A. Körtzinger , C. Neill , E. van Ooijen , J. N. Plant , J. Hahn , K. S. Johnson , B. Yang , and S. R.
Emerson . 2018. Oxygen optode sensors: Principle, characterization, calibration, and application in the ocean.
Front. Mar. Sci. 4:429. doi:10.3389/fmars.2017.00429.
Blackburn, T. H. 1979. Methods for measuring rates of 4 + turnover in anoxic marine sediments using a 15N- 4
+ dilution technique. Appl. Environ. Microbiol. 37:760–765.
Blackmer, A. M. and J. M. Bremner . 1981. Terrestrial nitrification as a source of atmospheric nitrous oxide. In
C. C. Delwiche (ed.) Denitrifiation, Nitrification, and Atmospheric Nitrous Oxide. Wiley, New York. pp. 151–170.
Blackmer, A. M. , J. M. Bremner , and E. L. Schmidt . 1980. Production of nitrous oxide by ammonia-oxidizing
chemoautotrophic microorganisms in soil. Appl. Environ. Microbiol. 40:1060–1066.
Blum, J. D. , B. N. Popp , J. C. Drazen , C. A. Choy , and M. W. Johnson . 2013. Methylmercury production
below the mixed layer in the North Pacific Ocean. Nat. Geosci. 6:879–884. doi:10.1038/NGEO1918.
Bohn, H. L. 1976. Arsenic Eh–pH diagram and comparison to soil chemistry of phosphorus. Soil Sci.
121:125–127.
Bohn, H. L. , B. L. McNeal , and G. A. O’Connor . 1985. Soil Chemistry. Wiley, New York. 341
Bohn, H. L. , B. L. McNeal , and G. A. O’Connor . 2001. Soil Chemistry. 3rd Edition. Wiley, New York. 306 pp.
Bol, R. , T. Bolger , R. Cully , and D. Little . 2003. Recalcitrant soil organic materials mineralize more efficiently
at higher temperatures. J. Plant Nutr. Soil Sci. 166:300–307.
Bolan, N. S. , D. C. Adriano , A. Kunhikrishnan , T. James , R. McDowell , and N. Senesi . 2011. Chapter one -
dissolved organic matter: Biogeochemistry, dynamics, and environmental significance in soils. Editor(s): Donald
L. Sparks, Advances in Agronomy. Academic Press, 110:1–75. https://doi.org/10.1016/B978-0-12-385531-
2.00001-3.
Bolin, B. 1977. Changes of land biota and their importance for the carbon cycle. Science. 196:613–615.
Bolin, B. , E. T. Degens , P. Duvigneau , and S. Kempe . 1979. The global biogeochemical carbon cycle. In B.
Bolin (ed.) The Global Carbon Cycle. Wiley, Chichester. pp. 1–56.
Bollag, J. M. and S. Liu . 1990. Biological transformation process of pesticides. In Pesticides in the Soil
Environment. Soil Science Society of America, Madison, WI. pp. 169–211. SSSA Book Series, No. 2.
Bonneville, S. , T. Behrends , and P. Van Cappellen . 2009. Solubility and dissimilatory reduction kinetics of
iron(III) oxyhydroxides: A linear free energy relationship. Geochim. Cosmochim. Acta. 73:5273–5282.
Borch, T. , R. Kretzschmar , A. Kappler , P. van Cappellen , M. Ginder-Vogel , A. Voegelin , and K. Campbello .
2010. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol.
44:15–23.
Boudreau, B. P. 1997. Diagenic Models and Their Implementation. Springer-Verlag, Berlin, Heidelberg, New
York. 414 pp.
Boulegue, J. , T. M. Church , and C. J. Lord . 1982. Sulfur speciation and associated trace metals (Fe, Cu) in
the pore waters of Great Marsh, Delaware. Geochim. Cosmochim. Acta. 46:453–464.
Boultin, A. J. and P. I. Boon . 1991. A review of methodology used to measure leaf decomposition in lotic
environments: Time to turn over an old leaf? Aust. J. Mar. Freshw. Res. 42:1–43.
Boumans, R. M. J. and J. W. Day, Jr . 1993. High precision measurements of sedimentation in shallow coastal
areas using a sedimentation—erosion table. Estuaries. 16:375–380.
Boyd, B. M. and C. K. Sommerfield . 2016. Marsh accretion and sediment accumulation in a managed tidal
wetland complex of Delaware Bay. Ecol. Eng. 92:37–46.
Boyd, B. M. , C. K. Sommerfield , and T. Elsey-Quirk . 2017. Hydrogeomorphic influences on salt marsh
sediment accumulation and accretion in two estuaries of the U.S. Mid-Atlantic coast. Mar. Geol. 383:132–145.
Boyd, C. E. 1970. Production, mineral accumulation and pigment concentration in Typha Latifolia and Scirpus
Americanus. Ecology. 51:285–290.
Brady, N. C. , and R. R. Weil . 2008. The Nature and Properties of Soils. 14th Edition. Pearson Education, Inc.
Published by Pearson Prentice Hall, Upper Saddle, NJ. 980 pages.
Braeckman, U. , M. Y. Foshtomi , D. Van Gansbeke , F. Meysman , K. Soetaert , M. Vincx , and J.
Vanaverbeke . 2014. Variable importance of macrofaunal functional biodiversity for biogeochemical cycling in
temperate coastal sediments. Ecosystems. 17:720–737. https://doi.org/10.1007/s10021-014-9755-7.
Braeckman, U. , P. Provoost , B. Gribsholt , D. Van Gansbeke , J. J. Middelburg , K. Soetaert , M. Vincx , and J.
Vanaverbeke . 2010. Role of macrofauna functional traits and density in biogeochemical fluxes and
bioturbation. Mar Ecol Prog Ser. 399:173–186. https://doi.org/10.3354/meps08336.
Breithaupt, J. L. , J. M. Smoak , V. H. Rivera-Monroy , E. Castañeda-Moya , R. P. Moyer , M. Simard , and C. J.
Sanders . 2017. Partitioning the relative contributions of organic matter and mineral sediment to accretion rates
in carbonate platform mangrove soils. Mar. Geol. 390:170–180. doi:10.1016/j.margeo.2017.07.002.
Brenner, M. , C. L. Schelske , and L. W. Keenan . 2001. Historical rates of sediment and nutrient accumulation
in marshes of the Upper St. Johns River Basin, Florida, USA. J. Paleolimnol. 26:241–257.
Bricker-Urso, S. , S. W. Nixon , J. K. Cochran , D. J. Hirschberg , and C. Hunt . 1989. Accretion rates and
sediment accumulation in Rhode Island salt marshes. Estuaries. 12(4):300–317.
Bridgham, S. D. , H. Cadillo-Quiroz , J. K. Keller , and Q. Zhuang . 2013. Methane emissions from wetlands:
Biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Change Biol.
9:1325–1346. doi:10.1111/gcb.12131.
Bridgham, S. D. , P. J. Megonigal , J. K. Keller , N. B. Bliss , and C. Trettin . 2006. The carbon balance of North
American wetlands. Wetlands. 26:889–916. https://doi.org/10.1672/0277-
5212(2006)26[889:TCBONA]2.0.CO;2.
Bridgham, S. D. and C. J. Richardson . 1992. Mechanisms controlling soil respiration (CO2 and CH4) in
southern peatlands. Soil Biol. Biochem. 24:1089–1099.
Bridgham, S. D. , K. Updegraff , and J. Pastor . 1998. Carbon, nitrogen, and phosphorus mineralization in
northern wetlands. Ecology. 79:545–561.
Bridgham, S. D. and R. Ye . 2013. Organic matter mineralization and decomposition. In R. D. DeLaune , K. R.
Reddy , C. J. Richardson , and J. P. Megonigal (eds.) Soil Science Society of America. pp. 385–406.
doi:10.2136/sssabookser10.c26 SSSA Book Series, No. 10.
Brinkman, R. 1970. Ferrolysis, a hydromorphic soil forming process. Geoderma. 3:199–206.
Brinson, M. M. 1993. A Hydrogeomorphic Classification of Wetlands. Technical Report; WRP-DE-4, U.S. Army
Corps. 79 pp.
Brix, H. , B. K. Sorrell , and P. T. Orr . 1992. Internal pressurization and convective gas flow in some emergent
freshwater macrophytes. Limnol. Oceanogr. 37:1420–1433.
Brookins, D. G. 1988. Eh—pH Diagrams for Geochemistry. Springer-Verlag, Berlin. 176 pp.
Brooks, B. W. , C. M. Foran , S. M. Richards , P. K. Westonner , J. K. Stanley , K. R. Solomon , M. Slattery ,
and T. W. La Point . 2003. Aquatic ecotoxicology of fluoxetine. Toxicol. Lett. 142:169–183.
Brown, B. R. 1967. Biochemical aspects of oxidative coupling of phenols. In W. I. Taylor and A. R. Battersby
(eds.) Oxidative Coupling of Phenols. Marcel Dekker, New York. 167 pp.
Brown, C. E. and S. R. Pezeshki . 2000. A study on waterlogging as a potential tool to control Ligustrum
sinense populations in western Tennessee. Wetlands. 20:429–437.
Bruun, S. , J. Luxhøi , J. Magid , A. de Neergaard , and L. S. Jensen . 2006. A nitrogen mineralization model
based on relationships for gross mineralization and immobilization. Soil Biol. Biochem. 38:2712–2721.
Bruun, S. , B. Stenberg , T. A. Breland , J. Gudmundsson , T. Henriksen , L. S. Jensen , A. Korsaeth , J. Luxhøi
, F. Palmason , A. Pedersen , and T. Salo , 2005. Empirical predictions of plant material C and N mineralization
patterns from near infrared spectroscopy, stepwise chemical digestion and C/N ratios. Soil Biol. Biochem.
37:2283–2296.
Buford, J. R. and J. M. Bremner . 1975. Relationships between the denitrification capacities of soils and total
water-soluble and readily decomposable soil organic matter. Soil Biol. Biochem. 7:389–394.
Buresh, R. J. , M. E. Casselman , and W. H. Patrick . 1980. Nitrogen fixation in flooded soil systems, a review.
Adv. Agron. 33:149–192.
Buresh, R. J. and W. H. Patrick, Jr . 1981. Nitrate reduction to ammonium and organic nitrogen in an estuarine
sediment. Soil Biol. Biochem. 13:279–283.
Buresh, R. J. , K. R. Reddy , and C. van Kessel . 2008. Nitrogen Transformations in Submerged Soils. Nitrogen
in Agricultural System (Editors J. S. Schepers and W. R. Raun . Agronomy Monograph No. 49). American
Society of Agronomy, Madison, WI.
Burgin, A. J. and S. K. Hamilton . 2007. Have we overemphasized the role of denitrification in aquatic
ecosystems? A review of nitrate removal pathways. Front. Ecol. Environ. 5:89–96.
Burgoon, P. S. and K. R. Reddy . 1996. Influence of temperature on biogeochemical processes in constructed
wetlands. J. Ecol. 56:77–87.
Burkett, V. and J. Kusler . 2000. Climate change: Potential impacts and interactions in wetlands of the United
States. J. Am. Water Res. Assoc. 32(2):313–320.
Burnett, W. E. C. , H. Bokuniewicz , M. Huettel , W. S. Moore , and M. Taniguchi . 2003. Ground water and
porewater inputs to the coastal zone. Biogeochemistry. 66(1–2):3–33.
Burnett, W. E. C. and H. Dulaiova . 2003. Estimating the dynamics of ground water input into the coastal zone
via continuous radon-222 measurements. J. Environ. Radioact. 69(1–2):21–35.
Buschmann, J. , A. Kappeler , U. Lindauer , D. Kistler , M. Berg , and L. Sigg . 2006. Arsenite and arsenate
binding to dissolved humic acids: Influence of pH, type of humic acid, and aluminum. Environ. Sci. Technol.
40:6015–6020.
Cade-Menun, B. and C. W. Liu . 2014. Solution phosphorus-31 nuclear magnetic resonance spectroscopy of
soils from 2005 to 2013: A review of sample preparation. Soil Sci. Soc. J. Am. 78:19–37.
Cahoon, D. R. and J. C. Lynch . 1997. Vertical accretion and shallow subsidence in a mangrove forest of
southwestern Florida, U.S.A. Mangrove Salt Marshes. 1:173–186.
Cahoon, D. R. , J. C. Lynch , and A. N. Powell . 1996. Marsh vertical accretion in a southern California estuary,
U.S.A. Estuar. Coast. Shelf Sci. 43:19–32.
Cahoon, D. R. , D. J. Reed , and J. W. Day, Jr . 1995. Estimating shallow subsidence in microtidal salt marshes
of he southeastern United States: Kaye and Barghoorn revisited. Mar. Geol. 128:1–9.
Cahoon, D. R. and R. Turner . 1989. Accretion and canal impacts in a rapidly subsiding wetland.2. Feldspar
marker horizon technique. Estuaries. 12:260–268.
Caldwell, S. L. , J. R. Laidler , E. A. Brewer , J. O. Eberly , S. C. Sandborgh , and F. S. Colwell . 2008.
Anaerobic oxidation of methane: Mechanisms, bioenergetics, and the ecology of associated microorganisms.
Environ. Sci. Technol. 42:6791–6799.
Callahan, M. A. , M. W. Slimak , and N. W. Gabel . 1979. Water-Related Environmental Fate of 129 Priority
Pollutants. Volume 1. Introduction and Technical Background, Metals and Inorganics, Pesticides and PCBs.
Office of Water Planning and Standards, Washington, DC, by Versar Incorporated, Springfield, VA.
EPA/440/4–79/029a.
Callaway, J. C. 2001. Hydrology and substrate. In J. B. Zedler (ed.) Handbook for Restoring Tidal Wetlands.
CRC Press, Boca Raton, FL. pp. 89–117.
Callaway, J. C. , E. L. Borgnis , R. E. Turner , and C. S. Milan . 2012. Carbon sequestration and sediment
accretion in San Francisco Bay tidal wetlands. Estuar. Coast. 35, 1163–1181.
Callaway, J. C. , R. D. DeLaune , and W. H. Patrick, Jr . 1996. Chernobyl 137Cs used to determine sediment
accretion rates at selected northern European coastal wetlands. Limnol. Oceanogr. 41(3):444–450.
Callaway, J. C. , R. D. DeLaune , and W. H. Patrick . 1997. Sediment accretion rates from four coastal wetlands
along the Gulf of Mexico. J. Coast. Res. 13(1):181–191.
Callaway, J. C. , J. A. Nyman , and R. D. DeLaune . 1996. Sediment accretion in coastal marshes: a review and
a simulation model of processes. Curr. Top. Wetland Biochem. 2:1–9.
Camilli, R. , D. Di Iorio , A. Bowen , C. M. Reddy , A. H. Techet , D. R. Yoerger , L. L. Whitcomb , J. S. Seewald
, S. P. Sylva , and J. Fenwick . 2011. Acoustic measurement of the Deepwater Horizon Macondo well flow rate.
Proc. Natl. Acad. Sci. doi:10.1073/pnas.1100385108.
Capone, D. G. and R. P. Kiene . 1988. Comparison of microbial dynamics in marine and freshwater sediments:
Contrasts in anaerobic carbon metabolism. Limnol. Oceanogr. 33:725–749.
Caporale, A. G. and A. Violante . 2016. Chemical processes affecting the mobility of heavy metals and
metalloids in soil environments. Curr. Pollution Rep. 2:15–27.
Caraco, N. , J. J. Cole , and G. E. Likens . 1991. A cross-system study of phosphorus release from lake
sediments. In J. Cole , G. Lovett , and S. Findlay (eds.) Comparative Analyses of Ecosystems: Patterns,
Mechanisms and Theories. Springer-Verlag, New York. pp. 241–258.
Carlson, P. R. and J. Forrest . 1982. Uptake of dissolved sulfide by Spartina alterniflora: Evidence from natural
sulfur isotope abundance ratios. Science. 216:633–635.
Carlton, R. G. and R. G. Wetzel . 1987. Distributions and fates of oxygen in periphyton communities. Can. J.
Bot. 65:1031–1037.
Carlton, R. G. and R. G. Wetzel . 1988. Phosphorus flux from lake sediments: Effects of epipelic algal oxygen
production. Limnol. Oceanogr. 33:562–570.
Carmichael, M. J. , E. S. Bernhardt , S. L. Brauer , and W. K. Smith . 2014. The role of vegetation in methane
flux to the atmosphere: Should vegetation be included as a distinct category in the global methane budget?
Biogeochemsitry. 107:97–106.
Carpenter, S. R. and E. M. Bennett . 2011. Reconsideration of the planetary boundary for phosphorus. Environ.
Res. Lett. 6:014009.
Castro, H. , S. Newman , K. R. Reddy , and A. Ogram . 2005. Distribution and stability of sulfate-reducing
prokaryotic and hydrogenotrophic methanogenic assemblages in nutrient-impacted regions of the Florida
Everglades. Appl. Environ. Microbiol. 71:2695–2704.
Cazenave, A. and W. Llovel . 2010. Contemporary sea level rise. Annu. Rev. Mar. Sci. 2:145–173.
Chambers, L. G. , T. Z. Osborne , and K. R. Reddy . 2013. Effect of salinity altering pulsing events on soil
organic carbon loss along an intertidal wetland gradient: A laboratory experiment. Biogeochemistry.
115:363–383. https://doi.org/10.1007/s10533-013-9841-5.
Chambers, L. G. , H. E. Steinmuller , and J. L. Breithaupt . 2019. Toward a mechanistic understanding of “peat
collapse” and its potential contribution to coastal wetland loss. Ecology. 100(7):e02720.10.1002/ecy.2720.
Chang, S. C. and M. L. Jackson . 1957. Fractionation of soil phosphorus. J. Soil Sci. 84:133–144.
Chanton, J. P. , G. J. Whiting , N. E. Blair , C. W. Lindau , and P. K. Bollich . 1997. Methane emission from rice:
Stable isotopes, diurnal variations, and CO2 exchange. Global Biogeochem. Cycles. 11(1):15–27.
Cheesman, A. E. , B. L. Turner , and K. R. Reddy . 2014. Forms of organic phosphorus in wetland soils.
Biogeosciences. 11:6697–6710.
Cheesman, A. W. 2010. Biogenic phosphorus in palustrine wetlands: Sources ad stabilization. Ph.D.
Dissertation, 319 pages. University of Florida, Gainesville, FL.
Cheesman, A. W. , E. J. Dunne , B. L. Turner , and K. R. Reddy . 2010. Soil phosphorus forms in hydrologically
isolated wetlands and surrounding pasture uplands. J. Environ. Qual. 39:1517. doi:10.2134/JEQ2009.0398.
Cheesman, A. W. , J. Rocca , and B. L. Turner . 2013. Phosphorus characterization in wetland soils by solution
phosphorus-31 nuclear magnetic resonance spectroscopy. In R. D. Delaune , K. R. Reddy , C. J. Richardson ,
and J. P. Megonigal (eds.) Methods in Biogeochemistry of Wetlands. Soil Science Society of America, Madison,
WI. pp. 639–665. SSSA Book Series, No. 10.
Cheng, H. H. and L. T. Kurtz . 1963. Chemical distribution of added nitrogen in soils. Soil Sci. Soc. Am. Proc.
16:276–292.
Chilvers, D. C. and P. J. Peterson . 1987. Global cycling of arsenic. In T. C. Hutchinson and K. M. Meema
(eds.) Lead, Mercury, Cadmium and Arsenic in the Environment. Scientific Committee on Problems of the
Environment (SCOPE) 31. Wiley, New York.
Chimney, M. J. and K. C. Pietro . 2006. Decomposition of macrophyte litter in a subtropical constructed wetland
in south Florida (USA). Ecol. Eng. 27:301–321.
Chiou, C. T. , V. H. Freed , D. Schmedding , and R. L. W. Kohnert . 1977. Partition coefficient and
bioaccumulation of selected organic chemicals. Environ. Sci. Technol. 11:475–478.
Choi, S. C. and R. Bartha . 1993. Cobalamin-mediated mercury methylation by Desulfovibrio desulfuricans Ls.
Appl. Environ. Microbiol. 59:290–295.
Christensen, P. B. , N. P. Revsbech , and K. Sand-Jensen . 1994. Microsensor analysis of oxygen in the
rhizosphere of the aquatic macrophyte Littorella uniflora (L) Ascherson. Plant. Physiol. 105:847–852.
Chrost, R. J. 1991. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In R.
J. Chrost (ed.) Microbial Enzymes in Aquatic Environments. Springer-Verlag, New York. pp. 29–59.
Chrost, R. J. and W. Siuda . 2002. Ecology of microbial enzymes in lake ecosystems. In R. G. Burns and R. P.
Dick (eds.) Enzymes in Environment. Marcel Dekker, New York. pp. 35–72.
Chua, T. 2000. Mineralization of organic phosphorus in a subtropical freshwater wetland. Ph.D. Dissertation,
University of Florida, Gainesville, FL.
Church, T. M. , C. J. Lord, III , and B. L. K. Somayajulu . 1981. Uranium, thorium, and lead nuclides in a
Delaware salt marsh sediment. Estuar. Coast. Shelf Sci. 13:267–285.
Clark, I. D. and P. Fritz . 1997. Environmental Isotopes in Hydrogeology. Lewis Publishers, Boca Raton, FL.
328 pp.
Clark, Q. 2002. Phosphorus retention characteristics of newly accreted soils in treatment wetlands of the
Florida Everglades. M.S. Thesis, University of Florida, Gainesville, FL.
Classen, A. T. , M. K. Sundqvist , J. A. Henning , G. S. Newman , J. A. M. Moore , M. A. Cregger , L. C.
Moorhead , and C. M. Patterson . 2015. Direct and indirect effects of climate change on soil microbial and soil
microbial-plant interactions: What lies ahead? Ecosphere. 6(8):130. http://dx.doi.org/10.1890/ES15-00217.1.
Clément, J. C. , Shrestha, J. , Ehrenfeld, J. G. and Jaffé, P. R. , 2005. Ammonium oxidation coupled to
dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biol. Biochem.
37(12):2323–2328.
Cleveland, C. C. and D. Liptzin . 2007. C:N:P stoichiometry in soil: Is there a ‘‘Redfield ratio’’ for the microbial
biomass? Biogeochemistry. 85:235–252. doi:10.1007/s10533-007-9132-0.
Clymo, R. C. 1983. Peat. In A. J. P. Gore (ed.) Mires: Swamp, Bog, Fen, and Moor. Elsevier, Amsterdam. pp.
159–224.
Cohen, A. D. 1974. Petrography and paleoecology of Holocene peats from the Okefenokee swamp-marsh
complex of Georgia. Journal of Sedimentary Research. 44:716–726.
Colberg, P. J. 1988. Anaerobic microbial degradation of cellulose, lignin, oligolignols, and monoaromatic lignin
derivatives. In A. J. Zehnder (ed.) Biology of Microorganisms. Wiley, New York. pp. 333–372.
Cole, J. J. 1982. Interactions between bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Syst.
13:291–314.
Colmer, T. D. 2003. Long-distance transport of gases in plants: A perspective on internal aeration and radial
oxygen loss from roots. Plant, Cell Environ. 26:17–36.
Colmer, T. D. and L. A. C. J. Voesenek . 2009. Flooding tolerance: Suites of plant traits in variable
environments. Funct Plant Biol. 36:665–681.
Colombo, M. J. , J. Ha , J. R. Reinfelder , T. Barkay , and N. Yee . 2013. Anaerobic oxidation of Hg(0) and
methylmercury formation by Desulfovibrio desulfuricans ND132. Geochimica et Cosmochimica Acta.
112:166–177.
Compeau, G. C. , and R. Bartha . 1984. Methylation and demethylation of mercury under controlled redox, pH
and salinity conditions. Appl. Environ. Microbiol. 48:1203–1207.
Compeau, G. C. , and R. Bartha . 1985. Sulfate-reducing bacteria: Principal methylators of mercury in anoxic
estuarine sediment. Appl. Envron. Microbiol. 50:498–502.
Compeau, G. C. , and R. Bartha . 1987. Effect of salinity on mercury-methylating activity of sulfate-reducing
bacteria in estuarine sediments. Appl. Envron. Microbiol. 53:261–265.
Condron, L. M. and S. Newman . 2011. Revisiting the fundamentals of phosphorus fractionation of sediments
and soils. J. Soils Sediments. 11:830–840. https://doi.org/10.1007/s11368-011-0363-2.
Conley, D. J. , H. W. Paerl , R. W. Howarth , D. F. Boesch , S. P. Seitzinger , K. E. Havens , C. Lancelot , and
G. Likens . 2009. Controlling eutrophication: Nitrogen and phosphorus. Science. 323:1014–1015.
Connell, W. E. and W. H. Patrick, Jr . 1968. Reduction of sulfate to sulfide in waterlogged soil. Soil Sci. Soc.
Am. Proc. 33:711–715.
Conrad, R. 1996. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O,
and NO). Microbiol. Rev. 60:609–640.
Conrow, R. , E. F. Lowe , M. F. Coveney , R. H. Rauschenberger , and G. Masson . 2011. Restoration of Lake
Apopka’s North Shore Marsh: High hopes, tough times, and persistent progress. In J. E. Elliott , C. Bishop , and
C. A. Morrissey (eds.) Wildlife Ecotoxicology—Forensic Approaches. Emerging Topics in Ecotoxicology, Vol. 3.
Springer, New York. pp. 189–211.
Constanza, R. , R. d’Arge , R. deGroot , S. Farber , M. Grasso , B. Hannon , K. Limburg , S. Naeem , R. V.
O’Neill , J. Paruelo , R. G. Raskin , P. Sutton , and M. van den Belt . 1997. The value of the worlds ecosystem
services and natural capital. Nature. 387:253–260.
Cooke, J. G. 1992. Phosphorus removal processes in a wetland after a decade of receiving a sewage effluent.
J. Environ. Qual. 21:733–739.
Cooper, A. B. 1990. Nitrate depletion in the riparian zone and stream channel of a small headwater catchment.
Hydrobiologia. 202:13–26.
Corbet, A. S. 1935. The formation of hyponitrous acid as an intermediate compound in the biological or
photochemical oxidation of ammonia to nitrous acid: Microbiological oxidation. Biochem. J. 29(5):1086–1096.
Cornu, S. , V. Deschatrettes , S. Salvador-Blanes , B. Clozel , M. Hardy , S. Branchut , and L. Le Forestier .
2005. Trace element accumulation in Mn—Fe-oxide nodules of a planosolic horizon. Geoderma. 125:11–24.
Corstanje, R. and K. R. Reddy . 2004. Response of biogeochemical indicators to a drawdown and subsequent
reflood. J. Environ. Qual. 33:2357–2366.
Costello, M. C. S. and L. S. Lee . 2020. Sources, fate, and plant uptake in agricultural systems of per and
polyfluoroalkyl substances. Topical Collection on Emerging Contaminant (Section Editors: D. Chang and C.
Walecka-Hutchison ). Current Pollution Reports. https://doi.org/10.1007/s40726-020-00168-y.
Coveney, M. F. and R. Conrow . 2016. Pesticide Studies and Risk Assessments on the Lake Apopka North
Shore. Technical Memorandum 57. St. Johns River Water Management District, Palatka, Florida. 38 pages.
Covich, A. P. , M. C. Austen , F. BÄRlocher , E. Chauvet , B. J. Cardinale , C. L. Biles , P. Inchausti , O.
Dangles , M. Solan , M. O. Gessner , B. Statzner , and B. Moss . 2004. The role of biodiversity in the
functioning of freshwater and marine benthic ecosystems. BioScience. 54:767–775.
https://doi.org/10.1641/0006-3568(2004)054[0767:TROBIT]2.0.CO;2.
