0000 A0 060 Cal 0001
0000 A0 060 Cal 0001
0000 A0 060 Cal 0001
:
KUWAIT OIL COMPANY (K.S.C) 1
Date:
A Subsidiary of Kuwait Petroleum Corporation
17-02-19
Contract Project Title Rev.
Document Number:
No.:
17051820-0000-A60-060-CAL-0001
17051820 1
Project No.: GC-32, NEW GATHERING CENTRE FOR SEK
EF/1931
Job No.: Document Title:
JI-2035 PIPELINE MECHANICAL CALCULATION REPORT
Page 2 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
TABLE OF CONTENTS
1. PROJECT INTRODUCTION .................................................................. 5
2. SCOPE AND PURPOSE ....................................................................... 5
3. REFERENCE DOCUMENTS ................................................................... 6
3.1 PROJECT DOCUMENT ........................................................................... 6
3.2 INTERNATIONAL CODES AND STANDARDS ................................................... 7
3.3 KOC STANDARDS AND SPECIFICATIONS ...................................................... 7
8. APPENDIXES ................................................................................. 31
8.1 APPENDIX-A PIPELINES WALL THICKNESS CALCULATION ................................. 31
8.2 APPENDIX-B COMBINED STRESS CALCULATION FOR DESIGN FACTOR 0.72 ............. 31
8.3 APPENDIX-C COMBINED STRESS CALCULATION FOR DESIGN FACTOR 0.6 .............. 31
8.4 APPENDIX-D ELASTIC BEND RADIUS CALCULATION FOR DESIGN FACTOR 0.72 ........ 31
8.5 APPENDIX-E ELASTIC BEND RADIUS CALCULATION FOR DESIGN FACTOR 0.6 .......... 31
Page 3 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
Page 4 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
1. PROJECT INTRODUCTION
Kuwait Oil Company (KOC) (hereafter called Company) have awarded Petrofac
International Ltd. (PIL), Sharjah (hereafter called Petrofac or Contractor) the Contract
for the Project: GC-32, New Gathering Centre for SEK in South East Kuwait (Project
EF/1931) on Lumpsum Turnkey (LSTK) Basis.
The GC-32-New Gathering Center for SEK shall process crude oil and associated gas,
produced from the Arifjan, Marat, Minagish Oolite and Burgan Wara fields. GC-32 Facility
shall separate oil, gas and water, to recover condensate from the gas and to export these
streams following their treatment.
The sour export crude is pumped to the South Tank Farm (STF) P-header or Ahmadi
Distribution Manifold (ADM) / KMH (Project EF-1669) or NTF (36” Ratawi-Burgan oil
pipeline at TB1 Manifold).
GC-32 gas and condensate export lines will tie-in to the West Kuwait gas and condensate
export pipelines via ISC-171A facility where gas slug catcher facilities as well as gas and
condensate pipeline pigging facilities are provided.
Effluent water will be exported to EWDP-II via 28” pipeline joining existing header inside
EWDP-II.
The gathering centre shall be designed to produce up to 120,000 BOPD Crude Oil, 83
MMSCFD Gas, 12,500 BCPD Condensate and 280,000 BWPD Effluent Water.
Page 5 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
6” Flowlines from Remote Manifolds (90 No. Flowlines beyond 1m from the
remote manifold plot area are not part of the scope of the GC-32 Project Pipeline 1
Scope).
This report does not cover the followings and this analysis will be presented in a separate
report.
3. REFERENCE DOCUMENTS
3.1 PROJECT DOCUMENT
The following are the reference documents
to 0009
Page 6 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
The latest revision of documents current at time of Contract award shall be used.
API RP1110 Recommended Practice for the Pressure Testing of Steel Pipelines
for the Transportation of Gas, Petroleum Gas, Hazardous Liquids,
Highly Volatile Liquids, or Carbon Di Oxide
Construction
Page 7 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
4. DESIGN DATA
Pipeline design data parameters presented in this section are extracted from Pipeline
Design Basis (Doc.No. 17051820-0000-A0-060-BOD-0001). The pipeline mechanical
design calculations were performed based on the following design data.
LP SOUR
HP GATHERING SOUR LIQUID SOUR GAS SOUR OIL FUEL GAS
GATHERING CONDENSATE
PARAMETERS HEADER RETURN EXPORT EXPORT IMPORT
HEADER EXPORT
TRUNKLINE PIPELINE PIPELINE PIPELINE PIPELINE
TRUNKLINE PIPELINE
Pipe Material Grade API 5L Gr API 5L Gr X52 API 5L Gr API 5L Gr API 5L Gr API 5L Gr API 5L Gr X52
X52 X52 X52 X52 X52
Pipeline Design Code ASME B 31.8 ASME B 31.8 ASME B 31.8 ASME B 31.8 ASME B 31.8 ASME B 31.4 ASME B 31.8
Design Factor 0.72 & 0.6 0.72 & 0.6 0.72 & 0.6 0.72 & 0.6 0.72 & 0.6 0.72 0.72 & 0.6
Max./Min. Design 76/ (-)19 76/ (-)19 50/ (-)19 50/ (-)19 45/ (-) 19 65 / (-)3 50/ (-)19
Temperature-Buried
Pipeline Section (°c)
Max./Min. Design 93/ (-)19 93/ (-)19 93/ (-)19 93/ (-)19 93/ (-)19 93/ (-)3 93/ (-)19
Temperature-Above
Ground Pipeline
Section (°C)
Installation 8 8 8 8 8 8 8
Temperature (°C)
Page 8 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
LP SOUR
HP GATHERING SOUR LIQUID SOUR GAS SOUR OIL FUEL GAS
GATHERING CONDENSATE
PARAMETERS HEADER RETURN EXPORT EXPORT IMPORT
HEADER EXPORT
TRUNKLINE PIPELINE PIPELINE PIPELINE PIPELINE
TRUNKLINE PIPELINE
Installation Above Under Ground Under Under Under Under Under Ground
Ground Ground Ground Ground Ground
Specified Minimum 360 MPa 360 MPa 360 MPa 360 MPa 360 MPa 360 MPa 360 MPa
Yield Stress (SMYS)
(52200 PSI) (52200 PSI) (52200 PSI) (52200 PSI) (52200 PSI) (52200 PSI) (52200 PSI)
Young’s Modulus of 199948 MPa ~ 199948 MPa ~ 199948 MPa ~ 199948 MPa ~ 199948 MPa ~ 199948 MPa ~ 199948 MPa ~
Elasticity
203000 MPa 203000 MPa 203000 MPa 203000 MPa 203000 MPa 203000 MPa 203000 MPa
-5
Co-efficient of 1.17 X 10 / 1.17 X 10 -5 / k 1.17 X 10 -5
/ 1.17 X 10 -5
/ 1.17 X 10 -5
/ 1.17 X 10 -5
/ 1.17 X 10 -5 / k
Thermal Expansion
k k k k k
Hydrostatic Test At Hoop At Hoop Stress At Hoop At Hoop At Hoop At Hoop At Hoop Stress
Stress 90% of 90% of SMYS Stress 90% of Stress 90% of Stress 90% of Stress 90% of 90% of SMYS
SMYS SMYS SMYS SMYS SMYS
Facility
Design Factor Reference
Table 841.1.6-2 of
Plant Areas 0.6 0.6 0.5 ASME B31.8 (Note-1)
Page 9 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
Facility
Design Factor Reference
Note-1: The design factor for each pipeline section shall be based on the location class
determined in accordance with section 840 of ASME B31.8, taking account of any
pipeline future development in the vicinity of the pipeline corridor.
6. CALCULATION METHODOLOGY
6.1 PIPELINE WALL THICKNESS CALCULATION
6.1.1 GENERAL
Wall thickness calculations for Pipelines are performed in accordance with ASME B31.4
(clause 403.2.1) and ASME B31.8 (clause 841.1.1). Stresses have been checked for
adequacy of wall thickness using method specified in ASME B 31.4 and ASME B 31.8.
Design factor consideration shall be as per clause 4 of this document.
Page 10 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
A corrosion allowance shall be added to the calculated thickness to arrive the minimum
wall thickness requirement.
The final thickness derived as specified above, is then round up to the next ASME B36.10M
wall Thickness to select the actual thickness.
Pipeline wall thickness shall be calculated as per with ASME B31.4 (clause 403.2.1) and
ASME B31.8 (clause 841.1.1). The nominal wall thickness is calculated in accordance with
the following formulas:
tn ≥ t + A
and
P×D P×D
t= , t=
2 × DF × E × SMYS 2 × DF × E × SMYS × T
where
t n = Nominal wall thickness satisfying requirements for pressure and allowances, (mm)
DF = Design Factor
Page 11 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
ASME B31.4 & ASME B 31.8 qualifies the pipeline with regard to location classes, and as
per Pipeline Design Basis; Trunklines/Pipelines/Flowlines come under design factor of
0.72 & 0.6 (Refer Table 5.1).
For both restrained and unrestrained pipelines, the circumferential (hoop) stress due to
pressure containment shall be computed in accordance with ASME B31.4 (clause 402.3)
& ASME B 31.8 (clause 805.2.3) as per following equation:
PD
SH =
2t
where
Pipeline Longitudinal stress for Restrained Pipe due to thermal Expansion shall be
computed in accordance with ASME B31.4 (clause 402.5.1) & ASME B 31.8 (clause 833.2)
as following equation below:
ST = Eα(Ti − T)
where
Page 12 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
Buried pipeline is considered as restrained lines where the axial displacement or flexure
at bends is prevented by soil. Commonly, restrained pipeline may include straight
section of buried pipeline, bends in consolidated soil, and above ground pipeline
attached to closely spaced on rigid supports.
The pipeline will be subject to longitudinal stress due to the combined effects of
Temperature rise and fluid pressure. The longitudinal stress of the restrained line shall
be calculated in accordance with ASME B31.4 (clause 402.6.1) & ASME B31.8 (clause
833.3).
SL = SP + ST + SX + SB
Where
= R
Ac
Ac = Cross-sectional area not including corrosion allowance, (m2)
Page 13 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
The equivalent combined stress of the restrained pipe shall be not greater than 90% of
SMYS and shall be computed as per Shear Theory or Von Mises criteria as presented
below:
Shear Stress (As per Clause 402.7 of ASME B31.4 & ASME B 31.8)
Where:
SH = Hoop stress
Von Mises Equation (As per Clause A402.3.5 of ASME B31.4 & Clause A824.2.2 of ASME
B31.8)
σVon = √SL2 − SL SH + SH
2
Where:
SH = Hoop stress
Von Mises Equation have been chosen to calculate the Combined Stress of Restrained
Pipes.
Page 14 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
Unrestrained section of the pipeline is pipeline which is free to displace axially or flex
at bends. Unrestrained section may include aboveground pipeline that is configured to
accommodate thermal expansion or anchor movement through the flexibility, bends and
adjacent pipeline buried in soft or unconsolidated soil, and unbackfilled section of
otherwise buried pipeline that is sufficiently flexible to displace laterally. The total
longitudinal stress from pressure, weight and external loadings in unrestrained pipeline
shall be calculated with ASME B31.4 (clause 402.6.2) & ASME B31.8 (clause 833.6).
SL = SP + SX + SB ,
where
= 0.5SH
SX = Axial stress due to external force, (MPa)
= M
Z
M= bending moment across the nominal pipe cross section due to weight, (Nm)
Change in direction, vertically and horizontally, shall be routed by elastic bending where
adequate space is available. Elastic bend loads will produce bending stress to the
pipeline. The longitudinal and combined stress of the pipeline which is subject to the
elastic bend loads shall not exceed the limits shown in the Table 6.5
Minimum elastic bend radii allowable in the fully restrained section were calculated,
using the following standard formula:
Page 15 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
DE
R=
2SB
where
The hydrostatic pressure testing of the new pipelines shall be done in compliance with
API RP 1110 and KOC Specification for Pipeline Pigging and Hydrostatic Test KOC
Specification Pipeline Pigging and Hydrostatic Test (015-IH-1004 Rev.1). Clause 7.3 of
015-IH-1004 Rev.1 requires pipe to be hydro tested at a pressure equal to 1.25 times of
design pressure.
The minimum and maximum hydrostatic test pressures are used for calculating
maximum allowable elevation difference in the section which forms a vital input to
sectionalize the pipeline test section in consideration with other constraints.
(0.9×SMYS)(2×t×E)
Maximum Test Pressure =[ ]
D
(as per Clause 437.4.1(a) ASME B31.4 & Clause 816 of ASME B 31.8)
where
Page 16 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
As per Clause
437.4.1(a) ASME B31.4
5 Field Hydrotest Pressure 90% of SMYS
& Clause 816 of ASME
B 31.8
The wall thickness of finished bend shall take into account wall thinning at the outer
radius and will be greater than design thickness.
Wall thinning percentage of mother pipe wall thickness is computed with formula
indicated in BS PD 8010-1 para. 6.2.2.3.
50%
t thin = = 0.09
(n + 1)
where
(5D−0.5D)
n= = 4.5
D
Page 17 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
tw
t Bend =
(1 − t Thin1h )
Where
Note: The above formula does not consider other factors that depend on the bending
process and the bend manufacturer shall be consulted where wall thinning is critical.
Where the anchors are not available in the pipeline, the transition zone and aboveground
portion will be expanded due to thermal load. Aboveground pipe that is configured to
accommodate thermal expansion. The above-ground pipelines shall be routed in a
manner such that no excessive movement occurs on the pipes due to the effects of
thermal expansion and / or contraction, internal pressure and other design internal or
external loads. Pipeline end expansion in the transition zone between above ground and
underground shall be limited to 50mm and verify by stress analysis, to maintain this limit,
including adding flexibility provisions in aboveground and underground, increasing burial
depth and/or providing anchor blocks.
The pipeline to be laid in a trench covered by soil, which will provide a hold down force
to prevent buoyancy. Depending on the buoyancy requirement, suitable buoyancy
preventive method (such as concrete coating or any other option) shall be applied. This
force is calculated by determining the submerged weight of soil above the pipeline.
The method used to determine the vertical stability of the pipeline is to calculate the
total weight of the pipeline, the soil hold down force and compare them with the weight
of the external fluid (water) the pipeline would displace.
Page 18 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
Expansion loops shall be provided as per Stress Reports for 10" LP Trunklines (Doc. No.
17051820-0032-C1-060-STA-0001 to 0009) and Typical drawing for Expansion loop &
support details for Aboveground 10” LP Trunklines (Dwg. No 17051820-0000-A0-060-STD-
0012).
7. SUMMARY OF RESULTS
7.1 PIPELINE WALL THICKNESS
Below table presents the result of the selected pipeline wall thickness. Detailed
calculations are available in Appendix A.
Page 19 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
TABLE 6.2.1: COMBINED STRESS SUMMARY FOR RESTRAINED PIPE (Condition (i) & (ii))
DESIGN
SL.NO DESCRIPTION
FACTOR Calculated Allowable Calculated Allowable Calculated Allowable
Stress Stress
Stress Ratio
(MPa) (MPa) Ratio (MPa) (MPa) (MPa) (MPa) Ratio
10” LP
0.72 211.8 259.2 81.7% 138.3 324 42.6% 305.5 324 94.2%
Gathering
1
Header
Trunkline 0.6 162.1 216 75% 153.2 324 47.2% 273.2 324 84.3%
10” HP
Gathering 0.72 211.8 259.2 81.7% 127.7 324 46% 258.8 324 80%
2
Header
Trunkline 0.6 162.1 216 75% 153.2 324 47.2% 273.2 324 84.3%
6” Sour Liquid 0.72 210.9 259.2 81.3% 127.4 324 39.3% 231.3 324 71.3%
3 Return
Pipeline 0.6 210.9 216 97.6% 138.6 324 42.7% 304.8 324 94%
6” Sour
0.72 210.9 259.2 81.3% 127.4 324 39.3% 231.3 324 71.3%
Condensate
4
Export
Pipeline 0.6 210.9 216 97.6% 138.6 324 42.7% 304.8 324 94%
14” Sour Gas 0.72 240.7 259.2 92.8% 136.3 324 42% 248.9 324 76.8%
5 Export
Pipeline 0.6 187.6 216 86.8% 145.6 324 45% 289.3 324 89.2%
20” Sour Oil
6 Export 0.72 233.6 259.2 90.1% 131.8 324 40.6% 320.5 324 98.9%
Pipeline
6” Fuel Gas 0.72 81.6 259.2 31.4% 88.6 324 27% 135.9 324 41.9%
7 Import
Pipeline 0.6 81.6 216 37.7% 177.4 324 54.7% 229.3 324 70.7%
6” Flowlines 0.72 202.7 259.2 78.2% 124.9 324 38.5% 267.7 324 82.6%
8 from Remote
Manifolds 0.6 202.7 216 93.8% 141.1 324 43.5% 299.3 324 92.3%
Page 20 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
TABLE 6.2.2: COMBINED STRESS SUMMARY FOR RESTRAINED PIPE (Condition (iii) & (iv))
DESIGN
SL.NO DESCRIPTION
FACTOR Calculated Allowable Calculated Allowable Calculated Allowable
Stress Stress
Stress Ratio
(MPa) (MPa) Ratio (MPa) (MPa) Ratio (MPa) (MPa)
10” LP
0.72 211.8 259.2 81.7% 191.8 324 59.1% 257.1 324 79.3%
Gathering
1
Header
Trunkline 0.6 162.1 216 75% 176.9 324 54.6% 220.6 324 68%
10” HP
Gathering 0.72 211.8 259.2 81.7% 191.8 324 59.1% 230.6 324 71.1%
2
Header
Trunkline 0.6 162.1 216 75% 176.9 324 54.6% 220.6 324 68%
6” Sour Liquid 0.72 210.9 259.2 81.3% 191.5 324 59.1% 201.9 324 62.3%
3 Return
Pipeline 0.6 210.9 216 97.6% 191.5 324 59.1% 256.4 324 79.1%
6” Sour
0.72 210.9 259.2 81.3% 191.5 324 59.1% 201.9 324 62.3%
Condensate
4
Export
Pipeline 0.6 210.9 216 97.6% 191.5 324 59.1% 256.4 324 79.1%
14” Sour Gas 0.72 240.7 259.2 92.8% 200.5 324 61.8% 223.3 324 68.9%
5 Export
Pipeline 0.6 187.6 216 86.8% 184.5 324 56.9% 239 324 73.7%
20” Sour Oil
6 Export 0.72 233.6 259.2 90.1% 160.3 324 49.4% 273.7 324 84.4%
Pipeline
6” Fuel Gas 0.72 81.6 259.2 31.4% 152.7 324 47.1% 132.4 324 40.8%
7 Import
Pipeline 0.6 81.6 216 37.7% 152.7 324 47.1% 169.5 324 52.3%
6” Flowlines 0.72 202.7 259.2 78.2% 189.1 324 58.3% 223.3 324 68.9%
8 from Remote
Manifolds 0.6 202.7 216 93.8% 189.1 324 58.3% 250.2 324 77.2%
Note: It is observed that the stress ratios are more in condition (i) & (ii) (refer Table
6.2.1 & 6.2.2). Detailed calculations have been performed for condition (i) & (ii) and
available in Appendix B.