Covich, A. P. , M. A. Palmer , and T. A. Crowl . 1999. The role of benthic invertebrate species in freshwater
ecosystems: Zoobenthic species influence energy flows and nutrient cycling. BioScience. 49(2):119–127.
Cowardin, L. M. , M. V. Carter , F. C. Golet , and E. T. LaRoe . 1979. Classification of Wetlands and Deepwater
Habitats of the United States. U.S. Department of Interior, Fish and Wildlife Service, Washington, DC,
FWS/OBS-79/31.
Coyne, M. S. and J. A. Thompson . 2006. Math for Soil Scientists. Thomson Delmar Learning, New York. 285
pp.
Craft, C. B. 2007. Freshwater input structures soil properties, vertical accretion and nutrient accumulation of
Georgia and United States (U.S.) tidal marshes. Limnol. Oceanogr. 52:1220–1230.
Craft, C. B. , S. W. Broome , and E. D. Seneca . 1989. Exchange of nitrogen, phosphorous, and organic carbon
between transplanted marshes and estuarine waters. J. Environ. Qual. 18(2):206–211.
Craft, C. B. , J. Clough , J. Ehman , S. Joye , R. Park , S. Pennings , H. Guo , and M. Machmuller . 2009.
Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front Ecol Environ.
7:73–78. https://doi.org/10.1890/070219.
Craft, C. B. and C. J. Richardson . 1993a. Peat accretion and nutrient accumulation in nutrient enriched and
unenriched Everglades peatlands. Ecol. Appl. 3:446–458.
Craft, C. B. and C. J. Richardson . 1993b. Peat accretion, nutrient accumulation and phosphorus storage
efficiency along an eutrophication gradient in the northern Everglades. Biogeochemistry. 22:133–156.
Craft, C. B. and C. J. Richardson . 1998. Recent and long-term organic soil accretion and nutrient accumulation
in the Everglades. Soil Sci. Soc. Am. J. 62:834–843.
Craft, C. B. , J. Vymazal , and L. Kröpfelová . 2018. Carbon sequestration and nutrient accumulation in
floodplain and depressional wetlands. Ecol. Eng. 114:137–145. doi.org/10.1016/j.ecoleng.2017.06.034.
Craig, H. and L. I. Gordon . 1965. Deuterium and oxygen 18 variations in the ocean and the marine
atmosphere. In E. Tongiorgi (ed.) Stable Isotopes in Oceanographic Studies and Paleotemperatures. Consiglio
nazionale delle ricerche, Laboratorio di geologia nucleare, Pisa. pp. 9–130.
Crawford, R. M. M. 1989. The anaerobic retreat. In Studies in Plant Survival. Studies in Ecology, Vol. 11.
Blackwell Scientific Publications, London. pp. 105–129.
Crawford, R. M. M. 1992. Oxygen availability as an ecological limit to plant distribution. Adv. Ecol. Res.
23:93–285.
Creed, I. F. , A. Bergström , C. G. Trick , N. B. Grimm , D. O. Hessen , J. Karlsson , K. A. Kidd , E. Kritzberg ,
D. M. McKnight , E. C. Freeman , O. E. Senar , A. Andersson , J. Ask , M. Berggren , M. Cherif , R. Giesler , E.
R. Hotchkiss , P. Kortelainen , M. M. Palta , T. V. Gesa , and A. Weyhenmeyer . 2018. Global change-driven
effects on dissolved organic matter composition: Implications for food webs of northern lakes. Global Change
Biol. 8:3692–3714.
Crosby, D. G. 1976. Nonbiological degradation of herbicides in the soil. In L. J. Audus (ed.) Herbicides,
Physiology, Biochemistry, Ecology. 2nd Edition, Vol. 2. Academic Press, London. 65 pp.
Curran, M. , M. Bole , and W. G. Allaway . 1986. Root aeration and respiration in young mangrove plants (
Avicennia marina (Forsk) Vierh.). J. Exp. Bot. 37:1225–1233.
D’Amore, D. V. , S. R. Stewart , and J. H. Huddleston . 2004. Saturation, reduction, and the formation of
iron—manganese concretions in the Jackson-Frazier wetland. Oregon Soil Sci. Soc. Am. J. 68:1012–1022.
D’Angelo, E. M. 2003. Wetlands: Biodegradation of organic pollutants. In G. Bitton (ed.) Encyclopedia of
Environmental Microbiology. Wiley, New York. pp. 3401–3417. https://doi.org/10.1002/0471263397.env239.
D’Angelo, E. M. and K. R. Reddy . 1993. Ammonium oxidation and nitrate reduction in a hypereutrophic lake.
Soil Sci. Soc. Am. J. 57:1156–1163.
D’Angelo, E. M. and K. R. Reddy . 1994a. Diagenesis of organic matter in a wetland receiving hypereutrophic
lake water. I. Distribution of dissolved nutrients in the soil and water column. J. Environ. Qual. 23:937–943.
D’Angelo, E. M. and K. R. Reddy . 1994b. Diagenesis of organic matter in a wetland receiving hypereutrophic
lake water. II. Role of inorganic electron acceptors in nutrient release. J. Environ. Qual. 23:928–936.
D’Angelo, E. M. and K. R. Reddy . 1999. Regulators of heterotrophic microbial potentials in wetland soils. Soil
Biol. Biochem. 31:815–830.
D’Angelo, E. M. and K. R. Reddy . 2000. Aerobic and anaerobic transformations of pentachlorophenol in
wetland soils. Soil Sci. Soc. Am. J. 64:933–943.
D’Angelo, E. M. and K. R. Reddy . 2003. Effect of aerobic and anaerobic conditions on chlorophenol sorption in
wetland soils. Soil Sci. Soc. Am. J. 67:787–794.
Dacey, J. W. H. 1980. Internal winds in water lilies: An adaptation for life in anaerobic sediments. Science.
210:1017–1019.
Dacey, J. W. H. 1981. Pressurized ventilation in the yellow water lily. Ecology. 62:1137–1147.
Dacey, J. W. H. 1984. Water uptake by roots control water table movement and sediment oxidation in short
Spartina marsh. Science. 227:487–489.
Dacey, J. W. H. 1987. Knudsen-transitional flow and gas pressurization in leaves of Nelumbo. Plant. Physiol.
85:199–203.
Dacey, J. W. H. and M. J. Klug . 1979. Methane efflux from lake sediments through water lilies. Science.
203:1253–1254.
Dahl, T. E. 2011. Status and Trends of Wetlands in the Conterminous United States 2004 to 2009. U.S.
Department of the Interior; Fish and Wildlife Service, Washington, DC. 108 pp.
Darcy, H. 1856. The Public Fountains of the City of Dijon. English Translation by Patricia Bobeck . Kendall/Hunt
Publishing Company, Dubuque, IA. ISBN 0-7575-0540-6.
Daims, H. , E. V. Lebedeva , P. Pjevac , P. Han , C. Herbold , M. Albertsen , N. Jehmlich , M. Palatinszky , J.
Vierheilig , A. Bulaev , R. H. Kirkegaard , M. von Bergen , T. Rattei , B. Bendinger , P. H. Nielsen , and M.
Wagner . 2015. Complete nitrification by Nitrospira bacteria. Nature. 528(7583):504–509.
https://doi.org/10.1038/nature16461.
Daims, H. , S. Lücker , and M. Wagner . 2016. A new perspective on microbes formerly known as nitrite-
oxidizing bacteria. Trends Microbiol. 24:699–712. https://doi.org/10.1016/j.tim.2016.05.004.
Dalsgaard, T. and B. Thamdrup . 2002. Factors controlling anaerobic ammonium oxidation with nitrite in marine
sediments. Appl. Environ. Microbiol. 68:3802–3808.
Dalsgaard, T. , B. Thamdrup , and D. E. Canfield . 2005. Anaerobic ammonium oxidation (anammox) in the
marine environment. Res. Microbiol. 156:457–464.
Damgaard, R. L. , N. Risgaard-Petersen , and L. P. Nielsen . 2014. Electric potential microelectrode for studies
of electrobiogeophysics. J. Geophys. Res. Biogeosci. 119:1906–1917.
Darke, A. K. and M. R. Walbridge . 2000. Al and Fe biogeochemistry in a floodplain forest: Implications for P
retention. Biogeochemistry. 51:1–32.
Davidson, E. A. , E. Belk , and R. D. Boone . 1998. Soil water content and temperature as independent or
confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biol.
4:217–227.
Davidson, E. A. and I. A. Janssens . 2006. Temperature sensitivity of soil carbon decomposition and feedbacks
to climate change. Nature. 440:165–173.
Davidson, N. C. and C. M. Finlayson . 2018. Extent, regional distribution and changes in area of different
classes of wetland. Mar. Freshw. Res. 69:525–1533. https://doi.org/10.1071/MF17377.
Davis, S. M. 1991. Growth, decomposition, and nutrient retention of Cladium jamaicense Crantz and Typha
domingensis Pers in the Florida Everglades. Aquat. Bot. 40:203–224.
Davis, S. M. and J. C. Ogden (eds.). 1994. Everglades: The Ecosystem and Its Restoration. St. Lucie Press,
Delery Beach.
Day, T. A. and Bliss, M. S. 2019. A spectral weighting function for abiotic photodegradation based on
photochemical emission of CO2 from leaf litter in sunlight. Biogeochemistry. 146(2):173–190.
De Jonge, M. , J. Teuchies , P. Meire , R. Blust , and L. Bervoets . 2012. The impact of increased oxygen
conditions on metalcontaminated sediments. part I: Effects on redox status, sediment geochemistry and metal
bioavailability. Water Res. 46:2205–2214.
de Vicente, I. , L. Cruz-Pizarro , and F. J. Rueda . 2010. Sediment resuspension in two adjacent shallow
coastal lakes: Controlling factors and consequences on phosphate dynamics. Aquat. Sci. 72:21–31.
doi:10.1007/s00027-009-0107-1.
DeBusk, W. F. 1996. Organic matter turnover along a nutrient gradient in the Everglades. Ph.D. Dissertation.
University of Florida, Gainesville, FL.
DeBusk, W. F. and K. R. Reddy . 1987. Removal of floodwater nitrogen in a cypress-mixed hardwood swamp
receiving primary sewage effluent. Hydrobiologia. 153:79–86.
DeBusk, W. F. and K. R. Reddy . 1998. Turnover of detrital organic carbon in a nutrient-impacted Everglades
marsh. Soil Sci. Soc. Am. J. 62(5):1460–1468.
DeBusk, W. F. and K. R. Reddy . 2003. Nutrient and hydrology effects on soil respiration in a northern
Everglades marsh. J. Environ. Qual. 32(2):702–710.
DeBusk, W. F. and K. R. Reddy . 2005. Litter decomposition and nutrient dynamics in a phosphorus enriched
Everglades marsh. Biogeochemistry. 75:217–240.
DeBusk, W. F. , J. R. White , and K. R. Reddy . 2001. Carbon and nitrogen dynamics in wetland soils. In M. J.
Shaffer , L. Ma , and S. Hansen (eds.) Modeling Carbon and Nitrogen Dynamics for Soil Management. Lewis
Publishers, Boca Raton, FL. pp. 27–53.
DeLaune, R. D. , R. H. Baumann , and J. G. Gosselink . 1983a. Relationship among vertical accretion, coastal
submergence, and erosion in a Louisiana Gulf Coast marsh. J. Sediment. Petrol. 53(1):147–157.
DeLaune, R. D. , I. Devai , C. R. Crozier , and P. Kelle . 2002a. Sulfate reduction in Louisiana marsh soils of
varying salinities. Commun. Soil Sci. Plant Anal. 33:79–94.
DeLaune, R. D. , I. Devai , and C. W. Lindau . 2002b. Flux of reduced sulfur gases along a salinity gradient in
Louisana coastal marshes. Estuar. Coast. Shelf Sci. 54:1003–1011.
DeLaune, R. D. , I. Devai , C. Mulbar , C. Crozier , and C. W. Lindau . 1997. The influence of redox condition on
atrazine degradation in wetlands. Agric. Environ. 66:41–46.
DeLaune, R. D. and Dong-Cheol Seo . 2011. Heavy metals transformation in wetlands. In Dynamics and
Bioavailability of Heavy Metals in the Rootzone. 219–244.
DeLaune, R. D. , T. C. Feijtel , and W. H. Patrick, Jr . 1989. Nitrogen flows in a La Gulf Coast salt marsh.
Biogeochemistry. 8:25–37.
DeLaune, R. D. , R. P. Gambrell , J. H. Pardue , and W. H. Patrick, Jr . 1990b. Fate and effect of petroleum
hydrocarbons and toxic organics in Louisiana coastal environments. Estuaries. 13(1):72–80.
DeLaune, R. D. , R. P. Gambrell , and K. S. Reddy . 1983b. Fate of pentachlorophenol in estuarine sediment.
Environ. Pollut. Series B. 6:297–308.
DeLaune, R. D. , G. A. Hambrick , and W. H. Patrick, Jr . 1980. Degradation of hydrocarbons in oxidized and
reduced sediments. Mar. Pollut. Bull. 11:103–106.
DeLaune, R. D. , A. Jugsujinda , I. Devai , and W. H. Patrick, Jr . 2004. Relationship of sediment redox
conditions to methylmercury in surface sediment of Louisiana Lakes. J. Environ. Sci. Health. A39(8):
1925–1935.
DeLaune, R. D. , A. Jugsujnda , and K. R. Reddy . 1999. Effect of root oxygen stress on phosphorus uptake by
cattail. J. Plant Nutr. 22:459–466.
DeLaune, R. D. , W. H. Patrick, Jr. , and M. Casselman . 1981. Effect of sediment pH and redox condition on
degradation of benzo(a)pyrene. Mar. Pollut. Bull. 12(7):251–253.
DeLaune, R. D. , S. R. Pezeshki , and J. H. Pardue . 1990a. An oxidation-reduction buffer for evaluating
physiological response of plants to root oxygen stress. Environ. Exp. Bot. 30(2):243–247.
DeLaune, R. D. , S. R. Pezeshki , and C. W. Lindau . 1998. Influence of soil redox potential on nitrogen uptake
and growth of wetland oak seedlings. J. Plant Nutr. 21:757–768.
DeLaune, R. D. , J. Rinklebe , H. H. Roberts , and J. R. White . 2016. Trace metal concentrations in marsh
profiles under the influence of an emerging delta (Atchafalaya River and Wax Lake Delta) overlying a several
thousand year old (former) Mississippi River Delta Lobe. Soil Sediment Contaminat: An Int. J. 25:552–562.
DeLaune, R. D. and L. M. Salinas . 1985. Fate of 2,4-D entering a freshwater aquatic environment. Bull.
Environ. Contam. Toxicol. 35:564–568.
DeLaune, R. D. , C. J. Smith , and W. H. Patrick, Jr . 1983c. Relationship of marsh elevation, redox potential,
and sulfide to Spartina alterniflora productivity. Soil Sci. Soc. Am. J. 47:930–935.
DeLaune, R. D. , C. J. Smith , and W. H. Patrick, Jr . 1983d. Nitrogen losses from a Louisiana Gulf Coast salt
marsh. Est. Coast. Shelf Sci. 17:133–141.
DeLaune, R. D. and J. R. White . 2012. Will coastal wetlands continue to sequester carbon in response to an
increase in global sea level? A case study of the rapidly subsiding Mississippi river deltaic plain. Climate
Change. 110:297–314.
DeLaune, R. D. , J. R. White , T. Elsey-Quirk , H. H. Roberts , and D. Q. Wang . 2018. Differences in long-term
vs short-term carbon and nitrogen sequestration in a coastal river delta wetland: Implications for global budgets.
Org. Geochem. 123:67–73.
Delwiche, C. C. 1981. Denitrification, Nitrification, and Atmospheric Nitrous Oxide. Wiley, New York. 286 pp.
Demas, G. P. and M. C. Rabenhorst . 1999. Subaqueous soils: Pedogenesis in a submersed environment. Soil
Sci. Soc. Am. J. 63:1250–1257.
Demas, G. P. , M. C. Rabenhorst , and J. C. Stevenson . 1996. Subaqueous soils: A pedological approach to
the study of shallow-water habitats. Estuaries. 19:229–237.
Dévai, I. and R. D. DeLaune . 1995. Evidence for phosphine production and emission from Louisiana and
Florida marsh soils. Org. Geochem. 23:277–279.
Dévai, I. , L. Felföldy , I. Wittner , and S. Plösz . 1988. Detection of phosphine: New aspects of the phosphorus
cycle in the hydrosphere. Nature. 333:343–345.
Devol, A. H. 2015. Denitrification, anammox, and N2 production in marine sediments. Annu. Rev. Mar. Sci.
7:403–423. doi:10.1146/annurev-marine-010213-135040.
Di Toro, D. M. , H. E. Allen , H. L. Bergman , J. S. Meyer , P. R. Paquin , and R. S. Santore , R. C. 2001. Biotic
ligand model of the acute toxicity of metals. 1. Technical Basis. Environ. Toxicol. Chem. 20(10):2383–2396.
Di Toro, D. M. , J. D. Mahony , P. R. Krichgraber , A. L. O’Byrne , and L. R. Pasquale . 1986. Effect of
nonreversibility, particle concentration and ionic strength on heavy metal sorption. Environ. Sci. Technol.
20:55–56.
Diaz, O. A. , K. R. Reddy , and P. A. Moore, Jr . 1994. Solubility of inorganic P in stream water as influenced by
pH and Ca concentration. Water Res. 28:1755–1763.
Dick, W. A. 1992. Sulfur cycle. In Encyclopedia of Microbiology, Vol. 4. Academic Press, New York. pp.
123–133.
Dierberg, F. E. and T. A. DeBusk . 2005. An evaluation of two tracers in surface-flow wetlands: Rhodamine-WT
and lithium. Wetlands. 25:8–25. https://doi.org/10.1672/0277-5212(2005)025[0008:AEOTTI]2.0.CO;2.
Ding, W. , Z. Cai , and H. Tsuruta . 2005. Plant species effects on methane emissions from freshwater
marshes. Atmos. Environ. 39:3199–3207.
Dove, P. N. and M. F. Hochella . 1993. Calcite precipitation mechanisms and inhibition by orthophosphate: In
situ observations by scanning force microscopy. Geochim. et Cosmochim. Acta. 57:705–714.
Dowdle, P. R. and R. S. Oremland . 1998. Microbial oxidation of elemental selenium in soil slurries and
bacterial cultures. Environ. Sci. Technol. 32:3749–3755.
Drever, J. I. 1982. The Geochemistry of Natural Waters. Prentice Hall, Englewood Cliffs, NJ. pp. 250–278.
Du Laing, G. , J. Rinklebe , B. Vandecasteele , E. Meers , and F. M. G. Tack . 2009. Trace metal behaviaur in
estuarine and riverine floodplain soils and sediments: A review. Sci. Total Environ. 407:3972–3985.
Dubey, A. , M. A. Malla , F. Khan , K. Chowdhary , S. Yadav , A. Kumar , S. Sharma , P. K. Khare , and M. L.
Khan . 2019. Soil microbiome: A key player for conservation of soil health under changing climate. Biodivers.
Conserv. 28:2405–2429. https://doi.org/10.1007/s10531-019-01760-5.
Duckworth, O. W. , J. R. Bargar , and G. Sposito . 2009. Coupled biogeochemical cycling of iron and
manganese as mediated by microbial siderophores. Biometals. 22:605–613. doi:10.1007/s10534-009-9220-9.
Duhamel, S. , J. M. Diaz , J. C. Adams , K. Djaoudi , V. Steck , and E. M. Waggoner . 2021. Phosphorus as an
integral component of global marine biogeochemistry. Nat. Geosci. 14:359–368.
Duncan, C. P. and P. M. Groffman . 1994. Comparing microbial parameters in natural and constructed
wetlands. J. Environ. Qual. 23:298–305.
Ehrlich, H. L. 2002. Geomicrobiology. Marcel Dekker, New York (Chapters 15 and 16).
Eivazi, F. and M. A. Tabatabai . 1988. Glucosidases and galactosidases in soils. Soil Biol. Biochem.
20:601–606.
Elberling, B. , L. Askaer , C. J. Jørgensen , M. Kühl , H. P. Joensen , R. N. Glud , and B. U. Hansen . 2011.
Linking soil O2, CO2, and CH4 concentrations in a wetland soil: Implications for CO2 and CH4 fluxes. Environ.
Sci. Technol. 45:3393–3399. doi:10.1021/es103540k.
Elberling, B. , M. Kühl , R. N. Glud , C. J. Jørgensen , L. Askaer , L. F. Rickelt , H. P. Joensen , M. Larsen , and
L. Liengaard . 2013. Methods to assess high-resolution subsurface gas concentrations and gas fluxes in
wetland ecosystems. Chapter 49:433–454. In R. D. DeLaune , K. R. Reddy , C. J. Richardson , and J. P.
Megonigal (eds.) Methods in Biogeochemistry of Wetlands. Soil Science Society of America, Madison, WI.
SSSA Book Series, No. 10.
Emerson, D. 2000. Microbial oxidation of Fe(II) and Mn(II) at circumneutral pH. In D. R. Lovley (ed.)
Environmental Metal—Microbe Interactions. ASM Press, Washington, DC. pp. 31–52.
Emerson, S. , E. Roden , and B. Twining . 2012. The microbial ferrous wheel: Iron cycling in terrestrial,
freshwater, and marine environments. Front Microbiol. Special Issue. 3:1–216 pages.
doi:10.3389/fmicb.2012.00383.
Engler, R. M. , D. A. Antie , and W. H. Patrick, Jr . 1976. Effect of dissolved oxygen on redox potential and
nitrate removal in flooded swamp and marsh soils. J. Environ. Qual. 5:230–235.
Engler, R. M. and W. H. Patrick . 1974. Nitrate removal from floodwater overlaying flooded soils and sediments.
J. Environ. Qual. 3:409–413.
Engler, R. M. and W. H. Patrick, Jr . 1975. Stability of sulfides of manganese, iron, zinc, copper, and mercury in
flooded and non-flooded soil. Soil Sci. 119:217–221.
Ettwig, K. F. , M. K. Butler , D. Le Paslier , E. Pelletier , S. Mangenot , M. M. M. Kuypers , F. Schreiber , B. E.
Dutilh , J. Zedelius , D. de Beer , J. Gloerich , H. J. C. T. Wessels , T. van Alen , F. Luesken , M. L. Wu , K. T.
van de Pas-Schoonen , H. J. M. Op Den Camp , E. M. Janssen-Megens , K. Francoijs , H. Stunnenberg , J.
Weissenbach , M. S. M. Jetten , and M. Strauss . 2010. Nitrite-driven anaerobic methane oxidation by oxygenic
bacteria. Nature. 464(7288):543–548.
Ettwig, K. F. , B. Zhua , D. Spetha , J. T. Keltjensa , M. S. M. Jettena , and B. Kartala . 2016. Archaea catalyze
iron-dependent anaerobic oxidation of methane. Proc. Nat. Acad. Sci. 113:12792–12796.
https://doi.org/10.1073/pnas.1609534113.
Ewens, S. D. , A. F. S. Gomberg , T. P. Barnum , M. A. Borton , H. K. Carlson , K. C. Wrighton , and J. D.
Coates . 2021. The diversity and evolution of microbial dissimilatory phosphite oxidation. Proc. Nat. Acad. Sci.
118(11):1–11. https://doi.org/10.1073/pnas.2020024118.
Fairchild, J. F. , D. N. Ruessler , and R. Carlson . 1998. Comparative sensitivity of fine species of macrophytes
and six species of algae to atrazine, mutribuzin alachlor and metolachlor. Environ. Toxicol. Chem.
17(9):1830–1834.
Fang, C. , P. Smith , J. B. Moncriett , and J. U. Smith . 2005. Similar response of labile and resistant soil
organic matter pools to changes in temperature. Nature. 433:57–59.
Farrington, J. W. , E. B. Overton , and U. Passow . 2021. Biogeochemical processes affecting the fate of
discharged deepwater horizon gas and oil. Special Issue on the Gulf of Mexico Research Initiative: Ten Years
of Oil Spill and Ecosystem Science. Oceanography. 34:76–97.
Faulkner, S. P. and W. H. Patrick, Jr . 1992. Redox processes and diagnostic wetland Soil indicators in
bottomland hardwood forests. Soil Sci. Soc. Am. J. 56:856–865.
Faulkner, S. P. , W. H. Patrick, Jr. , and R. P. Gambrell . 1989. Field techniques for measuring wetland soil
parameters. Soil Sci. Soc. Am. J. 53:883–890.
Favas, P. J. C. , S. K. Sarkar , D. Rakshit , P. Venkatachalam , and M. N. V. Prasad . 2016. AMDs from
abandoned mines: Hydrochemistry, environmental impact, resource recovery, and prevention of pollution. In M.
N. V. Prasad and K. Shih (eds.) Environmental Materials and Waste: Resource Recovery and Pollution
Prevention. Elsevier, Academic Press, New York. pp. 413–462.
Fay, P. 1992. Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol. Mol. Biol. Rev. 56(2):340–373.
Federal Register . 1994. Changes in hydric soils of the United States. Washington, DC.
Federal Water Pollution Control Act, 33 U.S.C. 1251 et seq., Sec. 101. p. 3 (1972).
Fenchel, T. , G. M. King , and H. Blackburn . 2012. Bacterial Biogeochemistry: The Ecophysiology of Mineral
Cycling. 3rd Edition. Elsevier, Amsterdam.
Fendorf, S. , B. W. Wielinga , and C. M. Hansel . 2000. Chromium transformations in natural environments: The
role of biological and abiological processes in chromium(VI) reduction. Int. Geol. Rev. 42:8, 691–701.
doi:10.1080/00206810009465107.
Fenner, N. , J. Meadham , T. Jones , F. Hayes , and C. Freeman . 2021. Effects of climate change on peatland
reservoirs: A DOC perspective. Glob. Biogeochem. Cycles. 35:e2021GB006992.
https://doi.org/10.1029/2021GB006992.
Fennessy, M. S. , D. H. Wardrop , J. B. Moon , S. Wilson , and C. Craft . 2018. Soil carbon sequestration in
freshwater wetlands varies across a gradient of ecological condition and by ecoregion. Ecol. Eng. 114:129–136.
Février, L. , A. Martin-Garin , and E. Leclerc . 2007. Variation of the distribution coefficient (K d) of selenium in
soils under various microbial states. J. Environ. Radioact. 97:189–205.
Fierer, N. 2017. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev.
Microbiol. 15:579–590.
Figueroa, I. A. and J. D. Coates *. 2017. Chapter four - microbial phosphite oxidation and its potential role in the
global phosphorus and carbon cycles. Adv. Appl. Microbiol. 98:93–117.
Fike, D. A. , A. S. Bradley , and C. V. Rose . 2015. Rethinking the ancient sulfur cycle. Annu. Rev. Earth Planet.
Sci. 43:593–622.
Filippelli, G. M. 2008. The global phosphorus cycle: Past, present, and future. Elements. 4:89–95.
https://doi.org/10.2113/GSELEMENTS.4.2.89.
Finzi, A. C. , J. J. Cole , S. C. Doney , E. A. Holland , and R. B. Jackson . 2011. Research frontiers in the
analysis of coupled biogeochemical cycles. Front. Ecol. Environ. 9:74–80. doi:10.1890/100137.
Firestone, M. K. 1982. Biological denitrification. In Nitrogen in Agricultural Soils. Agronomy Monograph 22.
American Society of Agronomy, Madison, WI. pp. 289–326.
Fisher, M. M. and K. R. Reddy . 2001. Phosphorus flux from wetland soils affected by long-term nutrient
loading. J. Environ. Qual. 30:261–271.
Fisher, M. M. and K. R. Reddy . 2013. Soil porewater sampling methods. Chapter 4, page 55–68. In R. D.