Page 21 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
DESIGN
SL.NO DESCRIPTION
FACTOR Calculated Allowable Stress Ratio Calculated Allowable Stress Calculated Allowable Stress
(MPa) (MPa) (MPa) (MPa) Ratio (MPa) (MPa) Ratio
10” LP
0.72 211.8 259.2 81.7% 140.5 270 52% 186.7 324 57.6%
Gathering
1
Header
Trunkline 0.6 162.1 216 75% 111.1 270 41.1% 143.6 324 44.3%
10” HP
Gathering 0.72 211.8 259.2 81.7% 140.5 270 52% 186.7 324 57.6%
2
Header
Trunkline 0.6 162.1 216 75% 111.1 270 41.1% 143.6 324 44.3%
6” Sour
0.72 210.9 259.2 81.3% 160.2 270 59.3% 190.7 324 58.8%
Liquid
3
Return
Pipeline 0.6 210.9 216 97.6% 160.2 270 59.3% 190.7 324 58.8%
6” Sour
0.72 210.9 259.2 81.3% 160.2 270 59.3% 190.7 324 58.8%
Condensate
4
Export
Pipeline 0.6 174.7 216 67.3% 123.8 270 45.8% 155.6 324 48%
0.72 240.7 259.2 92.8% 153.4 270 56.8% 211.1 324 65.1%
14” Sour Gas
5 Export
Pipeline 0.6 187.6 216 86.8% 122 270 45% 164.9 324 50.8%
0.72
(Above 233.6 259.2 90.1% 150.4 270 55.7% 205 324 63.2%
20” Sour Oil Ground)
6 Export
Pipeline 0.72
(Below 233.6 259.2 90.1% 150.4 270 55.7% 205 324 63.2%
Ground)
89.3 324 27.5%
6” Fuel Gas 0.72 81.6 259.2 31.4% 95.5 270 35.3%
7 Import
Pipeline 0.6 81.6 216 37.7% 95.5 270 35.3% 89.3 324 27.5%
6” Flowlines 0.72 202.7 259.2 78.2% 156.1 270 57.8% 183.9 324 56.7%
8 from Remote
Manifolds 0.6 202.7 216 93.8% 156.1 270 57.8% 183.9 324 56.7%
Page 22 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
SELECTED ALLOWABLE
CALCULATED MIN.
RESTRAINED MIN. ELASTIC CALCULATED
SL.NO DESCRIPTION CASES ELASTIC BENDING COMBINED
CONDITION BENDING STRESS (MPa)
RADIUS (m) STRESS (MPa)
RADIUS (m)
Long. Stress 160.95
Max Design
Comb. 90.7
Temp. 323.84
10” LP Gathering Stress
1. 1Header Trunkline- 1225 324
For Corroded Pipe Long. Stress 150.30
Min Design
Comb. 141.1
Temp. 188.75
Stress
Long. Stress 229.54
Max Design
Comb. 106.9
Temp. 322.13
10” LP Gathering Stress
2. 2Header Trunkline- 400 324
For New Pipe Long. Stress 175.01
Min Design
Comb. 127
Temp. 159.98
Stress
Long. Stress 159.53
Max Design
Comb. 101
Temp. 322.67
10” HP Gathering Stress
3. 3Header Trunkline- 450 324
For Corroded Pipe Long. Stress 189.25
Min Design
Comb. 141.1
Temp. 201.5
Stress
Long. Stress 230.73
Max Design
Comb. 123.6
Temp. 323.24
10” HP Gathering Stress
4. 4Header Trunkline- 250 324
For New Pipe Long. Stress 216.58
Min Design
Comb. 127
Temp. 190.01
Stress
Long. Stress 150.63
Max Design
Comb. 59.4
6” Sour Liquid Temp. 314.34
Stress
5. Return Pipeline- 150 324
For Corroded Pipe Long. Stress 241.28
Min Design
Comb. 86.9
Temp. 227.62
Stress
Long. Stress 235.78
Max Design
Comb. 65.9
6” Sour Liquid Temp. 310.47
Stress
6. 4Return Pipeline- 100 324
For New Pipe Long. Stress 269.75
Min Design
Comb. 75.9
Temp. 234.37
Stress
Long. Stress 150.36
Max Design
7. 56” Sour Comb. 59.4 150 324
Condensate Temp. 314.34
Stress
Page 23 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
SELECTED ALLOWABLE
CALCULATED MIN.
RESTRAINED MIN. ELASTIC CALCULATED
SL.NO DESCRIPTION CASES ELASTIC BENDING COMBINED
CONDITION BENDING STRESS (MPa)
RADIUS (m) STRESS (MPa)
RADIUS (m)
Export Pipeline- Long. Stress 241.28
For Corroded Pipe Min Design
Comb. 86.9
Temp. 227.62
Stress
Long. Stress 235.78
Max Design
6” Sour Comb. 65.9
Temp. 310.47
Condensate Stress
8. 6 100 324
Export Pipeline- Long. Stress 269.75
For New Pipe Min Design
Comb. 75.9
Temp. 234.37
Stress
Long. Stress 126.72
Max Design
Comb. 117.1
14” Sour Gas Temp. 323.27
Stress
9. 7Export Pipeline- 325 324
For Corroded Pipe Long. Stress 247.40
Min Design
Comb. 172.6
Temp. 244.12
Stress
Long. Stress 202.52
Max Design
Comb. 128
14” Sour Gas Temp. 308.53
Stress
10. 8Export Pipeline- 225 324
For New Pipe Long. Stress 270.32
Min Design
Comb. 168.6
Temp. 234.75
Stress
Long. Stress 134.02
Max Design
Comb. 189.4
20” Sour Oil Temp. 322.34
Stress
11. 9Export Pipeline- 750 324
For Corroded Pipe Long. Stress 164.99
Min Design
Comb. 226.4
Temp. 221.25
Stress
Long. Stress 222.50
Max Design
Comb. 223.8
20” Sour Oil Temp. 316.06
12. 1 Stress
Export Pipeline- 400 324
0 Long. Stress 196.82
For New Pipe Min Design
Comb. 210.3
Temp. 177.81
Stress
Long. Stress 246.11
Max Design
Comb. 68.7
6” Fuel Gas Temp. 295.46
13. 1 Stress
Import Pipeline- 100 324
1 Long. Stress 259.42
For Corroded Pipe Min Design
Comb. 72.6
Temp. 229.77
Stress
Long. Stress 257.12
Max Design
Comb. 71.9
6” Fuel Gas Temp. 282.24
14. 1 Stress
Import Pipeline- 100 324
2 Min Design Long. Stress 248.41
For New Pipe
Temp. Comb. 69.3
229.30
Stress
Long. Stress 169.02
Max Design
6” Flowlines from Comb. 63.8
Temp. 322.39
15. 1Remote Stress
250 324
3Manifolds-For Min Design Long. Stress 193.28
Corroded Pipe Temp. 85.8
Comb.
198.18
Stress
Page 24 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
SELECTED ALLOWABLE
CALCULATED MIN.
RESTRAINED MIN. ELASTIC CALCULATED
SL.NO DESCRIPTION CASES ELASTIC BENDING COMBINED
CONDITION BENDING STRESS (MPa)
RADIUS (m) STRESS (MPa)
RADIUS (m)
Long. Stress 241.94
Max Design
6” Flowlines from Comb. 82.3
Temp. 312.95
16. 1Remote Stress
150 324
4Manifolds-For Min Design Long. Stress 211.46
New Pipe Temp. 75.4
Comb.
183.22
Stress
SELECTED ALLOWABLE
CALCULATED MIN.
RESTRAINED MIN. ELASTIC CALCULATED
SL.NO DESCRIPTION CASES ELASTIC BENDING COMBINED
CONDITION BENDING STRESS (MPa)
RADIUS (m) STRESS (MPa)
RADIUS (m)
Long. Stress 208.66
Max Design
Comb. 101.4
Temp. 321.97
10” LP Gathering Stress
1. 1Header Trunkline- 500 324
For Corroded Pipe Long. Stress 168.19
Min Design
Comb. 131.2
Temp. 165.25
Stress
Long. Stress 246.40
Max Design
Comb. 112.5
Temp. 320.19
10” LP Gathering Stress
2. 2Header Trunkline- 350 324
For New Pipe Long. Stress 177.96
Min Design
Comb. 123
Temp. 156.38
Stress
Long. Stress 208.66
Max Design
Comb. 101.4
Temp. 321.97
10” HP Gathering Stress
3. 3Header Trunkline- 500 324
For Corroded Pipe Long. Stress 168.19
Min Design
Comb. 131.2
Temp. 165.25
Stress
Long. Stress 246.40
Max Design
Comb. 112.5
Temp. 320.19
10” HP Gathering Stress
4. 4Header Trunkline- Long. Stress 350 177.96 324
For New Pipe
Min Design
Comb. 123
Temp. 156.38
Stress
Page 25 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
SELECTED ALLOWABLE
CALCULATED MIN.
RESTRAINED MIN. ELASTIC CALCULATED
SL.NO DESCRIPTION CASES ELASTIC BENDING COMBINED
CONDITION BENDING STRESS (MPa)
RADIUS (m) STRESS (MPa)
RADIUS (m)
Max Design Comb.
317.32
6” Sour Liquid Temp. Stress
Return Pipeline- Long. Stress 174.85
For New Pipe Min Design
Comb. 75.9
Temp. 154.09
Stress
Long. Stress 161.39
Max Design
6” Sour Comb. 56
Temp. 323.37
Condensate Stress
7. 5 750 324
Export Pipeline- Long. Stress 150.18
For Corroded Pipe Min Design
Comb. 86.9
Temp. 188.05
Stress
Long. Stress 243.01
Max Design
6” Sour Comb. 69.3
Temp. 317.32
Condensate Stress
8. 6 225 324
Export Pipeline- Long. Stress 174.85
For New Pipe Min Design
Comb. 75.9
Temp. 154.09
Stress
Long. Stress 185.72
Max Design
Comb. 124.8
14” Sour Gas Temp. 323.27
Stress
9. 7Export Pipeline- 900 324
For Corroded Pipe Long. Stress 160.50
Min Design
Comb. 177.3
Temp. 175.60
Stress
Long. Stress 239.07
Max Design
Comb. 142.2
14” Sour Gas Temp. 323.73
Stress
10. 8Export Pipeline- 475 324
For New Pipe Long. Stress 178.92
Min Design
Comb. 163.3
Temp. 160
Stress
Long. Stress 275.03
Max Design
Comb. 74.5
6” Fuel Gas Temp. 323.61
11. 1 Stress
Import Pipeline- 175 324
0 Long. Stress 186.21
For Corroded Pipe Min Design
Comb. 72.6
Temp. 161.68
Stress
Long. Stress 286.04
Max Design
Comb. 79.7
6” Fuel Gas Temp. 310.91
12. 1 Stress
Import Pipeline- 175 324
1 Long. Stress 175.20
For New Pipe Min Design
Comb. 69.3
Temp. 157.63
Stress
Long. Stress 167.34
Max Design
6” Flowlines from Comb. 57.1
Temp. 320.99
13. 1Remote Stress
650 324
2Manifolds-For Long. Stress 151.23
Corroded Pipe Min Design
Comb. 85.8
Temp. 182.53
Stress
Long. Stress 236.77
14. 16” Flowlines from Max Design
Comb. 70 250 324
3Remote Temp. 308.03
Stress
Page 26 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
SELECTED ALLOWABLE
CALCULATED MIN.
RESTRAINED MIN. ELASTIC CALCULATED
SL.NO DESCRIPTION CASES ELASTIC BENDING COMBINED
CONDITION BENDING STRESS (MPa)
RADIUS (m) STRESS (MPa)
RADIUS (m)
Manifolds-For Long. Stress 165.90
New Pipe Min Design
Comb. 75
Temp. 146.48
Stress
TABLE 7.4.1: PIPELINE HYDROTEST PRESSURE SUMMARY (FOR DESIGN FACTOR 0.72)
TABLE 7.4.2: PIPELINE HYDROTEST PRESSURE SUMMARY (FOR DESIGN FACTOR 0.6)
ALLOWABLE
CALCULATED TEST PRESSURE (MPa) ELEVATION
SL.NO DESCRIPTION DIFFERENCE (m)
MAX. MIN.
Page 27 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
ALLOWABLE
CALCULATED TEST PRESSURE (MPa) ELEVATION
SL.NO DESCRIPTION DIFFERENCE (m)
MAX. MIN.
7.5 COLD FIELD BEND AND MOTHER PIPE FOR HOT INDUCTION BEND WALL THICKNESS
The below table presents the results for selected wall thickness for both cold field bends
and hot induction bends. Detailed calculations are available in Appendix H &
Appendix-I.
Page 28 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
Page 29 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
Page 30 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
8. APPENDIXES
8.1 APPENDIX-A PIPELINES WALL THICKNESS CALCULATION
8.2 APPENDIX-B COMBINED STRESS CALCULATION FOR DESIGN FACTOR 0.72
Page 31 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of wall thickness:
Nominal Outer Diam eter of Pipe D := 273mm
Type of Service
Manufacturing Type
(As per ASME B 31.8: Table 841.1.7-1)
Longitudinal Joint Factor E := 1
Specified Minim um Yield Strength S y := 52200 psi (As per API 5L; Table 6&7)
kg
ρ := 7850
Density of Steel 3
m
Maxim um Design Temperature (Above Ground) Tda := 93 °C
Tdu := 76 °C
Maxim um Design Temperature (Under Ground)
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)
Design Factor DF :=
i
0.72
0.60
Page 1 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.1
Doc No.:
10" LP GATHERING TRUNKLINE
17051820-0000-A0-060-CAL-0001
2 CALCULATION
Nominal wall thickness required for pressure design is calculated as per Clasue 841.1.1 of ASME B 31.8:
D
= 29.45
Diam eter / Thickness Ratio t s1
D
Diam eter / Thickness Ratio Check Ratio1 := "PASS" if 96
ts1
"FAIL" otherwise
Ratio1 = "PASS"
D
Diam eter / Thickness Ratio = 24.528
t s2
D
Diam eter / Thickness Ratio Check Ratio2 := "PASS" if 96
ts2
"FAIL" otherwise
Ratio2 = "PASS"
π 2 2 53.4 kg
Line Pipe Unit Weight w := D - (D - 2 tn) ρ w=
4 59.6 m
Page 2 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.1
Doc No.:
10" LP GATHERING TRUNKLINE
17051820-0000-A0-060-CAL-0001
3 SUMMARY OF RESULT
Page 3 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.2
Doc No.:
10" HP GATHERING TRUNKLINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of wall thickness:
Nominal Outer Diam eter of Pipe D := 273mm
Type of Service
Manufacturing Type
(As per ASME B 31.8: Table 841.1.7-1)
Longitudinal Joint Factor E := 1
Specified Minim um Yield Strength S y := 52200 psi (As per API 5L; Table 6&7)
kg
ρ := 7850
Density of Steel 3
m
Maxim um Design Temperature (Above Ground) Tda := 93 °C
Tdu := 76 °C
Maxim um Design Temperature (Under Ground)
Tem perature Derating Factor T=1 (As per ASME B 31.8: Table 841.1.8-1)
Design Factor DF :=
i
0.72
0.60
Page 1 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.2
Doc No.:
10" HP GATHERING TRUNKLINE
17051820-0000-A0-060-CAL-0001
2 CALCULATION
Nominal wall thickness required for pressure design is calculated as per Clasue 841.1.1 of ASME B 31.8:
D
= 29.45
Diam eter / Thickness Ratio t s1
D
Diam eter / Thickness Ratio Check Ratio1 := "PASS" if 96
ts1
"FAIL" otherwise
Ratio1 = "PASS"
D
Diam eter / Thickness Ratio = 24.528
t s2
D
Diam eter / Thickness Ratio Check Ratio2 := "PASS" if 96
ts2
"FAIL" otherwise
Ratio2 = "PASS"
π 2 2 53.4 kg
Line Pipe Unit Weight w := D - (D - 2 tn) ρ w=
4 59.6 m
Page 2 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.2
Doc No.:
10" HP GATHERING TRUNKLINE
17051820-0000-A0-060-CAL-0001
3 SUMMARY OF RESULT
Page 3 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.3
Doc No.:
6" SOUR LIQUID RETURN PIPELINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of wall thickness:
Nominal Outer Diam eter of Pipe D := 168.3mm
Type of Service
Manufacturing Type
(As per ASME B 31.8: Table 841.1.7-1)
Longitudinal Joint Factor E := 1
Specified Minim um Yield Strength S y := 52200 psi (As per API 5L; Table 6&7)
kg
ρ := 7850
Density of Steel 3
m
Maxim um Design Temperature (Above Aground) Tda := 93 °C
Tem perature Derating Factor T := 1 (As per ASME B 31.8: Table 841.1.8-1)
Design Factor DF :=
i
0.72
0.60
Page 1 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.3
Doc No.:
6" SOUR LIQUID RETURN PIPELINE
17051820-0000-A0-060-CAL-0001
2 CALCULATION
Nominal wall thickness required for pressure design is calculated as per Clasue 841.1.1 of ASME B 31.8:
D
= 23.671
Diam eter / Thickness Ratio t s1
D
Diam eter / Thickness Ratio Check Ratio1 := "PASS" if 96
ts1
"FAIL" otherwise
Ratio1 = "PASS"
D
Diam eter / Thickness Ratio = 23.671
t s2
D
Diam eter / Thickness Ratio Check Ratio2 := "PASS" if 96
ts2
"FAIL" otherwise
Ratio2 = "PASS"
π 2 2 25.5 kg
Line Pipe Unit Weight w := D - (D - 2 tn) ρ w=
4 27.9 m
Page 2 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.3
Doc No.:
6" SOUR LIQUID RETURN PIPELINE
17051820-0000-A0-060-CAL-0001
3 SUMMARY OF RESULT
Page 3 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.4
Doc No.:
6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of wall thickness:
Nominal Outer Diam eter of Pipe D := 168.3mm
Type of Service
Manufacturing Type
(As per ASME B 31.8: Table 841.1.7-1)
Longitudinal Joint Factor E := 1
Specified Minim um Yield Strength S y := 52200 psi (As per API 5L; Table 6&7)
kg
ρ := 7850
Density of Steel 3
m
Maxim um Design Temperature (Above Ground) Tda := 93 °C
Tem perature Derating Factor T := 1 (As per ASME B 31.8: Table 841.1.8-1)
Design Factor DF :=
i
0.72
0.60
Page 1 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.4
Doc No.:
6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
2 CALCULATION
Nominal wall thickness required for pressure design is calculated as per Clasue 841.1.1 of ASME B 31.8:
D
= 23.671
Diam eter / Thickness Ratio t s1
D
Diam eter / Thickness Ratio Check Ratio1 := "PASS" if 96
ts1
"FAIL" otherwise
Ratio1 = "PASS"
D
Diam eter / Thickness Ratio = 23.671
t s2
D
Diam eter / Thickness Ratio Check Ratio2 := "PASS" if 96
ts2
"FAIL" otherwise
Ratio2 = "PASS"
π 2 2 25.5 kg
Line Pipe Unit Weight w := D - (D - 2 tn) ρ w=
4 27.9 m
Page 2 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.4
Doc No.:
6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
3 SUMMARY OF RESULT
Page 3 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC
APPENDIX A.5
Doc No.:
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of wall thickness:
Nominal Outer Diam eter of Pipe D := 355.6mm
Type of Service
Manufacturing Type
(As per ASME B 31.8: Table 841.1.7-1)
Longitudinal Joint Factor E := 1
Specified Minim um Yield Strength S y := 52200 psi (As per API 5L; Table 6&7)
kg
ρ := 7850
Density of Steel 3
m
Maxim um Design Temperature (Above Ground) Tda := 93 °C
Maxim um Design Temperature (Under Ground) Tdu := 45 °C
Tem perature Derating Factor T := 1 (As per ASME B 31.8: Table 841.1.8-1)
Design Factor DF :=
i
0.72
0.60
Page 1 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC
APPENDIX A.5
Doc No.:
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
2 CALCULATION
Nominal wall thickness required for pressure design is calculated as per Clasue 841.1.1 of ASME B 31.8:
D
= 40.686
Diam eter / Thickness Ratio t s1
D
Diam eter / Thickness Ratio Check Ratio1 := "PASS" if 96
ts1
"FAIL" otherwise
Ratio1 = "PASS"
D
Diam eter / Thickness Ratio = 34.491
t s2
D
Diam eter / Thickness Ratio Check Ratio2 := "PASS" if 96
ts2
"FAIL" otherwise
Ratio2 = "PASS"
π 2 2 71.5 kg
Line Pipe Unit Weight w := D - (D - 2 tn) ρ w=
4 80.1 m
Page 2 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC
APPENDIX A.5
Doc No.:
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
3 SUMMARY OF RESULT
Page 3 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.6
Doc No.:
20" SOUR OIL EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of wall thickness.
Nominal Outer Diam eter of Pipe D := 508mm
Type of Service
Manufacturing Type
Specified Minim um Yield Strength SMYS := 52200 psi (As per API 5L; Table 6&7)
kg
Density of Steel ρ := 7850
3
m
Maxim um Design Temperature (Above Ground) Tda := 93 °C
Design Factor
DF := 0.72
i
Page 1 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.6
Doc No.:
20" SOUR OIL EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
2 CALCULATION
Nom inal wall thickness required for pressure design is calculated as per Clause 403.2.1 of ASME B 31.4:
P D
Nominal Minim um Wall Thickness ( t) for design t := t = ( 4.26 ) mm
factor (DF) as stated above 2 DF E SMYS
D
= 64.141
Diam eter / Thickness Ratio t s1
D
Diam eter / Thickness Ratio Check Ratio1 := "PASS" if 96
ts1
"FAIL" otherwise
Ratio1 = "PASS"
π 2 kg
D - (D - 2 tn1) ρ
2
Line Pipe Unit Weight w := w = ( 92.1 )
4 m
Page 2 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.6
Doc No.:
20" SOUR OIL EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
3 SUMMARY OF RESULT
Page 3 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.7
Doc No.:
6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of wall thickness:
Nominal Outer Diam eter of Pipe D := 168.3mm
Type of Service
Manufacturing Type
(As per ASME B 31.8: Table 841.1.7-1)
Longitudinal Joint Factor E := 1
Specified Minim um Yield Strength S y := 52200 psi (As per API 5L; Table 6&7)
kg
ρ := 7850
Density of Steel 3
m
Maxim um Design Temperature (Above Ground) Tda := 93 °C
Tem perature Derating Factor T := 1 (As per ASME B 31.8: Table 841.1.8-1)
Design Factor DF :=
i
0.72
0.60
Page 1 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.7
Doc No.:
6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001
2 CALCULATION
Nominal wall thickness required for pressure design is calculated as per Clasue 841.1.1 of ASME B 31.8:
D
= 23.671
Diam eter / Thickness Ratio t s1
D
Diam eter / Thickness Ratio Check Ratio1 := "PASS" if 96
ts1
"FAIL" otherwise
Ratio1 = "PASS"
D
Diam eter / Thickness Ratio = 23.671
t s2
D
Diam eter / Thickness Ratio Check Ratio2 := "PASS" if 96
ts2
"FAIL" otherwise
Ratio2 = "PASS"
π 2 2 17.9 kg
Line Pipe Unit Weight w := D - (D - 2 tn) ρ w=
4 18.9 m
Page 2 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.7
Doc No.:
6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001
3 SUMMARY OF RESULTS
Page 3 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.8
Doc No.:
6" FLOWLINES FROM REMOTE MANIFOLD
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of wall thickness:
Nominal Outer Diam eter of Pipe D := 168.3mm
Type of Service
Manufacturing Type
(As per ASME B 31.8: Table 841.1.7-1)
Longitudinal Joint Factor E := 1
Specified Minim um Yield Strength S y := 52200 psi (As per API 5L; Table 6&7)
kg
ρ := 7850
Density of Steel 3
m
Maxim um Design Temperature (Above Aground) Tda := 93 °C
Tem perature Derating Factor T := 1 (As per ASME B 31.8: Table 841.1.8-1)
Design Factor DF :=
i
0.72
0.60
Page 1 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.8
Doc No.:
6" FLOWLINES FROM REMOTE MANIFOLD
17051820-0000-A0-060-CAL-0001
2 CALCULATION
Nominal wall thickness required for pressure design is calculated as per Clasue 841.1.1 of ASME B 31.8:
D
= 23.671
Diam eter / Thickness Ratio t s1
D
Diam eter / Thickness Ratio Check Ratio1 := "PASS" if 96
ts1
"FAIL" otherwise
Ratio1 = "PASS"
D
Diam eter / Thickness Ratio = 23.671
t s2
D
Diam eter / Thickness Ratio Check Ratio2 := "PASS" if 96
ts2
"FAIL" otherwise
Ratio2 = "PASS"
π 2 2 25 kg
Line Pipe Unit Weight w := D - (D - 2 tn) ρ w=
4 27.4 m
Page 2 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.8
Doc No.:
6" FLOWLINES FROM REMOTE MANIFOLD
17051820-0000-A0-060-CAL-0001
3 SUMMARY OF RESULT
Page 3 of 3
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
1 INPUT DATA
Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)
Installation Temperature Ti := 8 °C
Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE
2 CALCULATIONS
N
Unit Weight of Fluid wf := Af ρf g = 527.154
m
R
Axial Stress due to External Force S X := = 0 MPa
Ac
SH
Ratio1 := = 0.817
σAH
Hoop R = "PASS"
B) Longitudinal Stress
S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -138.3 MPa
S L2 = 127.7 MPa
2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 184.739 MPa
( )
σVon := max σVon1 , σVon2 = 305.472 MPa
Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE
Combined Stress ( )
σVon := max σVon1 , σVon2 = 305.472 MPa
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
σVon
Ratio3 := = 0.943
σAER
D) Hoop Stress P D
S H := = 211.834 MPa
2 t
SH
Ratio4 := = 0.817
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H σAH
Hoop U = "PASS"
E) Longitudinal Stress
M
Bending Stress S B3 := = 34.57 MPa
Z
S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 140.5 MPa
Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE
CombinedVon = "PASS"
Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE
3 SUMMARY OF RESULTS
211.8 259.2 0.8 138.3 324.0 0.4 305.5 324.0 0.9 PASS PASS PASS
211.8 259.2 0.8 140.5 270.0 0.5 186.7 324.0 0.6 PASS PASS PASS
Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE
1 INPUT DATA
Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)
Installation Temperature Ti := 8 °C
Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE
2 CALCULATIONS
N
Unit Weight of Fluid wf := Af ρf g = 527.154
m
R
Axial Stress due to External Force S X := = 0 MPa
Ac
SH
Ratio1 := = 0.817
σAH
Hoop R = "PASS"
B) Longitudinal Stress
S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -98 MPa
S L2 = 127.7 MPa
2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 184.739 MPa
( )
σVon := max σVon1 , σVon2 = 274.262 MPa
Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE
Combined Stress ( )
σVon := max σVon1 , σVon2 = 274.262 MPa
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
σVon
Ratio3 := = 0.846
σAER
D) Hoop Stress P D
S H := = 211.834 MPa
2 t
SH
Ratio4 := = 0.817
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H σAH
Hoop U = "PASS"
E) Longitudinal Stress
M
Bending Stress S B3 := = 34.57 MPa
Z
S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 140.5 MPa
Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE
CombinedVon = "PASS"
Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE
3 SUMMARY OF RESULTS
211.8 259.2 0.8 127.7 324.0 0.4 274.3 324.0 0.8 PASS PASS PASS
211.8 259.2 0.8 140.5 270.0 0.5 186.7 324.0 0.6 PASS PASS PASS
Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
1 INPUT DATA
Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)
Installation Temperature Ti := 8 °C
Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
2 CALCULATIONS
N
Unit Weight of Fluid wf := Af ρf g = 199.51
m
R
Axial Stress due to External Force S X := = 0 MPa
Ac
SH
Ratio1 := = 0.814
σAH
Hoop R = "PASS"
B) Longitudinal Stress
S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -36.5 MPa
S L2 = 127.4 MPa
2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 183.97 MPa
( )
σVon := max σVon1 , σVon2 = 231.321 MPa
Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
Combined Stress ( )
σVon := max σVon1 , σVon2 = 231.321 MPa
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
σVon
Ratio3 := = 0.714
σAER
D) Hoop Stress P D
S H := = 210.913 MPa
2 t
SH
Ratio4 := = 0.814
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H σAH
Hoop U = "PASS"
E) Longitudinal Stress
M
Bending Stress S B3 := = 54.706 MPa
Z
S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 160.2 MPa
Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
CombinedVon = "PASS"
Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
3 SUMMARY OF RESULTS
210.9 259.2 0.8 127.4 324.0 0.4 231.3 324.0 0.7 PASS PASS PASS
210.9 259.2 0.8 160.2 270.0 0.6 190.7 324.0 0.6 PASS PASS PASS
Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE
1 INPUT DATA
Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)
Installation Temperature Ti := 8 °C
Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE
2 CALCULATIONS
N
Unit Weight of Fluid wf := Af ρf g = 199.51
m
R
Axial Stress due to External Force S X := = 0 MPa
Ac
SH
Ratio1 := = 0.814
σAH
Hoop R = "PASS"
B) Longitudinal Stress
S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -36.5 MPa
S L2 = 127.4 MPa
2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 183.97 MPa
( )
σVon := max σVon1 , σVon2 = 231.321 MPa
Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE
Combined Stress ( )
σVon := max σVon1 , σVon2 = 231.321 MPa
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
σVon
Ratio3 := = 0.714
σAER
D) Hoop Stress P D
S H := = 210.913 MPa
2 t
SH
Ratio4 := = 0.814
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H σAH
Hoop U = "PASS"
E) Longitudinal Stress
M
Bending Stress S B3 := = 54.706 MPa
Z
S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 160.2 MPa
Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE
CombinedVon = "PASS"
Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE
3 SUMMARY OF RESULTS
210.9 259.2 0.8 127.4 324.0 0.4 231.3 324.0 0.7 PASS PASS PASS
210.9 259.2 0.8 160.2 270.0 0.6 190.7 324.0 0.6 PASS PASS PASS
Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
1 INPUT DATA
Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)
Installation Temperature Ti := 8 °C
Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
2 CALCULATIONS
N
Unit Weight of Fluid wf := Af ρf g = 919.499
m
R
Axial Stress due to External Force S X := = 0 MPa
Ac
SH
Ratio1 := = 0.929
σAH
Hoop R = "PASS"
B) Longitudinal Stress
S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -15.7 MPa
S L2 = 136.3 MPa
2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 209.068 MPa
( )
σVon := max σVon1 , σVon2 = 248.908 MPa
Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
Combined Stress ( )
σVon := max σVon1 , σVon2 = 248.908 MPa
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
σVon
Ratio3 := = 0.768
σAER
D) Hoop Stress P D
S H := = 240.704 MPa
2 t
SH
Ratio4 := = 0.929
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H σAH
Hoop U = "PASS"
E) Longitudinal Stress
M
Bending Stress S B3 := = 33.059 MPa
Z
S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 153.4 MPa
Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
CombinedVon = "PASS"
Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
3 SUMMARY OF RESULTS
240.7 259.2 0.9 136.3 324.0 0.4 248.9 324.0 0.8 PASS PASS PASS
240.7 259.2 0.9 153.4 270.0 0.6 211.1 324.0 0.7 PASS PASS PASS
Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
ABOVE GROUND
1 INPUT DATA
Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)
Installation Temperature Ti := 8 °C
Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
ABOVE GROUND
2 CALCULATIONS
3 N
Unit Weight of Fluid wf := Af ρf g = 1.926 10
m
R
Axial Stress due to External Force S X := = 0 MPa
Ac
SH
Ratio1 := = 0.901
σAH
Hoop R = "PASS"
B) Longitudinal Stress
S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -131.8 MPa
S L2 = 96.2 MPa
2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 203.306 MPa
( )
σVon := max σVon1 , σVon2 = 320.481 MPa
Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
ABOVE GROUND
Combined Stress ( )
σVon := max σVon1 , σVon2 = 320.481 MPa
Maxim um Allowable Stress (Com bined) σAER := 0.9 SMYS = 324 MPa
σVon
Ratio3 := = 0.989
σAER
D) Hoop Stress P D
S H := = 233.551 MPa
2 t
SH
Ratio4 := = 0.901
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H σAH
Hoop U = "PASS"
E) Longitudinal Stress
M
Bending Stress S B3 := = 33.591 MPa
Z
S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 150.4 MPa
Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
ABOVE GROUND
CombinedVon = "PASS"
Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
ABOVE GROUND
3 SUMMARY OF RESULTS
233.6 259.2 0.9 131.8 324.0 0.4 320.5 324.0 1.0 PASS PASS PASS
233.6 259.2 0.9 150.4 270.0 0.6 205.0 324.0 0.6 PASS PASS PASS
Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.7
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
UNDER GROUND
1 INPUT DATA
Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)
Installation Temperature Ti := 8 °C
Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.7
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
UNDER GROUND
2 CALCULATIONS
3 N
Unit Weight of Fluid wf := Af ρf g = 1.926 10
m
R
Axial Stress due to External Force S X := = 0 MPa
Ac
SH
Ratio1 := = 0.901
σAH
Hoop R = "PASS"
B) Longitudinal Stress
S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -65.3 MPa
S L2 = 96.2 MPa
2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 203.306 MPa
( )
σVon := max σVon1 , σVon2 = 272.152 MPa
Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.7
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
UNDER GROUND
Combined Stress ( )
σVon := max σVon1 , σVon2 = 272.152 MPa
Maxim um Allowable Stress (Com bined) σAER := 0.9 SMYS = 324 MPa
σVon
Ratio3 := = 0.84
σAER
D) Hoop Stress P D