DeLaune , K. R. Reddy , C. J. Richardson , and P. J. Megonigal (eds.) Methods in Biogeochemistry of
Wetlands. Soil Science of America, Madison, WI. 1024 pp.
Fitzgerald, W. F. , C. H. Lamborg , and C. R. Hammerschmidt . 2007. Marine biogeochemical cycling of
mercury. Chem. Rev. 107:641–662.
Flemming, H. , J. Wingender , U. Szewzyk , P. Steinberg , S. A. Rice , and S. Kjelleberg . 2016. Biofilms: An
emergent form of bacterial life. Nat. Rev. Microbiol. 14:563–575.
Flessa, H. 1994. Plant induced changes in the redox potentials of the rhizosphere of the submerged vascular
macrophytes Myriophyllum verticillatum L. and Ranunculus circinatus L. Aquat. Bot. 47:119–129.
Fossing, H. and B. B. Jørgensen . 1989. Measurements of bacterial sulfate reduction in sediments: Evaluation
of a single-step chromium reduction method. Biogeochemistry. 8:205–222.
Francis, C. A. , J. M. Beman , and M. M. M. Kuypers . 2007. New processes and players in the nitrogen cycle:
The microbial ecology of anaerobic and archaeal ammonia oxidation. Int. Soc. Microbiol. Ecol. J. 1:19–27.
Freedman, D. L. and J. M. Gossett . 1989. Biological reductive dechlorination of tetrachloroethylene and
trichloroethylene to ethylene under methanogenic conditions. Appl. Environ. Microbiol. 55:2144–2151.
Freeman, C. , N. Fenner , N. J. Ostle , H. Kang , D. J. Dowrick , B. Reynolds , M. A. Lock , D. Sleep , S.
Hughes , and J. Hudson . 2004. Dissolved organic carbon export from peatlands under elevated carbon dioxide
levels. Nature. 430:195–198.
Freeman, C. , C. D. Evans , D. T. Monteith , B. Reynolds , and N. Fenner . 2001a. Export of organic carbon
from peat soils. Nature. 412:785.
Freeman, C. , M. A. Lock , and B. Reynolds . 1993. Fluxes of CO2, CH4, and N2O from a Welsh peatland
following simulation of water table draw-down: potential feedback to climate change. Biogeochemistry.
19:51–60.
Freeman, C. , N. Ostle , and H. Kang . 2001b. An enzymatic ‘latch’ on a global carbon store. Nature. 409:149.
French, J. R. and T. Spencer . 1993. Dynamics of sedimentation in a tide-dominated backbarrier salt marsh,
Norfolk, UK. Mar. Geol. 110:315–331.
French, P. W. , J. R. L. Allen , and P. G. Appleby . 1994. 210-Lead dating of a modern period saltmarsh deposit
from the Severn Estuary (Southwest Britain), and its implications. Mar. Geol. 118:327–334.
Freney, J. R. 1986. Forms and reactions of organic sulfur compounds in soils. Sulfur Agric. 27:207–232.
Freney, J. R. , O. T. Denmead , I. Watanabe , and E. T. Craswell . 1981. Ammonia and nitrous oxide losses
following applications of ammonium sulfate to flooded rice. Aust. J. Agric. Res. 32:37–45.
Frenzel, P. , U. Bosse , and P. H. Janssen . 1999. Rice roots and methanogenesis in a paddy soil: Ferric iron
as an alternate electron acceptor in the rooted soil. Soil Biol. Biochem. 31:421–430.
Froelich, P. N. 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the
phosphate buffer mechanism. Limnol. Oceanogr. 33(4):649–668.
Frohne, T. , J. Rinklebe , and R. A. Diaz-Bone . 2014. Contamination of floodplain soils along the Wupper
River, Germany, with As, Co, Cu, Ni, Sb, and Zn and the impact of pre-definite redox variations on the mobility
of these elements. Soil Sediment Contaminat: An Int. J. 23:779–799. doi:10.1080/15320383.2014.872597.
Frohne, T. , J. Rinklebe , R. A. Diaz-Bone , and G. Du Laing . 2011. Controlled variation of redox conditions in a
floodplain soil: Impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma.
160:414–424.
Frohne, T. , J. Rinklebe , U. Langer , G. DuLaing , S. Mothes , and R. Wennrich . 2012. Biogeochemical factors
affecting mercury methylation rate in two contaminated floodplain soils. Biogeosciences. 9:493–507.
Fry, B. 2006. Stable Isotope Ecology. Vol. 521. Springer, New York.
Fu, W. and X. Zhang . 2020. Global phosphorus dynamics in terms of phosphine. Climate Atmospher Sci. 3:51.
https://doi.org/10.1038/s41612-020-00154-7.
Fukao, T. and J. Bailey-Serres . 2004. Plant responses to hypoxia—is survival a balancing act? TRENDS Plant
Sci. 9:449–456.
Gabriel, M. S. and D. G. Williamson . 2004. Principal biogeochemical factors affecting the speciation and
transport of mercury through the terrestrial environment. Environ. Geochem. Health. 26:421–434.
Gadd, G. F. 2010. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology.
156:609–643. doi:10.1099/mic.0.037143-0.
Gaiser, E. E. , P. V. McCormick , S. E. Hagerthey , and A. D. Gottlieb . 2011. Landscape patterns of periphyton
in the Florida Everglades. Crit. Rev. Environ Sci. Technol. 41(sup1):92–120.
doi:10.1080/10643389.2010.531192.
Gale, P. M. , I. Devai , K. R. Reddy , and D. A. Graetz . 1993. Denitrification potential of soils from constructed
and natural wetlands. Ecol. Eng. 2:119–130.
Gale, P. M. , K. R. Reddy , and D. A. Graetz . 1994. Phosphorus retention by wetland soils used for treated
wastewater disposal. J. Environ. Qual. 23:370–377.
Galloway, J. N. 2005. The global nitrogen cycle. In W. H. Schlesinger (ed.) Biogeochemistry. Elsevier-
Pergamon, Oxford, UK. pp. 585–644.
Galloway, J. N. , F. J. Dentener , D. G. Capone , E. W. Boyer , R. W. Howarth , S. P. Seitzinger , G. P. Asner ,
C. C. Cleveland , P. A. Green , E. A. Holland , D. M. Karl , A. F. Michaels , J. H. Porter , A. R. Townsend , and
C. J. Vorosmarty . 2004. Nitrogen cycles: Past, present, and future. Biogeochemistry. 70:153–226.
Gambrell, R. P. 1994. Trace and toxic metals in wetlands—A review. J. Environ. Qual. 23:883–891.
Gambrell, R. P. , R. A. Khalid , and W. H. Patrick, Jr . 1980. Chemical availability of mercury, lead, and zinc in
mobile bay sediment suspension as affected by pH and oxidation—reduction conditions. Environ. Sci. Technol.
14:431–436.
Gambrell, R. P. , R. A. Khalid , M. G. Verloo , and W. H. Patrick, Jr . 1977. “Transformation of heavy metals and
plant nutrients in dredged sediments as affected by oxidation-reduction and pH. Volume II. Materials and
Methods, Results and Discussion,” report submitted to Office of Dredged Material Research, U.S. Army
Engineer Waterways Experiment Station, Vicksburg, Mississippi, U.S.A.
Gambrell, R. P. and W. H. Patrick, Jr . 1988. The influence of redox potential on the environmental chemistry of
contaminants in soils and sediments. In D. D. Hook (ed.) The Ecology and Management of Wetlands. Vol. 1.
Timber Press, Portland, OR. pp. 319–333.
Gambrell, R. P. , C. N. Reddy , V. Collard , G. Green , and W. H. Patrick, Jr . 1984. The recovery of DDT,
Kepone and permethrin added to soil and sediment suspensions incubated under controlled redox potential
and pH conditions. J. Water Poll. Control Fed. 52:174–182.
Gambrell, R. P. , J. B. Wiespape , W. H. Patrick, Jr. , and M. C. Duff . 1991. The effects of pH, redox and
salinity on metal release from a contaminated sediment. Water Air Soil Pollut. 57–58:359–367.
Gao, C. , S. Zhang , H. Liu , J. Cong , Y. Li , and G. Wang . 2018. The impacts of land reclamation on the
accumulation of key elements in wetland ecosystems in the Sanjiang Plain, northeast China. Environ. Pollution.
237:487–498.
Gauci, V. , E. Matthews , N. Dise , B. Walter , D. Koch , G. Granberg , and M. Vile . 2004. Sulfur pollution
suppression of the wetland methane source in the 20th and 21st centuries. Proc. Natl. Acad. Sci. U.S.A.
101:12583–12587.
Gedik, K. , M. Kongchum , R. D. DeLaune , and J. J. Sonnier . 2017. Distribution of arsenic and other metals in
crayfish tissues (Procambarus clarkii) under different production practices. Sci. Total Environ. 574:322–331.
Garrels, R. M. and C. L. Christ . 1965. Solutions, Minerals, and Equilibria. Harper & Row, New York. 450 pp.
Geta, R. , C. Postolache , and A. Vadineanu . 2004. Ecological significance of nitrogen cycling by Tubificid
communities in shallow eutrophic lakes of the Danube delta. Hydrobiologia. 524(1):193–202.
Ghisi, R. , T. Vamerali , and S. Manzetti . 2019. Accumulation of perfluorinated alkyl substances (PFAS) in
agricultural plants: A review. Environ. Res. 169:326–341.
Ghiorse, W. C. 1988. Microbial reduction of manganese and iron. In A. J. B. Zehnder (ed.) Biology of Anaerobic
Microorganisms. Wiley, New York. pp. 305–331.
Giannimaras, E. K. and P. G. Koutsoukos . 1987. The crystallization of calcite in the presence of
orthophosphate. J. Colloidal Interface Sci. 116:423–430.
Gilfedder, B. S. , S. Frei , H. Hofmann , and I. Cartwright . 2015. Groundwater discharge to wetlands driven by
storm and flood events: Quantification using continuous Radon-222 and electrical conductivity measurements
and dynamic mass-balance modelling. Geochimica et Cosmochimica Acta. 165:161–177.
doi:10.1016/j.gca.2015.05.037.
Gillespie, L. J. 1920. Reduction potentials of bacterial cultures and water-logged soils. Soil Sci. 9:199–216.
Gillon, D. , Houssard, C. and Joffre, R. 1999. Using near-infrared reflectance spectroscopy to predict carbon,
nitrogen and phosphorus content in heterogeneous plant material. Oecologia. 118:173–182.
https://doi.org/10.1007/s004420050716.
Gilmour, C. C. , M. Podar , A. L. Bullock , A. M. Graham , S. D. Brown , A. C. Somenahally , A. Johs , R. A. Hurt
Jr , K. L. Bailey , and D. A. Elias . 2013. Mercury methylation by novel microorganisms from new environments.
Environ. Sci. Technol. 47(20):11810–11820.
Goldberg, S. and R. A. Glaubig . 1988. Anion adsorption on calcerious, montmorollonitic soil—arsenic. Soil Sci.
Soc. Am. J. 52:1297–1300.
Goolsby, D. A. , W. A. Battaglin , and E. M. Thurman . 1993. Occurrence and transport of agricultural chemicals
in the Mississippi River, July through August 1993. U.S. Geol. Survey Circular. 1120-C, 22 pp.
Gopal, B. and V. Masing . 1990. Biology and ecology. In B. C. Pattan et al. (eds.) Wetlands and Shallow
Continental Water Bodies. Vol. 1. SPB Academic Publishing, the Netherlands. pp. 91–239.
Gornitz, V. 1995. Sea-level rise: A review of recent past and near-future trends. Earth Surf. Proc. Landforms.
20:7–20.
Gotoh, S. and W. H. Patrick, Jr . 1972. Transformation of manganese in a water logged soil as affected by
redox potential and pH. Soil Sci. Soc. Am. Proc. 36:738–742.
Gotoh, S. and W. H. Patrick, Jr . 1974. Transformation of iron in a waterlogged soil as influenced by redox
potential and pH. Soil Sci. Soc. Am. Proc. 38:66–71.
Gottschalk, G. 1986. Bacterial Metabolism. 2nd Edition. Springer Verlag, New York. 359 pages.
Gottselig, N. , R. Bol , V. Nischwitz , H. Vereecken , W. Amelung , and E. Klumpp . 2014. Distribution of
phosphorus-containing fine colloids and nanoparticles in stream water of a forest catchment. Vadose Zone J.
13. doi:10.2136/vzj2014.01.0005.
Graham, E. B. and K. S. Hofmockel . 2022. Ecological stoichiometry as a foundation for omics-enabled
biogeochemical models of soil organic matter decomposition. Biogeochemistry. 157:31–50.
https://doi.org/10.1007/s10533-021-00851-2.
Grassi, M. , G. Kaykioglu , V. Belgiorno , and G. Lofrano . 2012. Removal of emerging contaminants from water
and wastewater by adsorption process. In Emerging Compounds Removal from Wastewater. Springer,
Netherlands. pp. 15–37.
Grégoire, D. S. and A. J. Poulain . 2016. A physiological role for Hg II during phototrophic growth. Nat. Geosci.
9:121–125. doi:10.1038/NGEO2629.
Griffin, T. M. and M. C. Rabenhorst . 1989. Processes and rates of pedogenesis in some Maryland tidal marsh
soils. Soil Sci. Soc. Am. J. 53(3):862–870.
Gröger, J. 2011. Acid sulfate soils: Processes and assessment. PhD Thesis, University of Bremen, Bremen,
Germany.
Groffman, P. M. , M. A. Altabet , J. K. Bohlke , K. Butterbach-Bahl , M. B. David , M. K. Firestone , A. E. Giblin ,
T. M. Kana , L. P. Nielsen , and M. A. Voytek . 2006. Methods for measuring denitrification: Diverse approaches
to a difficult problem. Ecol. Appl. 16:2091–2122.
Grosse, W. 1989. Thermoosmotic Air Transport in Aquatic Plants Affecting Growth Activities and Oxygen
Diffusion to Wetland Soils. In Constructed Wetlands for Wastewater Treatment (Editor. D. A. Hammer ). pp
469–476. Lewis Publishers, CRC Press, Boca Raton, Florida.
Grosse, W. , J. Armstrong , and W. Armstrong . 1996. A history of pressurised gas-flow studies in plants.
Aquatic Bot. 54:87–100. doi.org/10.1016/0304-3770(96)01037-6.
Gruber, N. and J. Galloway . 2008. An Earth-system perspective of the global nitrogen cycle. Nature.
451:293–296. https://doi.org/10.1038/nature06592.
Gu, Y. , Lensu, A. , Perämäki, S. , Ojala, A. , Vähätalo, A. V. Iron and pH Regulating the Photochemical
Mineralization of Dissolved Organic Carbon. ACS Omega. 2017 May 9; 2(5):1905–1914. doi:
10.1021/acsomega.7b00453. PMID: 31457550; PMCID: PMC6641020.
Gusewell, S. and W. Koerselman . 2002. Variation in nitrogen and phosphorus concentrations of wetland
plants. Perspect. Plant Ecol. Evol. Syst. 5:37–61.
Gutknecht, J. L. M. , R. M. Goodman , and T. C. Balser . 2006. Linking soil process and microbial ecology in
freshwater wetland ecosystems. Plant Soil. 289:17–34.
Gwenzi, W. and N. Chaukura . 2018. Organic contaminants in African aquatic systems: Current knowledge,
health risks, and future research directions. Sci. Total Environ. 619–620:1493–1514.
Hagerthey, S. E. , B. J. Bellinger , K. Wheeler , M. Gantar , and E. Gaiser . 2011. Everglades periphyton: A
biogeochemical perspective. Crit. Rev. Environ. Sci. Technol. 41(sup1):309–343.
doi:10.1080/10643389.2010.531218.
Hallin, S. and P. L. E. Bodelier . 2020. Grand challenges in terrestrial microbiology: Moving on from a decade of
progress in microbial biogeochemistry. Front. Microbiol. 11:981. doi:10.3389/fmicb.2020.00981.
Hambrick, G. A. III , R. D. DeLaune , and W. H. Patrick, Jr . 1980. Effect of estuarine sediment pH and
oxidation—reduction potential on microbial hydrocarbon degradation. Appl. Environ. Microbiol. 40(2):365–369.
Hamilton, S. K. , S. J. Sippel , J. P. Chanton , and J. M. Melack . 2014. Plant-mediated transport and isotopic
composition of methane from shallow tropical wetlands. Inland Waters. 4:369–376.
Haroon, M. F. , S. Hu , Y. Shi , M. Imelfort , J. Keller , P. Hugenholtz , Z. Yuan , and G. W. Tyson . 2013.
Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature.
500(7464):567–570.
Harris, W. G. 2002. Phosphate minerals. In Soil Mineralogy with Environmental Applications. Soil Science
Society of America, Madison, WI. pp. 637–665. SSSA Book Series, No. 7.
Harris, W. G. and, G. N. White . 2008. X-ray diffraction techniques for soil mineral identification. In A. Ulery and
R. Drees (eds.) Methods of Soil Analysis: Part 5—Mineralogical Methods. Soil Science Society of America,
Madison, WI. pp. 81–115.
Hartley, A. M. , W. A. House , M. E. Callow , and B. S. C. Leadbeater . 1997. Coprecipitation of phosphate with
calcite in the presence of photosynthesizing green algae. Water Res. 9:2261–2268.
Hassett, J. P. and E. Milicic . 1985. Environ. Sci. Technol. 19:638–643.
Hatton, R. S. , R. D. DeLaune , and W. H. Patrick, Jr . 1983. Sedimentation, accretion and subsidence in
marshes of Barataria Basin, Louisiana. Limnol. Oceanogr. 28(3):494–502.
Haynes, R. J. and R. S. Swift . 1985. Effect of air-drying on the adsorption and desorption of phosphate
adsorption and desorption of phosphate and levels of extractable phosphate in a group of New Zealand acid
soils. Geoderma. 35:145–157.
Haynes, R. J. and R. S. Swift . 1986. Effects of soil acidification and subsequent leaching on levels of
extractable nutrients in a soil. Plant Soil. 95:327–336.
Haynes, R. J. and R. S. Swift . 1989. The effects of pH and drying on adsorption of phosphate by aluminum-
organic matter associations. Eur. J. Soil. Sci. 40(4):773–781.
He, Q. and K. Yao . 2010. Microbial reduction of selenium oxyanions by Anaeromyxobacter dehalogenans.
Bioresour Technol. 101:3760–3764.
He, Z. L. , X. E. Yang , and P. J. Stoffella . 2005. Trace elements in agroecosystems and impacts on the
environment. J. Trace Elements Med Biol. 19:125–140.
Headley, T. R. and R. H. Kadlec . 2007. Conducting hydraulic tracer studies of constructed wetlands: A
practical guide. Ecohydrol. Hydrobiol. 7:269–282. doi:10.1016/S1642-3593(07)70110-6.
Hedely, M. J. and J. W. B. Stewart . 1982. Method to measure microbial biomass phosphorus in soils. Soil Biol.
Biochem. 14:377–385.
Hemond, H. F. and E. J. Fechner . 1994. Chemical Fate and Transport in the Environment. Academic Press,
New York. 338 pp.
Hansen, A. M. , T. E. C. Kraus , B. A. Pellerin , J. A. Fleck , B. D. Downing , and B. A. Bergamaschi . 2016.
Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation. Limnol.
Oceanogr. 61: 1015–1032. doi: 10.1002/lno.10270.
Henriksen, K. and W. M. Kemp . 1988. Nitrification in estuarine and coastal marine sediments. In T. H.
Blackburn and J. Sorensen (eds.) Nitrogen Cycling in Coastal Marine Environments. Wiley, New York. pp.
207–249.
Henry, K. M. and R. R. Twilley . 2014. Nutrient biogeochemistry during the early stages of delta development in
the mississippi river deltaic plain. Ecosystems. 17:327–343. doi:10.1007/s10021-013-9727-3.
Hensel, P. F. , J. W. Day , and D. Pont . 1999. Wetland vertical accretion and soil elevation change in the
Rhone River Delta, France: The importance of riverine flooding. J. Coastal Res. 15:668–681.
Herbert, R. A. 1999. Nitrogen cycling in coastal marine sediments. FEMS Microbiol. Rev. 23:563–590.
Herman, W. A. , W. B. McGill , and J. F. Dormaar . 1977. Effects of initial chemical composition on
decomposition of roots of three grass species. Can. J. Soil Sci. 57:205–215.
Hesslein, R. H. 1976. An in situ sampler for close interval porewater studies. Limnol. Oceanogr. 21:912–914.
Hieltjes, H. M. and L. Lijklema . 1980. Fractionation of inorganic phosphates in calcareous sediments. J.
Environ. Qual. 9:405–407.
Hingston, F. J. , R. J. Atkinson , A. M. Posner , and J. P. Quirk . 1967. Specific adsorption of anions. Nature
(London). 215:1459–1461.
Hlawatsch, S. , C. D. Garbe-Schönberg , F. Lechtenberg , A. Manceau , N. Tamura , D. A. Kulik , and M.
Kersten . 2002. Trace metal fluxes to ferromanganese nodules from the western Baltic Sea as a record for
long-term environmental changes. Chem. Geol. 182:697–709. ISSN 0009-2541. https://doi.org/10.1016/S0009-
2541(01)00346-1.
Ho, D. T. , P. Schlosser , R. W. Houghton , and T. Caplow . 2006. Comparison of SF6 and fluorescence as
traces for measuring transport in a large tidal river. J. Environ. Eng. 132(2):1664–1669.
Hogue, B. , and P. W. Inglett . 2012. Characterization of combustion residues obtained from natural and
simulated fires of varying intensity. Science of the Total Environment. 431:9–19.
Hogue, B. A. and Inglett, P. W. , 2012. Nutrient release from combustion residues of two contrasting
herbaceous vegetation types. Science of the Total Environment, 431, 9–19.
Holler, T. , G. Wegenera , H. Niemanna , C. Deusnera , T. G. Ferdelmana , A. Boetiusa , B. Brunnera , and F.
Widdela . 2011. Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled
sulfate reduction. Proc. Nat. Acad. Sci. 108:1484–1490.
Hook, D. D. 1984. Adaptations to flooding with freshwater. In T. T. Kozlowski and A. J. Ricker (eds.) Flooding
and Plant Growth. Academic Press, New York. pp. 265–294.
Hook, D. D. and J. R. Scholtens . 1978. Adaptations and flood tolerance of tree species. In D. D. Hook and R.
M. M. Crawford (eds.) Plant Life in Anaerobic Environments. Ann Arbor Science Publishers, Ann Arbor, MI. pp.
299–1231.
Hopkinson, C. S. and J. P. Schubauer . 1984. Static and dynamic aspects of nitrogen cycling in the salt marsh
graminoid Spartina alterniflora. Ecology. 65:961–969.
Hoppe, H. G. 2003. Phosphatase activity in the sea. Hydrobiologia. 493:187–200.
Houghton, R. A. , and D. L. Skole . 1990. Carbon. In: B. L. Turner , W. C. Clark , R. W. Kates , J. F. Richards ,
J. T. Mathews , and W. B. Meyer (eds.), The Earth as Transformed by Human Action. Cambridge University
Press, Cambridge. pp. 393–408.
Houghton, J. T. , Y. Ding , D. J. Griggs , M. Noguer , P. J. van der Linden , and D. Xiaosu (eds.). 2001. Climate
Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, UK.
Houghton, R. A. 2003. Contemporary carbon cycle. Treatise on Geochem. 8:473–513.
House, W. A. 1990. The prediction of phosphate co-precipitation with calcite in freshwaters. Water Res.
8:1017–1023.
House, W. A. and L. Donaldson . 1986. Adsorption and coprecipitation of phosphate on calcite. J. Colloidal
Interface Sci. 112:309–324.
Howarth, R. W. 1979. Pyrite: Its rapid formation in a salt marsh and its importance in ecosystem metabolism.
Science. 203:49–51.
Howarth, R. W. 1984. The ecological significance of sulfur in the energy dynamics of salt marsh and coastal
marine sediments. Biogeochemistry. 1:5–27.
Howarth, R. W. 1993. Microbial processes in salt-marsh sediments. In T. E. Ford (ed.) Aquatic Microbiology.
Blackwell Scientific Publications, Boston, MA, Oxford. pp. 239–259.
Howarth, R. W. , F. Chan , D. P. Swaney , R. M. Marino , and M. Hayn . 2021. Role of external inputs of
nutrients to aquatic ecosystems in determining prevalence of nitrogen vs. phosphorus limitation of net primary
productivity. Biogeochemistry. 154:293–306.
Howarth, R. W. and A. E. Giblin . 1983. Sulfate reduction in the salt at Sapelo island, Georgia, Limnol.
Oceanogr. 28:70–82.
Howarth, R. W. , R. Marino , J. Lane , and J. J. Cole . 1988. Nitrogen fixation in freshwater, estuarine, and
marine ecosystems, 1: Rates and importance. Limnol. Oceanogr. 33:669–687.
Howarth, R. W. and S. Merkel . 1994. Pyrite formation and the measurement of sulfate reduction in salt marsh
sediments. Limnol. Oceanogr. 29:598–600.
Howarth, R. W. and J. M. Teal . 1979. Sulfate reduction in a New England salt marsh. Limnol. Oceanogr.
24:999–1012.
Howarth, R. W. and J. M. Teal . 1980. Energy flow in a salt marsh ecosystem: The role of reduced inorganic
sulfur compounds. Am. Nat. 116:862–872.
Howeler, R. H. 1972. The oxygen status of lake sediments. J. Environ. Qual. 1:366–371.
Howeler, R. H. and D. R. Bouldin . 1971. Diffusion and consumption of oxygen in submerged soils. Soil Sci.
Soc. Am. Proc. 35:202–208.
Howes, B. L. , R. W. Howarth , J. M. Teal , and J. Valiela . 1981. Oxidation—reduction potentials in a salt
marsh: Spatial patterns and interactions with primary production. Limnol. Oceanogr. 26:350–360.
Howes, B. L. and J. M. Teal . 1994. Oxygen loss from Spartina alterniflora and its relationship to salt marsh
oxygen balance. Oecologia. 97:431–438.
Hu, H. , H. Lin , W. Zheng , S. J. Tomanicek , A. Johs , X. Feng , D. A. Elias , L. Liang , and B. Gu . 2013.
Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria. Nature Geosci. 6:751–754.
Hu, J. , C. M. VanZomeren , K. S. Inglett , A. L. Wright , M. W. Clark , and K. R. Reddy . 2017. Greenhouse gas
emissions under different drainage and flooding regimes of cultivated peatlands. J. Geophys. Res. Biogeosci.
122:3047–3062.
Hugget, D. B. , B. W. Brooks , B. Peterson , C. M. Foram , and D. Schlenk . 2002. Toxicity of selected beta-
adrenergic receptor-blocking pharmaceuticals (B-blockings) on aquatic organisms. Arch. Environ. Contam.
Toxicol. 43:229–235.
Hutchins, D. A. , J. K. Jansson , J. V. Remais , V. I. Rich , B. K. Singh , and P. Trivedi . 2019. Climate change
microbiology—problems and perspectives. Nat Rev Microbiol. 17:391–396.
Inglett, K. S. , J. P. Chanton , and P. W. Inglett . 2013a. Methanogenesis and methane oxidation in wetland
soils. In R. D. DeLaune , K. R. Reddy , C. J. Richardson , and J. P. Megonigal (eds.) Methods in
Biogeochemistry of Wetlands. Soil Science Society of America. pp. 407–525. doi:10.2136/sssabookser10.c26
SSSA Book Series 10.
Inglett, K. S. , P. W. Inglett , K. R. Reddy , and T. Z. Osborne . 2012. Temperature sensitivity of greenhouse
gas production in wetland soils of different vegetation. Biogeochemistry. 108(1–3):77–90.
Inglett, P. W. , 2013. Biological dinitrogen fixation. In R. D. DeLaune , K. R. Reddy , C. J. Richardson , and J. P.
Megonigal (eds.) Methods in Biogeochemistry of Wetlands. Soil Science Society of America. 593–602.
Inglett, P. W. 2005. Stable nitrogen isotopic ratios as an indicator of wetland eutrophication: A case study in the
Florida Everglades, Doctoral dissertation, University of Florida.
Inglett, P. W. , Kana, T. M. and An, S. , 2013b. Denitrification measurement using membrane inlet mass
spectrometry. In R. D. DeLaune , K. R. Reddy , C. J. Richardson , and J. P. Megonigal (eds.) Methods in
Biogeochemistry of Wetlands. Soil Science Society of America. 503–517.
Inglett, P. W. , E. M. D’Angelo , K. R. Reddy , P. V. McCormick , and S. E. Hagerthey . 2009. Periphyton
nitrogenase activity as an indicator of wetland eutrophication: Spatial patterns and response to phosphorus
dosing in a northern Everglades ecosystem. Wetlands Ecol. Manag. 17(2):131–144.
Inglett, P. W. , K. R. Reddy , and P. V. McCormick . 2004. Periphyton tissue chemistry and nitrogenase activity
in a nutrient impacted Everglades ecosystem. Biogeochemistry. 67:213–233.
Inglett, P. W. , K. R. Reddy , S. Newman , and B. Lorenzen . 2007. Increased soil stable nitrogen isotopic ratio
following phosphorus enrichment: Historical patterns and tests of two hypotheses in a phosphorus-limited
wetland. Oecologia. Online reference 10.1007/s00442-007-0711-5.
Inglett, P. W. , V. H. Rivera-Monroy , and J. R. Wozniak . 2011. Biogeochemistry of nitrogen across the
everglades landscape. Crit Rev Environ Sci Technol. 41(sup1):187–216. doi:10.1080/10643389.2010.530933.
IPCC . 2013. Climate change 2013: The physical science basis. In T. F. Stocker , D. Qin , G.-K. Plattner , M.
Tignor , S. K. Allen , J. Boschung , A. Nauels , Y. Xia , V. Bex , and P. M. Midgley (eds.) Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
Cambridge University Press, Cambridge, United Kingdom and New York.
Irick, D. L. , B. Gu , Y. C. Li , P. W. Inglett , P. C. Frederick , M. S. Ross , A. L. Wright , and S. M. Ewe . 2015.
Wading bird guano enrichment of soil nutrients in tree islands of the Florida Everglades. Sci. Total Environ.
532:40–47.
Irick, D. L. C. , Li, Y. , Inglett, P. W. , Harris, W. G. , Gu, B. , Ross, M. S. , Wright, A. L. and Migliaccio, K. W. ,
2013. Characteristics of soil phosphorus in tree island hardwood hammocks of the southern Florida Everglades.
Soil Sci. Soc. Am. J. 77(3):1048–1056.
Ise, T. and P. R. Moorcroft . 2006. The global-scale temperature and moisture dependencies of soil organic
carbon decomposition: an analysis using a mechanistic decomposition model. Biogeochemistry. 80:217–231.
Ishikawa, M. and Nishimura, H. 1989. Mathematical model of phosphate release rate from sediments
considering the effect of dissolved oxygen in overlying water. Water Res. 23(3):351–359.
Ivanoff, D. B. , K. R. Reddy , and S. Robinson . 1998. Chemical fractionation of organic P in histosols. Soil Sci.
163:36–45.
Iversen, N. and B. B. Jorgensen . 1985. Anaerobic methane oxidation rates at the sulphate-methane transition
in marine sediments from Kattegat and Skagerak (Denmark). Limnol. Oceanogr. 30:944–955.
Jackson, M. B. , T. M. Fenning , and W. Jenkins . 1985. Aerenchyma (gas space) formation in adventitious root
of rice (Oryza sativa L.) is not controlled by ethylene or small partial pressure of oxygen. J. Exp. Bot.
36:1566–1570.
James, B. R. and R. J. Bartlett . 1983. Behavior of chromium in soils, interchange between oxidation—reduction
and organic complexation. J. Environ. Qual. 12(2):173–176.
James, W. F. , J. W. Barko , and H. L. Eakin . 1995. Internal phosphorus loading in Lake Pepin, upper
Mississippi River. J. Freshwater Ecol. 10(3):269–276.
Janssen, B. H. 1996. Nitrogen mineralization in relation to C:N ratio and decomposability of organic materials.
In O. Van Cleemput , G. Hofman , and A. Vermoesen (eds.) Progress in Nitrogen Cycling Studies, Vol. 68.
Developments in Plant and Soil Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5450-5_13.
Jansson, J. K. and K. S. Hofmockel . 2018. The soil microbiome—from metagenomics to metaphenomics. Curr.
Opin. Microbiol. 43:162–168.
Jansson, J. K. and K. S. Hofmockel . 2020. Soil microbiomes and climate change. Nat. Rev. 18:35–46.
Jarvie, H. P. , A. N. Sharpley , D. Flaten , P. J. A. Kleinman , A. Jenkins , and T. Simmons . 2015. The pivotal
role of phosphorus in a resilient water—energy—food security nexus. J. Environ. Qual. 44:1049–1062.
doi:10.2134/jeq2015.01.0030.
Jaynes, M. L. and S. R. Carpenter . 1986. Effects of vascular and nonvascular macrophytes on sediment redox
and solute dynamics. Ecology. 67:875–882.
Jeppesen, E. , J. P. Jensen , M. Sondergaard , K. S. Hansen , P. H. Moller , H. U. Rasmussen , V. Norby , and
S. E. Larsen . 2003. Does resuspension prevent a shift to a clear state in shallow lakes during
reoligotrophication. Limnol. Oceangr. 48:1913–1919.
Johnson, J. E. , P. Savalia , R. Davis , B. D. Kocar , S. M. Webb , K. H. Nealson , and W. W. Fischer . 2016.
Real-time manganese phase dynamics during biological and abiotic manganese oxide reduction. Environ. Sci.
Technol. 50:4248–4258. doi:10.1021/acs.est.5b04834.
Johnson, K. S. 2006. Manganese redox chemistry revisited. Science. 313:1896–1897.
Johnston, C. A. 1991. Sediment and nutrient retention by freshwater wetlands: Effects on surface water quality.
Crit. Rev. Environ. Control. 21:491–565.
Jones, Z. L. , J. T. Jasper , D. L. Sedlak , and J. O. Sharp . 2017. Sulfide-induced dissimilatory nitrate reduction
to ammonium supports anaerobic ammonium oxidation (anammox) in an openwater unit process wetland. Appl.
Environ. Microbiol. 83:e00782–17. https://doi.org/10.1128/AEM.00782-17.
Jordan, S. J. , J. Stoffer , and J. A. Nestlerode . 2011. Wetlands as sinks for reactive nitrogen at continental and
global scales: A meta-analysis. Ecosystems. 14:144–155.
Jørgensen, B. B. 1983. The Major Biogeochemical Cycles and Their Interactions. John Wiley & Sons, New
York. pp. 477–509.
Jørgensen, B. B. , A. J. Findlay , and A. Pellerin . 2019. The biogeochemical sulfur cycle of marine sediments.
Front. Microbiol. 10:849. doi:10.3389/fmicb.2019.00849.
Jørgensen, C. J. , S. Struwe , and B. Elberling . 2012. Temporal trends in N2O flux dynamics in a Danish
wetland: Effects of plant-mediated gas transport of N2O and O2 following changes in water level. Global
Change Biol. 18:210–222. doi:10.1111/j.1365-2486.2011.02485.x.
Joshi, M. M. and J. P. Hollis . 1976. Interaction of Beggiatoa and rice plant: Detoxification of hydrogen sulfide in
the rice rhizosphere. Science. 195:179–180.
Kabata-Pendias, A. 2010. Soil constituents. In Trace Elements in Soils and Plants. CRC Press, Boca Raton.
pp. 93–120.
Kadlec, R. H. 1993. Natural wetland treatment at Houghton Lake: The first fifteen years. Proceedings of the
WEF 66th Annual Conference, Anaheim, CA. WEF, Alexandria, VA. pp. 73–84.
Kadlec, R. H. and K. R. Reddy . 2001. Temperature effects in treatment wetlands. Water Environ. Res.
73:543–557.
Kadlec, R. H. and S. D. Wallace . 2008. Treatment Wetlands. CRC Press, Taylor and Francis Group, Boca
Raton, FL. 1016 pp.
Kaiser, E. and B. Sulzberger . 2004. Phototransformation of riverine dissolved organic matter (DOM) in the
presence of abundant iron: Effect on DOM bioavailability. Limnol. Oceanography. 49:540–554.
Kammann, C. , L. Grunhage , and H.-J. Jager . 2009. A new sampling technique to monitor concentrations of
CH4, N2O and CO2 in air at well-defined depths in soils with varied water potential. Eur. J. Soil Sci.
52:297–303. doi:10.1046/j.1365-2389.2001.00380.x
Kamp-Nielsen, L. 1975. A kinetic approach to the aerobic sediment—water exchange of phosphorus in Lake
Esrom. Ecol. Model. 1:153–160.
Kanwisher, J. 1959. Polarographic oxygen electrode. Limnol. Oceanogr. 4:210–217.
doi:10.4319/lo.1959.4.2.0210.
Kappler, A. , M. Benz , B. Schink , and A. Brune . 2004. Electron shuttling via humic acids in microbial iron(III)
reduction in a freshwater sediment. Microb. Ecol. 47:85–92.
Kappler, A. , C. Bryce , M. Mansor , U. Lueder , J. M. Byrne and E. D. Swanner . 2021. An evolving view on
biogeochemical cycling of iron. Nat. Rev. 19:360–374.
Karimian, N. , S. G. Johnston , and E. Burton . 2018. Iron and sulfur cycling in acid sulfate soil wetlands under
dynamic redox conditions: A review. Chemosphere. 197:803–816.
Karl, D. M. , L. Beversdorf , K. M. Bjorkman , M. J. Church , A. Martinez , and E. F. DeLong . 2008. Aerobic
production of methane in the sea. Nat. Geosci. 1:473–478. doi:10.1038/ngeo234.
Kastler, J. A. and P. L. Wiberg . 1996. Sedimentation and boundary changes of Virginia salt marshes. Estuar.
Coast. Shelf Sci. 42:683–700.
Kauppi, L. , G. R. Bastrop , A. Norkko , and J. Norkko . 2018. Increasing densities of an invasive polychaete
enhance bioturbation with variable effects on solute fluxes. Sci. Rep. 8:7619. https://doi.org/10.1038/s41598-
018-25989-2.
Kawase, M. 1981. Effect of ethylene on aerenchyma development. Am. J. Bot. 68:651–658.
Kayranli, B. , M. Scholz , A. Mustafa , and Å. Hedmark . 2010. Carbon storage and fluxes within freshwater
wetlands: A critical review. Wetlands. 30:111–124. doi:10.1007/s13157-009-0003-4.
Kearney, M. S. , J. C. Stevenson , and L. G. Ward . 1994. Spatial and temporal changes in marsh vertical
accretion rates at Monie Bay: Implications for sea-level rise. J. Coast. Res. 10:1010–1020.
Kearney, M. S. , and L. G. Ward . 1986. Accretion rates in brackish marshes of a Chesapeake Bay estuarine
tributary. Geo-Marine Lett. 6:41–49. https://doi.org/10.1007/BF02311695.
Keeney, D. R. 1986. Critique of the acetylene blockage technique for field measurement of denitrification. In R.
D. Hauck and R. W. Weaver (eds.) Field measurement of dinitrogen fixation and denitrification. Soil Science
Society of America, Madison, WI. pp. 103–115.
Keller, A. E. and S. G. Zam . 1991. The acute toxicity of selected metals to the freshwater mussel. Anodonta
imbecilis. Environ. Toxicol. Chem. 10:539–546.
Kelley, K. R. and J. F. Stevenson . 1995. Forms and nature of organic N in soil. Fert. Res. 42:1–11.
Kellog, L. E. and S. Bridgham . 2003. Phosphorus retention and movement across an
ombrotrophic—minerotrophic peatland gradient. Biogeochemistry. 63:299–315.
Kemp, W. M. 1989. Estuarine chemistry. In J. W. Day, Jr. , C. A. S. Hall , W. M. Kemp , and A. Yanez-Arancibia
(eds.) Estuarine Ecology. Wiley, New York. pp. 79–143.
Kemp, W. M. , W. R. Boynton , J. Cunningham , J. C. Stevenson , T. Jones , and J. C. Means . 1985. Effects of
atrazine and linuron on photosynthesis and growth of the macrophytes, Potamogeton perfoliatus L. and
Myriophyllum spicatum L. in an estuarine environment.
Khalid, R. A. , R. P. Gambrell , and W. H. Patrick, Jr . 1978. Chemical transformations of cadmium and zinc in
Mississippi River sediments as influenced by pH and redox potential. In D. C. Adriano and I. L. Brisbin, Jr .
(eds.) Environmental Chemistry and Cycling Processes. Department of Energy, Symp. Ser. 45:417–433. Tech.
Info. Center, U.S. Department of Energy. Proc. 2nd Mineral Cycling Symp., May 1, 1976.
Khalid, R. A. , R. P. Gambrell , and W. H. Patrick, Jr . 1981. Chemical availability of cadmium in Mississippi
River sediment. J. Environ. Qual. 10:523–529.
Khalid, R. A. , W. H. Patrick, Jr. , and R. D. DeLaune . 1977. Phosphorus sorption characteristics of flooded
soils. Soil Sci. Soc. Am. J. 41:305–310.
Killham, K. and C. Yeomans . 2001. Rhizosphere carbon fl ow measurement and implications: from isotopes to
reporter genes. Plant Soil. 232(1–2):91–96.
Killingbeck, K. Y. 1996. Nutrients in senesced leaves: Keys to the search for potential resorption and resorption
proficience. Ecology. 77:1716–1727.
Kim, J. G. , J. B. Dixon , C. C. Chusuei , and Y. Deng . 2002. Oxidation of chromium (III) to (VI) by manganese
oxide. Soil Sci. Soc. Am. J. 66:306–315.
Kimura, M. , J. Murase , and Y. Lu . 2004. Carbon cycling in rice field ecosystems in the context of input,
decomposition and translocation of organic materials and the fates of their end products (CO2 and CH4). Soil
Biol. Biochem. 36:1399–1416.
King, G. M. 1986. Characterization of β-glucosidase activity in intertidal marine sediments. Appl. Environ.
Microbiol. 51:373–380.
King, G. M. , P. Roslev , and H. Skovgaard . 1990. Distribution and rate of methane oxidation in sediments of
the Florida Everglades. Appl. Environ. Microbiol. 56:2902–2911.
King, J. K. , J. E. Kotska , M. E. Frischer , F. M. Saunders , and R. A. Jahnke . 2001. A quantitative relationship
that demonstrates mercury methylation rates in marine sediments is based on the community composition and
activity of sulfate reducing bacteria. Environ. Sci. Technol. 35(12):2491–2496.
Kirschbaum, M. U. F. 1995. The temperature dependence of soil organic matter decomposition, and the effect
of global warming on soil organic C storage. Soil Biol. Biochem. 27:753–760.
Kirchner, G. , and H. Ehlers . 1998. Sediment geochronology in changing coastal environments: potentials and
limitations of the Cs-137 and Pb-210 methods. J. Coastal Res. 14:483–492.
Kirwan, M. L. and J. P. Megonigal . 2013. Tidal wetland stability in the face of human impacts and sea-level
rise. Nature. 504:53–60. doi:10.1038/nature12856.
Kleiner, J. 1988. Coprecipitation of phosphate with calcite in lake water: A laboratory experiment modeling
phosphorus removal with calcite in Lake Constance. Water Res. 22:1259–1265.
Klimant, I. , V. Meyer , and M. Kühl . 1995. Fiber-optic oxygen microsensors, a new tool in aquatic biology.
Limnol. Oceanogr. 40:1159–1165. doi:10.4319/lo.1995.40.6.1159.
Kludze, H. K. and R. D. DeLaune . 1994. Methane emission and growth of Spartina patens in response to soil
redox intensity. Sci. Soc. Am. J. 58:1838–1845.
Kludze, H. K. and R. D. DeLaune . 1995a. Gaseous exchange and wetland response to soil redox intensity and
capacity. Soil Sci. Soc. Am. J. 59:939–949.
Kludze, H. K. and R. D. DeLaune . 1995b. Straw application effects on methane and oxygen exchange and
growth in rice. Sci. Soc. Am. J. 59:824–830.
Kludze, H. K. , R. D. DeLaune , and W. H. Patrick, Jr . 1993. Aerenchyma formation and methane and oxygen
exchange in rice. Soil Sci. Soc. Am. J. 57:386–391.
Kludze, H. K. , R. D. DeLaune , and W. H. Patrick . 1994b. A colorimetric method for assaying dissolved oxygen
loss from container-grown rice roots. Agron. J. 86:483–487.
Kludze, H. K. , S. R. Pezeshki , and R. D. Delaune . 1994a. Evaluation of root oxygenation and growth in bald
cypress in response to short-term soil hypoxia. Can. J. Forest. Res. 24:804–809.
Klüpfel, L. , A. Piepenbrock , A. Kappler , and M. Sander . 2014. Humic substances as fully regenerable
electron acceptors in recurrently anoxic environments. Nat. Geosci. 7:195–200.
Knittel, K. and A. Boetius . 2009. Anaerobic oxidation of methane: Progress with an unknown process. Annu.
Rev. Microbiol. 63:311–334.
Knoblauch, C. , U. Zimmermann , M. Blumenberg , W. Michaelis , and E. Pfeiffer . 2008. Methane turnover and
temperature response of methane-oxidizing bacteria in permafrost affected soils of northeast Siberia. Soil Biol
Biochem. 40:3004–3013. https://doi.org/10.1016/j.soilbio.2008.08.020.
Koch, H. , M. A. H. J. van Kessel , and S. Lücke . 2019. Complete nitrification: Insights into the ecophysiology
of comammox Nitrospira. Appl. Microbiol. Biotechnol. 103:177–189. doi.org/10.1007/s00253-018-9486-3.
Koch, M. S. , J. Kruse , B. Eichler-Löbermann , D. Zimmer , S. Willbold , P. Leinweberd , and N. Siebers . 2018.
Phosphorus stocks and speciation in soil profiles of a long-term fertilizer experiment: Evidence from sequential
fractionation, P K-edge XANES, and 31P NMR spectroscopy. Geoderma. 316:115–126.
Koch, M. S. , I. A. Mendelssohn , and K. L. McKee . 1990. Mechanism for the hydrogen sulfide-induced growth
limitation in wetland macrophytes. Limnol. Oceanogr. 35:399–408.
Koch, M. S. and K. R. Reddy . 1992. Distribution of soil and plant nutrients along a trophic gradient in the
Florida Everglades. Soil Sci. Soc. Am. J. 56:1492–1499.
Kolb, C. R. , and J. R. Van Lopik . 1958. Geology of the Mississippi River deltaic plain, southeastern Louisiana.
US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS. Technical Report 2.
Kolpin, D. W. , E. T. Furlong , M. T. Meyer , E. M. Thurman , S. D. Zaugg , L. B. Barber , and H. T. Buxton .
2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams 1999–2000: A
national reconnaissance. Environ. Sci. Technol. 36:1202–1211.
Koncalova, H. , J. Pokorny , and J. Kvet . 1988. Root ventilation in Carex gracilis Curt: Diffusion or mass flow?
Aquat. Bot. 30:149–155.
Kongchum, M. , W. H. Hudnall , and R. D. Delaune . 2011. Relationship between sediment clay minerals and
total mercury. J. Environ. Sci. Health A. 46(5):534–539. doi: 10.1080/10934529.2011.551745.
Konings, H. and H. Lambers . 1991. Respiratory metabolism oxygen transport and the induction of aerenchyma
in roots. In M. B. Jackson , D. D. Davies , and H. Lambers (eds.) Plant Life under Oxygen Deprivation. SPB
Academic Publishing, The Hague, The Netherlands. pp. 247–265.
Koretsky, C. N. , C. M. Moore , K. L. Low , C. Meil , T. J. Dichristina , and P. Van Cappellen . 2003. Seasonal
oscillation of microbial iron and sulfate reduction in saltmarsh sediments (Sapelo Island, GA, USA).
Biogeochemistry. 64:179–203.
Kostka, J. E. , A. N. Roychoudhury , and P. Van Cappellen . 2002. Rates and controls of anaerobic microbial
respiration across spatial and temporal gradients in salt marsh sediments. Biogeochemistry. 60:49–76.
Krabbenhoft, D. P. and E. M. Sunderland . 2013. Global change and mercury. Science. 341:1457–1458.
Krairapanond, N. , R. D. DeLaune , and W. H. Patrick, Jr . 1992. Distribution of organic and reduced sulfur
forms in marsh soils of coastal Louisiana. Org. Geochem. 18(4):489–500.
Kramer, J. , Ö. Ozkaya , and R. Kümmerli . 2020. Bacterial siderophores in community and host interactions.
Nat. Rev. Microbiol. 18:152–160.
Kratz, T. K. and C. B. Dewitt . 1986. Internal factors controlling peatland-lake ecosystem development. Ecology.
67:100–107.
Krause, S. J. E. and T. Treude . 2021. Deciphering cryptic methane cycling: Coupling of methylotrophic
methanogenesis and anaerobic oxidation of methane in hypersaline coastal wetland sediment. Geochimica et
Cosmochimica Acta. 302:160–174.
Krauskopf, K. B. 1979. Introduction to Geochemistry. 2nd Edition. McGraw-Hill, New York. 617 pp.
Kristensen, E. 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with
emphasis on the role of burrowing animals. Hydrobiologia. 426:1–24.
Krumbein, W. C. and R. M. Garrels . 1952. Origin and classification of chemical sediments in terms of pH and
redox potentials. J. Geol. 60:1–33.
Kuenen, J. G. and L. A. Robertson . 1994. Combined nitrification—denitrification processes. FEMS Microbiol.
Rev. 15:109–117.
Kühl, M. 2005. Optical microsensors for analysis of microbial communities. Methods Enzymol. 397:166–199.
doi:10.1016/S0076-6879(05)97010-9.
Kuhl, M. and B. B. Jørgensen . 1992. Spectral light measurements in microbenthic phototrophic communities
with a fiberoptic microprobe coupled to a sensitive diode array detector. Limnol. Oceanogr. 37:1813–1823.
Kujawinski, E. B. , M. C. Kido Soule , D. L. Valentine , A. K. Boysen , K. Longnecker , and M. C. Redmond .
2011. Fate of dispersants associated with the deepwater horizon oil spill. Environ. Sci. Technol.
45(4):1298–1306.
Kuypers, M. M. M. , H. K. Marchant , and B. Kartal . 2018. The microbial nitrogen-cycling network. Nat. Rev.
Microbiol. 16:263–276. doi:10.1038/nrmicro.2018.9.
Kuypers, M. M. M. , A. O. Sliekers , G. Lavik , M. Schmid , B. B. Jørgensen , J. G. Kuenen , J. S. Sinninghe
Damste , M. Strous , and M. S. M. Jetten . 2002. Anaerobic ammonium oxidation by anammox bacteria in the
Black Sea. Nature. 422:608–611.
Lafleur, P. M. , T. R. Moore , N. T. Roulet , and S. Frolking . 2005. Ecosystem respiration in a cool temperate
bog depends on peat temperature but not water table. Ecosystems. 8:619–629.
Lal, R. 2008. Carbon sequestration. Phil. Trans. R. Soc. B. 363:815–830. http://doi.org/10.1098/rstb.2007.2185.
Lamars, L. P. , J. M. H. van Diggelen , H. J. M. Op Den Camp , E. J. W. Visser , E. C. H. E. T. Lucassen , M. A.
Vile , M. S. M. Jetten , A. J. P. Smolders , and Jan G. M. Roelofs . 2012. Microbial transformations of nitrogen,
sulfur, and iron dictate vegetation composition in wetlands: a review. Front Microbiol. 3:1–12. Article 156.
doi:10.3389/fmicb.2012.00156.
Lane, C. R. and B. C. Autrey . 2017. Sediment accretion and accumulation of P, N and organic C in
depressional wetlands of three ecoregions of the United States. Mar. Freshwater Res. 68:2253–2265.
Lane, C. R. , S. G. Leibowitz , B. C. Autrey , S. D. LeDuc , and L. C. Alexander . 2018. Hydrological, physical,
and chemical functions and connectivity of nonfloodplain wetlands to downstream waters: A review. JAWRA.
54:346–371. doi:10.1111/1752-1688.12633.
Langner, P. , C. Mikutta , and R. Kretzschmar . 2012. Arsenic sequestration by organic sulphur in peat. Nat.
Geosci. 5:66–72.
Larnard, S. G. 2010. A prospectus for periphyton: Recent and future ecological research. J. N. Am. Benthol.
Soc. 29:182–206. doi:10.1899/08–063.1
Lavery, P. S. , C. E. Oldham , and M. Ghisalberti . 2001. The use of Fick’s first law for predicting porewater
nutrient fluxes under diffusive conditions. Hydrolog. Process. 15(13):2435–2451.
Lee, D. R. 1977. A device for measuring seepage flux in lakes and estuaries. Limnol. Oceanogr. 22:140–147.
Lemon, E. R. and A. R. Erickson . 1955. Principle of platinum microelectrode as a method of characterizing soil
aeration. Soil Sci. 79:383–392.
LeMonte, J. J. , J. W. Stuckey , J. Z. Sanchez , R. Tappero , J. Rinklebe , and D. L. Sparks . 2017. Sea level
rise induced arsenic release from historically contaminated coastal soils. Environ. Sci. Technol. 51:5913–5922.
doi:10.1021/acs.est.6b06152.
Lerman, A. 1979. Geochemical Processes; Water and Sediment Environments. Wiley, New York. 481 pp.
Letzsch, W. S. 1983. Seven year’s measurement of deposition and erosion, Holocene salt marsh, Sapelo
Island, Georgia. Senckenberg. Marit. 15:157–165.
Leu, A. O. , C. Cai , S. J. McIlroy , G. Southam , V. J. Orphan , Z. Yuan , S. Hu , and G. W. Tyson . 2020.
Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae.
ISME J. 14:1030–1041. https://doi.org/10.1038/s41396-020-0590-x.
Lewis, W. M. 1995. Wetlands—Characteristics and Boundaries. National Research Council, National Academy
Press, Washington, DC.
Li, M. R. and M. B. Jones . 1995. CO2 and O2 transport in aerenchyma of Cyperus papyrus L. Aquat. Bot.
52:93–106.
Li, Y. and S. Gregory . 1974. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim.
Acta. 38:703–714.
Li, Y. , A. J. Mehta , K. Hatfield , and M. S. Dortch . 1997. Modulation of constituent release across the
mud—water interface by water waves. Water Resour. Res. 33:1409–1418.
Liao, X. and P. W. Inglett . 2012. Biological nitrogen fixation in periphyton of native and restored Everglades
marl prairies. Wetlands. 32:137–148. doi:10.1007/s13157-011-0258-4.
Liao, X. and P. W. Inglett . 2014. Dynamics of periphyton nitrogen fixation in short hydroperiod wetlands
revealed by high-resolution seasonal sampling. Hydrobiologia. 722:263–277. doi:10.1007/s10750-013-1709-0.
Liao, X. , P. W. Inglett , and K. S. Inglett . 2013. Fire effects on nitrogen cycling in native and restored
calcareous wetlands. Fire Ecol. 9(1):6–20.
Liao, X. , P. W. Inglett , and K. S. Inglett . 2014. Vegetation and microbial indicators of nutrient status: testing
their consistency and sufficiency in restored calcareous wetlands. Ecol. Indic. 46:358–366.