S H := = 233.551 MPa
2 t
SH
Ratio4 := = 0.901
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H σAH
Hoop U = "PASS"
E) Longitudinal Stress
M
Bending Stress S B3 := = 33.591 MPa
Z
S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 150.4 MPa
Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.7
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
UNDER GROUND
CombinedVon = "PASS"
Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.7
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
UNDER GROUND
3 SUMMARY OF RESULTS
233.6 259.2 0.9 96.2 324.0 0.3 272.2 324.0 0.8 PASS PASS PASS
233.6 259.2 0.9 150.4 270.0 0.6 205.0 324.0 0.6 PASS PASS PASS
Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.8
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
1 INPUT DATA
Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)
Installation Temperature Ti := 8 °C
Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.8
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
2 CALCULATIONS
N
Unit Weight of Fluid wf := Af ρf g = 199.51
m
R
Axial Stress due to External Force S X := = 0 MPa
Ac
SH
Ratio1 := = 0.315
σAH
Hoop R = "PASS"
B) Longitudinal Stress
S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -75.3 MPa
S L2 = 88.6 MPa
2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 85.3 MPa
( )
σVon := max σVon1 , σVon2 = 135.874 MPa
Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.8
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
Combined Stress ( )
σVon := max σVon1 , σVon2 = 135.874 MPa
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
σVon
Ratio3 := = 0.419
σAER
D) Hoop Stress P D
S H := = 81.567 MPa
2 t
SH
Ratio4 := = 0.315
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H σAH
Hoop U = "PASS"
E) Longitudinal Stress
M
Bending Stress S B3 := = 54.706 MPa
Z
S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 95.5 MPa
Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.8
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
CombinedVon = "PASS"
Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.8
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
3 SUMMARY OF RESULTS
81.6 259.2 0.3 88.6 324.0 0.3 135.9 324.0 0.4 PASS PASS PASS
81.6 259.2 0.3 95.5 270.0 0.4 89.3 324.0 0.3 PASS PASS PASS
Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.9
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD
1 INPUT DATA
Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)
Installation Temperature Ti := 8 °C
Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.9
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD
2 CALCULATIONS
N
Unit Weight of Fluid wf := Af ρf g = 199.51
m
R
Axial Stress due to External Force S X := = 0 MPa
Ac
SH
Ratio1 := = 0.782
σAH
Hoop R = "PASS"
B) Longitudinal Stress
S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -100.7 MPa
S L2 = 124.9 MPa
2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 177.15 MPa
( )
σVon := max σVon1 , σVon2 = 267.678 MPa
Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.9
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD
Combined Stress ( )
σVon := max σVon1 , σVon2 = 267.678 MPa
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
σVon
Ratio3 := = 0.826
σAER
D) Hoop Stress P D
S H := = 202.735 MPa
2 t
SH
Ratio4 := = 0.782
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H σAH
Hoop U = "PASS"
E) Longitudinal Stress
M
Bending Stress S B3 := = 54.706 MPa
Z
S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 156.1 MPa
Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.9
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD
CombinedVon = "PASS"
Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.9
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD
3 SUMMARY OF RESULTS
202.7 259.2 0.8 124.9 324.0 0.4 267.7 324.0 0.8 PASS PASS PASS
202.7 259.2 0.8 156.1 270.0 0.6 183.9 324.0 0.6 PASS PASS PASS
Page 6 of 6
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
1 INPUT DATA
Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)
Installation Temperature Ti := 8 °C
Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE
2 CALCULATIONS
N
Unit Weight of Fluid wf := Af ρf g = 512.226
m
R
Axial Stress due to External Force S X := = 0 MPa
Ac
SH
Ratio1 := = 0.751
σAH
Hoop R = "PASS"
B) Longitudinal Stress
S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -153.2 MPa
S L2 = 112.8 MPa
2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 143.957 MPa
( )
σVon := max σVon1 , σVon2 = 273.169 MPa
Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE
Combined Stress ( )
σVon := max σVon1 , σVon2 = 273.169 MPa
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
σVon
Ratio3 := = 0.843
σAER
D) Hoop Stress P D
S H := = 162.148 MPa
2 t
SH
Ratio4 := = 0.751
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H σAH
Hoop U = "PASS"
E) Longitudinal Stress
M
Bending Stress S B3 := = 29.998 MPa
Z
S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 111.1 MPa
Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE
CombinedVon = "PASS"
Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE
3 SUMMARY OF RESULTS
162.1 216.0 0.8 153.2 324.0 0.5 273.2 324.0 0.8 PASS PASS PASS
162.1 216.0 0.8 111.1 270.0 0.4 143.6 324.0 0.4 PASS PASS PASS
Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE
1 INPUT DATA
Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)
Installation Temperature Ti := 8 °C
Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE
2 CALCULATIONS
N
Unit Weight of Fluid wf := Af ρf g = 512.226
m
R
Axial Stress due to External Force S X := = 0 MPa
Ac
SH
Ratio1 := = 0.751
σAH
Hoop R = "PASS"
B) Longitudinal Stress
S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -153.2 MPa
S L2 = 112.8 MPa
2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 143.957 MPa
( )
σVon := max σVon1 , σVon2 = 273.169 MPa
Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE
Combined Stress ( )
σVon := max σVon1 , σVon2 = 273.169 MPa
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
σVon
Ratio3 := = 0.843
σAER
D) Hoop Stress P D
S H := = 162.148 MPa
2 t
SH
Ratio4 := = 0.751
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H σAH
Hoop U = "PASS"
E) Longitudinal Stress
M
Bending Stress S B3 := = 29.998 MPa
Z
S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 111.1 MPa
Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE
CombinedVon = "PASS"
Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE
3 SUMMARY OF RESULTS
162.1 216.0 0.8 153.2 324.0 0.5 273.2 324.0 0.8 PASS PASS PASS
162.1 216.0 0.8 111.1 270.0 0.4 143.6 324.0 0.4 PASS PASS PASS
Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
1 INPUT DATA
Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)
Installation Temperature Ti := 8 °C
Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
2 CALCULATIONS
N
Unit Weight of Fluid wf := Af ρf g = 199.51
m
R
Axial Stress due to External Force S X := = 0 MPa
Ac
SH
Ratio1 := = 0.976
σAH
Hoop R = "PASS"
B) Longitudinal Stress
S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -138.6 MPa
S L2 = 127.4 MPa
2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 183.97 MPa
( )
σVon := max σVon1 , σVon2 = 304.847 MPa
Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
Combined Stress ( )
σVon := max σVon1 , σVon2 = 304.847 MPa
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
σVon
Ratio3 := = 0.941
σAER
D) Hoop Stress P D
S H := = 210.913 MPa
2 t
SH
Ratio4 := = 0.976
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H σAH
Hoop U = "PASS"
E) Longitudinal Stress
M
Bending Stress S B3 := = 54.706 MPa
Z
S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 160.2 MPa
Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
CombinedVon = "PASS"
Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
3 SUMMARY OF RESULTS
210.9 216.0 1.0 138.6 324.0 0.4 304.8 324.0 0.9 PASS PASS PASS
210.9 216.0 1.0 160.2 270.0 0.6 190.7 324.0 0.6 PASS PASS PASS
Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE
1 INPUT DATA
Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)
Installation Temperature Ti := 8 °C
Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE
2 CALCULATIONS
N
Unit Weight of Fluid wf := Af ρf g = 199.51
m
R
Axial Stress due to External Force S X := = 0 MPa
Ac
SH
Ratio1 := = 0.976
σAH
Hoop R = "PASS"
B) Longitudinal Stress
S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -138.6 MPa
S L2 = 127.4 MPa
2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 183.97 MPa
( )
σVon := max σVon1 , σVon2 = 304.847 MPa
Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE
Combined Stress ( )
σVon := max σVon1 , σVon2 = 304.847 MPa
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
σVon
Ratio3 := = 0.941
σAER
D) Hoop Stress P D
S H := = 210.913 MPa
2 t
SH
Ratio4 := = 0.976
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H σAH
Hoop U = "PASS"
E) Longitudinal Stress
M
Bending Stress S B3 := = 54.706 MPa
Z
S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 160.2 MPa
Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE
CombinedVon = "PASS"
Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE
3 SUMMARY OF RESULTS
210.9 216.0 1.0 138.6 324.0 0.4 304.8 324.0 0.9 PASS PASS PASS
210.9 216.0 1.0 160.2 270.0 0.6 190.7 324.0 0.6 PASS PASS PASS
Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
1 INPUT DATA
Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)
Installation Temperature Ti := 8 °C
Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
2 CALCULATIONS
N
Unit Weight of Fluid wf := Af ρf g = 902.814
m
R
Axial Stress due to External Force S X := = 0 MPa
Ac
SH
Ratio1 := = 0.868
σAH
Hoop R = "PASS"
B) Longitudinal Stress
S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -145.6 MPa
S L2 = 120.4 MPa
2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 164.592 MPa
( )
σVon := max σVon1 , σVon2 = 289.295 MPa
Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
Combined Stress ( )
σVon := max σVon1 , σVon2 = 289.295 MPa
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
σVon
Ratio3 := = 0.893
σAER
D) Hoop Stress P D
S H := = 187.553 MPa
2 t
SH
Ratio4 := = 0.868
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H σAH
Hoop U = "PASS"
E) Longitudinal Stress
M
Bending Stress S B3 := = 28.239 MPa
Z
S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 122 MPa
Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
CombinedVon = "PASS"
Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
3 SUMMARY OF RESULTS
187.6 216.0 0.9 145.6 324.0 0.4 289.3 324.0 0.9 PASS PASS PASS
187.6 216.0 0.9 122.0 270.0 0.5 164.9 324.0 0.5 PASS PASS PASS
Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
1 INPUT DATA
Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)
Installation Temperature Ti := 8 °C
Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
2 CALCULATIONS
N
Unit Weight of Fluid wf := Af ρf g = 199.51
m
R
Axial Stress due to External Force S X := = 0 MPa
Ac
SH
Ratio1 := = 0.378
σAH
Hoop R = "PASS"
B) Longitudinal Stress
S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -177.4 MPa
S L2 = 88.6 MPa
2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 85.3 MPa
( )
σVon := max σVon1 , σVon2 = 229.347 MPa
Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
Combined Stress ( )
σVon := max σVon1 , σVon2 = 229.347 MPa
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
σVon
Ratio3 := = 0.708
σAER
D) Hoop Stress P D
S H := = 81.567 MPa
2 t
SH
Ratio4 := = 0.378
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H σAH
Hoop U = "PASS"
E) Longitudinal Stress
M
Bending Stress S B3 := = 54.706 MPa
Z
S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 95.5 MPa
Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
CombinedVon = "PASS"
Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
3 SUMMARY OF RESULTS
81.6 216.0 0.4 177.4 324.0 0.5 229.3 324.0 0.7 PASS PASS PASS
81.6 216.0 0.4 95.5 270.0 0.4 89.3 324.0 0.3 PASS PASS PASS
Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD
1 INPUT DATA
Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)
Installation Temperature Ti := 8 °C
Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD
2 CALCULATIONS
N
Unit Weight of Fluid wf := Af ρf g = 199.51
m
R
Axial Stress due to External Force S X := = 0 MPa
Ac
SH
Ratio1 := = 0.939
σAH
Hoop R = "PASS"
B) Longitudinal Stress
S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -141.1 MPa
S L2 = 124.9 MPa
2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 177.15 MPa
( )
σVon := max σVon1 , σVon2 = 299.33 MPa
Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD
Combined Stress ( )
σVon := max σVon1 , σVon2 = 299.33 MPa
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
σVon
Ratio3 := = 0.924
σAER
D) Hoop Stress P D
S H := = 202.735 MPa
2 t
SH
Ratio4 := = 0.939
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H σAH
Hoop U = "PASS"
E) Longitudinal Stress
M
Bending Stress S B3 := = 54.706 MPa
Z
S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 156.1 MPa
Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD
CombinedVon = "PASS"
Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD
3 SUMMARY OF RESULTS
202.7 216.0 0.9 141.1 324.0 0.4 299.3 324.0 0.9 PASS PASS PASS
202.7 216.0 0.9 156.1 270.0 0.6 183.9 324.0 0.6 PASS PASS PASS
Page 6 of 6
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.
Type of Service
Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)
Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
P D
Hoop Stress S H := = 211.834 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 185.667 MPa
( )
S B2 := max S B1 , σVon1 = 305.472 MPa
DE
Minim um Elastic Bend Radius R1 := = 90.7 m
(
2 S B2 )
Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 196.322 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 196.322 MPa
DE
Minim um Elastic Bend Radius R2 := = 141.1 m
(
2 S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 141.143 m
2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -115.7 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -161 MPa
(
σL5 := max σL1 , σL2 = 161 MPa )
σL5
Ratio1 := = 0.497
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 287.7 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 323.8 MPa
( )
σe3 := max σe1 , σe2 = 323.8 MPa
σe3
Ratio2 := =1
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"
Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 150.3 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 105.1 MPa
( )
σL6 := max σL3 , σL4 = 150.3 MPa
σL6
Ratio3 := = 0.464
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 188.7 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 183.5 MPa
( )
σe6 := max σe4 , σe5 = 188.745 MPa
σe6
Ratio4 := = 0.583
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"
P D
Hoop Stress S H := = 138.709 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 163.729 MPa
( )
S B2 := max S B1 , σVon1 = 259.148 MPa
DE
Minim um Elastic Bend Radius R1 := = 106.9 m
(
2 S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 218.26 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 218.26 MPa
DE
Minim um Elastic Bend Radius R2 := = 127 m
(
2 S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 126.957 m
3.2.4. Selected Elastic Bend Radius R6 := 400m
Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -91 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -229.5 MPa
( )
σL7 := max σL1 , σL2 = 229.5 MPa
σL7
Ratio5 := = 0.708
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 200.4 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 322.1 MPa
( )
σe7 := max σe1 , σe2 = 322.1 MPa
σe7
Ratio6 := = 0.994
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 175 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 36.5 MPa
( )
σL8 := max σL3 , σL4 = 175 MPa
σL8
Ratio7 := = 0.54
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 160 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 124.5 MPa
( )
σe8 := max σe4 , σe5 = 159.981 MPa
σe8
Ratio8 := = 0.494
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"
Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
3 SUMMARY OF RESULTS
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 160.95 PASS 0.4968
Stress σL5
Design Temp. is
Combined
2 Max.) 323.84 PASS 0.9995
Stress σe3
1225.00 324.00
Longitudinal
3 Restrained (When 150.30 PASS 0.4639
Stress σL6
Design Temp. is
Combined
4 Min.) 188.75 PASS 0.5825
Stress σe6
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 229.54 PASS 0.7085
Stress σL7
(When Design
Combined
2 Temp. is Max.) 322.13 PASS 0.9942
Stress σe7
400.00 324.00
Longitudinal
3 Restrained 175.01 PASS 0.5402
Stress σL8
(When Design
Combined
4 Temp. is Min.) 159.98 PASS 0.4938
Stress σe8
Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.
Type of Service
Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)
Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
P D
Hoop Stress S H := = 211.834 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 226.043 MPa
( )
S B2 := max S B1 , σVon1 = 274.262 MPa
DE
Minim um Elastic Bend Radius R1 := = 101 m
(
2 S B2 )
Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 196.322 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 196.322 MPa
DE
Minim um Elastic Bend Radius R2 := = 141.1 m
(
2 S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 141.143 m
2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -36.4 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -159.5 MPa
(
σL5 := max σL1 , σL2 = 159.5 MPa )
σL5
Ratio1 := = 0.492
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 232.2 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 322.7 MPa
( )
σe3 := max σe1 , σe2 = 322.7 MPa
σe3
Ratio2 := = 0.996
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"
Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 189.3 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 66.1 MPa
( )
σL6 := max σL3 , σL4 = 189.3 MPa
σL6
Ratio3 := = 0.584
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 201.5 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 187.7 MPa
( )
σe6 := max σe4 , σe5 = 201.495 MPa
σe6
Ratio4 := = 0.622
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"
P D
Hoop Stress S H := = 138.709 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 204.106 MPa
( )
S B2 := max S B1 , σVon1 = 224.154 MPa
DE
Minim um Elastic Bend Radius R1 := = 123.6 m
(
2 S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 218.26 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 218.26 MPa
DE
Minim um Elastic Bend Radius R2 := = 127 m
(
2 S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 126.957 m
3.2.4. Selected Elastic Bend Radius R6 := 250m
Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -9.1 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -230.7 MPa
( )
σL7 := max σL1 , σL2 = 230.7 MPa
σL7
Ratio5 := = 0.712
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 143.5 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 323.2 MPa
( )
σe7 := max σe1 , σe2 = 323.2 MPa
σe7
Ratio6 := = 0.998
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 216.6 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -5.1 MPa
( )
σL8 := max σL3 , σL4 = 216.6 MPa
σL8
Ratio7 := = 0.668
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 190 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 141.3 MPa
( )
σe8 := max σe4 , σe5 = 190.013 MPa
σe8
Ratio8 := = 0.586
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"
Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
3 SUMMARY OF RESULTS
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 159.53 PASS 0.492
Stress σL5
Design Temp. is
Combined
2 Max.) 322.67 PASS 0.996
Stress σe3
450.00 324.00
Longitudinal
3 Restrained (When 189.25 PASS 0.584
Stress σL6
Design Temp. is
Combined
4 Min.) 201.50 PASS 0.622
Stress σe6
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 230.73 PASS 0.712
Stress σL7
(When Design
Combined
2 Temp. is Max.) 323.24 PASS 0.998
Stress σe7
250.00 324.00
Longitudinal
3 Restrained 216.58 PASS 0.668
Stress σL8
(When Design
Combined
4 Temp. is Min.) 190.01 PASS 0.586
Stress σe8
Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.
Type of Service
Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)
Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
P D
Hoop Stress S H := = 210.913 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 287.52 MPa
( )
S B2 := max S B1 , σVon1 = 287.52 MPa
DE
Minim um Elastic Bend Radius R1 := = 59.4 m
(
2 S B2 )
Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 196.598 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 196.598 MPa
DE
Minim um Elastic Bend Radius R2 := = 86.9 m
(
2 S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 86.89 m
2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 77.4 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -150.4 MPa
(
σL5 := max σL1 , σL2 = 150.4 MPa )
σL5
Ratio1 := = 0.464
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 184.8 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 314.3 MPa
( )
σe3 := max σe1 , σe2 = 314.3 MPa
σe3
Ratio2 := = 0.97
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"
Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 241.3 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 13.5 MPa
( )
σL6 := max σL3 , σL4 = 241.3 MPa
σL6
Ratio3 := = 0.745
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 227.6 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 204.5 MPa
( )
σe6 := max σe4 , σe5 = 227.624 MPa
σe6
Ratio4 := = 0.703
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"
P D
Hoop Stress S H := = 115.987 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 259.042 MPa
( )
S B2 := max S B1 , σVon1 = 259.042 MPa
DE
Minim um Elastic Bend Radius R1 := = 65.9 m
(
2 S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 225.076 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 225.076 MPa
DE
Minim um Elastic Bend Radius R2 := = 75.9 m
(
2 S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 75.896 m
3.2.4. Selected Elastic Bend Radius R6 := 100m
Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 105.9 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -235.8 MPa
( )
σL7 := max σL1 , σL2 = 235.8 MPa
σL7
Ratio5 := = 0.728
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 111.3 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 310.5 MPa
( )
σe7 := max σe1 , σe2 = 310.5 MPa
σe7
Ratio6 := = 0.958
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 269.7 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -71.9 MPa
( )
σL8 := max σL3 , σL4 = 269.7 MPa
σL8
Ratio7 := = 0.833
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 234.4 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 164.2 MPa
( )
σe8 := max σe4 , σe5 = 234.371 MPa
σe8
Ratio8 := = 0.723
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"
Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
3 SUMMARY OF RESULTS
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 150.36 PASS 0.46
Stress σL5
Design Temp. is
Combined
2 Max.) 314.34 PASS 0.97
Stress σe3
150.00 324.00
Longitudinal
3 Restrained (When 241.28 PASS 0.74
Stress σL6
Design Temp. is
Combined
4 Min.) 227.62 PASS 0.70
Stress σe6
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 235.78 PASS 0.73
Stress σL7
(When Design
Combined
2 Temp. is Max.) 310.47 PASS 0.96
Stress σe7
100.00 324.00
Longitudinal
3 Restrained 269.75 PASS 0.83
Stress σL8
(When Design
Combined
4 Temp. is Min.) 234.37 PASS 0.72
Stress σe8
Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.
Type of Service
Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)
Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
P D
Hoop Stress S H := = 210.913 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 287.52 MPa
( )
S B2 := max S B1 , σVon1 = 287.52 MPa
DE
Minim um Elastic Bend Radius R1 := = 59.4 m
(
2 S B2 )
Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 196.598 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 196.598 MPa
DE
Minim um Elastic Bend Radius R2 := = 86.9 m
(
2 S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 86.89 m
2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 77.4 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -150.4 MPa
(
σL5 := max σL1 , σL2 = 150.4 MPa )
σL5
Ratio1 := = 0.464
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 184.8 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 314.3 MPa
( )
σe3 := max σe1 , σe2 = 314.3 MPa
σe3
Ratio2 := = 0.97
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"
Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 241.3 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 13.5 MPa
( )
σL6 := max σL3 , σL4 = 241.3 MPa
σL6
Ratio3 := = 0.745
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 227.6 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 204.5 MPa
( )
σe6 := max σe4 , σe5 = 227.624 MPa
σe6
Ratio4 := = 0.703
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"
P D
Hoop Stress S H := = 115.987 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 259.042 MPa
( )
S B2 := max S B1 , σVon1 = 259.042 MPa
DE
Minim um Elastic Bend Radius R1 := = 65.9 m
(
2 S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 225.076 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 225.076 MPa
DE
Minim um Elastic Bend Radius R2 := = 75.9 m
(
2 S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 75.896 m
3.2.4. Selected Elastic Bend Radius R6 := 100m
Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 105.9 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -235.8 MPa
( )
σL7 := max σL1 , σL2 = 235.8 MPa
σL7
Ratio5 := = 0.728
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 111.3 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 310.5 MPa
( )
σe7 := max σe1 , σe2 = 310.5 MPa
σe7
Ratio6 := = 0.958
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 269.7 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -71.9 MPa
( )
σL8 := max σL3 , σL4 = 269.7 MPa
σL8
Ratio7 := = 0.833
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 234.4 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 164.2 MPa
( )
σe8 := max σe4 , σe5 = 234.371 MPa
σe8
Ratio8 := = 0.723
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"
Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
3 SUMMARY OF RESULTS
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 150.36 PASS 0.46
Stress σL5
Design Temp. is
Combined
2 Max.) 314.34 PASS 0.97
Stress σe3
150.00 324.00
Longitudinal
3 Restrained (When 241.28 PASS 0.74
Stress σL6
Design Temp. is
Combined
4 Min.) 227.62 PASS 0.70
Stress σe6
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 235.78 PASS 0.73
Stress σL7
(When Design
Combined
2 Temp. is Max.) 310.47 PASS 0.96
Stress σe7
100.00 324.00
Longitudinal
3 Restrained 269.75 PASS 0.83
Stress σL8
(When Design
Combined
4 Temp. is Min.) 234.37 PASS 0.72
Stress σe8
Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.
Type of Service
Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)
Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
P D
Hoop Stress S H := = 240.704 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 308.332 MPa
( )
S B2 := max S B1 , σVon1 = 308.332 MPa
DE
Minim um Elastic Bend Radius R1 := = 117.1 m
(
2 S B2 )
Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 187.661 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 209.068 MPa
DE
Minim um Elastic Bend Radius R2 := = 172.6 m
(
2 S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 172.64 m
2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 95.4 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -126.7 MPa
(
σL5 := max σL1 , σL2 = 126.7 MPa )
σL5
Ratio1 := = 0.391
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 209.9 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 323.3 MPa
( )
σe3 := max σe1 , σe2 = 323.3 MPa
σe3
Ratio2 := = 0.998
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"
Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 247.4 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 25.3 MPa
( )
σL6 := max σL3 , σL4 = 247.4 MPa
σL6
Ratio3 := = 0.764
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 244.1 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 229.1 MPa
( )
σe6 := max σe4 , σe5 = 244.119 MPa
σe6
Ratio4 := = 0.753
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"
P D
Hoop Stress S H := = 152.574 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 281.894 MPa
( )
S B2 := max S B1 , σVon1 = 281.894 MPa
DE
Minim um Elastic Bend Radius R1 := = 128 m
(
2 S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 214.1 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 214.1 MPa
DE
Minim um Elastic Bend Radius R2 := = 168.6 m
(
2 S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 168.582 m
3.2.4. Selected Elastic Bend Radius R6 := 225m
Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 118.3 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -202.5 MPa
( )
σL7 := max σL1 , σL2 = 202.5 MPa
σL7
Ratio5 := = 0.625
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 138.7 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 308.5 MPa
( )
σe7 := max σe1 , σe2 = 308.5 MPa
σe7
Ratio6 := = 0.952
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 270.3 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -50.5 MPa
( )
σL8 := max σL3 , σL4 = 270.3 MPa
σL8
Ratio7 := = 0.834
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 234.7 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 183.1 MPa
( )
σe8 := max σe4 , σe5 = 234.747 MPa
σe8
Ratio8 := = 0.725
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"
Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
3 SUMMARY OF RESULTS
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 126.72 PASS 0.391
Stress σL5
Design Temp. is
Combined
2 Max.) 323.27 PASS 0.998
Stress σe3
325.00 324.00
Longitudinal
3 Restrained (When 247.40 PASS 0.764
Stress σL6
Design Temp. is
Combined
4 Min.) 244.12 PASS 0.753
Stress σe6
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 202.52 PASS 0.625
Stress σL7
(When Design
Combined
2 Temp. is Max.) 308.53 PASS 0.952
Stress σe7
225.00 324.00
Longitudinal
3 Restrained 270.32 PASS 0.834
Stress σL8
(When Design
Combined
4 Temp. is Min.) 234.75 PASS 0.725
Stress σe8
Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.
Type of Service
Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)
Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE
P D
Hoop Stress S H := = 233.712 MPa (As per ASME B 31.4:
2t Clause 403.2.1)
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 258.733 MPa
( )
S B2 := max S B1 , σVon1 = 272.277 MPa
DE
Minim um Elastic Bend Radius R1 := = 189.4 m
(
2 S B2 )
Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 227.76 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 227.76 MPa
DE
Minim um Elastic Bend Radius R2 := = 226.4 m
(
2 S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 226.387 m
2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 3.5 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -134 MPa
(
σL5 := max σL1 , σL2 = 134 MPa )
σL5
Ratio1 := = 0.414
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 232 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 322.3 MPa
( )
σe3 := max σe1 , σe2 = 322.3 MPa
σe3
Ratio2 := = 0.995
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"
Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE
2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 165 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 27.5 MPa
( )
σL6 := max σL3 , σL4 = 165 MPa
σL6
Ratio3 := = 0.509
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 208 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 221.3 MPa
( )
σe6 := max σe4 , σe5 = 221.252 MPa
σe6
Ratio4 := = 0.683
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"
P D
Hoop Stress S H := = 139.283 MPa (As per ASME B 31.4:
2t Clause 403.2.1)
Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 230.404 MPa
( )
S B2 := max S B1 , σVon1 = 230.404 MPa
DE
Minim um Elastic Bend Radius R1 := = 223.8 m
(
2 S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 256.089 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 256.089 MPa
DE
Minim um Elastic Bend Radius R2 := = 201.3 m
(
2 S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 223.789 m
3.2.4. Selected Elastic Bend Radius R6 := 400m
Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE
3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 35.3 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -222.5 MPa
( )
σL7 := max σL1 , σL2 = 222.5 MPa
σL7
Ratio5 := = 0.687
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 125.4 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 316.1 MPa
( )
σe7 := max σe1 , σe2 = 316.1 MPa
σe7
Ratio6 := = 0.976
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 196.8 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -61 MPa
( )
σL8 := max σL3 , σL4 = 196.8 MPa
σL8
Ratio7 := = 0.607
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 175.3 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 177.8 MPa
( )
σe8 := max σe4 , σe5 = 177.807 MPa
σe8
Ratio8 := = 0.549
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"
Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE
3 SUMMARY OF RESULTS
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 134.02 PASS 0.41
Stress σL5
Design Temp. is
Combined
2 Max.) 322.34 PASS 0.99
Stress σe3
750.00 324.00
Longitudinal
3 Restrained (When 164.99 PASS 0.51
Stress σL6
Design Temp. is
Combined
4 Min.) 221.25 PASS 0.68
Stress σe6
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 222.50 PASS 0.69
Stress σL7
(When Design
Combined
2 Temp. is Max.) 316.06 PASS 0.98
Stress σe7
400.00 324.00
Longitudinal
3 Restrained 196.82 PASS 0.61
Stress σL8
(When Design
Combined
4 Temp. is Min.) 177.81 PASS 0.55
Stress σe8
Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.
Type of Service
Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)
Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
P D
Hoop Stress S H := = 81.567 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 248.716 MPa
( )
S B2 := max S B1 , σVon1 = 248.716 MPa
DE
Minim um Elastic Bend Radius R1 := = 68.7 m
(
2 S B2 )
Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 235.402 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 235.402 MPa
DE
Minim um Elastic Bend Radius R2 := = 72.6 m
(
2 S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 72.567 m
2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 95.5 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -246.1 MPa
(
σL5 := max σL1 , σL2 = 246.1 MPa )
σL5
Ratio1 := = 0.76
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 89.4 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 295.5 MPa
( )
σe3 := max σe1 , σe2 = 295.5 MPa
σe3
Ratio2 := = 0.912
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"
Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 259.4 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -82.2 MPa
( )
σL6 := max σL3 , σL4 = 259.4 MPa
σL6
Ratio3 := = 0.801
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 229.8 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 141.9 MPa
( )
σe6 := max σe4 , σe5 = 229.767 MPa
σe6
Ratio4 := = 0.709
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"
P D
Hoop Stress S H := = 44.856 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 237.703 MPa
( )
S B2 := max S B1 , σVon1 = 237.703 MPa
DE
Minim um Elastic Bend Radius R1 := = 71.9 m
(
2 S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 246.415 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 246.415 MPa
DE
Minim um Elastic Bend Radius R2 := = 69.3 m
(
2 S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 71.865 m
3.2.4. Selected Elastic Bend Radius R6 := 100m
Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 84.5 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -257.1 MPa
( )
σL7 := max σL1 , σL2 = 257.1 MPa
σL7
Ratio5 := = 0.794
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 73.2 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 282.2 MPa
( )
σe7 := max σe1 , σe2 = 282.2 MPa
σe7
Ratio6 := = 0.871
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 248.4 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -93.2 MPa
( )
σL8 := max σL3 , σL4 = 248.4 MPa
σL8
Ratio7 := = 0.767
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 229.3 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 122 MPa
( )
σe8 := max σe4 , σe5 = 229.296 MPa
σe8
Ratio8 := = 0.708
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"
Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
3 SUMMARY OF RESULTS
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 246.11 PASS 0.76
Stress σL5
Design Temp. is
Combined
2 Max.) 295.46 PASS 0.91
Stress σe3
100.00 324.00
Longitudinal
3 Restrained (When 259.42 PASS 0.80
Stress σL6
Design Temp. is
Combined
4 Min.) 229.77 PASS 0.71
Stress σe6
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 257.12 PASS 0.79
Stress σL7
(When Design
Combined
2 Temp. is Max.) 282.24 PASS 0.87
Stress σe7
100.00 324.00
Longitudinal
3 Restrained 248.41 PASS 0.77
Stress σL8
(When Design
Combined
4 Temp. is Min.) 229.30 PASS 0.71
Stress σe8
Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.
Type of Service
Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)
Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
P D
Hoop Stress S H := = 202.735 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 223.314 MPa
( )
S B2 := max S B1 , σVon1 = 267.678 MPa
DE
Minim um Elastic Bend Radius R1 := = 63.8 m
(
2 S B2 )
Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 199.052 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 199.052 MPa
DE
Minim um Elastic Bend Radius R2 := = 85.8 m
(
2 S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 85.819 m
2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -32.4 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -169 MPa
(
σL5 := max σL1 , σL2 = 169 MPa )
σL5
Ratio1 := = 0.522
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 220.7 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 322.4 MPa
( )
σe3 := max σe1 , σe2 = 322.4 MPa
σe3
Ratio2 := = 0.995
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"
Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 193.3 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 56.6 MPa
( )
σL6 := max σL3 , σL4 = 193.3 MPa
σL6
Ratio3 := = 0.597
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 198.2 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 181.2 MPa
( )
σe6 := max σe4 , σe5 = 198.176 MPa
σe6
Ratio4 := = 0.612
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"
P D
Hoop Stress S H := = 111.49 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 195.94 MPa
( )
S B2 := max S B1 , σVon1 = 207.622 MPa
DE
Minim um Elastic Bend Radius R1 := = 82.3 m
(
2 S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 226.425 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 226.425 MPa
DE
Minim um Elastic Bend Radius R2 := = 75.4 m
(
2 S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 82.277 m
3.2.4. Selected Elastic Bend Radius R6 := 150m
Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -14.2 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -241.9 MPa
( )
σL7 := max σL1 , σL2 = 241.9 MPa
σL7
Ratio5 := = 0.747
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 119.2 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 313 MPa
( )
σe7 := max σe1 , σe2 = 313 MPa
σe7
Ratio6 := = 0.966
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 211.5 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -16.3 MPa
( )
σL8 := max σL3 , σL4 = 211.5 MPa
σL8
Ratio7 := = 0.653
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 183.2 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 120.5 MPa
( )
σe8 := max σe4 , σe5 = 183.218 MPa
σe8
Ratio8 := = 0.565
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"
Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
3 SUMMARY OF RESULTS
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 169.02 PASS 0.522
Stress σL5
Design Temp. is
Combined
2 Max.) 322.39 PASS 0.995
Stress σe3
250.00 324.00
Longitudinal
3 Restrained (When 193.28 PASS 0.597
Stress σL6
Design Temp. is
Combined
4 Min.) 198.18 PASS 0.612
Stress σe6
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 241.94 PASS 0.747
Stress σL7
(When Design
Combined
2 Temp. is Max.) 312.95 PASS 0.966
Stress σe7
150.00 324.00
Longitudinal
3 Restrained 211.46 PASS 0.653
Stress σL8
(When Design
Combined
4 Temp. is Min.) 183.22 PASS 0.565
Stress σe8
Page 7 of 7
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.