Liao, X. , P. W. Inglett , and K. S. Inglett . 2016. Seasonal patterns of nitrogen cycling in subtropical short-
hydroperiod wetlands: Effects of precipitation and restoration. Sci. Total Environ. 556:136–145.
Limpens, J. , F. Berendse , C. Blodau , J. G. Canadell , C. Freeman , J. Holden , N. Roulet , H. Rydin , and G.
Schaepman-Strub . 2008. Peatlands and the carbon cycle: From local processes to global implications—a
synthesis. Biogeosciences. 5:1475–1491. https://doi.org/10.5194/bg-5-1475-2008.
Lin, Q. and I. A. Mendelssohn . 2012. Impacts and recovery of the deepwater horizon oil spill on vegetation
structure and function of coastal salt marshes in the Northern Gulf of Mexico. Environ. Sci. Technol.
46:3737–3743.
Lindau, C. W. and R. D. DeLaune . 1991. Dinitrogen and nitrous oxide emission and entrapment in Spartina
alterniflora salt marsh soils following addition of N-15 labeled ammonium nitrate. Estuarine, Coastal Shelf Sci.
32:161–172.
Lindsay, W. L. 1979. Chemical Equilibria in Soils. Wiley, New York. 449 pp.
Linkhorst, A. , T. Dittmar , and H. Waska . 2017. Molecular fractionation of dissolved organic matter in a shallow
subterranean estuary: The role of the iron curtain. Environ. Sci. Technol. 51: 1312–1320. doi:
10.1021/acs.est.6b03608.
Linthurst, R. A. 1979. The effect of aeration on the growth of Spartina alterniflora. Am. J. Bot. 66:685–691.
Lionard, M. , B. Péquin , C. Lovejoy , and W. F. Vincent . 2012. Benthic cyanobacterialmats in the high Arctic:
Multi-layer structure and fluorescence responses to osmotic stress. Front. Microbio. 3:140.
doi:10.3389/fmicb.2012.00140.
Liu, F. , C. Colombo , P. Adams , J. Z. He , and A. Violante . 2002. Trace elements in manganese—iron
nodules from a Chinese Alfisol. Soil Sci. Soc. Am. J. 66:661–670.
Liu, Z. G. 1993. Oxidation—reduction potential and its measurement. In T. R. Yu and G. L. Ji (eds.)
Electrochemical Methods in Soil and Water Research. Pergamon Press, Tarrytown, NY. pp. 297–313.
Lodge, D. J. , W. H. McDowell , and C. P. McSwiney . 1994. The importance of nutrient pulses in tropical
forests. Tree. 9:384–387.
Loeb, L. B. 1934. Kinetic Theory of Gases. McGraw-Hill, New York.
Lookman, R. , D. Freese , R. Merck , K. Vlassak , and W. H. van Riemsdijk . 1995. Long-term kinetics of
phosphate release from soil. Environ. Sci. Technol. 29:1569–1575.
Lovley, D. R. 1987. Organic matter mineralization with reduction of ferric iron: A review. Geomicrobiol. J.
5:375–399.
Lovley, D. R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55:259–287.
Lovley, D. R. 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microbiol. Physiol. 49:219–286.
Lovley, D. R. 2006. Bug juice: Harvesting electricity with microorganisms. Nat. Rev. 4:497–508.
Lovley, D. R. , J. D. Coates , E. L. Blunt-Harris , E. J. P. Phillips , and J. C. Woodward . 1996. Humic
substances as electron acceptors for microbial respiration. Nature. 382:445–448.
Lovley, D. R. and D. J. Lonergan . 1990. Anaerobic oxidation of toluene, phenol and p-cresol by the
dissimilatory iron reducing organism GS-15. Appl. Eng. Microbiol. 56:1858–1864.
Lovley, D. R. and E. J. P. Phillips . 1987. Competitive mechanism for inhibition of sulfate reduction and
methane production in the zone of ferric iron reduction in sediments. Appl. Environ. Microbiol. 53:2636–2641.
Lovley, D. R. , E. J. P. Phillips , and D. J. Lonergan . 1991. Enzymatic versus monenzymatic mechanisms for
Fe(III) reduction in aquatic sediments. Environ. Sci. Technol. 25:1062–1067.
Lowe, E. F. , R. Conrow , J. Schell , M. F. Coveney , E. R. Marzolf , S. I. Richter , L. E. Mace , T. S. Gross , and
M. S. Sepúlveda . 2003. Lipid-normalized levels of organochlorine pesticides in piscivorous birds vary among
tissues. Poster, SETAC North America 24th Annual Meeting, 9–13 November 2003, Austin, Texas.
Lu, Y. H. , W. R. Abraham , and R. Conrad . 2007. Spatial variation of active microbiota in the rice rhizosphere
revealed by in situ stable isotope probing of phospholipid fatty acids. Environ. Microbiol. 9:474–481.
Lu, Y. H. , T. Lueders , M. W. Friedrich , and R. Conrad . 2005. Detecting active methanogenic populations on
rice roots using stable isotope probing. Environ. Microbiol. 7:326–336.
Lueder, U. , B. B. Jørgensen , A. Kappler , and C. Schmidt . 2020. Photochemistry of iron in aquatic
environments. Environ. Sci. Processes Impacts. 22(1):12–24.
Lundgren, D. G. and W. Dean . 1979. Biogeochemistry of iron. In P. A. Trundinger and D. J. Swaine (eds.)
Biogeochemical Cycling of Mineral-Forming Elements. Elsevier, Amsterdam. pp. 211–251.
Lusk, M. G. , G. S. Toor , and P. W. Inglett . 2018. Characterization of dissolved organic nitrogen in leachate
from a newly established and fertilized turfgrass. Water Res. 131:52–61.
Luther, G. W. III. 1991. Pyrite synthesis via polysulfide compounds. Geochim. Cosmochim. Acta.
55:2839–2849.
Luther, G. W. III and T. M. Church . 1988. Seasonal cycling of sulfur and iron in pore waters of a Delaware salt
marsh. Mar. Chem. 23:295–309.
Lynch, J. , P. Hensel , and D. Cahoon . 2015. The surface elevation table and marker horizon technique: A
protocol for monitoring wetland elevation dynamics. doi:10.13140/RG.2.1.5171.9761.
Ma, Y. and P. S. Hooda . 2010. Chromium, nickel and cobalt. In P. S. Hooda (ed.) Trace Elements in Soils.
Blackwell Publishing Ltd. pp. 461–479. https://doi.org/10.1002/9781444319477.ch19.
Madigan, M. T. , J. M. Martinko , and J. Parker . 2000. Brock Biology of Microorganisms. 9th Edition. Prentice
Hall, Upper Saddle River, NJ.
Madigan, M. T. , K. S. Bender , D. H. Buckley , W. M. Sattley , and D. A. Stahl . 2019. Brock Biology of
Microorganisms. 15th Edition. Pearson Prentice Hall, Upper Saddle River, NJ. 1064 pp.
Madigan, M. T. and J. Martinko . 2006. Brock Biology of Microorganisms. 11th Edition. Pearson Prentice Hall,
Upper Saddle River, NJ.
Madison, A. S. , B. M. Tebo , A. Mucci , B. Sundby , and G. W. Luther . 2013. Abundant porewater Mn(III) is a
major component of the sedimentary redox system. Science. 341:875–878.
Magid, J. , H. Tiessen , and L. M. Condron . 1996. Dynamics of organic phosphorus in soils under natural and
agricultural ecosystems. In A. Piccolo (ed.) Humic Substances in Terrestrial Ecosystems. Elsevier Science,
Oxford. pp. 429–466.
Maie, N. , K. J. Parish , A. Watanabe , H. Knicker , R. Benner , T. Abe , K. Kaiser , and R. Jaffe . 2006.
Chemical characteristics of dissolved organic nitrogen in an oligotrophic subtropical coastal ecosystem.
Geochim. Cosmochim. Acta. 70:4491–4506.
Malecki, L. M. , J. R. White , and K. R. Reddy . 2004. Nitrogen and phosphorus flux rates from sediment in the
lower St. Johns River estuary. J. Environ. Qual. 33:1545–1555.
Maltby, E. and P. Immirzi . 1993. Carbon dynamics in peatlands and other wetland soils: Regional and global
perspectives. Chemosphere. 27:999–1023.
Manceau, A. , N. Tamura , R. S. Celestre , A. A. Macdowell , N. Geoffroy , G. Sposito , and H. A. Padmore .
2003. Molecular-scale speciation of Zn and Ni in soil ferromanganese nodules from loess soils of the
Mississippi River Basin. Environ. Sci. Technol. 37:75–80.
Mancuso, S. and S. Shabala . 2010. Waterlogging Signalling and Tolerance in Plants. Springer, Heidelberg,
Dordrecht, London, New York. 294 pp. doi:10.1007/978-3-642-10305-6.
Manning, B. A. , and D. L. Suarez . 2000. Modeling arsenic(III) adsorption and heterogeneous oxidation kinetics
in soils. Soil Sci. Soc. Am. 64:128–137. https://doi.org/10.2136/sssaj2000.641128x.
Margida, M. G. , G. Lashermes , and D. L. Moorhead . 2020. Estimating relative cellulolytic and ligninolytic
enzyme activities as functions of lignin and cellulose content in decomposing plant litter. Soil Biol. Biochem.
141:107689. https://doi.org/10.1016/j.soilbio.2019.107689.
Marshall, K. C. 1989. Cyanobacterial-heterotrophic bacterial interaction. In Y. Cohen and E. Rosenberg (eds.)
Microbial Mats: Physiological Ecology of Benthic Microbial Communities. American Society for Microbiology.
pp. 239–245.
Martin, J. B. , K. M. Hartl , D. R. Corbett , P. W. Swarzenski , and J. E. Cable . 2003. A multi-level pore-water
sampler for permeable sediments. J. Sedimen. Res. 73:128–132.
Martin, J. F. and K. R. Reddy . 1997. Interaction and spatial distribution of wetland nitrogen processes. Ecol.
Model. 105:1–21.
Martin, N. M. and B. R. Maricle . 2015. Species-specific enzymatic tolerance of sulfide toxicity in plant roots.
Plant Physiol. Biochem. 88:36–41.
Masscheleyn, P. H. , R. D. DeLaune , and W. H. Patrick, Jr . 1990. Transformations of selenium as affected by
sediment oxidation—reduction potential and pH. Environ. Sci. Technol. 24:91–97.
Masscheleyn, P. H. , R. D. DeLaune , and W. H. Patrick, Jr . 1991. Effect of redox potential and pH on arsenic
speciation and solubility in a contaminated soil. Environ. Sci. Technol. 25(8):1414–1419.
Masscheleyn, P. H. , J. H. Pardue , R. D. DeLaune , and W. H. Patrick, Jr . 1992. Chromium redox chemistry in
a lower Mississippi Valley bottomland hardwood wetland. Environ. Sci. Technol. 26:1217–1226.
Mathews, C. K. and K. E. van Holde . 1990. Biochemistry. The Benjamin/Cummings Publishing Company Inc.,
Redwood, CA. 1097 pp.
Matsumura, F. and H. J. Benezet . 1978. Microbial degradation of insecticides. In I. R. Hill and S. J. L. Wright
(eds.) Pesticide Microbiology. Academic Press, London. pp. 678–667.
McBride, M. B. 1994. Environmental Chemistry of Soils. Oxford University Press, New York. 406 pp.
McCaffrey, R. J. and J. Thomson . 1980. A record of the accumulation of sediment and trace metals in a
Connecticut salt marsh. Adv. Geophys. 22:165–236.
McCall, P. L. and M. J. S. Tevesz . 1982. The effects of benthos on physical properties of freshwater
sediments. In P. L. McCall and M. J. S. Tevesz (eds.) Animal—Sediment Relations. Plenum Press, New York.
pp. 105–176.
McCarthy, J. F. and B. D. Jimenez . 1985. Interactions between polycyclic aromatic hydrocarbons and
dissolved humic material: Binding and dissociation. Environ. Sci. Technol. 19:1072–1076.
McGlathery, K. J. , P. Berg , and R. Marino . 2001. Using porewater profiles to assess nutrient availability in
seagrass-vegetated carbonate sediments. Biogeochemistry. 56:239–263.
McGeehan, S. L. and D. V. Naylor . 1994. Sorption and redox transformation of arsenite and arsenate in two
flooded soils. Soil Sci. Am. J. 58:337–342.
McIntyre, D. S. 1970a. The platinum microelectrode method for soil aeration measurement. Adv. Agron.
22:235–285.
McIntyre, D. S. 1970b. Characterization of soil aeration with a platinum electrode 1. Response in relation to field
moisture conditions and electrode diameter. Aust. J. Soil Res. 4:95–102.
McJannet, C. L. , P. A. Keddy , and F. R. Pick . 1995. Nitrogen and phosphorus tissue concentrations in 41
wetland plants: A comparison across habitats and functional groups. Funct. Ecol. 9:231–238.
McKee, K. L. and I. A. Mendelssohn . 1987. Root metabolism in black mangrove (Avicennia germinani L.):
Response to hypoxia. Environ. Exp. Bot. 27:147–150.
McKenzie, R. M. 1989. Manganese oxides and hydroxides. In J. B. Dixon and S. B. Weed (eds.) Minerals in
Soil Environment. 2nd Edition. SSSA Book Series 1, SSSA, Madison, WI. pp. 439–466.
McKnight, D. M. and Duren, S. M. 2004. Biogeochemical processes controlling midday ferrous iron maxima in
stream waters affected by acid rock drainage. Appl. Geochem. 19:1075–1084.
McLatchey, G. P. and K. R. Reddy . 1998. Regulation of organic matter decomposition and nutrient release in a
wetland soil. J. Environ. Qual. 27:1268–1274.
McLaughlin, J. R. , J. C. Ryden , and J. K. Syers . 1981. Sorption of inorganic phosphate by iron and aluminum
containing components. J. Soil Sci. 32:365–375.
McLeod, K. W. , L. A. Donovan , and N. J. Stumpff . 1987. Responses of woody seedling to elevated floodwater
temperatures. In D. D. Hook , McKee, H. K. Smith , J. Gregory , V. G. Burrell , M. R. Devol , R. E. Sojka , S.
Gilbert , R. Banks , L. H. Stolzy , C. Brroks , T. D. Matthews , and T. H. Shear (eds.) The Ecology and
Management of Wetlands. Timber Press, Portland, OR. pp. 441–451.
McMillin, D. J. and J. C. Means . 1996. Spatial and temporal trends of pesticide residues in water and
particulates in the Mississippi River plume and the northwestern Gulf of Mexico. J. Chromatogr. A.
754:169–185.
McNutt, M. K. , R. Camilli , T. J. Crone , G. D. Guthri , P. A. Hsieh , T. B. Ryerson , O. Savas , and F. Shaffer .
2012b. Review of flow rate estimates of the Deepwater Horizon oil spill. Proc. Natl Acad. Sci. USA.
109:20260–20267.
McNutt, M. K. , S. Chu , J. Lubchenco , T. Hunter , G. Dreyfus , S. A. Murawski , and D. M. Kennedy . 2012a.
Applications of science and engineering to quantify and control the Deepwater Horizon oil spill. Proc. Natl Acad.
Sci. USA. 109:20222–20228.
Meads, R. H. and R. S. Parker . 1985. Sediments in Rivers of the United States. National Water Summary,
1984. U.S. Geological Survey Water Supply Paper, 2275.
Medvedeff, C. A. , K. S. Inglett , and P. W. Inglett . 2015. Can fire residues (ash and char) affect microbial
decomposition in wetland soils? Wetlands. 35(6):1165–1173.
Medvedeff, C. A. , K. S. Inglett , L. N. Kobziar , and P. W. Inglett . 2013. Impacts of fire on microbial carbon
cycling in subtropical wetlands. Fire Ecol. 9(1):21–37.
Meek, B. D. and L. B. Grass . 1975. Redox potential in irrigated desert soils as an indicator of aeration status.
Soil Sci. Soc. Am. Proc. 39:870–875.
Megonigal, J. P. , M. E. Hines , and P. T. Visscher . 2004. Anaerobic metabolism: Linkages to trace gases and
aerobic processes. In W. H. Schlesinger (ed.) Biogeochemistry. Elsevier-Pergamon, Oxford, UK. pp. 317–424.
Megonigal, J. P. , W. H. Patrick, Jr. , and S. P. Faulker . 1993. Wetland identification in seasonally flooded soils.
Soil morphology and redox dynamics. Soil Sci. Soc. Am. J. 57:140–149.
Melillo, J. M. , J. D. Aber , A. E. Linkins , A. Ricca , B. Fry , and K. J. Nadelhoffer . 1989. Carbon and nitrogen
dynamics along the decay continuum—plant litter to soil. Plant Soil. 115:189–198.
Melillo, J. M. , J. D. Aber , and J. F. Muratore . 1982. Nitrogen and lignin control of hardwood leaf litter
decomposition dynamics. Ecology. 63:621–626.
Mendelssohn, I. A. , G. L. Andersen , D. M. Baltz , R. H. Caffey , K. R. Carman , J. W. Fleeger , S. B. Joye , Q.
Lin , E. Maltby , E. B. Overton , and L. P. Rozas . 2012. Oil Impacts on coastal wetlands: Implications for the
Mississippi River Delta ecosystem after the Deepwater Horizon Oil Spill. BioScience. 62:562–574.
Mendelssohn, I. A. , B. A. Keiss , and J. S. Wakeley . 1995. Factors controlling the formation of oxidized root
channels: A review. Wetlands. 15:37–46.
Mendelssohn, I. A. , K. L. McKee , and W. H. Patrick, Jr . 1981. Oxygen deficiency in Spartina alterniflora roots:
Metabolic adaptation to anoxia . Science. 214:439–441.
Mermillod-Blondin, F. and R. Rosenberg . 2006. Ecosystem engineering: The impact of bioturbation on
biogeochemical processes in marine and freshwater benthic habitats. Aquat. Sci. 68:434–442.
doi:10.1007/s00027-006-0858-x.
Merget, A. 1874. Sur la reproduction artificielle des phenomenes de thermodiffusion gazeuse des feuilles, par
les corps poreaux et pulverulents humides. C. R. Acad. Sci. Paris 78:884–886.
Meuleman, A. F. M. , J. P. Beekman , and J. T. A. Verhoevan . 2002. Nutrient retention and nutrient-use
efficiency in Phragmites australis stands after wastewater application. Wetlands. 22:712–721.
Mevi-Schutz, J. and W. Grosse . 1988a. A two-way gas transport system in Nelumbo necifera . Plant Cell
Environ. 11:27–34.
Mevi-Schutz, J. and W. Grosse . 1988b. The importance of water vapor for circulating air-flow through
Nelumbo nicifera . J. Exp. Bot. 39:1231–1236.
Michel, J. and N. Rutherford . 2014. Impacts, recovery rates, and treatment options for spilled oil in marshes.
Mar. Pollut. Bull. 82:19–25.
Milich, L. 1999. The role of methane in global warming: Where might mitigation strategies be focused? Global
Environ. Change. 9:179–201.
Miller, S. L. and L. E. Orgel . 1974. The Origins of Life on Earth. Prentice-Hall, Englewood Cliffs, NJ. 228 pp.
Milucka J. et al. 2012. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature.
491(7425):541–546.
Mitsch, W. J. and J. G. Gosselink . 2015. Wetlands. 5th Edition. Wiley, Hoboken, NJ.
Miyamoto, J. , K. Kitagawa , and Y. Sato . 1966. Metabolism of organophosphorus insecticides by Bacillus
subtilis with special emphasis on sumithion. Jpn. J. Exp. Med. 36:211–225.
Moeller, R. E. , J. M. Burkholder , and R. G. Wetzel . 1988. Significance of sedimentary phosphorus to a
submersed freshwater macrophyte (Najas flexilis) and its algal epiphytes. Aquat. Bot. 32:261–281.
Melillo, J. M. , C. B. Field , and B. Moldan . 2003. Interactions of the major biogeochemical cycles: global
change and human impacts. Vol. 61. Island Press. 20.
Molongoski, J. J. and M. J. Klug . 1976. Characterization of anaerobic heterotrophic bacteria isolated from
freshwater lake sediments. Appl. Environ. Microbiol. 31:83–90.
Moodie, A. D. and W. J. Ingledew . 1990. Microbial anaerobic respiration. Adv. Microb. Ecol. 31:225–269.
Moor, H. , H. Rydin , K. Hylander , M. B. Nilsson , R. Lindborg , and J. Norberg . 2017. Towards a trait-based
ecology of wetland vegetation. J. Ecol. 105:1623–1635.
Moore, P. A. and K. R. Reddy . 1994. Role of Eh and pH on phosphorus geochemistry in sediments of Lake
Okeechobee, Florida. J. Environ. Qual. 23:955–964.
Moore, P. A. , K. R. Reddy , and M. M. Fisher . 1998. Phosphorus flux between sediment and overlying water in
Lake Okeechbee, Florida: Spatial and temporal variations. J. Environ. Qual. 27:1428–1439.
Moore, T. R. , C. Blodau , J. Turunen , N. Roulet , and P. J. H. Richard . 2004. Patterns of nitrogen and sulfur
accumulation and retention in ombrotrophic bogs, eastern Canada. Glob. Change Biol. 11:356–367.
doi:10.1111/j.1365-2486.2004.00882.x.
Moore, T. R. and M. Dalva . 1993. The influence of temperature and water table position on carbon dioxide and
methane emissions from laboratory columns of peatland soils. J. Soil Sci. 44:651–664.
Moore, W. S. 1996. Large ground water inputs to coastal waters revealed by Ra-226 enrichments. Nature.
380(6575):612–614.
Moore, W. S. 2003. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes.
Biogeochemistry. 66:75–93.
Moorhead, D. L. , G. Lashermes , R. L. Sinsabaugh , and M. N. Weintraub . 2013. Calculating co-metabolic
costs of lignin decay and their impacts on carbon use efficiency. Soil Biol Biochem. 66:17–19.
Moran, M. A. , R. Benner , and R. E. Hudson . 1989. Kinetics of microbial degradation of vascular plant material
in two wetland ecosystems. Oecologia. 79:158–167.
Morel, F. M. F. and N. M. Price . 2003. The biogeochemical cycles of trace metals in the oceans. Science.
300:944–947.
Morris, J. T. 2000. Effects of sea-level anomalies on estuarine processes. In J. E. Hobbie (ed.) Estuarine
Science: A Synthetic Approach to Research and Practice. Island Press. pp. 107–127.
Morris, J. T. , G. P. Shaffer , and J. A. Nyman . 2013. Brinson review: Perspectives on the influence of nutrients
on the sustainability of coastal wetlands. Wetlands. 33:975–988. doi:10.1007/s13157-013-0480-3.
Mortimer, C. H. 1941. The exchange of dissolved substances between mud and water in lakes. J. Ecol.
29:280–329.
Mortimer, C. H. 1942. The exchange of dissolved substances between mud and water in lakes. J. Ecol.
30:147–201.
Morton, S. C. and M. Edwards . 2005. Reduced phosphorurs compounds in the environment. Crit. Rev.
Environ. Sci. Technol. 35(4):333–364.
Mulder, A. , A. A. van de Graaf , L. A. Robertson , and J. G. Kuenen . 1995. Anaerobic ammonium oxidation
discovered in a denitrifying fluidized bed reactor. FEMS Microb. Ecol. 16:177–184.
Muyzer, G. and A. J. M. Stams . 2008. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev.
Microbiol. 6:441–454.
Nagase, H. , Y. Sato , and T. Ishikawa . 1984. Mercury methylation by compounds in humic material. Sci. Total
Environ. 32:147.
Nahlik, A. M. and M. S. Fennessy . 2018. Carbon storage in US wetlands. Nat. Commun. 7:13835.
Nair, V. D. and K. R. Reddy . 2013. Phosphorus sorption and desorption in wetland soils. Chapter 34, page
667–683. In R. D. DeLaune , K. R. Reddy , C. J. Richardson , and P. J. Megonigal (eds.) Methods in
Biogeochemistry of Wetlands. Soil Science Society of America, Madison, WI. 1024 pp.
Nakamaru, Y. M. and J. Altansuvd . 2014. Speciation and bioavailability of selenium and antimony in non-
flooded and wetland soils: A review. Chemosphere. 111:366–371.
http://dx.doi.org/10.1016/j.chemosphere.2014.04.024.
Nancharaiah, Y. V. and P. N. L. Lensa . 2015. Ecology and biotechnology of selenium-respiring bacteria.
Microbiol. Mol. Biol. Rev. 79:61–80.
Näsholm, T. , K. Kielland , and U. Ganeteg . 2009. Uptake of organic nitrogen by plants. New Phytol.
182:31–48.
Naylor, D. , N. Sadler , A. Bhattacharjee , E. B. Graham , C. R. Anderton , R. McClure , M. Lipton , K. S.
Hofmockel , and J. K. Jansson . 2020. Soil microbiomes under climate change and implications for carbon
cycling. Annu. Rev. Environ. Resour. 45:29–59.
Nealson, K. H. 1983. The microbial iron cycle. In W. E. Krumbein (ed.) Microbial Geochemistry. Blackwell
Scientifi c Publications, Oxford, pp. 159–190.
Nealson, K. H. and C. R. Myers . 1992. Microbial reduction of manganese and iron: New approaches to carbon
cycling. Appl. Environ. Microbiol. 58:439–443.
Needham, H. R. , C. A. Conrad , A. M. Lohrer , and S. F. Thrush . 2011. Context-specific bioturbation mediates
changes to ecosystem functioning. Ecosystems. 14:1096–1109. doi:10.1007/s10021-011-9468-0.
Neely, C. L. , M. H. Beare , W. I. Hargrove , and D. C. Coleman . 1991. Relationships between fungal and
bacterial substrate-induced respiration, biomass and plant residue decomposition. Soil Biol. Biochem.
23(10):947–954.
Nelson, D. W. 1982. Gaseous losses of nitrogen other than through denitrification. In F. J. Stevenson (ed.)
Nitrogen in Agricultural Soils. American Society of Agronomy, Madison, WI.
Neori, A. and M. Agami . 2017. The functioning of rhizosphere biota in Wetlands—A review. 2017. Wetlands.
37:615–633. doi:10.1007/s13157-016-0757-4.
Neubauer, S. C. 2008. Contributions of mineral and organic components to tidal freshwater marsh accretion.
Estuar. Coast. Shelf Sci. 78:78–88.
Neubauer, S. C. , I. C. Anderson , J. A. Constantine , and S. A. Kuehl . 2002. Sediment deposition and
accretion in a Mid-Atlantic (U.S.A.) tidal freshwatermarsh. Estuar. Coast. Shelf Sci. 54:713–727.
Neubauer, S. C. , M. F. Piehler , A. R. Smyth , and R. B. Franklin . 2019. Saltwater intrusion modifies microbial
community structure and decreases denitrification in tidal freshwater marshes. Ecosystems. 22:912–928.
https://doi.org/10.1007/s10021-018-0312-7.
Newman, S. , T. Z. Osborne , S. E. Hagerthey , C. Saunders , K. Rutchey , T. Schall , and K. R. Reddy . 2017.
Drivers of landscape evolution: Multiple regime shifts and their influence on carbon sequestration in a sub-
tropical peatland. Ecol. Monogr. 87(4):578–599.
Niazi, N. K. and E. D. Burton . 2016. Arsenic sorption to nanoparticulate mackinawite (FeS): An examination of
phosphate competition. Environ. Pollut. 218:111–117.
Nieder, R. , D. K. Benbi , and H. W. Scherer . 2011. Fixation and defixation of ammonium in soils: A review.
Biol. Fertil. Soils. 47:1–14. doi:10.1007/s00374-010-0506-4.