Type of Service
Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)
Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
P D
Hoop Stress S H := = 162.148 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 170.761 MPa
( )
S B2 := max S B1 , σVon1 = 273.169 MPa
DE
Minim um Elastic Bend Radius R1 := = 101.4 m
(
2 S B2 )
Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 211.228 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 211.228 MPa
DE
Minim um Elastic Bend Radius R2 := = 131.2 m
(
2 S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 131.183 m
2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -97.8 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -208.7 MPa
(
σL5 := max σL1 , σL2 = 208.7 MPa )
σL5
Ratio1 := = 0.644
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 227.4 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 322 MPa
(
σe3 := max σe1 , σe2 = 322 MPa)
σe3
Ratio2 := = 0.994
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"
Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 168.2 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 57.4 MPa
( )
σL6 := max σL3 , σL4 = 168.2 MPa
σL6
Ratio3 := = 0.519
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 165.3 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 142.4 MPa
( )
σe6 := max σe4 , σe5 = 165.252 MPa
σe6
Ratio4 := = 0.51
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"
P D
Hoop Stress S H := = 115.528 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 156.775 MPa
( )
S B2 := max S B1 , σVon1 = 246.232 MPa
DE
Minim um Elastic Bend Radius R1 := = 112.5 m
(
2 S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 225.214 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 225.214 MPa
DE
Minim um Elastic Bend Radius R2 := = 123 m
(
2 S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 123.036 m
3.2.4. Selected Elastic Bend Radius R6 := 350m
Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -88.1 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -246.4 MPa
( )
σL7 := max σL1 , σL2 = 246.4 MPa
σL7
Ratio5 := = 0.76
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 176.8 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 320.2 MPa
( )
σe7 := max σe1 , σe2 = 320.2 MPa
σe7
Ratio6 := = 0.988
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 178 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 19.6 MPa
( )
σL8 := max σL3 , σL4 = 178 MPa
σL8
Ratio7 := = 0.549
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 156.4 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 107.1 MPa
( )
σe8 := max σe4 , σe5 = 156.385 MPa
σe8
Ratio8 := = 0.483
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"
Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
3 SUMMARY OF RESULTS
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 208.66 PASS 0.64
Stress σL5
Design Temp. is
Combined
2 Max.) 321.97 PASS 0.99
Stress σe3
500.00 324.00
Longitudinal
3 Restrained (When 168.19 PASS 0.52
Stress σL6
Design Temp. is
Combined
4 Min.) 165.25 PASS 0.51
Stress σe6
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 246.40 PASS 0.76
Stress σL7
(When Design
Combined
2 Temp. is Max.) 320.19 PASS 0.99
Stress σe7
350.00 324.00
Longitudinal
3 Restrained 177.96 PASS 0.55
Stress σL8
(When Design
Combined
4 Temp. is Min.) 156.38 PASS 0.48
Stress σe8
Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.
Type of Service
Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)
Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
P D
Hoop Stress S H := = 162.148 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 170.761 MPa
( )
S B2 := max S B1 , σVon1 = 273.169 MPa
DE
Minim um Elastic Bend Radius R1 := = 101.4 m
(
2 S B2 )
Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 211.228 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 211.228 MPa
DE
Minim um Elastic Bend Radius R2 := = 131.2 m
(
2 S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 131.183 m
2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -97.8 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -208.7 MPa
(
σL5 := max σL1 , σL2 = 208.7 MPa )
σL5
Ratio1 := = 0.644
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 227.4 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 322 MPa
(
σe3 := max σe1 , σe2 = 322 MPa)
σe3
Ratio2 := = 0.994
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"
Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 168.2 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 57.4 MPa
( )
σL6 := max σL3 , σL4 = 168.2 MPa
σL6
Ratio3 := = 0.519
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 165.3 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 142.4 MPa
( )
σe6 := max σe4 , σe5 = 165.252 MPa
σe6
Ratio4 := = 0.51
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"
P D
Hoop Stress S H := = 115.528 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 156.775 MPa
( )
S B2 := max S B1 , σVon1 = 246.232 MPa
DE
Minim um Elastic Bend Radius R1 := = 112.5 m
(
2 S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 225.214 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 225.214 MPa
DE
Minim um Elastic Bend Radius R2 := = 123 m
(
2 S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 123.036 m
3.2.4. Selected Elastic Bend Radius R6 := 350m
Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -88.1 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -246.4 MPa
( )
σL7 := max σL1 , σL2 = 246.4 MPa
σL7
Ratio5 := = 0.76
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 176.8 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 320.2 MPa
( )
σe7 := max σe1 , σe2 = 320.2 MPa
σe7
Ratio6 := = 0.988
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 178 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 19.6 MPa
( )
σL8 := max σL3 , σL4 = 178 MPa
σL8
Ratio7 := = 0.549
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 156.4 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 107.1 MPa
( )
σe8 := max σe4 , σe5 = 156.385 MPa
σe8
Ratio8 := = 0.483
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"
Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
3 SUMMARY OF RESULTS
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 208.66 PASS 0.64
Stress σL5
Design Temp. is
Combined
2 Max.) 321.97 PASS 0.99
Stress σe3
500.00 324.00
Longitudinal
3 Restrained (When 168.19 PASS 0.52
Stress σL6
Design Temp. is
Combined
4 Min.) 165.25 PASS 0.51
Stress σe6
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 246.40 PASS 0.76
Stress σL7
(When Design
Combined
2 Temp. is Max.) 320.19 PASS 0.99
Stress σe7
350.00 324.00
Longitudinal
3 Restrained 177.96 PASS 0.55
Stress σL8
(When Design
Combined
4 Temp. is Min.) 156.38 PASS 0.48
Stress σe8
Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.
Type of Service
Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)
Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
P D
Hoop Stress S H := = 210.913 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 185.39 MPa
( )
S B2 := max S B1 , σVon1 = 304.847 MPa
DE
Minim um Elastic Bend Radius R1 := = 56 m
(
2 S B2 )
Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 196.598 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 196.598 MPa
DE
Minim um Elastic Bend Radius R2 := = 86.9 m
(
2 S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 86.89 m
2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -115.8 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -161.4 MPa
(
σL5 := max σL1 , σL2 = 161.4 MPa )
σL5
Ratio1 := = 0.498
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 286.9 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 323.4 MPa
( )
σe3 := max σe1 , σe2 = 323.4 MPa
σe3
Ratio2 := = 0.998
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"
Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 150.2 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 104.6 MPa
( )
σL6 := max σL3 , σL4 = 150.2 MPa
σL6
Ratio3 := = 0.464
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 188.1 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 182.7 MPa
( )
σe6 := max σe4 , σe5 = 188.051 MPa
σe6
Ratio4 := = 0.58
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"
P D
Hoop Stress S H := = 115.987 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 156.913 MPa
( )
S B2 := max S B1 , σVon1 = 246.478 MPa
DE
Minim um Elastic Bend Radius R1 := = 69.3 m
(
2 S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 225.076 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 225.076 MPa
DE
Minim um Elastic Bend Radius R2 := = 75.9 m
(
2 S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 75.896 m
3.2.4. Selected Elastic Bend Radius R6 := 225m
Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -91.2 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -243 MPa
( )
σL7 := max σL1 , σL2 = 243 MPa
σL7
Ratio5 := = 0.75
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 179.8 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 317.3 MPa
( )
σe7 := max σe1 , σe2 = 317.3 MPa
σe7
Ratio6 := = 0.979
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 174.8 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 23 MPa
( )
σL8 := max σL3 , σL4 = 174.8 MPa
σL8
Ratio7 := = 0.54
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 154.1 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 106.4 MPa
( )
σe8 := max σe4 , σe5 = 154.092 MPa
σe8
Ratio8 := = 0.476
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"
Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
3 SUMMARY OF RESULTS
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 161.39 PASS 0.498
Stress σL5
Design Temp. is
Combined
2 Max.) 323.37 PASS 0.998
Stress σe3
750.00 324.00
Longitudinal
3 Restrained (When 150.18 PASS 0.464
Stress σL6
Design Temp. is
Combined
4 Min.) 188.05 PASS 0.580
Stress σe6
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 243.01 PASS 0.750
Stress σL7
(When Design
Combined
2 Temp. is Max.) 317.32 PASS 0.979
Stress σe7
225.00 324.00
Longitudinal
3 Restrained 174.85 PASS 0.540
Stress σL8
(When Design
Combined
4 Temp. is Min.) 154.09 PASS 0.476
Stress σe8
Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.
Type of Service
Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)
Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
P D
Hoop Stress S H := = 210.913 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 185.39 MPa
( )
S B2 := max S B1 , σVon1 = 304.847 MPa
DE
Minim um Elastic Bend Radius R1 := = 56 m
(
2 S B2 )
Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 196.598 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 196.598 MPa
DE
Minim um Elastic Bend Radius R2 := = 86.9 m
(
2 S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 86.89 m
2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -115.8 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -161.4 MPa
(
σL5 := max σL1 , σL2 = 161.4 MPa )
σL5
Ratio1 := = 0.498
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 286.9 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 323.4 MPa
( )
σe3 := max σe1 , σe2 = 323.4 MPa
σe3
Ratio2 := = 0.998
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"
Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 150.2 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 104.6 MPa
( )
σL6 := max σL3 , σL4 = 150.2 MPa
σL6
Ratio3 := = 0.464
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 188.1 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 182.7 MPa
( )
σe6 := max σe4 , σe5 = 188.051 MPa
σe6
Ratio4 := = 0.58
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"
P D
Hoop Stress S H := = 115.987 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 156.913 MPa
( )
S B2 := max S B1 , σVon1 = 246.478 MPa
DE
Minim um Elastic Bend Radius R1 := = 69.3 m
(
2 S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 225.076 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 225.076 MPa
DE
Minim um Elastic Bend Radius R2 := = 75.9 m
(
2 S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 75.896 m
3.2.4. Selected Elastic Bend Radius R6 := 225m
Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -91.2 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -243 MPa
( )
σL7 := max σL1 , σL2 = 243 MPa
σL7
Ratio5 := = 0.75
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 179.8 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 317.3 MPa
( )
σe7 := max σe1 , σe2 = 317.3 MPa
σe7
Ratio6 := = 0.979
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 174.8 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 23 MPa
( )
σL8 := max σL3 , σL4 = 174.8 MPa
σL8
Ratio7 := = 0.54
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 154.1 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 106.4 MPa
( )
σe8 := max σe4 , σe5 = 154.092 MPa
σe8
Ratio8 := = 0.476
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"
Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
3 SUMMARY OF RESULTS
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 161.39 PASS 0.498
Stress σL5
Design Temp. is
Combined
2 Max.) 323.37 PASS 0.998
Stress σe3
750.00 324.00
Longitudinal
3 Restrained (When 150.18 PASS 0.464
Stress σL6
Design Temp. is
Combined
4 Min.) 188.05 PASS 0.580
Stress σe6
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 243.01 PASS 0.750
Stress σL7
(When Design
Combined
2 Temp. is Max.) 317.32 PASS 0.979
Stress σe7
225.00 324.00
Longitudinal
3 Restrained 174.85 PASS 0.540
Stress σL8
(When Design
Combined
4 Temp. is Min.) 154.09 PASS 0.476
Stress σe8
Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.
Type of Service
Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)
Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
P D
Hoop Stress S H := = 187.553 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 178.382 MPa
( )
S B2 := max S B1 , σVon1 = 289.295 MPa
DE
Minim um Elastic Bend Radius R1 := = 124.8 m
(
2 S B2 )
Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 203.606 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 203.606 MPa
DE
Minim um Elastic Bend Radius R2 := = 177.3 m
(
2 S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 177.27 m
2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -105.5 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -185.7 MPa
(
σL5 := max σL1 , σL2 = 185.7 MPa )
σL5
Ratio1 := = 0.573
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 257.1 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 323.3 MPa
( )
σe3 := max σe1 , σe2 = 323.3 MPa
σe3
Ratio2 := = 0.998
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"
Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 160.5 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 80.3 MPa
( )
σL6 := max σL3 , σL4 = 160.5 MPa
σL6
Ratio3 := = 0.495
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 175.6 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 163 MPa
( )
σe6 := max σe4 , σe5 = 175.595 MPa
σe6
Ratio4 := = 0.542
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"
P D
Hoop Stress S H := = 129.34 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 160.919 MPa
( )
S B2 := max S B1 , σVon1 = 253.806 MPa
DE
Minim um Elastic Bend Radius R1 := = 142.2 m
(
2 S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 221.07 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 221.07 MPa
DE
Minim um Elastic Bend Radius R2 := = 163.3 m
(
2 S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 163.267 m
3.2.4. Selected Elastic Bend Radius R6 := 475m
Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -87.1 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -239.1 MPa
( )
σL7 := max σL1 , σL2 = 239.1 MPa
σL7
Ratio5 := = 0.738
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 188.6 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 323.7 MPa
( )
σe7 := max σe1 , σe2 = 323.7 MPa
σe7
Ratio6 := = 0.999
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 178.9 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 26.9 MPa
( )
σL8 := max σL3 , σL4 = 178.9 MPa
σL8
Ratio7 := = 0.552
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 160 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 118.2 MPa
( )
σe8 := max σe4 , σe5 = 159.996 MPa
σe8
Ratio8 := = 0.494
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"
Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
3 SUMMARY OF RESULTS
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 185.72 PASS 0.573
Stress σL5
Design Temp. is
Combined
2 Max.) 323.27 PASS 0.998
Stress σe3
900.00 324.00
Longitudinal
3 Restrained (When 160.50 PASS 0.495
Stress σL6
Design Temp. is
Combined
4 Min.) 175.60 PASS 0.542
Stress σe6
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 239.07 PASS 0.738
Stress σL7
(When Design
Combined
2 Temp. is Max.) 323.73 PASS 0.999
Stress σe7
475.00 324.00
Longitudinal
3 Restrained 178.92 PASS 0.552
Stress σL8
(When Design
Combined
4 Temp. is Min.) 160.00 PASS 0.494
Stress σe8
Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.
Type of Service
Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)
Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
P D
Hoop Stress S H := = 81.567 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 146.587 MPa
( )
S B2 := max S B1 , σVon1 = 229.347 MPa
DE
Minim um Elastic Bend Radius R1 := = 74.5 m
(
2 S B2 )
Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 235.402 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 235.402 MPa
DE
Minim um Elastic Bend Radius R2 := = 72.6 m
(
2 S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 74.483 m
2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -79.8 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -275 MPa
(
σL5 := max σL1 , σL2 = 275 MPa )
σL5
Ratio1 := = 0.849
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 139.8 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 323.6 MPa
( )
σe3 := max σe1 , σe2 = 323.6 MPa
σe3
Ratio2 := = 0.999
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"
Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 186.2 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -9 MPa
( )
σL6 := max σL3 , σL4 = 186.2 MPa
σL6
Ratio3 := = 0.575
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 161.7 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 86.4 MPa
( )
σe6 := max σe4 , σe5 = 161.677 MPa
σe6
Ratio4 := = 0.499
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"
P D
Hoop Stress S H := = 44.856 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 135.573 MPa
( )
S B2 := max S B1 , σVon1 = 214.403 MPa
DE
Minim um Elastic Bend Radius R1 := = 79.7 m
(
2 S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 246.415 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 246.415 MPa
DE
Minim um Elastic Bend Radius R2 := = 69.3 m
(
2 S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 79.674 m
3.2.4. Selected Elastic Bend Radius R6 := 175m
Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -90.8 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -286 MPa
( )
σL7 := max σL1 , σL2 = 286 MPa
σL7
Ratio5 := = 0.883
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 119.7 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 310.9 MPa
( )
σe7 := max σe1 , σe2 = 310.9 MPa
σe7
Ratio6 := = 0.96
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 175.2 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -20 MPa
( )
σL8 := max σL3 , σL4 = 175.2 MPa
σL8
Ratio7 := = 0.541
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 157.6 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 57.5 MPa
( )
σe8 := max σe4 , σe5 = 157.632 MPa
σe8
Ratio8 := = 0.487
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"
Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
3 SUMMARY OF RESULTS
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 275.03 PASS 0.849
Stress σL5
Design Temp. is
Combined
2 Max.) 323.61 PASS 0.999
Stress σe3
175.00 324.00
Longitudinal
3 Restrained (When 186.21 PASS 0.575
Stress σL6
Design Temp. is
Combined
4 Min.) 161.68 PASS 0.499
Stress σe6
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 286.04 PASS 0.883
Stress σL7
(When Design
Combined
2 Temp. is Max.) 310.91 PASS 0.960
Stress σe7
175.00 324.00
Longitudinal
3 Restrained 175.20 PASS 0.541
Stress σL8
(When Design
Combined
4 Temp. is Min.) 157.63 PASS 0.487
Stress σe8
Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.