Nielsen, L. P. and N. Risgaard-Petersen . 2015. Rethinking sediment biogeochemistry after the discovery of
electric currents. Annu. Rev. Mar. Sci. 7:425–442.
Noe, G. B. , D. L. Childers , A. L. Edwards , E. E. Gaiser , K. Jayachandran , D. Lee , J. Meeder , J. Richards ,
L. J. Scinto , J. C. Trexler , and R. D. Jones . 2002. Short-term changes in phosphorus storage in an
oligotrophic Everglades wetland ecosystem receiving experimental nutrient enrichment. Biogeochemistry.
59:239–267.
Noe, G. B. , D. L. Childers , and R. D. Jones . 2001. Phosphorus biogeochemistry and the impact of
phosphorus enrichment: Why is the Everglades so unique? Ecosystems. 4:603–624.
Noe, G. B. and C. R. Hupp . 2005. Carbon, nitrogen, and phosphorus accumulation in floodplains of Atlantic
coastal plain rivers, USA. Ecol. Appl. 15:1178–1190.
Normand , 2017. Global peatland soil organic carbon chemical composition and greenhouse gas production.
Ph.D. Dissertation, University of Florida.
Normand, A. E. , B. L. Turner , L. J. Lamit , A. N. Smith , B. Baiser , M. W. Clark , C. Hazlett , E. S. Kane , E.
Lilleskov , J. R. Long , S. P. Grover , and K. R. Reddy . 2021. Organic matter chemistry drives carbon dioxide
production of peatlands. Geophys. Res. Lett. 48(18). https://doi.org/10.1029/2021GL093392.
NRC . 2002. National Research Council. National Academy Press, Washington, DC.
Nyman, J. A. , R. D. DeLaune , and W. H. Patrick, Jr . 1990. Wetland soil formation in the rapidly subsiding
Mississippi River deltaic plain: Mineral and organic matter relationships. Estuar. Coastal Shelf Sci. 31:57–69.
Obernosterer, I. , P. Ruardij , and G. J. Herndl . 2001a. Spatial and diurnal dynamics of dissolved organic
matter (DOM) fluorescence and H2O2 and the photochemical oxygen demand of surface water DOM across
the subtropical Atlantic Ocean. Limnol. Oceanogr. 46(3):632–643.
Obernosterer, I. , R. Sempere , and G. J. Herndl . 2001b. Ultraviolet radiation induces reversal of the
bioavailability of DOM to marine bacterioplankton. Aquat. Microb. Ecol. 24(1):61–68.
Odum, E. P. 1969. The strategy of ecosystem development. Science. 164:262–270.
Odum, E. P. 1985. Trends expected in stressed ecosystem. Bioscience. 35:419–422.
Oenema, O. and R. D. DeLaune . 1988. Accretion rates in salt marshes in the Eastern Scheldt, south-west
Netherlands. Estuar. Coast. Shelf Sci. 26:379–394.
Oremland, R. S. 1988. Biogeochemistry of methanogenic bacteria. In A. J. Zehnder (ed.) Biology of
Microorganisms. Wiley, New York. pp. 641–705.
Oremland, R. S. and J. F. Stolz . 2003. The ecology of arsenic. Science. 300:939–944.
Orson, R. A. and B. L. Howes . 1992. Salt marsh development studies at Waquoit Bay, Massachusetts:
Influence of geomorphology on long-term plant community structure. Estuar. Coast. Shelf Sci. 35:453–471.
Orson, R. A. , R. S. Warren , and W. A. Niering . 1998. Interpreting sea level rise and rates of vertical marsh
accretion in a southern New England tidal salt marsh. Estuar. Coast. Shelf Sci. 47:419–429.
Osborne, R. I. , M. J. Bernot , and S. E. G. Findlay . 2015. Changes in nitrogen cycling processes along a
salinity gradient in tidal wetlands of the Hudson River, New York, USA. Wetlands. 35:323–334.
doi.org/10.1007/s13157-014-0620-4.
Osborne, T. Z. 2005. Characterization, mobility, and fate of dissolved organic carbon in a wetland ecosystem.
Ph.D. Dissertation. University of Florida, Gainesville, FL.
Osborne, T. Z. , P. W. Inglett , and K. R. Reddy . 2007. The use of senescent plant biomass to investigate
relationships between potential particulate and dissolved organic matter in a wetland ecosystem. Aquat. Bot.
86:53–61.
Osborne, T. Z. , Kobziar, L. N. and Inglett, P. W. 2013. Fire and water: New perspectives on fire’s role in
shaping wetland ecosystems. Fire Ecol. 9:1–5. doi:10.4996/fireecology.0901001.
Osborne, T. Z. , R. Bhomia , O. Villapando , and K. R. Reddy . 2019a. Section 3: Physicochemical properties of
soils: Stormwater treatment area-2 flow-way 1 and flow-way 3. In UF-WBL. 2019. Evaluation of Soil
Biogeochemical Properties Influencing Phosphorus Flux in the Everglades Stormwater Treatment Areas
(STAs). Final Report. Work Order 4600003031-WO01, South Florida Water Management District, West Palm
Beach, FL. Vol. 3. pp. 1–54.
Osborne, T. Z. , R. Bhomia , O. Villapando , and K. R. Reddy . 2019b. Section 4: Physicochemical properties of
soils: Stormwater treatment area-3/4 [Cell 3A and Cell 3B]. In UF-WBL. 2019. Evaluation of Soil
Biogeochemical Properties Influencing Phosphorus Flux in the Everglades Stormwater Treatment Areas
(STAs). Final Report. Work Order 4600003031-WO01, South Florida Water Management District, West Palm
Beach, FL. Vol. 4. pp. 1–49.
Ossola, R. , J. Tolu , B. Clerc , P. R. Erickson , L. H. Winkel , and K. McNeill . 2019. Photochemical production
of sulfate and methanesulfonic acid from dissolved organic sulfur. Environ. Sci. Technol. 53(22):13191–13200.
Ottow, J. C. G. 1968. Evaluation of iron reducing bacteria in soil and the physiological mechanism of iron
reduction in Aerobacter aerogenes. Z. Allg. Mikrobiol. 8:441–443.
Ottow, J. C. G. and A. von Klopotek . 1969. Enzymatic reduction of iron oxide by fungi. Appl. Environ. Microbiol.
18:41–43.
Pal, D. , F. E. Broadbent , and D. S. Mikkelsen . 1975. Influence of temperature on rice straw decomposition in
soils. Soil Sci. 120:442–449.
Palm, C. A. and Sanchez, P. A. 1991. Nitrogen release from the leaves of some tropical legumes as affected by
their lignin and polyphenolic contents. Soil Biol. Biochem. 23:83–88.
Paludan, C. and J. T. Morris . 1999. Distribution and speciation of phosphorus along a salinity gradient in
intertidal marsh sediments. Biogeochemistry. 45:197–221.
Palumbo, B. , A. Bellanca , R. Neri , and M. J. Roe . 2001. Trace metal partitioning in Fe—Mn nodules from
Sicilian soils. Chem. Geol. 173:257–269.
Pan, W. , J. Kan , S. Inamdar , C. Chen , and D. Sparks . 2016. Dissimilatory microbial iron reduction release
DOC (dissolved organic carbon) from carbon-ferrihydrite association. Soil Biol Biochem. 103:232–240.
Pangala, S. R. , E. R. C. Hornibrook , and V. Gauci . 2013. Trees are major conduits from for methane egress
from tropical forested wetlands. New Phytologist. 197:524–531.
Pardue, J. H. , R. D. DeLaune , and W. H. Patrick, Jr . 1986. Fate of PCB and Dioxin in Louisiana Aquatic
Environment Technical Completion Report. Louisiana Water Resource Research Institute. Louisiana State
University, Baton Rouge, LA. 90 pp.
Pardue, J. H. , R. D. DeLaune , and W. H. Patrick, Jr . 1988. Effect of sediment pH and oxidation—reduction
potential on PCB mineralization. Water Air Soil Pollut. 37:439–447.
Pasek, M. A. , J. M. Sampson , and Z. Atlas . 2014. Redox chemistry in the phosphorus biogeochemical cycle.
Proc. Nat. Acad. Sci. 110:15463–15373. www.pnas.org/cgi/doi/10.1073/pnas.1408134111.
Paterson, M. , J. Rudd , and V. Louis . 1998. Increases in total mercury in zooplankton following flooding of a
reservoir. Environ. Sci. Technol. 32:3868–3874.
Pat-Espadas, A. M. , R. Loredo Portales , L. E. Amabilis-Sosa , G. Gómez , and G. Vidal . 2018. Review of
constructed wetlands for acid mine drainage treatment. Water. 10(11):1685.
Patrick, W. H., Jr. 1960. Nitrate reduction rates in a submerged soil as affected by redox potential. 7th Int’l
Congress of Soil Sci. 2:494–500, Madison, WI.
Patrick, W. H., Jr . 1964. Extractable iron and phosphorus in a submerged soil at controlled redox potentials.
Trans. 8th Int. Congress Soil Sci. 3:605–609.
Patrick, W. H., Jr . 1966. Apparatus for controlling oxidation-reduction potential of waterlogged soils. Nature.
212:1278–1279.
Patrick, W. H., Jr . 1977. Oxygen content of soil air by field method. Soil Sci. Soc. Am. Proc. 41:651–652.
Patrick, W. H., Jr . 1981. The role of inorganic redox systems in controlling reduction in paddy soils. In Institute
of Soil Science, Academia Sinica (eds.) Proceedings of Symposium on Paddy Soil. Springer-Verlag, New York.
Patrick, W. H., Jr . and R. D. DeLaune . 1972. Characterization of the oxidized and reduced zones in flooded
soil. Soil Sci. Soc. Am. Proc. 36:573–576.
Patrick, W. H., Jr . and R. D. DeLaune . 1990. Subsidence, accretion, and sea level rise in south San Francisco
Bay marshes. Limnol. Oceanogr. 35:1389–1395.
Patrick, W. H. , S. Gotoh , and B. G. Williams . 1973. Strengite dissolutions in flooded soils and sediments.
Science. 179:564–565.
Patrick, W. H., Jr . and R. E. Henderson . 1981. Reduction and reoxidation cycles of manganese and iron in
flooded soil and in water solution. Soil Sci. Soc. Am. J. 45:855–859.
Patrick, W. H. and R. A. Khalid . 1974. Phosphorus release and adsorption by soils and sediments: Effects of
aerobic and anaerobic conditions. Science. 186:53–57.
Patrick, W. H., Jr . and M. Verloo . 1998. Distribution of soluble heavy metals between ionic and complexed
forms in a saturated sediment as affected by pH and redox conditions. Water Sci. Technol. 37:165–172.
Paul, E. A. and F. E. Clark . 1996. Soil Microbiology and Biochemistry. Academic Press, New York. p. 339.
Payne, W. J. 1973. Reduction of nitrogenous oxides by microorganisms. Bacteriol. Rev. 37:409–452.
Pearl, H. W. , J. L. Pinckeny , and T. F. Steppe . 2000. Cyanobacterial-bacterial mat consortia: Examining the
functional unit of microbial survival and growth in extreme environments. Environ. Microbiol. 2:11–26.
Pearl, H. W. , J. T. Scott , M. J. McCarthy , S. E. Newell , W. S. Gardner , K. E. Havens , D. K. Hoffman , S. W.
Wilhelm , and W. A. Wurtsbaugh . 2016. It takes two to tango: When and where dual nutrient (N & P) reductions
are needed to protect lakes and downstream ecosystems. Environ. Sci. Technol. 50:10805–10813.
Pearsall, W. H. and C. H. Mortimer . 1939. Oxidation—reduction potentials in waterlogged soils, natural water
and mud. J. Ecol. 27:483–501.
Pedersen, H. D. , D. Postma , and R. Jakobsen . 2006. Release of arsenic associated with the reduction and
transformation of iron oxides. Geochim. Cosmochim. Acta. 70:4116–4129.
Pedersen, O. , T. D. Colmer , and K. Sand-Jensen . 2013. Underwater photosynthesis of submerged
plants—recent advances and methods. Front. Plant Sci. 4:1–19. doi:10.3389/fpls.2013.00140.
Peiffer, S. , A. Kappler , S. B. Haderlein , C. Schmidt , J. M. Byrne , S. Kleindienst , C. Vogt , H. H. Richnow , M.
Obst , L. T. Angenent , C. Bryce , C. McCammon , and B. Planer-Friedrich . 2021. A
biogeochemical—hydrological framework for the role of redox-active compounds in aquatic systems. Nat.
Geosci. 14:264–272. https://doi.org/10.1038/s41561-021-00742-z.
Pelechaty, M. , A. Pukacz , K. Apolinarska , A. Pelechata , and M. Siepak . 2013. The significance of Chara
vegetation in the precipitation of lacustrine calcium carbonate. Sedimentology. 60:1017–1035.
Pelegri, S. P. and T. H. Blackburn . 1994. Bioturbation effects of the amphipod Corophium volutator on
microbial nitrogen transformations. Marine Biol. 121(2):253–258.
Penland, S. and K. Ramsey . 1997. Relative sea-level rise in Louisiana and the Gulf of Mexico: 1908–1988. J.
Coastal Res. 6:323–342.
Pennisi, E. 2020. The mud is electric. Science. 369(6506): 902–905. DOI: 10.1126/science.369.6506.902.
Pereira, W. E. , C. E. Rostad , and T. J. Leiker . 1990. Distribution of agrochemicals in the lower Mississippi
River and its tributaries. Sci. Total Environ. 97/98:41–53.
Perez, A. , W. Machado , and C. J. Sanders . 2021. Anthropogenic and environmental influences on nutrient
accumulation in mangrove sediments. Mar. Pollut. Bulletin. 165:112174.
Pester, M. , K. Knorr , M. W. Friedrich , M. Wagner , and A. Loy . 2012. Sulfate-reducing microorganisms in
wetlands—fameless actors in carbon cycling and climate change. Front. Microbiol. 3:1–19. Article 72.
doi:10.3389/fmicb.2012.00072.
Pethick, J. S. 1992. Saltmarsh geomorphology. In J. Allen and K. Pye (eds.) Saltmarshes: Morphodynamics,
Conservation and Engineering Significance. Cambridge University Press, Cambridge, UK. pp. 41–62.
Petrie, B. , R. Barden , and B. Kasprzyk-Hordern . 2015. A review on emerging contaminants in wastewaters
and the environment: Current knowledge, understudied areas and recommendations for future monitoring.
Water Res. 72:3–27.
Pettersson, K. 1986. The fractional composition of phosphorus in lake sediments of different characteristics. In
P. G. Sly (ed.) Sediment and Water Interactions. Springer-Verlag, Berlin. pp. 149–155.
Pezeshki, S. R. 2001. Wetland plant responses to flooding. Environ. Exp. Bot. 46:299–312.
Pezeshki, S. R. and R. D. DeLaune . 1990. Influence of sediment oxidation—reduction potential on root
elongation in Spartina patens. Acta Oecol. 11:377–383.
Pezeshki, S. R. , R. D. DeLaune , and S. Z. Pan . 1991. Relationship of soil hydrogen sulfide level to net carbon
assimilation of Panicum hemitomon and Spartina patens. Vegetation. 95:159–166.
Pezeshki, S. R. , S. Z. Pan , R. D. DeLaune , and W. H. Patrick, Jr. 1988a. Sulfide-induced toxicity: Inhibition of
carbon assimilation in Spartina alterniflora . Photosynthetica. 2(3):437–442.
Pfeffer, C. , S. Larsen , J. Song , M. Dong , F. Besenbacher , R. L. Meyer , K. U. Kjeldsen , L. Schreiber , Y. A.
Gorby , M. Y. El-Naggar , K. M. Leung , A. Schramm , N. Risgaard-Petersen , and L. Peter Nielsen . 2012.
Filamentous bacteria transport electrons over centimetre distances. Nature. 491:2018–2221.
Philippot, L. , J. M. Raaijmakers , P. Lemanceau , and W. H. van der Putten . 2013. Going back to the roots:
The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11:789–799.
Pi, K. , Y. Wanga , D. Postmac , T. Ma , C. Su , and X. Xie . 2018. Vertical variability of arsenic concentrations
under the control of ironsulfur- arsenic interactions in reducing aquifer systems. J. Hydrol. 561:200–210.
Pietroski, J. P. , J. R. White , and R. D. DeLaune . 2015a. Effects of dispersant used for oil spill remediation on
nitrogen cycling in Louisiana coastal salt marsh soil. Chemosphere. 119:562–567.
Pietroski, J. P. , J. R. White , R. D. DeLaune , J. J. Wang , and S. K. Dodla . 2015b. Fresh and weathered crude
oil effects on potential denitrification rates of coastal marsh soil. Chemosphere. 134:120–126.
Piggott, J. J. , R. K. Salis , G. Lear , and C. R. Townsend . 2015. Climate warming and agricultural stressors
interact to determine stream periphyton community composition. Glob Change Biol. 21:206–222.
doi:10.1111/gcb.12661.
Pind, A. , C. Freeman , and M. A. Lock . 1994. Enzyme degradation of phenolic materials in
peatlands—measurement of phenol oxidase activity. Plant Soil. 159:227–231.
Polizzotto, M. L. , C. F. Harveyb , G. Li , B. Badruzzman , A. Ali , M. Newville , S. Sutton , and S. Fendorf .
2006. Solid-phases and desorption processes of arsenic within Bangladesh sediments. Chem. Geol.
228:97–111.
Ponnamperuma, F. N. 1955. The chemistry of submerged soils in relation to the growth and yield of rice. Ph.D.
Dissertation, Cornell University.
Ponnamperuma, F. N. 1972. The chemistry of submerged soils. Adv. Agron. 24:29–96.
Ponnamperuma, F. N. 1981. Some aspects of the physical chemistry of paddy soils. In Institute of Soil Science,
Academia Sinica (eds.) Proceedings of Symposium on Paddy Soil. Springer-Verlag, New York.
Ponnamperuma, F. N. 1984. Effects of flooding on soils. In T. T. Kozlowski (ed.) Flooding and Plant Growth.
Academic Press, Inc., New York. pp. 9–45.
Post, G. B. 2021. Recent US state and federal drinking water guidelines for perand polyfluoroalkyl substances.
Environ. Toxicol. Chem. 40:550–563.
Postgate, J. 1987. Fundamentals of Nitrogen Fixation (New Studies in Biology). 2nd Edition. Edward Arnold,
London.
Potter, M. C. 1911. Electrical effects accompanying decomposition of organic compounds. Proc. Roy. Soc.
84:260–276, London.
Pourbaix, M. 1966. Atlas of Electrochemical Equilibria. Pergamon Press, Oxford. 645 pp.
Preston, C. M. 1996. Applications of NMR to soil organic matter analysis: History and prospects. Soil Sci.
161:144–166.
Psenner, R. and R. Pucsko . 1988. Phosphorus fractionation: advantages and limits of the method for the study
of sediment P origins and interactions. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30:43–59.
Qualls, R. G. and A. C. Heyvaert . 2017. Accretion of nutrients and sediment by a constructed stormwater
treatment wetland in the lake tahoe basin. JAWRA J. Am. Water Resourc. Assoc. 53:1495–1512.
Qui, S. and A. J. McComb . 1994. Effects of oxygen concentration on phosphorus release from reflooded air-
dried wetland sediments. Aust. J. Mar. Freshw. Res. 45:1319–1328.
Rabenhorst, M. C. 1995. Carbon storage in tidal marsh soils. In R. Lal (ed.) Soils and Global Change. Lewis
Publishers, Boca Raton, FL.
Raghoebarsing, A. A. , A. Pol , K. T. van de Pas-Schoonen1, A. J. P. Smolders , K. F. Ettwig , W. I. C. Rijpstra ,
S. Schouten , J. S. S. Damste , H. J. M. Op Den Camp , M. S. M. Jetten , and M. Strous . 2006. A microbial
consortium couples anaerobic methane oxidation to denitrifi cation. Nature. 440:918–921.
Raich, W. and W. H. Schlesinger . 1992. The global carbon dioxide flux in soil respiration and its relationship to
vegetation and climate. Tellus. 44:81–99.
Rainey, F. A. , D. P. Kelly , E. Stackebrandt , J. Burghardt , A. Hiraishi , Y. Katayama , and A. P. Wood . 1999.
A re-evaluation of the taxonomy of Paracoccus denitrificans and a proposal for the creation of Paracoccus
pantotrophus comb. Int. J. Syst. Bacteriol. 49:645–651.
Ramsar Convention on Wetlands . 2018. Global Wetland Outlook: State of the World’s Wetlands and their
Services to People. Ramsar Convention Secretariat, Gland, Switzerland.
Rasch, P. J. , M. C. Barth , S. E. Schwartz , and C. M. Benkovitz . 2000. A description of the global sulfur cycle
and its controlling processes in the national center for atmospheric research community climate model, version
3. J. Geophysical Res. 105:1367–1385.
Raskin, I. and H. Kende . 1985. Mechanism of aeration of rice. Science. 228:327–329.
Rasmussen, H. and B. B. Jorgensen . 1992. Microelectrode studies of seasonal oxygen uptake in a coastal
sediment: Role of molecular diffusion. Mar. Ecol. Prog. Ser. 81:289–303.
Ratering, S. and S. Schnell . 2000. Localization of iron-reducing activity in paddy soil by profile studies.
Biogeochemistry. 48:341–365.
Reddy, K. R. 1981. Diel variations of certain physico-chemical parameters of water in selected aquatic systems.
Hydrobiologia. 85:201–207.
Reddy, K. R. , T. Chua , and C. J. Richardson . 2013. Organic phosphorus mineralization in wetland soils.
Chapter 35, page 683–700. In R. D. DeLaune , K. R. Reddy , C. J. Richardson , and P. J. Megonigal (eds.)
Methods in Biogeochemistry of Wetlands. Soil Science Society of America, Madison, WI. 1024 pp.
Reddy, K. R. , E. M. D’Angelo , and T. A. DeBusk . 1990. Oxygen transport through aquatic macrophytes: The
role in wastewater treatment. J. Environ. Qual. 19:261–1207.
Reddy, K. R. and W. F. DeBusk . 1987. Nutrient storage capabilities of aquatic and wetland plants. In K. R.
Reddy and W. H. Smith (eds.) Aquatic Plants for Water Treatment and Resource Recovery. Magnolia Publ.
Inc., Orlando, FL. pp. 337–357.
Reddy, K. R. , R. DeLaune , and C. B. Craft . 2010. Nutrients in wetlands: Implications to water quality under
changing climatic conditions. Final Report Submitted to U. S. Environmental Protection Agency. EPA Contract
No. EP-C-09–001.
Reddy, K. R. , R. D. DeLaune , W. F. DeBusk , and M. Koch . 1993. Long-term nutrient accumulation rates in
the Everglades wetlands. Soil Sci. Soc. Am. J. 57:1145–1155.
Reddy, K. R. , O. A. Diaz , L. J. Scinto , and M. Agami . 1995. Phosphorus dynamics in selected wetlands and
streams of the Lake Okeechobee Basin. Ecol. Eng. 5:183–208.
Reddy, K. R. , T. C. Feijtel , and W. H. Patrick, Jr . 1986. Effect of soil redox conditions on microbial oxidation of
organic matter. In Y. Chen and Y. Avnimelech (eds.) The Role of Organic Matter in Modern Agriculture. Dev.
Plant Sci. Martinus Nijhoff, Dordrecht. pp. 117–148.
Reddy, K. R. and M. M. Fisher . 1991. Sediment resuspension effects on phosphorus flux across the
sediment—water interface: Laboratory microcosm studies. In Lake Okeechobee Phosphorus Dynamics Study:
Biogeochemical Processes in the Sediments. Volume V. Final Report submitted to South Florida Water
Management District (Contract No. 531-M88–0445-A4), West Palm Beach, FL.
Reddy, K. R. , M. M. Fisher , and D. Ivanoff . 1996. Resuspension and diffusive flux of nitrogen and phosphorus
in a hypereutrophic lake. J. Environ. Qual. 25:363–371.
Reddy, K. R. , J. Hu , O. Villapando , R. Bhomia , L. Vardanyan , and T. Z. Osborne . 2021. Long-term
accumulation of macro- and secondary elements in subtropical Treatment Wetlands. Ecosphere.
12(11):e03787. doi.org/10.1002/ecs2.3787.
Reddy, K. R. , R. H. Kadlec , E. Flaig , and P. M. Gale . 1999a. Phosphorus retention in streams and wetlands:
A review. Crit. Rev. Environ. Sci. Technol. 29(1):83–146.
Reddy, K. R. , S. Newman , T. Z. Osborne , J. R. White , and H. C. Fitz . 2011. Phosphorus cycling in the
Everglades ecosystem: Legacy phosphorus implications for management and restoration. Critical Rev. Environ.
Sci. Technol. 41:149–186.
Reddy, K. R. , G. A. O’Connor , and P. M. Gale . 1998b. Phosphorus sorption capacities of wetland soils and
stream sediments impacted by dairy effluent. J. Environ. Qual. 27:438–447.
Reddy, K. R. , T. Z. Osborne , K. S. Inglett , and R. Corstanje , 2006. Influence of Water Levels on Subsidence
of Organic Soils in the Upper St. Johns River Basin. Report submitted to St. John River Water Management
District, Palatka, FL.
Reddy, K. R. and W. H. Patrick, Jr . 1975. Effect of alternate aerobic and anaerobic conditions on redox
potential, organic matter decomposition, and nitrogen loss in a flooded soil. Soil Biol. Biochem. 7:87–94.
Reddy, K. R. and W. H. Patrick, Jr . 1976. Yield and nitrogen utilization by rice as affected by method and time
of application of labeled nitrogen. Agron. J. 68:965–969.
Reddy, C. N. and W. H. Patrick, Jr . 1977. Effects of redox potential on the stability of zinc and copper chelates
in flooded soils. Soil Sci. Soc. Am. Proc. 38:66–71.
Reddy, K. R. and W. H. Patrick . 1984. Nitrogen transformations and loss in flooded soil and sediments. Crit.
Rev. Environ. Control. 13:273–309.
Reddy, K. R. , W. H. Patrick, Jr. , and C. W. Lindau . 1989. Nitrification—denitrification at the
plant—root—sediment interface in wetlands. Limnol. Oceanogr. 34:1004–1013.
Reddy, K. R. and K. M. Portier . 1987. Nitrogen utilization by Typha latifolia L. as affected by temperature and
rate of nitrogen application. Aquat. Bot. 27:127–138.
Reddy, K. R. , P. S. C. Rao , and R. E. Jessup . 1982. The effect of carbon mineralization and denitrification
kinetics in mineral and organic soils. Soil Sci. Soc. Am. J. 46:62–68.
Reddy, K. R. , P. S. C. Rao , and W. H. Patrick, Jr . 1980a. Factors influencing oxygen consumption rates in
flooded soils. Soil Sci. Soc. Am. J. 44:741–744.
Reddy, K. R. , M. R. Overcash , R. Khaleel , and P. W. Westerman . 1980b. Phosphorus adsorption-desorption
characteristics of two soils utilized for disposal of animal wastes. J. Environ. Qual. 9:86–92.
Reddy, K. R. , L. Vardanyan , J. Hu , O. Villapando , R. K. Bhomia , T. Smith , W. G. Haris , and S. Newman .
2020. Soil phosphorus forms and storage in stormwater treatment areas of the Everglades: Influence of
vegetation and nutrient loading. Sci. Total Environ. 725:138442.
Reddy, K. R. , Y. Wang , W. F. DeBusk , M. M. Fisher , and S. Newman . 1998a. Forms of soil phosphorus in
selected hydrologic units of the Florida Everglades. Soil Sci. Soc. Am. J. 62:1134–1147.
Reddy, K. R. , R. G. Wetzel , and R. Kadlec . 2005. Biogeochemistry of phosphorus in wetlands. In J. T. Sims
and A. N. Sharpley (eds.) Phosphorus: Agriculture and the Environment. Soil Science Society of America,
Madison, WI. pp. 263–316.
Reddy, K. R. , S. Grunwald , V. D. Nair , and Y. Wang . 2007. Baseline Soil Characterization of the Taylor
Creek Pilot Stormwater Treatment Area (STA) in the Lake Okeechobee Watershed. 2007. Final Report
submitted to South Florida Water Management District, West Palm Beach, Florida. 75 pages.
Reddy, K. R. , J. R. White , A. Wright , and T. Chua . 1999b. Influence of phosphorus loading on microbial
processes in soil and water column of wetlands. Phosphorus in Florida’s ecosystems: Analysis of current
issues. In K. R. Reddy , G. A. O’Connor , and C. L. Schelske (eds.) Phosphorus Biogeochemistry in Subtropical
Ecosystems: Florida as a Case Example. CRC Press/Lewis Publishers, Boca Raton, FL. pp. 249–273.
Redfield, A. C. 1958. The biological control of chemical factors in the environment. Am Sci. 46:205–221.
https://doi.org/10.1002/ecs2.3787.
Redman, F. H. and W. H. Patrick, Jr . 1965. Effect of Submergence on Several Biological and Chemical
Properties. Agricultural Experiment Station, Louisiana State University, Bulletin No. 592. pp. 1–28.
Reed, D. J. 1989. Patterns of sediment deposition in subsiding coastal salt marshes, Terrebonne Bay,
Louisiana: The role of winter storms. Estuaries. 12:222–227.
Reed, R. B., Jr . 1988. National List of Plant Species That Occur in Wetlands: National Summary. U.S. Fish and
Wildlife Service, Washington, DC. Biol. Rpt. 88(24):244.
Reguera, G. 2012. Bacterial power cords. Nature. 491:201–202.
Revil, A. , C. A. Mendonça , E. A. Atekwana , B. Kulessa , S. S. Hubbard , and K. J. Bohlen . 2010.
Understanding biogeobatteries: Where geophysics meets microbiology. J. Geophys. Res. 115:G00G02.
doi:10.1029/2009JG001065.
Revsbech, N. P. 1989. An oxygen microelectrode with a guard cathode. Limnol. Oceanogr. 34:474–476.
Revsbech, N. P. 2005. Analysis of microbial communities with electrochemical microsensors and microscale
biosensors. Methods Enzymol. 397:147–166. https://doi.org/10.1016/S0076-6879(05)97009-2.
Reynolds, C. S. and P. S. Davis . 2001. Sources and bioavailability of phosphorus fractions in freshwaters: A
British perspective. Biol. Rev. 76:27–64.
Reynolds, L. L. , K. Lajtha , R. D. Bowden , B. R. Johnson , and S. D. Bridgham . 2017. The carbon quality-
temperature hypothesis does not consistently predict temperature sensitivity of soil organic matter
mineralization in soils from two manipulative ecosystem experiments. Biogeochemistry. 136:249–260.
https://doi.org/10.1007/s10533-017-0384-z.
Richardson, C. J. 1985. Mechanisms controlling phosphorus retention capacity in freshwater wetlands.
Science. 228:1424–1426.
Richardson, C. J. and K. R. Reddy . 2013. Methods for soil phosphorus characterization and analysis of
wetland soils. Chapter 32, page 603–638. In R. D. DeLaune , K. R. Reddy , C. J. Richardson , and P. J.
Megonigal (eds.) Methods in Biogeochemistry of Wetlands. Soil Science Society of America, Madison, WI.
1024 pp.
Richardson, J. L. and M. J. Vepraskas . 2001. Wetland Soils. Lewis Publishers, Boca Raton, FL. 417 pp.
Rickard, D. and G. W. Luther . 1997. Kinetics of pyrite formation by the H2S oxidation on iron (II) monosulfide in
aqueous solutions between 25 and 125°C: The mechanism. Geochim. Cosmochim. Acta. 61:135–147.
Rickelt, L. F. , L. Askaer , E. Walpersdorf , B. Elberling , R. N. Glud , and M. Kuhl . 2014. An Optode sensor
array for long-term in situ oxygen measurements in soil and sediment. J. Environ. Qual. 42:1267–1273.
doi:10.2134/jeq2012.0334.
Rinklebe, J. , A. S. Knox , and M. Paller . 2016. Trace Elements in Waterlogged Soils and Sediments. CRC
Press, Boca Rotan, FL. 402 pages.
Rinklebe, J. and S. M. Shaheen . 2014. Assessing the mobilization of cadmium, lead, and nickel using a seven-
step sequential extraction technique in contaminated floodplain soil profiles along the central Elbe River,
Germany. Water Air Soil Pollut. 225:2035. doi:10.1007/s11270-014-2039-1.
Rinklebe, J. and Shaheen, S. M. 2017. Redox chemistry of nickel in soils and sediment: A review.
Chemosphere. 179:265–278.
Rinklebe, J. , S. M. Shaheen , and K. Yu . 2016. Release of As, Ba, Cd, Cu, Pb, and Sr under pre-definite redox
conditions in different rice paddy soils originating from the U.S.A. and Asia. Geoderma. 270:21–32.
Risgaard-Petersen, N. , L. R. Damgaard , A. Revil , and L. P. Nielsen . 2014. Mapping electron sources and
sinks in a marine biogeobattery. J. Geophys. Res. Biogeosci. 119:1475–1486. doi:10.1002/2014JG002673.
Rochette, E. A. , B. C. Bostick , G. Li , and S. Fendorf . 2000. Kinetics of arsenate reduction by dissolved
sulfide. Environ. Sci. Technol. 34:4714–4720. doi: 10.1021/es000963y.
Roden, E. E. 2006. Geochemical and microbiological controls on dissimilatory iron reduction. C. R. Geoscience.
338:456–467.
Roden, E. E. and J. W. Edmonds . 1997. Phosphate mobilization in iron-rich anaerobic sediments: Microbial
Fe(III) oxide reduction versus iron-sulfide formation. Arch. Hydrobiol. 139:347–378.
Roden, E. E. , A. Kappler , I. Bauer , J. Jiang , A. Paul , R. Stoesser , H. Konishi , and H. Xu . 2010.
Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat. Geosci.
3:417–421.
Roden, E. E. and R. G. Wetzel . 1996. Organic carbon oxidation and suppression of methane production by
microbial Fe(III) reduction in vegetated and unvegetated freshwater wetland sediments. Limnol. Oceanogr.
41:1733–1748.
Roden, E. E. and R. G. Wetzel . 2002. Kinetics of microbial Fe(III) oxide reduction in freshwater wetland
sediments. Limnol. Oceanogr. 47:198–211.
Rodhe, H. 1990. A comparison of the contribution of various gases to the greenhouse effect. Science.
248:1217–1219.
Rodhe, H. and I. Isaken . 1980. Global distribution of sulfur compounds in the troposphere estimated in a
height-latitude transport model. J. Geophys. Res. Oceans Atmos. 85:7401–7409.
Roman, C. T. , J. A. Peck , J. R. Allen , J. W. King , and P. G. Appleby . 1997. Accretion of a New England
(U.S.A.) salt marsh in response to inlet migration, storms, and sea-level rise. Estuar. Coast. Shelf Sci.
45:717–727.
Rosenberry, D. O. 2005. Integrating seepage heterogeneity with the use of sanded seepage meter. Liminol.
Oceanogr. Methods. 3:131–138.
Rosenberry, D. O. , J. W. LaBaugh , and R. J. Hunt . 2008. Use of monitoring wells, portable piezometers, and
seepage meters to quantify flow between surface water and ground water. In D. O. Rosenberry and J. W.
LaBaugh (eds.) Chapter 2 of Field Techniques for Estimating Water Fluxes Between Surface Water and
Ground Water. Techniques and Methods Chapter 4—D2. Pages 43–67. U.S. Department of the Interior. U.S.
Geological Survey.
Rousk, J. and P. Bengtson . 2014. Microbial regulation of global biogeochemical cycles. Front. Microbiol. 5,
Article 103, 1–3. doi:10.3389/fmicb.2014.00103.
Rowell, D. L. 1981. Oxidation and reduction. In D. J. Greenland and M. H. B. Hayes (eds.) The Chemistry of
Soil Processes. Wiley, New York. pp. 401–461.
Rumpel, C. and A. Chabbi . 2019. Chapter 1 - Plant—Soil Interactions Control CNP Coupling and Decoupling
Processes in Agroecosystems with Perennial Vegetation. G. Lemaire , Paulo César De Faccio Carvalho , S.
Kronberg S. Recous (eds.). Agroecosystem Diversity, Academic Press. pp. 3–13. https://doi.org/10.1016/B978-
0-12-811050-8.00001-7.
Ruttenberg, K. C. 1992. Development of sequential extraction method for different forms of phosphorus in
marine sediments. Limnol. Oceanogr. 37:1460–1482.
Saglio, P. K. , M. Rancillac , F. Bruzan , and A. Pradet . 1984. Critical oxygen pressure for growth and
respiration of excised and intact roots. Plant Physiol. 76:151–154.
Sah, R. N. , D. S. Mikkelsen , and A. A. Hafez . 1989a. Phosphorus behavior in flooded-drained soils. I. Effects
on phosphorus sorption. Soil Sci. Soc. Am. J. 53:1718–1723.
Sah, R. N. , D. S. Mikkelsen , and A. A. Hafez . 1989b. Phosphorus behavior in flooded-drained soils. II. Iron
transformations and phosphorus sorption. Soil Sci. Soc. Am. J. 53:1723–1729.
Sah, R. N. , D. S. Mikkelsen , and A. A. Hafez . 1989c. Phosphorus behavior in flooded-drained soils. III.
Phosphorus desorption and availability. Soil Sci. Soc. Am. J. 53:1729–1732.
Sahrawat, K. L. 2004. Ammonium production in submerged soils and sediments: The role of reducible iron.
Commun. Soil Sci. Plant Anal. 35:399–411.
Saito, M. , H. Wada , and Y. Takai . 1990. Development of microbial community on cellulose buried in
waterlogged soil. Biol. Fert. Soils. 9:301–305.
Saleque, M. A. and G. J. D. Kirk . 1995. Root-induced solubilization of phosphate in the rhizosphere of lowland
rice. New Physiol. 129(2):325–336.
Salinger, Y. , Y. Geifman , and M. Aronowich . 1993. Orthophosphate and calcium carbonate solubilities in the
Upper Jordan watershed basin. J. Environ. Qual. 22:672–677.
Sanchez-Carillo, S. , M. Alvarez-Cobelas , and D. G. Angeler . 2001. Sedimentation in the semi-arid freshwater
wetland Las Tablas de Daimiel (Spain). Wetlands. 21:112–124.
Sanders, C. J. , B. D. Eyre , I. R. Santos , W. Machado , W. Luiz-Silva , J. M. Smoak , J. L. Breithaupt , M. E.
Ketterer , L. Sanders , H. Marotta , and E Silva-Filho . 2014. Elevated rates of organic carbon, nitrogen, and
phosphorus accumulation in a highly impacted mangrove wetland. Geophy. Res. Lett. 41:2475–2480.
doi:10.1002/2014GL059789.
Sasmito, S. D. , D. Murdiyarso , D. A. Friess , and S. Kurnianto . 2016. Can mangrove keep pace with
contemporary sea level rise? Wetland Ecol. Manage. 24:263–278. doi:10.1007/s11273-015-9466-7.
Sasmito, S. D. , P. Taillardat , J. N. Clendenning , C. Cameron , D. A. Friess , D. Murdiyarso , and L. B. Hutley .
2019. Effect of land-use and land-cover change on mangrove blue carbon: A systematic review. Glob. Change
Biol. 25:4291–4302. https://doi.org/10.1111/gcb.14774.
Saunois, M. , M. Saunois , A. R. Stavert , B. Poulter , P. Bousquet , J. G. Canadell , R. B. Jackson , P. A.
Raymond et al. (90+ other authors not listed here). 2020. The Global Methane Budget 2000–2017. Earth Syst.
Sci. Data. 12:1561–1623. Doi.org/10.5194/essd-12-1561-2020.
Savant, N. K. and S. K. DeDatta . 1982. Nitrogen transformations in wetland rice soils. Adv. Agron. 35:241–302.
Schink, B. , V. Thiemann , H. Laue , and M. W. Friedrich . 2002. Desulfotignum phosphitoxidans sp. nov.: A
new marine sulfate reducer that oxidizes phosphite to phosphate. Arch Microbiol. 177:381–391.
doi:10.1007/s00203-002-0402-x.
Schipper, L. A. and K. R. Reddy . 1994a. In situ determination of plant detritus breakdown in a wetland
soil—floodwater profile. Soil Sci. Soc. Am. J. 59:565–568.
Schipper, L. A. and K. R. Reddy . 1994b. Methane production and emissions from reclaimed and pristine
wetlands of the Southeastern US. Soil Sci. Soc. Am. J. 58:1270–1275.
Schipper, L. A. and K. R. Reddy . 1996. Methane oxidation in the rhizosphere of Sagittaria lancifolia. Soil Sci.
Soc. Am. J. 60:611–616.
Schmidt, E. L. 1982. Nitrification in soil. In F. J. Stevenson (ed.) Nitrogen in Agricultural Soils. Agronomy.
22:253–288.
Schmidt, I. , R. J. van Spanning , and M. S. Jetten . 2004. Denitrification and ammonia oxidation by
Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants. Microbiology. 2:495–505.
Schmidt-Rohr, K. , J. D. Mao , and D. C. Olk . 2014. Nitrogen-bonded aromatics in soil organic matter and their
implications for a yield decline in intensive rice cropping. Proc. Natl Acad. Sci. 101:6351–6354.
Scholander, P. F. , L. van Dam , and S. I. Scholander . 1955. Gas exchange in the roots of mangroves. Am. J.
Bot. 42:92–98.
Schroder, P. , W. Grosse , and D. Woermann . 1986. Localization of thermoosmotically active partitions in
young leaves of Nuphar lutea. J. Exp. Bot. 37:1450–1461.
Schulten, H. R. and M. Schnitzer . 1998. The chemistry of soil organic nitrogen: A review. Biol. Fertil. Soils.
26:1–15.
Schwarzenbach, R. P. , P. M. Gschwend , and D. M. Imboden . 1993. Environmental Organic Chemistry. Wiley,
New York. 681 pp.
Schwertmann, U. 1993. Relations between iron oxides, soil color, and soil formation. In J. M. Bigham and E. J.
Ciolkosz (eds.) Soil Color. Soil Science Society of America, Madison, WI. pp. 51–70.
Scinto, L. J. 1990. Seasonal variation in soil phosphorus distribution in two wetlands of south Florida. M.S.
Thesis, University of Florida.
Scinto, L. J. and K. R. Reddy . 2003. Biotic and abiotic uptake of phosphorus by periphyton in a sub-tropical
freshwater wetland. Aquat. Bot. 77:202–222.
Sebacher, D. L. , R. C. Harris , and K. B. Bartlett . 1985. Methane emissions to the atmosphere through aquatic
plants. J. Environ. Qual. 14:40–46.
Sebilo, M. , Billen, G. , Grably, M. and Mariotti, A. , 2003. Isotopic composition of nitrate- nitrogen as a marker
of riparian and benthic denitrification at the scale of the whole Seine River system. Biogeochemistry.
63(1):35–51.
Segel, I. H. 1976. Biochemical Calculations. 2nd Edition. Wiley, New York.
Seitzinger, S. P. 1988. Denitrification in freshwater and coastal marine ecosystems: Ecological and
geochemical significance. Limnol. Oceanogr. 33:702–724.
Seitzinger, S. P. , J. A. Harrison , J. K. Bohlke , A. F. Bouwman , R. Lowrance , B. Peterson , C. Tobias , and G.
van Drecht 2006. Denitrification across landscapes and waterscapes: A synthesis. Ecol. Appl. 16:2064–2090.
Sethunathan, N. 1973. Degradation of parathion in flooded acid soils. J. Agric. Food Chem. 21:602–604.
Sexstone, A. J. , N. P. Revsbech , T. B. P. Arkin , and J. M. Tiedje . 1985. Direct measurement of oxygen
profiles and denitrification rates in soil aggregates. Soil Sci. Soc. Am. J. 49:645–651.
Shaheen, S. M. , J. Rinklebe , T. Frohne , J. R. White , and R. D. DeLaune . 2016. Redox effects on release
kinetics of arsenic, cadmium, cobalt, and vanadium in Wax Lake Deltaic freshwater marsh soils. Chemosphere.
150:740–748. ISSN 0045-6535. https://doi.org/10.1016/j.chemosphere.2015.12.043.
Shaheen, S. M. , T. Frohne , J. R. White , R. DeLaune , and J. Rinklebe . 2017. Redox-induced mobilization of
copper, selenium, and zinc in deltaic soils originating from Mississippi (U.S.A.) and Nile (Egypt) River Deltas: a
better understanding of biogeochemical processes for a safe environmental management. J. Environ. Manag.
186:131–140.
Shaheen, S. M. , J. Rinklebe , H. Rupp , and R. Meissner . 2014. Temporal dynamics of porewater
concentrations of Cd, Co, Cu, Ni, and Zn and their controlling factors in a contaminated floodplain soil assessed
by undisturbed groundwater lysimeters. Environ. Pollut. 191:223–231.
Sharitz, R. R. and S. C. Pennings . 2006. Development of wetland plant communities. In D. P. Batzer and R. R.
Sharitz (eds.) Freshwater and Estuarine Wetlands. University of California Press, Berkley/Los Angeles, CA. pp.
177–241.
Sharma, K. , P. W. Inglett , K. R. Reddy , and A. V. Ogram . 2005. Microscopic examination of photoautotrophic
and phosphatase-producing bacteria in phosphorus-limited Everglades periphyton mats. Limnol. Oceanogr.
50:2057–2062.
Shaver, G. R. and J. M. Melillo . 1984. Nutrient budgets of marsh plants: Efficiency concepts and relation to
availability. Ecology. 65:1491–1510.
Shi, Ling-Dong , Ting Guo , Pan-Long Lv , Zi-Fan Niu , Yu-Jie Zhou , Xian-Jin Tang , Ping Zheng , Li-Zhong
Zhu , Yong-Guan Zhu , Andreas Kappler , and He-Ping Zhao . 2020. Coupled anaerobic methane oxidation and
reductive arsenic mobilization in wetland soils. Nat. Geosci. 13:799–805. https://doi.org/10.1038/s41561-020-
00659-z.
Short, F. T. , S. Kosten , P. A. Morganc , S. Malone , and G. E. Moore . 2016. Impacts of climate change on
submerged and emergent wetland plants. Aquat. Bot. 135:3–17.
Shuai, W. and R. P. Jaffé . 2019. Anaerobic ammonium oxidation coupled to iron reduction in constructed
wetland mesocosms. Sci. Total Environ. 648:984–992.
Sihi, D. , P. W. Inglett , and K. S. Inglett . 2016. Carbon quality and nutrient status drive the temperature
sensitivity of organic matter decomposition in subtropical peat soils. Biogeochemistry. 131(1–2):103–119.
Sihi, D. , Inglett, P. W. , Gerber, S. and Inglett, K. S. , 2018. Rate of warming affects temperature sensitivity of
anaerobic peat decomposition and greenhouse gas production. Global Change Biology, 24(1), pp. e259–e274.
Sihi, D. , P. W. Inglett , and K. S. Inglett . 2019. Warming rate drives microbial nutrient demand and enzyme
expression during peat decomposition. Geoderma. 336:12–21.
Sillen, L. G. and A. E. Martell . 1964. Stability Constants of Metal-Ion Complexes. 2nd Edition. Special
Publication No. 17. The Chemical Society, London.
Simmons, R. W. , P. Pongsakul , D. Saiyasitpanich , and S. Klinphoklap . 2005. Elevated levels of cadmium
and zinc in paddy soils and elevated levels of cadmium in rice grain downstream of a zinc mineralized area in
Thailand: Implications for public health. Environ. Geochem. Health. 27:501–511. doi:10.1007/s10653-005-7857-
z.
Simon, N. S. 1988a. Nitrogen cycling between sediment and the shallow-water column in the transition zone of
the Potomac River and estuary. I. Nitrate and ammonium flux. Estuar. Coast. Shelf Sci. 26:483–497.
Simon, N. S. 1988b. Nitrogen cycling between sediment and the shallow-water column in the transition zone of
the Potomac River and estuary. II. The role of wind-driven resupension and adsorbed ammonium. Estuar.
Coast. Shelf Sci. 26:483–497.
Sinsabaugh, R. L. , R. K. Antibus , and A. E. Linkins . 1991. An enzymatic approach to the analysis of microbial
activity during plant litter decomposition Agric. Ecosyst. Environ. 34:43–54.
Sinsabaugh, R. L. , R. K. Antibus , A. E. Linkins , C. A. McClaugherty , L. Rayburn , D. Repert , and T. Weiland
. 1993. Wood decomposition: Nitrogen and phosphorus dynamics in relation to extracellular enzyme activity.
Ecology. 74:1586–1593.
Sinsabaugh, R. L. , M. M. Carriero , and D. A. Repert . 2002. Allocation of extracellular enzymatic activity in
relation to litter composition, N deposition, and mass loss. Biogeochemistry. 60:1–24.
Sjoblad, R. D. and J. M. Bollag . 1981. Oxidation coupling of aromatic compounds by enzymes from soil
microorganisms. In E. A. Paul and J. N. Ladd (eds.) Soil Biochemistry, Vol. 5. Marcel Dekker, New York. pp.
113–152.
Skyllberg, U. , J. Qian , W. Frech , K. Xia , and W. F. Bleam . 2003. Distribution of mercury, methyl mercury and
organic sulphur species in soil, soil solution and stream of a boreal forest catchment. Biogeochemistry.
64:53–76.
Slowey, A. J. 2010. Rate of formation and dissolution of mercury sulfide nanoparticles: The dual role of natural
organic matter. Geochim. Cosmochim. Acta. 74: 4693–4708. ISSN 0016-7037.
https://doi.org/10.1016/j.gca.2010.05.012.
Smedley, P. L. and D. G. Kinniburgh . 2002. A review of the source, behavior and distribution of arsenic in
natural waters. Appl. Geochem. 17:517–568.
Smirnoff, N. and R. M. M. Crawford . 1983. Variation in the structure and response to flooding of root
aerenchyma in some wetland plants. Ann. Bot. 51(2):237–249.
Smith, E. , R. M. Naidu , and A. M. Olston . 1998. Arsenic in the soil environment: A review. Adv. Agron.
64:149–195.
Smith, S. M. , S. Newman , P. B. Garrett , and J. A. Leeds . 2001. Differential effects of surface and peat fire on
soil constituents in a degraded wetland of the Northern Florida Everglades. J. Environ. Qual. 30:1998–2005.
Soil Survey Staff . 1999. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil
Surveys. 2nd Edition. USDA NRCS, Agriculture Handbook No. 436. U.S. Government Printing Office,
Washington, DC.
Sousa, J. C. G. A. , R. Ribeiro , M. O. Barbosa , M. F. R. Pereira , and A. M. T. Silva . 2018. A review on
environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazardous Mater.
344:146–162.
Sowden, F. J. , Y. Chen , and M. Schnitzer . 1977. The nitrogen distribution in soils formed under widely
differing climatic conditions. Geochim. Cosmochim. Acta. 41:1524–1526.
Sparling, G. P. 1992. Ratio of microbial biomass carbon to soil organic-carbon as a sensitive indicator of
changes in soil organic-matter. Aust. J. Soil Res. 30:195–207.
Stal, L. J. 1988. Nitrogen fixation in cyanobacterial mats. In L. Packer and A. N. Glazer (eds.) Methods in
Enzymology Cyanobacteria, Vol 167. Academic Press, New York. pp. 474–484.
Stal, L. J. 1995. Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol.
131(1):1–32.
Steinberg, C. E. W. 2003. Ecology of Humic Substances in Freshwaters. Determinants from Geochemistry to
Ecological Niches. Springer, Berlin.
Steinberg, C. E. W. , S. Kamara , V. Y. Prokhotskaya , L. Manusadzianas , T. A. Karasyova , M. A. Timofeyev ,
Z. Jie , A. Paul , T. Meinelt , V. F. Farjalla , A. Y. O. Matsuo , B. K. Burnison , and R. Menzel . 2006. Freshwater
Biol. 51:1189–1210. doi:10.1111/j.1365-2427.2006.01571.x.
Steinmann, C. R. , E. Veit , S. Grosser , and A. Melzer . 2001. An in-situ mobile interstitial water and sediment
sampler (MISS). Hydrobiologia. 459:173–176.
Stephens, J. C. and L. Johnson . 1951. Subsidence of peat soils in the everglades region of Florida. United
States Department of Agriculture Soil Conservation Service. 47 pages.
Sterner, R. W. and J. L. Elser . 2002. Ecological Stoichiometry. Princeton University Press, Princeton, NJ. 439
pp.
Steudler, P. A. and B. J. Peterson . 1984. Contribution of gaseous sulfur from salt marshes to the global sulfur
cycle. Nature. 311:455–457.
Stevenson, F. J. 1986. Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients. Wiley, New York.
380 pp.
Stevenson, F. J. 1994. Humus Chemistry. 2nd Edition. Wiley, New York. 496 pp.
Stevenson, J. C. , M. S. Kearney , and E. C. Pendleton . 1985. Sedimentation and erosion in a Chesapeake
Bay brackish marsh system. Mar. Geol. 67:213–235.
Stock, P. , S. Roder , and D. Burghardt . 2021. Further optimisation of the denitrifier method for the rapid 15N
and 18O analysis of nitrate in natural water samples. Rapid Commun. Mass Spectromet. 35(1):e8931.
Stoddart, D. R. , D. J. Reed , and J. R. French . 1989. Understanding salt-marsh accretion, Scolt Head Island,
Norfolk, England. Estuaries. 12:228–236.
Stolz, J. F. , P. Basu , J. M. Santini , and R. S. Oremland . 2006. Arsenic and selenium in microbial metabolism.
Annu. Rev. Microbiol. 60:107–130. http://dx.doi.org/10.1146/annurev.micro.60.080805.142053.
Stolz, J. F. and R. S. Oremland . 1999. Bacterial respiration of arsenic and selenium. FEMS Microbiol. Rev.
23:615–627. https://doi.org/10.1111/j.1574-6976.1999.tb00416.x.
Straub, K. L. , M. Benz , B. Schink , and F. Widdel . 1996. Anaerobic, nitrate-dependent microbial oxidation of
ferrous iron. Appl. Environ. Microbiol. 62:1458–1460.
Strawn, D. G. , H. L. Bohn , and G. A. O’Connor . 2020. Soil Chemistry. 5th Edition. Wiley, New York. 356 pp.
Stumm, W. and J. J. Morgan . 2012. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, Vol.
126. John Wiley & Sons, New York.
Stumpner, E. B. , T. E. C. Kraus , Y. L. Liang , S. M. Bachand , W. R. Horwath , and P. A. M. Bachand . 2018.
Sediment accretion and carbon storage in constructed wetlands receiving water treated with metal-based
coagulants. Ecol. Eng. 111:176–185.
Sturgis, M. B. 1935. Changes in the oxidation-reduction equilibrium in soils as related to the physical properties
of the soil and the growth of rice. Ph.D. Thesis. Iowa State College. Pages 66.
Sullivan, M. X. 1914. Reduction processes in plant and soil. Science. 39:958.
Sundareshwar, P. V. , J. T. Morris , E. K. Koepfler , and B. Fornwalt . 2003. Phosphorus limitation of coastal
ecosystem processes. Science. 299:563–565.
Sutka, R. L. , N. E. Ostrom , P. H. Ostrom , J. A. Breznak , H. Gandhi , A. J. Pitt , and F. Li . 2006.
Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer
abundances. Appl. Environ. Microbiol. 72:638–644.
Swathi, D. , P. C. Sabumon , and S. M. Maliyekkal . 2017. Microbial mediated anoxic nitrification-denitrification
in the presence of nanoscale oxides of manganese. Int. Biodeterior. Biodegradation. 119:499–510.
Sweerts, J. , R. C. Kelly , J. Rudd , R. Hesslein , and T. Cappenberg . 1991. Similarity of whole-sediment
diffusion coefficients in freshwater sediments of low and high porosity. Limnol. Oceanogr. 36:335–342.
Syers, J. K. , R. F. Harris , and D. E. Armstrong . 1973. Phosphate chemistry in lake sediments. J. Environ.
Qual. 2:1–14.
Takahashi, Y. , R. Minamikawa , K. H. Hattori , K. Kurishma , N. Kihou , and K. Yuita . 2004. Arsenic behavior
in paddy fields during the cycle of flooded and non-flooded periods. Environ. Sci. Technol. 38:1038–1044.
Takeno, N. 2005. Atlas of Eh-pH diagrams: Intercomparison of thermodynamic databases Geological Survey of
Japan Open File Report No.419. 285 pp.
Tanaka, N. , K. Yutani , T. Aye , and K. B. S. N. Jinadasa . 2007. Effect of broken dead culms of Phragmites
australis on radial oxygen loss in relation to radiation and temperature. Hydrobiol. 583:165–172.
doi:10.1007/s10750-006-0483-7.
Tapia-Torres, Y. , M. D. Rodríguez-Torres , J. J. Elser , A. Islas , V. Souza , F. García-Oliva , and G. Olmedo-
Álvarez . 2016. How to live with phosphorus scarcity in soil and sediment: Lessons from bacteria. Appl. Environ.
Microbiol. 82:4652–4662. doi:10.1128/AEM.00160-16.
Tengberg, A , J. Hovdenes , H. J. Andersson , O. Brocandel , R. Diaz , D. Hebert , T. Arnerich , C. Huber , A.
Körtzinger , A. Khripounoff , F. Rey , C. Rönning , J. Schimanski , S. Sommer , and A. Stangelmayer . 2006.
Evaluation of a lifetime-based optode to measure oxygen in aquatic systems. Limnol. Oceanogr: Methods 4,
2006, 7–17.
Thamdrup, B. 2012. New pathways and processes in the global nitrogen cycle. In D. J. Futuyma (ed.) Annual
Review of Ecology, Evolution, and Systematics, Vol. 43. pp. 407–428.
Thamdrup, B. and T. Dalsgaard . 2002. Production of N2 through anaerobic ammonium oxidation coupled to
nitrate reduction in marine sediments. Appl. Environ. Microbiol. 68:1312–1318.
Thaur, R. K. , K. Jungerman , and K. Decker . 1977. Energy conservation in chemotrophic anaerobic bacteria.
Bacteriolog. Rev. 41:100–180.
Thibodeaux, L. G. 1979. Chemodynamics: Environmental Movement of Chemicals in Air, Water, and Soil.
Wiley, New York.
Thom, R. M. 1992. Accretion rates of low intertidal salt marshes in the Pacific Northwest. Wetlands.
12:147–156.
Thompson, A. , O. A. Chadwick , D. G. Rancourt , and J Chorover . 2006. Iron-oxide crystallinity increases
during soil redox oscillations. Geochim. Cosmochim. Acta. 70:1710–1727.
Tiedje, J. M. 1988. Ecology of denitrification and dissimilatory nitrate reduction to ammonia. In A. J. B. Zehnder
(ed.) Biology of Anaerobic Microorganisms. Wiley, New York. pp. 197–244.
Tjerngren, I. , T. Karlsson , E. Bjo¨rn , and U. Skyllberg . 2012. Potential Hg methylation and MeHg
demethylation rates related to the nutrient status of different boreal wetlands. Biogeochemistry. 108:335–350.
doi:10.1007/s10533-011-9603-1.
Torres, I. C. , B. L. Turner , and K. Ramesh Reddy . 2014. The chemical nature of phosphorus in subtropical
lake sediments. Aquat. Geochem. 20:437–457. https://doi.org/10.1007/s10498-014-9228-9.
Torres, I. C. , B. L. Turner , and K. R. Reddy . 2017. Phosphatase activities in sediments of subtropical lakes
with different trophic states. Hydrobiologia. 788:305–318. https://doi.org/10.1007/s10750-016-3009-y.
Trimmer, M. , J. C. Nicholls , and B. Deflandre . 2003. Anaerobic ammonium oxidation measured in sediments
along the Thames estuary, United Kingdom. Appl. Environ. Microbiol. 69:6446–6454.
Tipping, E. , S. Benham , J. F. Boyle , P. Crow , J. Davies , U. Fischer , H. Guyatt , R. Helliwell , L. Jackson-
Blake , A. J. Lawlor , D. T. Monteith , E. C. Roweg , and H. Tobermanac . 2014. Atmospheric deposition of
phosphorus to land and freshwater. Environ. Sci.: Processes Impacts. 16:1608–1617.
Treseder, K. K. , T. C. Balser , M. A. Bradford , E. L. Brodie , E. A. Dubinsky , V. T. Eviner , K. S. Hofmockel , J.
T. Lennon , U. Y. Levine , B. J. MacGregor , J. Pett-Ridge , and M. P. Waldrop . 2012. Integrating microbial
ecology into ecosystem models: challenges and priorities. Biogeochemistry. 109:7–18.
https://doi.org/10.1007/s10533-011-9636-5.
Trotsenko, Y. A. and J. C. Murrell . 2008. Metabolic aspects of aerobic obligate methanotrophy. In A. I. Laskin ,
S. Sariaslani , and G. M. Gadd (eds.) Advances in Applied Microbiology, Vol. 63. Academic, Cambridge, MA.
pp. 183–229.
Trouwborst, R. E. , B. G. Clement , B. M. Tebo , B. T. Glazer , and G. E. Luther . 2006. Soluble Mn(III) suboxic
zones. Science. 1955–1957.
Trudinger, P. A. , and D. J. Swaine . 1979. Biogeochemical Cycling of Mineral-Forming Elements. Elsevier,
Amsterdam.
Truesdall, A. 1969. The advantage of using pe rather than Eh in redox equilibrium calculations. J. Geol. Ed.
17:17–20.
Tsubota, G. 1959. Phosphate reduction in the paddy field. Soil Science and Plant Nutrition. 5:10–15.
doi:10.1080/00380768.1959.10430888.
Tully, K. , K. Gegan , R. Epanchin-Niel , A. Strong , E. S. Bernhardt , T. Blendor , M. Mitchell , J. Kominoski , T.
E. Jpran , S. C. Neubauer , and N. B. Weston . 2019. The invisible flood: The chemistry, ecology, and social
implications of coastal saltwater intrusion. BioScience. 69:368–378.
Turner, B. L. and S. Newman . 2005. Phosphorus cycling in wetland soils: The importance of phosphate
diesters. J. Environ. Qual. 34:1921–1929.
Turner, B. L. , M. J. Paphazy , P. M. Haygarth , and I. D. McKelvie . 2002. Inositol phosphates in the
environment. Phil. Trans. R. Soc. Long. 357:449–469.
Turner, R. E. , E. B. Overton , B. M. Meyer , S. Miles , G. McClenachan , L. Hooper-Bui , A. S. Engel , E. M.
Swenson , J. M. Lee , C. S. Milan , and H. Gao . 2014. Distribution and recovery trajectory of Macondo
(Mississippi Canyon 252) oil in Louisiana coastal wetlands. Mar. Pollut. Bulletin. 87:57–67.
Turner, R. E. , N. N. Rabalais , E. B. Overton , B. M. Meyer , G. McClenachan , E. M. Swenson , M. Besonen ,
M. L. Parsons , and J. Zingre . 2019. Oiling of the continental shelf and coastal marshes over eight years after
the 2010 Deepwater Horizon oil spill. Environ. Pollut. 252:1367–1376.
https://doi.org/10.1016/j.envpol.2019.05.134.
Tusneem, M. E. and W. H. Patrick, Jr . 1971. Nitrogen transformations in waterlogged soils. Bulletin No. 657.
Agricultural Experiment Station, Louisiana State University. pp. 73.
Twinch, A. J. 1987. Phosphate exchange characteristics of wet and dried sediment samples from a
hypertrophic reservoir: Implications for the measurement of sediment phosphorus status. Water Res.
21:1225–1230.
Ullrich, S. M. , T. W. Tanton , and S. A. Abdrashitova . 2001. Mercury in the aquatic environment: A review of
factors affecting methylation. Crit Rev Environ Sci Technol. 6:241–293.
USDA NRCS . 2006. In G. W. Hurt and L. M. Vasilas (eds.) Field Indicators of Hydric Soils in the United States,
Version 6.0. USDA NRCS in cooperation with the National Technical Committee for Hydric Soils, Ft. Worth, TX.
USDA-NRCS- United States Department of Agriculture, Natural Resources Conservation Service . 2016. Field
Indicators of Hydric Soils in the United States, Version 8.0. L. M. Vasilas , G. W. Hurt , and J. F. Berkowitz
(eds.). USDA, NRCS, in cooperation with the National Technical Committee for Hydric Soils.
USEPA (U.S. Environmental Protection Agency) . 1993. Methods for Determination of Inorganic Substances in
Environmental Samples. U.S. Government Printing Office, Washington, DC. EPA/600/R-93/100.
USEPA (U.S. Environmental Protection Agency) . 1994. National Water Quality Inventory-1992 Report to
Congress. U.S. Environmental Protection Agency, 841-R-94–001, Washington, DC.
USEPA (U.S. Environmental Protection Agency) . 1996. Drinking Water Regulations and Health Advisories.
Office of Water, EPA 822-B-96–002, USEPA, Washington, DC.
USEPA (U.S. Environmental Protection Agency) . 1997. Pesticides Industry Sales and Usage. 1994 and 1995
Market Estimates. USEPA/Office of Prevention, Pesticides and Toxic Substances 733-R-97–002, Washington,
DC.
USEPA (U.S. Environmental Protection Agency) . 2015. Connectivity of Streams and Wetlands to Downstream
Waters: A Review and Synthesis of the Scientific Evidence, EPA/600/R-14/475F. Washington, D.C.: U.S.
Environmental Protection Agency.
USEPA (U.S. Environmental Protection Agency) . 2020. Per- and Polyfluoroalkyl Substances (PFAS):
Incineration to Manage PFAS Waste Streams. Technical Brief.
USGS . 1994. U.S. Geological Survey Open File Report. 94.376.
Valenzuela, E. I. , C. Padilla-Loma , N. Gómez-Hernández , N. E. López-Lozano , S. Casas-Flores , and F. J.
Cervantes . 2020. Humic substances mediate anaerobic methane oxidation linkedto nitrous oxide reduction in
wetland sediments. Front. Microbiol. 11:587. doi:10.3389/fmicb.2020.00587.
Van Bodegom, P. M. , J. C. M. Scholter , and A. J. M. Stams . 2004. Direct inhibition of methanogenesis by
ferric iron. FEMS Microbiol. Ecol. 49:261–268.
van Cleemput, O. and L. Baert . 1984. Nitrite: A key compound in N loss processes under acid conditions?
Plant Soil. 76:233–241.
Van der Walk, A. G. 2012. The Biology of Freshwater Wetlands. Oxford University Press, Oxford. p. 279.
Van der Zee, C. and W. van Raaphorst . 2004. Manganese oxide reactivity in North Sea sediments. J. Sea
Res. 52:73–85.
van Eck, G. T. M. 1982. Forms of phosphorus in particulate matter from the Hollands Diep/Haringvliet, the
Netherlands. Hydrobiologia 92:665–681.
van Kessel, M. A. H. I. , D. R. Speth , M. Albertsen , P. H. Nielsen , H. J. M. Op Den Camp , B. Kartal , M. S. N.
Jetten , and S. Lücker . 2015. Complete nitrification by a single microorganism. Nature. 528(7583):555–559.
doi:10.1038/nature16459.
Van Ranst, E. and F. De Coninck . 2002. Evaluation of ferrolysis in soil formation. Eur. J. Soil Sci. 53:513–519.
Van Rees, K. C. J. , K. R. Reddy , and P. S. C. Rao . 1996. Influence of benthic organisms on solute transport
in lake sediments. Hydrobiologia. 317:31–40.
Van Rees, C. J. , E. A. Sudicky , P. S. C. Rao , and K. R. Reddy . 1991. Evaluation of laboratory techniques for
measuring diffusion coefficients in sediments. Environ. Sci. Technol. 25:1605–1611.
VanZomeren, C. M. , W. Cooper , H. Knicker , and K. R. Reddy . 2013a. Characterization of organic nitrogen in
wetlands. In R. DeLaune , K. R. Reddy , C. J. Richardson , and J. P. Megonigal (eds.) Methods in
Biogeochemistry of Wetlands. Book Series, Soil Science Society of America, Madison, WI. pp. 439–464.
VanZomeren, C. M. and K. R. Reddy . 2015. Use of a modified chemical fractionation scheme to characterize
organic nitrogen in wetland soils. Soil Sci. Soc. Am. J. 79:1509–1517. doi:10.2136/sssaj2015.05.0178.
VanZomeren, C. M. , J. R. White , and R. D. DeLaune . 2013b. Ammonification and denitrification rates in
coastal Louisiana bayou sediment and marsh soil: Implications for Mississippi river diversion management.
Ecol. Eng. 54:77–81.
Veldkamp, E. , A. M. Weitz , and M. Keller . 2001. Management effects on methane fluxes in humid tropical
pasture soils. Soil Biol. Biochem. 33:1493–1489.
Venterea, R. T. , M. Burger , and K. A. Spokas . 2005. Nitrogen oxide and methane emissions under varying
tillage and fertilizer management. J. Environ. Qual. 34:1467–1477. https://doi.org/10.2134/jeq2005.0018.
Vepraskas, M. J. 1992. Redoximorphic Features for Identifying Aquic Conditions. Tech. Bull. 301. North
Carolina Agricultural Research Service, N.C. State University, Raleigh, NC. 33 pp.
Vepraskas, M. J. 2016. History of the concept of hydric soils. In M. J. Vepraskas and C. B. Craft (eds.) Wetland
Soils: Genesis, Hydrology, Landscapes, and Classificatio. CRC Press, Boca Raton, FL. 507 pp.
Vepraskas, M. J. and C. B. Craft . 2016. Wetland Soils: Genesis, Hydrology, Landscapes, and Classification.
CRC Press, Boca Raton, FL. 23–37 pp.
Verhoeven, J. T. A. , W. Koerselman , and A. F. M. Meuleman . 1996. Nitrogen or phosphorus limited growth in
herbaceous wet vegetation: relations with atmospheric inputs and management regimes. Trends Ecol. Evol.
11:494–497.
Vermeera, M. and S. Rahmstorf . 2009. Global sea level linked to global temperature. Proc. Nat. Acad. Sci.
106:21527–21532. www.pnas.orgcgidoi10.1073pnas.0907765106.
Volk, B. G. 1973. Everglades histosol subsidence 1: CO2 evolution as affected by soil type, temperature, and
moisture. Soil Crop Sci. Soc. Fla. Proc. 32:132–135.
Volkenborn, N. , D. S. L. Polerecky , D. S. Wethey , and S. A. Woodin . 2010. Oscillatory porewater
bioadvection in marine sediments induced by hydraulic activities of Arenicola marina. Limnol. Oceanogr.
55:1231–1247. https://doi.org/10.4319/lo.2010.55.3.1231.
Vriens, B. , M. Lenz , L. Charlet , M. Berg , and L. H. E. Winkel . 2014. Natural wetland emissions of methylated
trace elements. Nat. Commun. 5:3035. http://dx.doi.org/10.1038/ncomms4035.
Walbridge, M. R. , C. J. Richardson , and W. T. Swank . 1991. Vertical distribution of biological and
geochemical subcycles in two southern Appalachian forest soils. Biogeochemistry. 213:61–85.
Walbridge, M. R. and J. P. Struthers . 1993. Phosphorus retention in non-tidal palustrine forested wetlands of
the mid-Atlantic region. Wetlands. 13:84–94.
Wan, D. , V. K. Sharma , L. Liu , Y. Zuo , and Y. Chen . 2019. Mechanistic insight into the effect of metal ions
on photogeneration of reactive species from dissolved organic matter. Environ. Sci. Technol. 53:5778–5786.
doi:10.1021/acs.est.9b00538.
Wang, J. , C. Cai , Y. Li , M. Hua , J. Wang , H. Yang , P. Zheng , and B. Hu . 2019. Denitrifying anaerobic
methane oxidation: A previously overlooked methane sink in intertidal zone. Environ. Sci. Technol. 53:203–212.
Wang, W. J. , P. M. Chalk , D. Chen , and C. J. Smith . 2001. Nitrogen mineralisation, immobilisation and loss,
and their role in determining differences in net nitrogen production during waterlogged and aerobic incubation of
soils. Soil Biol. Biochem. 33:1305–1315.
Warneck, P. 1988. Chemistry of The Natural Atmosphere. San Diego, New York. 499 pp.
Wasmund, K. , M. Mußmann , and A. Loy . 2017. The life sulfuric: Microbial ecology of sulfur cycling in marine
sediments. Environ. Microbiol. Rep. 9:323–344.
Watson, P. G. and T. E. Frickers . 1990. A multilevel, in situ pore-water sampler for use in intertidal sediments
and laboratory microcosms. Limnol. Oceanogr. 35:1381–1389.
Webb, S. M. , G. J. Dick , J. R. Barger , and B. M. Tebo . 2005. Evidence for the presence of Mn(III)
intermediates in the bacterial oxidation of Mn(II). Proc. Natl. Acad. Sci. USA. 102:5558–5563.
Weber, K. A. , L. A. Achenbach , and J. D. Coats . 2006. Microorganisms pumping iron: Anerobic microbial iron
oxidation and reduction. Nat. Rev. Microbiol. 4:752–764.
Webster, J. R. and E. F. Benfield . 1986. Vascular plant breakdown in freshwater ecosystems. Annu. Rev. Ecol.
Syst. 17:567–594.
Wegner, L. H. 2010. Oxygen transport waterlogged soils. In S. Mancuso and S. Shabala (eds.) Waterlogging
Signalling and Tolerance in Plants. Springer, Heidelberg, Dordrecht, London, New York. Chapter 1:3–22 pp.
doi:10.1007/978-3-642-10305-6.
Weider, R. K. , and G. E. Lang . 1988. Cycling of inorganic and organic sulfur in peat from Big Run Bog, West
Virginia. Biogeochemistry. 5:221–242.
Weiman, S. , S. B. Joye , J. E. Kostka , K. M. Halanych , and R. R. Colwell . 2021. GoMRI insights into
microbial genomics and hydrocarbon bioremediation response in marine ecosystems. Oceanography.
34:124–135.
Weil, R. R. and N. C. Brady . 2017. The Nature and Properties of Soils. 15th Edition. Prentice Hall, Upper
Saddle River, NJ. 960 pp.
Weiss, M. S. , U. Abele , J. Weckesser , W. Walte , E. Schiltz , and G. E. Schulz . 1991. Molecular architecture
and electrostatic properties of a bacterial porin. Science. 254:1627–1630.
Wells, R. C. 1914. Electric Activity in Ore Deposits. United States Geological Survey, Bulletin. 548.
Wetzel, R. G. 1990. Land-water interfaces: Metabolic and limnological regulators. Verhand. Int. Verein. Limnol.
24:6–24.
Wetzel, R. G. 1991. Extracellular enzymatic interactions: Storage, redistribution, and interspecific
communication. In R. J. Chrost (ed.) Microbial Enzymes in Aquatic Environments. Springer-Verlag, New York.
pp. 6–28.
Wetzel, R. G. 1993a. Microcommunities and microgradients: linking nutrient regeneration, microbial mutualism,
and high sustained aquatic primary production. Neth. J. Aquat. Ecol. 27:3–9.
Wetzel, R. G. 1993b. Humic compounds from wetlands: Complexation, inactivation, and reactivation of surface-
bound and extracellular enzymes. Verh. Int. Verein. Limnol. 25:122–128.
Wetzel, R. G. 2001. Limnology: Lake and River Ecosystems. 3rd Edition. Academic Press, New York. 1006 pp.
Wetzel, R. G. 2002. Dissolved organic carbon: detrital energetics, metabolic regulators, and drivers of
ecosystem stability of aquatic ecosystems. In S. Findlay and R. Sinsabaugh (eds.) Aquatic Ecosystems:
Interactivity of Dissolved organic Matter. Academic Press, San Diego. pp. 455–475.
Whigham, D. F. 1999. Plant mediated controls on nutrient cycling in temperate fens and bogs. Ecology.
80:2170–2181.
White, D. S. and B. L. Howes . 1994. Long-term 15N-nitrogen retention in the vegetated sediments of a New
England salt marsh. Limnol. Oceanogr. 39:1878–1892.
White, G. N. and J. B. Dixon . 1996. Iron and manganese distribution in nodules from a young Texas vertisols.
Soil Sci. Soc. Am. J. 60:1254–1262.
White, J. R. , M. A. Belmont , and C. D. Metcalfe . 2006. Pharmaceuticals compounds in wastewater wetland
treatment are a potential solution. Sci. World J. 6:1731–1736.
White, J. R. and K. R. Reddy . 1999. Influence of nitrate and phosphorus loading on denitrification enzyme
activity in Everglades wetland soils. Soil Sci. Soc. Am. J. 63:1945–1954.
White, J. R. and K. R. Reddy . 2000. Influence of phosphorus loading on organic nitrogen mineralization of
northern everglades soils. Soil Sci. Soc. Am. J. 64:1525–1534.
White, J. R. and K. R. Reddy . 2001. Influence of selected inorganic electron acceptors on organic nitrogen
mineralization in Everglades soils. Soil Sci. Soc. Am. J. 65:941–948.
Whiting, G. J. and J. P. Chanton . 1993. Primary production control of methane emission from wetlands.
Nature. 364:794–795.
Wickland, K. P. and J. C. Neff . 2008. Decomposition of soil organic matter from boreal black spruce forest:
Environmental and chemical controls. Biogeochemistry. 87:29–47.
Widdel, F. 1988. Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In A. J. B. Zehnder (ed.)
Biology of Anaerobic Microorganisms. John Wiley & Sons, Inc., New York. pp. 469–585.
Widdel, F. , S. Schnell , S. Heising , A. Ehrenreich , B. Assmus , and B. Schink . 1993. Ferrous iron oxidation by
anoxygenic phototrophic bacteria. Nature. 362:834–836.
Wilkinson, J. L. , P. S. Hooda , J. Barker , S. Barton , and J. Swinden . 2016. Ecotoxic pharmaceuticals,
personal care products, and other emerging contaminants: A review of environmental, receptor-mediated,
developmental, and epigenetic toxicity with discussion of proposed toxicity to humans. Crit Rev Environ Sci
Technol. 46:336–381. doi:10.1080/10643389.2015.1096876.
Winkler, P. , K. Kaiser , A. Thompson , K. Kalbitz , S. Fiedler , and R. Jahn . 2018. Contrasting evolution of iron
phase composition in soils exposed to redox fluctuations. Geochim. Cosmochim. Acta. 235:89–102.
Wood, M. E. , J. T. Kelley , and D. F. Belknap . 1989. Patterns of sediment accumulation in the tidal marshes of
Maine. Estuaries. 12:237–246.
Wood, S. A. , J. M. Kuhajek , M. de Winton , and N. R. Phillips . 2012. Species composition and cyanotoxin
production in periphyton mats from three lakes of varying trophic status. FEMS Microbiol. Ecol. 79:312–326.
doi:10.1111/j.1574-6941.2011.01217.x.
Worral, F. and T. P. Burt . 2004. Time series analysis of long-term river dissolved organic carbon records.
Hydrol. Process. 18:893–911.
Worral, F. , T. P. Burt , and J. Adamson . 2005. Fluxes of dissolved carbon dioxide and inorganic carbon from
an upland peat catchment: Implications for soil respiration. Biogeochemistry. 73:515–539.
Worral, F. , T. P. Burt , and R. Shedden . 2003. Long term records of riverine carbon flux. Biogeochemistry.
64:165–178.
Wrage, N. , G. L. Velthof , M. L. van Beusichem , and O. Oenema . 2001. Role of nitrifier denitrification in the
production of nitrous oxide. Soil Biol. Biochem. 33:1723–1732.
Wright, A. L. and K. R. Reddy . 2001a. Phosphorus loading effects on extracellular enzyme activity in
Everglades wetland soil. Soil Sci. Soc. Am. J. 65:588–595.
Wright, A. L. and K. R. Reddy . 2001b. Heterotrophic microbial activities in Northern Everglades Wetland. Soil
Sci. Soc. Am. J. 65:1856–1864.
Wuana, R. A. and F. E. Okieimen . 2011. Heavy metals in contaminated soils: A review of sources, chemistry,
risks and best available strategies for remediation. Int. Sch. Res. Network, ISRN Ecol. Article ID 402647, 20
pages. doi:10.5402/2011/402647.
Yamauchi, T. , S. Shimamura , M. Nakazonoa , and T. Mochizuki . 2013. Aerenchyma formation in crop
species: A review. Field Crops Res. 152:8–16.
Yi, B. , H. Wang , Q. Zhang , H. Jin , T. Abbas , Y. Li , Y. Liu , and H. Di . 2019. Alteration of gaseous nitrogen
losses via anaerobic ammonium oxidation coupled with ferric reduction from paddy soils in Southern China. Sci.
Total Environ. 652:1139–1147.
Yu, K. W. , Z. P. Wang , and G. X. Chen . 1997. Nitrous oxide and methane transport through rice plants. Biol.
Fertility Soils. 24:341–343.
Yu, K. and J. Rinklebe . 2013. Soil redox potential and pH controllers. In R. D. DeLaune , K. R. Reddy , C. J.
Richardson , and P. Megonigal (eds.) Methods in Biogeochemistry of Wetlands. Soil Science Society of
America, Madison, WI, SSSA Book Series, No. 10.
Yu, T.-R. 1985. Physical Chemistry of Paddy Soils. Springer-Verlag, New York. 217 pp.
Zak, D. R. , W. E. Holmes , D. C. White , A. D. Peacock , and D. Tilman . 2003. Plant diversity, soil microbial
communities, and ecosystem function: Are there any links? Ecology. 84:2042–2050. https://doi.org/10.1890/02-
0433.
Zaman, M. , H. J. Di , K. C. Cameron , and C. M. Frampton . 1999. Gross nitrogen mineralization and
nitrification rates and their relationships to enzyme activities and the soil microbial biomass in soils treated with
dairy shed effluent and ammonium fertilizer at different water potentials. Biol. Fertil. Soils. 29:178–186.
Zang, X. , D. H. Jasper , J. D. H. van Heemst , K. J. Daria , and P. G. Hatcher . 2000. Encapsulation of protein
in humic acid from a Histosol as an explanation for the occurrence of organic nitrogen in soil and sediment.
Org. Geochem. 31:679–695.
Zehr, J. P. and B. B. Ward . 2002. Nitrogen cycling in the ocean: New perspectives on processes and
paradigms. Appl. Environ. Microbiol. 68:1015–1024.
Zeikus, J. G. 1981. Lignin metabolism and the carbon cycle. In M. Alexander (ed.) Advances in Microbial
Ecology, Vol. 5. Plenum Press, New York. pp. 211–243.
Zuberer, D. A. 1999. Recovery and enumeration of viable bacteria. In R. W. Weaver (ed.) Methods of Soil
Analysis Part 2. Microbiological and Biochemical Properties. SSSA Book Series 5. Soil Science Society of
America, Madison, WI. pp. 119–144.

View publication stats

You might also like