Type of Service
Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)
Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
P D
Hoop Stress S H := = 202.735 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 182.937 MPa
( )
S B2 := max S B1 , σVon1 = 299.33 MPa
DE
Minim um Elastic Bend Radius R1 := = 57.1 m
(
2 S B2 )
Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 199.052 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 199.052 MPa
DE
Minim um Elastic Bend Radius R2 := = 85.8 m
(
2 S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 85.819 m
2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -114.8 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -167.3 MPa
(
σL5 := max σL1 , σL2 = 167.3 MPa )
σL5
Ratio1 := = 0.516
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 278.5 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 321 MPa
(
σe3 := max σe1 , σe2 = 321 MPa)
σe3
Ratio2 := = 0.991
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"
Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 151.2 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 98.7 MPa
( )
σL6 := max σL3 , σL4 = 151.2 MPa
σL6
Ratio3 := = 0.467
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 182.5 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 175.6 MPa
( )
σe6 := max σe4 , σe5 = 182.516 MPa
σe6
Ratio4 := = 0.563
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"
P D
Hoop Stress S H := = 111.49 MPa (As per ASME B 31.8:
2t Clause 805.2.3)
Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 155.563 MPa
( )
S B2 := max S B1 , σVon1 = 244.09 MPa
DE
Minim um Elastic Bend Radius R1 := = 70 m
(
2 S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):
Maximum Allowable Stress (Total Longitudinal) σALR := 0.9 Tdf SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 226.425 MPa
2 2
σVon2 := S L2 - S L2 S H + S H
( )
S B4 := max S B3 , σVon2 = 226.425 MPa
DE
Minim um Elastic Bend Radius R2 := = 75.4 m
(
2 S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 75.444 m
3.2.4. Selected Elastic Bend Radius R6 := 250m
Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -100.1 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -236.8 MPa
( )
σL7 := max σL1 , σL2 = 236.8 MPa
σL7
Ratio5 := = 0.731
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"
2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 183.3 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 308 MPa
( )
σe7 := max σe1 , σe2 = 308 MPa
σe7
Ratio6 := = 0.951
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 165.9 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 29.2 MPa
( )
σL8 := max σL3 , σL4 = 165.9 MPa
σL8
Ratio7 := = 0.512
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"
2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 146.5 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 100.1 MPa
( )
σe8 := max σe4 , σe5 = 146.484 MPa
σe8
Ratio8 := = 0.452
0.90 SMYS
"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"
Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
3 SUMMARY OF RESULTS
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 167.34 PASS 0.52
Stress σL5
Design Temp. is
Combined
2 Max.) 320.99 PASS 0.99
Stress σe3
650.00 324.00
Longitudinal
3 Restrained (When 151.23 PASS 0.47
Stress σL6
Design Temp. is
Combined
4 Min.) 182.52 PASS 0.56
Stress σe6
SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 236.77 PASS 0.73
Stress σL7
(When Design
Combined
2 Temp. is Max.) 308.03 PASS 0.95
Stress σe7
250.00 324.00
Longitudinal
3 Restrained 165.90 PASS 0.51
Stress σL8
(When Design
Combined
4 Temp. is Min.) 146.48 PASS 0.45
Stress σe8
Page 7 of 7
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)
Installation Temperature Ti := 8 °C
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)
Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
2.0 CALCULATION
π D 2 - D - 2 t 2 = 7.68 10- 3 m 2
Cross Sectional Area Ac := 4
( w)
Maxim um Hydrostatic Test Pressure ( FSMYS SMYS) 2 ( tw) Tdf E
TPMax := = 22.777 MPa
(based on SMYS) D - tw
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
Hydrotest = "PASS"
TPMax ( D - t w)
S H1 := = 324 MPa
2 tw
Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
TPMin ( D - t w)
S H2 := = 167.498 MPa
2 tw
( )
S H := max S H1 , SH2 = 324 MPa
Hoop R := "PASS" if S H S Ha
Hoop R = "PASS"
S P1 := υS S H1 = 97.2 MPa
( )
S T := ES α Ti - Tw = -65.075 MPa
S L1 := S P1 + S T + SX + SB = 101.425 MPa
Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
S L2 := S P2 + S T + SX + SB = 54.474 MPa
( )
σL := max S L1 , S L2 = 101.425 MPa
2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 287.1 MPa
2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 147.983 MPa
( )
σVon := max σVon1 , σVon2 = 287.056 MPa
CombinedVon = "PASS"
Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)
Installation Temperature Ti := 8 °C
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)
Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
2.0 CALCULATION
π D 2 - D - 2 t 2 = 7.68 10- 3 m 2
Cross Sectional Area Ac := 4
( w)
Maxim um Hydrostatic Test Pressure ( FSMYS SMYS) 2 ( tw) Tdf E
TPMax := = 22.777 MPa
(based on SMYS) D - tw
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
Hydrotest = "PASS"
TPMax ( D - t w)
S H1 := = 324 MPa
2 tw
Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
TPMin ( D - t w)
S H2 := = 167.498 MPa
2 tw
( )
S H := max S H1 , SH2 = 324 MPa
Hoop R := "PASS" if S H S Ha
Hoop R = "PASS"
S P1 := υS S H1 = 97.2 MPa
( )
S T := ES α Ti - Tw = -65.075 MPa
S L1 := S P1 + S T + SX + SB = 142.925 MPa
Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
S L2 := S P2 + S T + SX + SB = 95.974 MPa
( )
σL := max S L1 , S L2 = 142.925 MPa
2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 281.2 MPa
2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 145.572 MPa
( )
σVon := max σVon1 , σVon2 = 281.24 MPa
CombinedVon = "PASS"
Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)
Installation Temperature Ti := 8 °C
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)
Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
2.0 CALCULATION
π D 2 - D - 2 t 2 = 3.6 10- 3 m 2
Cross Sectional Area Ac := 4
( w)
Maxim um Hydrostatic Test Pressure ( FSMYS SMYS) 2 ( tw) Tdf E
TPMax := = 28.583 MPa
(based on SMYS) D - tw
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
Hydrotest = "PASS"
TPMax ( D - t w)
S H1 := = 324 MPa
2 tw
Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
TPMin ( D - t w)
S H2 := = 138.859 MPa
2 tw
( )
S H := max S H1 , SH2 = 324 MPa
Hoop R := "PASS" if S H S Ha
Hoop R = "PASS"
S P1 := υS S H1 = 97.2 MPa
( )
S T := ES α Ti - Tw = -65.075 MPa
S L1 := S P1 + S T + SX + SB = 202.925 MPa
Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
S L2 := S P2 + S T + SX + SB = 147.382 MPa
( )
σL := max S L1 , S L2 = 202.925 MPa
2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 283.6 MPa
2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 143.311 MPa
( )
σVon := max σVon1 , σVon2 = 283.561 MPa
CombinedVon = "PASS"
Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)
Installation Temperature Ti := 8 °C
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)
Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
2.0 CALCULATION
π D 2 - D - 2 t 2 = 3.6 10- 3 m 2
Cross Sectional Area Ac := 4
( w)
Maxim um Hydrostatic Test Pressure ( FSMYS SMYS) 2 ( tw) Tdf E
TPMax := = 28.583 MPa
(based on SMYS) D - tw
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
Hydrotest = "PASS"
TPMax ( D - t w)
S H1 := = 324 MPa
2 tw
Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
TPMin ( D - t w)
S H2 := = 138.859 MPa
2 tw
( )
S H := max S H1 , SH2 = 324 MPa
Hoop R := "PASS" if S H S Ha
Hoop R = "PASS"
S P1 := υS S H1 = 97.2 MPa
( )
S T := ES α Ti - Tw = -65.075 MPa
S L1 := S P1 + S T + SX + SB = 202.925 MPa
Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
S L2 := S P2 + S T + SX + SB = 147.382 MPa
( )
σL := max S L1 , S L2 = 202.925 MPa
2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 283.6 MPa
2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 143.311 MPa
( )
σVon := max σVon1 , σVon2 = 283.561 MPa
CombinedVon = "PASS"
Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)
Installation Temperature Ti := 8 °C
AmbientTem perature Tw := 35 °C
kg
ρw := 1025
Density of Test Water 3
m
Modulus of Elasticity of Steel ES := 206 GPa
-1
Linear Coefficient of Therm al Expansion α := 0.0000117 K (As per ASME B 31.8: C lause 832.2)
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)
Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
2.0 CALCULATION
π D 2 - D - 2 t 2 = 9.524 10- 3 m 2
Cross Sectional Area Ac := 4
( w)
Maxim um Hydrostatic Test Pressure ( FSMYS SMYS) 2 ( tw) Tdf E
TPMax := = 16.328 MPa
(based on SMYS) D - tw
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
Hydrotest = "PASS"
TPMax ( D - t w)
S H1 := = 324 MPa
2 tw
Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
TPMin ( D - t w)
S H2 := = 186.03 MPa
2 tw
( )
S H := max S H1 , SH2 = 324 MPa
Hoop R := "PASS" if S H S Ha
Hoop R = "PASS"
S P1 := υS S H1 = 97.2 MPa
( )
S T := ES α Ti - Tw = -65.075 MPa
S L1 := S P1 + S T + SX + SB = 192.525 MPa
Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
S L2 := S P2 + S T + SX + SB = 151.134 MPa
( )
σL := max S L1 , S L2 = 192.525 MPa
2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 282.2 MPa
2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 171.27 MPa
( )
σVon := max σVon1 , σVon2 = 282.248 MPa
CombinedVon = "PASS"
Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE
Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)
Installation Temperature Ti := 8 °C
Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE
2.0 CALCULATION
π D 2 - D - 2 t 2 = 0.012 m 2
Cross Sectional Area Ac := 4
( w)
Maxim um Allowable Stress (Com bined) σAER := 0.9 SMYS = 324 MPa
Hydrotest = "PASS"
TPMax ( D - t w)
S H1 := = 324 MPa
2 tw
Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE
TPMin ( D - t w)
S H2 := = 171.389 MPa
2 tw
( )
S H := max S H1 , SH2 = 324 MPa
Hoop R := "PASS" if S H S Ha
Hoop R = "PASS"
S P1 := υS S H1 = 97.2 MPa
( )
S T := ES α Ti - Tw = -65.075 MPa
S L1 := S P1 + S T + SX + SB = 161.025 MPa
Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE
S L2 := S P2 + S T + SX + SB = 115.241 MPa
( )
σL := max S L1 , S L2 = 161.025 MPa
2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 280.6 MPa
2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 151.34 MPa
( )
σVon := max σVon1 , σVon2 = 280.594 MPa
CombinedVon = "PASS"
Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)
Installation Temperature Ti := 8 °C
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)
Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
2.0 CALCULATION
π D 2 - D - 2 t 2 = 3.6 10- 3 m 2
Cross Sectional Area Ac := 4
( w)
Maxim um Hydrostatic Test Pressure ( FSMYS SMYS) 2 ( tw) Tdf E
TPMax := = 28.583 MPa
(based on SMYS) D - tw
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
Hydrotest = "PASS"
TPMax ( D - t w)
S H1 := = 324 MPa
2 tw
Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
TPMin ( D - t w)
S H2 := = 53.702 MPa
2 tw
( )
S H := max S H1 , SH2 = 324 MPa
Hoop R := "PASS" if S H S Ha
Hoop R = "PASS"
S P1 := υS S H1 = 97.2 MPa
( )
S T := ES α Ti - Tw = -65.075 MPa
S L1 := S P1 + S T + SX + SB = 202.925 MPa
Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
S L2 := S P2 + S T + SX + SB = 121.835 MPa
( )
σL := max S L1 , S L2 = 202.925 MPa
2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 283.6 MPa
2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 105.759 MPa
( )
σVon := max σVon1 , σVon2 = 283.561 MPa
CombinedVon = "PASS"
Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)
Installation Temperature Ti := 8 °C
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)
Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
2.0 CALCULATION
π D 2 - D - 2 t 2 = 3.6 10- 3 m 2
Cross Sectional Area Ac := 4
( w)
Maxim um Hydrostatic Test Pressure ( FSMYS SMYS) 2 ( tw) Tdf E
TPMax := = 28.583 MPa
(based on SMYS) D - tw
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
Hydrotest = "PASS"
TPMax ( D - t w)
S H1 := = 324 MPa
2 tw
Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
TPMin ( D - t w)
S H2 := = 133.475 MPa
2 tw
( )
S H := max S H1 , SH2 = 324 MPa
Hoop R := "PASS" if S H S Ha
Hoop R = "PASS"
S P1 := υS S H1 = 97.2 MPa
( )
S T := ES α Ti - Tw = -65.075 MPa
S L1 := S P1 + S T + SX + SB = 146.025 MPa
Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
S L2 := S P2 + S T + SX + SB = 88.867 MPa
( )
σL := max S L1 , S L2 = 146.025 MPa
2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 281 MPa
2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 117.692 MPa
( )
σVon := max σVon1 , σVon2 = 281.047 MPa
CombinedVon = "PASS"
Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
Page 5 of 5
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)
Installation Temperature Ti := 8 °C
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)
Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
2.0 CALCULATION
π D 2 - D - 2 t 2 = 7.68 10- 3 m 2
Cross Sectional Area Ac := 4
( w)
Maxim um Hydrostatic Test Pressure ( FSMYS SMYS) 2 ( tw) Tdf E
TPMax := = 22.777 MPa
(based on SMYS) D - tw
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
Hydrotest = "PASS"
TPMax ( D - t w)
S H1 := = 324 MPa
2 tw
Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
TPMin ( D - t w)
S H2 := = 167.498 MPa
2 tw
( )
S H := max S H1 , SH2 = 324 MPa
Hoop R := "PASS" if S H S Ha
Hoop R = "PASS"
S P1 := υS S H1 = 97.2 MPa
( )
S T := ES α Ti - Tw = -65.075 MPa
S L1 := S P1 + S T + SX + SB = 111.325 MPa
Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
S L2 := S P2 + S T + SX + SB = 64.374 MPa
( )
σL := max S L1 , S L2 = 111.325 MPa
2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 285.1 MPa
2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 146.346 MPa
( )
σVon := max σVon1 , σVon2 = 285.132 MPa
CombinedVon = "PASS"
Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)
Installation Temperature Ti := 8 °C
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)
Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
2.0 CALCULATION
π D 2 - D - 2 t 2 = 7.68 10- 3 m 2
Cross Sectional Area Ac := 4
( w)
Maxim um Hydrostatic Test Pressure ( FSMYS SMYS) 2 ( tw) Tdf E
TPMax := = 22.777 MPa
(based on SMYS) D - tw
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
Hydrotest = "PASS"
TPMax ( D - t w)
S H1 := = 324 MPa
2 tw
Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
TPMin ( D - t w)
S H2 := = 167.498 MPa
2 tw
( )
S H := max S H1 , SH2 = 324 MPa
Hoop R := "PASS" if S H S Ha
Hoop R = "PASS"
S P1 := υS S H1 = 97.2 MPa
( )
S T := ES α Ti - Tw = -65.075 MPa
S L1 := S P1 + S T + SX + SB = 111.325 MPa
Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
S L2 := S P2 + S T + SX + SB = 64.374 MPa
( )
σL := max S L1 , S L2 = 111.325 MPa
2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 285.1 MPa
2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 146.346 MPa
( )
σVon := max σVon1 , σVon2 = 285.132 MPa
CombinedVon = "PASS"
Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)
Installation Temperature Ti := 8 °C
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)
Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
2.0 CALCULATION
π D 2 - D - 2 t 2 = 3.6 10- 3 m 2
Cross Sectional Area Ac := 4
( w)
Maxim um Hydrostatic Test Pressure ( FSMYS SMYS) 2 ( tw) Tdf E
TPMax := = 28.583 MPa
(based on SMYS) D - tw
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
Hydrotest = "PASS"
TPMax ( D - t w)
S H1 := = 324 MPa
2 tw
Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
TPMin ( D - t w)
S H2 := = 138.859 MPa
2 tw
( )
S H := max S H1 , SH2 = 324 MPa
Hoop R := "PASS" if S H S Ha
Hoop R = "PASS"
S P1 := υS S H1 = 97.2 MPa
( )
S T := ES α Ti - Tw = -65.075 MPa
S L1 := S P1 + S T + SX + SB = 108.025 MPa
Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
S L2 := S P2 + S T + SX + SB = 52.482 MPa
( )
σL := max S L1 , S L2 = 108.025 MPa
2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 285.7 MPa
2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 121.444 MPa
( )
σVon := max σVon1 , σVon2 = 285.736 MPa
CombinedVon = "PASS"
Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX G.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)
Installation Temperature Ti := 8 °C
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)
Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX G.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
2.0 CALCULATION
π D 2 - D - 2 t 2 = 3.6 10- 3 m 2
Cross Sectional Area Ac := 4
( w)
Maxim um Hydrostatic Test Pressure ( FSMYS SMYS) 2 ( tw) Tdf E
TPMax := = 28.583 MPa
(based on SMYS) D - tw
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
Hydrotest = "PASS"
TPMax ( D - t w)
S H1 := = 324 MPa
2 tw
Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX G.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
TPMin ( D - t w)
S H2 := = 138.859 MPa
2 tw
( )
S H := max S H1 , SH2 = 324 MPa
Hoop R := "PASS" if S H S Ha
Hoop R = "PASS"
S P1 := υS S H1 = 97.2 MPa
( )
S T := ES α Ti - Tw = -65.075 MPa
S L1 := S P1 + S T + SX + SB = 108.025 MPa
Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX G.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
S L2 := S P2 + S T + SX + SB = 52.482 MPa
( )
σL := max S L1 , S L2 = 108.025 MPa
2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 285.7 MPa
2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 121.444 MPa
( )
σVon := max σVon1 , σVon2 = 285.736 MPa
CombinedVon = "PASS"
Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)
Installation Temperature Ti := 8 °C
AmbientTem perature Tw := 35 °C
kg
ρw := 1025
Density of Test Water 3
m
Modulus of Elasticity of Steel ES := 206 GPa
-1
Linear Coefficient of Therm al Expansion α := 0.0000117 K (As per ASME B 31.8: C lause 832.2)
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)
Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
2.0 CALCULATION
π D 2 - D - 2 t 2 = 9.524 10- 3 m 2
Cross Sectional Area Ac := 4
( w)
Maxim um Hydrostatic Test Pressure ( FSMYS SMYS) 2 ( tw) Tdf E
TPMax := = 16.328 MPa
(based on SMYS) D - tw
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
Hydrotest = "PASS"
TPMax ( D - t w)
S H1 := = 324 MPa
2 tw
Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
TPMin ( D - t w)
S H2 := = 186.03 MPa
2 tw
( )
S H := max S H1 , SH2 = 324 MPa
Hoop R := "PASS" if S H S Ha
Hoop R = "PASS"
S P1 := υS S H1 = 97.2 MPa
( )
S T := ES α Ti - Tw = -65.075 MPa
S L1 := S P1 + S T + SX + SB = 108.125 MPa
Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
S L2 := S P2 + S T + SX + SB = 66.734 MPa
( )
σL := max S L1 , S L2 = 108.125 MPa
2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 285.7 MPa
2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 163.237 MPa
( )
σVon := max σVon1 , σVon2 = 285.718 MPa
CombinedVon = "PASS"
Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)
Installation Temperature Ti := 8 °C
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)
Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
2.0 CALCULATION
π D 2 - D - 2 t 2 = 3.6 10- 3 m 2
Cross Sectional Area Ac := 4
( w)
Maxim um Hydrostatic Test Pressure ( FSMYS SMYS) 2 ( tw) Tdf E
TPMax := = 28.583 MPa
(based on SMYS) D - tw
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
Hydrotest = "PASS"
TPMax ( D - t w)
S H1 := = 324 MPa
2 tw
Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
TPMin ( D - t w)
S H2 := = 53.702 MPa
2 tw
( )
S H := max S H1 , SH2 = 324 MPa
Hoop R := "PASS" if S H S Ha
Hoop R = "PASS"
S P1 := υS S H1 = 97.2 MPa
( )
S T := ES α Ti - Tw = -65.075 MPa
S L1 := S P1 + S T + SX + SB = 129.725 MPa
Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
S L2 := S P2 + S T + SX + SB = 48.635 MPa
( )
σL := max S L1 , S L2 = 129.725 MPa
2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 282.4 MPa
2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 51.356 MPa
( )
σVon := max σVon1 , σVon2 = 282.442 MPa
CombinedVon = "PASS"
Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)
Installation Temperature Ti := 8 °C
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)
Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
2.0 CALCULATION
π D 2 - D - 2 t 2 = 3.6 10- 3 m 2
Cross Sectional Area Ac := 4
( w)
Maxim um Hydrostatic Test Pressure ( FSMYS SMYS) 2 ( tw) Tdf E
TPMax := = 28.583 MPa
(based on SMYS) D - tw
Maxim um Allowable Stress (Com bined) σAER := 0.9 Tdf SMYS = 324 MPa
Hydrotest = "PASS"
TPMax ( D - t w)
S H1 := = 324 MPa
2 tw
Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
TPMin ( D - t w)
S H2 := = 133.475 MPa
2 tw
( )
S H := max S H1 , SH2 = 324 MPa
Hoop R := "PASS" if S H S Ha
Hoop R = "PASS"
S P1 := υS S H1 = 97.2 MPa
( )
S T := ES α Ti - Tw = -65.075 MPa
S L1 := S P1 + S T + SX + SB = 100.425 MPa
Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
S L2 := S P2 + S T + SX + SB = 43.267 MPa
( )
σL := max S L1 , S L2 = 100.425 MPa
2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 287.3 MPa
2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 117.951 MPa
( )
σVon := max σVon1 , σVon2 = 287.269 MPa
CombinedVon = "PASS"
Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD
Page 5 of 5
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:
Manufacturing Type
2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends
Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 11.13mm
50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 8.272 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 11.13 mm
Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.1
Doc No.: 10" LP GATHERING HEADER TRUNKLINE
17051820-0000-A0-060-CAL-0001
Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1 tbend1c
"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
Selcted Wall Thickness (for DF) for Hot Bend t hot1 := 14.27mm
50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 8.99 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 14.27 mm
Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1 t bend1h
"Unsafe" otherwise
Check2 = "Safe"
3 SUMMARY OF RESULTS
Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.2
Doc No.: 10" HP GATHERING HEADER TRUNKLINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:
Manufacturing Type
2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 8.272 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 11.13 mm
Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.2
Doc No.: 10" HP GATHERING HEADER TRUNKLINE
17051820-0000-A0-060-CAL-0001
Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1 tbend1c
"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
t hot1 := 14.27mm
Selcted Wall Thickness (for DF) for Hot Bend
Nominal wall thickness with allowances tw1 := 8.17mm
Inner Bend Radius divided by Diameter ( 5 D - 0.5 D )
n h1 := = 4.5
D
50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 8.99 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 14.27 mm
Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1 t bend1h
"Unsafe" otherwise
Check2 = "Safe"
3 SUMMARY OF RESULTS
Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.3
Doc No.: 6" SOUR LIQUID RETUN PIPELINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:
Manufacturing Type
2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends
Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 7.11mm
50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 6.47 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 7.11 mm
Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.3
Doc No.: 6" SOUR LIQUID RETUN PIPELINE
17051820-0000-A0-060-CAL-0001
Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1 tbend1c
"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
t hot1 := 9.53mm
Selcted Wall Thickness (for DF) for Hot Bend
Nominal wall thickness with allowances tw1 := 6.39mm
Inner Bend Radius divided by Diameter ( 5 D - 0.5 D )
n h1 := = 4.5
D
50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 7.03 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 9.53 mm
Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1 t bend1h
"Unsafe" otherwise
Check2 = "Safe"
3 SUMMARY OF RESULTS
Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.4
Doc No.: 6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:
Manufacturing Type
2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends
t cold1 := 7.11mm
Selcted Wall Thickness (for DF) for Cold Bend
50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 6.47 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 7.11 mm
Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.4
Doc No.: 6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1 tbend1c
"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
Selcted Wall Thickness (for DF) for Hot Bend t hot1 := 9.53mm
50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 7.03 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 9.53 mm
Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1 t bend1h
"Unsafe" otherwise
Check2 = "Safe"
3 SUMMARY OF RESULTS
Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.5
Doc No.: 14" SOUR OIL EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:
Manufacturing Type
2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends
Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 8.74mm
50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 8.454 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 8.74 mm
Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.5
Doc No.: 14" SOUR OIL EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1 tbend1c
"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
t hot1 := 11.91mm
Selcted Wall Thickness (for DF) for Hot Bend
Nominal wall thickness with allowances tw1 := 8.35mm
Inner Bend Radius divided by Diameter ( 5 D - 0.5 D )
n h1 := = 4.5
D
50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 9.19 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 11.91 mm
Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1 t bend1h
"Unsafe" otherwise
Check2 = "Safe"
3 SUMMARY OF RESULTS
Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.6
Doc No.: 20" SOUR OIL EXXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:
Manufacturing Type
2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends
Selcted Wall Thickness (for DF) for Cold Bend
t cold1 := 7.92mm
50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 7.553 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 7.92 mm
Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.6
Doc No.: 20" SOUR OIL EXXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1 tbend1c
"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
Selcted Wall Thickness (for DF) for Hot Bend t hot1 := 12.7mm
Nominal wall thickness with allowances tw1 := 7.46mm
Inner Bend Radius divided by Diameter ( 5 D - 0.5 D )
n h1 := = 4.5
D
50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 8.21 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 12.7 mm
Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1 t bend1h
"Unsafe" otherwise
Check2 = "Safe"
3 SUMMARY OF RESULTS
Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.7
Doc No.: 6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:
Manufacturing Type
2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends
Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 7.11mm
50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 4.495 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 7.11 mm
Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.7
Doc No.: 6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001
Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1 tbend1c
"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
t hot1 := 9.53mm
Selcted Wall Thickness (for DF) for Hot Bend
Nominal wall thickness with allowances tw1 := 4.44mm
50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 4.88 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 9.53 mm
Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1 t bend1h
"Unsafe" otherwise
Check2 = "Safe"
3 SUMMARY OF RESULTS
Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.8
Doc No.: 6" FLOWLINES FROM REMOTE MANIFOLD
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:
Manufacturing Type
2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends
Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 7.11mm
50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 6.338 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 7.11 mm
Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.8
Doc No.: 6" FLOWLINES FROM REMOTE MANIFOLD
17051820-0000-A0-060-CAL-0001
Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1 tbend1c
"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
Selcted Wall Thickness (for DF) for Hot Bend t hot1 := 9.53mm
50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 6.89 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 9.53 mm
Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1 t bend1h
"Unsafe" otherwise
Check2 = "Safe"
3 SUMMARY OF RESULTS
Page 2 of 2
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:
Manufacturing Type
2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends
Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 11.13mm
50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 9.274 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 11.13 mm
Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.1
Doc No.: 10" LP GATHERING HEADER TRUNKLINE
17051820-0000-A0-060-CAL-0001
Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1 tbend1c
"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
Selcted Wall Thickness (for DF) for Hot Bend t hot1 := 14.27mm
50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 8.99 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 14.27 mm
Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1 t bend1h
"Unsafe" otherwise
Check2 = "Safe"
3 SUMMARY OF RESULTS
Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.2
Doc No.: 10" HP GATHERING HEADER TRUNKLINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:
Manufacturing Type
2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 9.274 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 11.13 mm
Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.2
Doc No.: 10" HP GATHERING HEADER TRUNKLINE
17051820-0000-A0-060-CAL-0001
Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1 tbend1c
"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
t hot1 := 14.27mm
Selcted Wall Thickness (for DF) for Hot Bend
Nominal wall thickness with allowances tw1 := 8.17mm
Inner Bend Radius divided by Diameter ( 5 D - 0.5 D )
n h1 := = 4.5
D
50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 8.99 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 14.27 mm
Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1 t bend1h
"Unsafe" otherwise
Check2 = "Safe"
3 SUMMARY OF RESULTS
Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.3
Doc No.: 6" SOUR LIQUID RETURN PIPELINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:
Manufacturing Type
2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends
Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 7.11mm
50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 7.108 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 7.11 mm
Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.3
Doc No.: 6" SOUR LIQUID RETURN PIPELINE
17051820-0000-A0-060-CAL-0001
Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1 tbend1c
"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
t hot1 := 9.53mm
Selcted Wall Thickness (for DF) for Hot Bend
Nominal wall thickness with allowances tw1 := 6.39mm
Inner Bend Radius divided by Diameter ( 5 D - 0.5 D )
n h1 := = 4.5
D
50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 7.03 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 9.53 mm
Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1 t bend1h
"Unsafe" otherwise
Check2 = "Safe"
3 SUMMARY OF RESULTS
Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.4
Doc No.: 6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:
Manufacturing Type
2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends
t cold1 := 7.11mm
Selcted Wall Thickness (for DF) for Cold Bend
50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 7.108 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 7.11 mm
Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.4
Doc No.: 6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1 tbend1c
"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
Selcted Wall Thickness (for DF) for Hot Bend t hot1 := 9.53mm
50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 7.03 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 9.53 mm
Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1 t bend1h
"Unsafe" otherwise
Check2 = "Safe"
3 SUMMARY OF RESULTS
Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.5
Doc No.: 14" SOUR GAS EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:
Manufacturing Type
2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends
Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 10.31mm
50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 9.497 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 10.31 mm
Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.5
Doc No.: 14" SOUR GAS EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1 tbend1c
"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
t hot1 := 11.91mm
Selcted Wall Thickness (for DF) for Hot Bend
Nominal wall thickness with allowances tw1 := 8.35mm
Inner Bend Radius divided by Diameter ( 5 D - 0.5 D )
n h1 := = 4.5
D
50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 9.19 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 11.91 mm
Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1 t bend1h
"Unsafe" otherwise
Check2 = "Safe"
3 SUMMARY OF RESULTS
Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.6
Doc No.: 6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:
Manufacturing Type
2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends
Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 7.11mm
50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 4.739 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 7.11 mm
Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.6
Doc No.: 6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001
Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1 tbend1c
"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
t hot1 := 9.53mm
Selcted Wall Thickness (for DF) for Hot Bend
Nominal wall thickness with allowances tw1 := 4.44mm
50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 4.88 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 9.53 mm
Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1 t bend1h
"Unsafe" otherwise
Check2 = "Safe"
3 SUMMARY OF RESULTS
Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.7
Doc No.: 6" FLOWLINES FROM REMOTE MANIFOLD
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:
Manufacturing Type
2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends
Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 7.11mm
50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 6.966 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 7.11 mm
Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.7
Doc No.: 6" FLOWLINES FROM REMOTE MANIFOLD
17051820-0000-A0-060-CAL-0001
Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1 tbend1c
"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
Selcted Wall Thickness (for DF) for Hot Bend t hot1 := 9.53mm
50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 6.89 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 9.53 mm
Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1 t bend1h
"Unsafe" otherwise
Check2 = "Safe"
3 SUMMARY OF RESULTS
Page 2 of 2
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
1 INPUT DATA
Pipe Data
The following data listed pertaining to the line pipe, are required for the calculation of wall thickness.
Soil Data
Type of Soil
Soil Cohesive
c := 0kPa
c
c1 := =0
ksf
Coating Material
-3
Density of Soil ρ := 1785 kg m
Page 1 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.1
Doc No.: 10" HP GATHERING HEADER TRUNKLINE
17051820-0000-A0-060-CAL-0001
2 Calculation
π 2 2 -3 2
A :=
4
(D 0 ) (
- D0 - 2t ) = 7.68 10 m
Anchor load is the axial compressive force caused by internal pressure and tem perature difference & is realized only
when the pipeline is restrained as incase of pipeline in buried condition.
P D 0
FUG := A E α ( T3 - T1) + ( 0.5 - ν) = 1.764 106 N
2 t
2.1.2 Frictional Resistance Force of Soil ( f spfr ):
The m ovem ent of buried pipeline due to tem perature is resisted by the soil resistance force in the axial direction,
The Soil Cover above Center of Pipeline (equal to depth of pipe centerline)
D0
H p := + h = 1.337 m
2
Soil Adhesion Factor
K := 1 - sin( ϕ) = 0.455
End Expansion of the Pipeline at UG/AG transition in axial direction is given below:
FUG L1
δ1 := = 13.291 mm
2.A E
Page 2 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.1
Doc No.: 10" HP GATHERING HEADER TRUNKLINE
17051820-0000-A0-060-CAL-0001
δactual := δ1 = 13.291 mm
3 Summary of Results
Page 3 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.2
Doc No.: 6" SOUR LIQUID RETURN PIPELINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
Pipe Data
The following data listed pertaining to the line pipe, are required for the calculation of wall thickness.
Soil Data
Type of Soil
Soil Cohesive
c := 0kPa
c
c1 := =0
ksf
Coating Material
-3
Density of Soil ρ := 1785 kg m
Page 1 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.2
Doc No.: 6" SOUR LIQUID RETURN PIPELINE
17051820-0000-A0-060-CAL-0001
2 Calculation
π 2 2 -3 2
A :=
4
(D 0 ) (
- D0 - 2t ) = 3.6 10 m
Anchor load is the axial compressive force caused by internal pressure and tem perature difference & is realized only
when the pipeline is restrained as incase of pipeline in buried condition.
P D 0
FUG := A E α ( T3 - T1) + ( 0.5 - ν) = 8.104 105 N
2 t
2.1.2 Frictional Resistance Force of Soil ( f spfr ):
The m ovem ent of buried pipeline due to tem perature is resisted by the soil resistance force in the axial direction,
The Soil Cover above Center of Pipeline (equal to depth of pipe centerline)
D0
H p := + h = 1.084 m
2
Soil Adhesion Factor
K := 1 - sin( ϕ) = 0.455
End Expansion of the Pipeline at UG/AG transition in axial direction is given below:
FUG L1
δ1 := = 9.147 mm
2.A E
Page 2 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.2
Doc No.: 6" SOUR LIQUID RETURN PIPELINE
17051820-0000-A0-060-CAL-0001
δactual := δ1 = 9.147 mm
3 Summary of Results
Page 3 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.3
Doc No.: 6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
Pipe Data
The following data listed pertaining to the line pipe, are required for the calculation of wall thickness.
Soil Data
Type of Soil
Soil Cohesive
c := 0kPa
c
c1 := =0
ksf
Coating Material
-3
Density of Soil ρ := 1785 kg m
Page 1 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.3
Doc No.: 6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
2 Calculation
π 2 2 -3 2
A :=
4
(D 0 ) (
- D0 - 2t ) = 3.6 10 m
Anchor load is the axial compressive force caused by internal pressure and tem perature difference & is realized only
when the pipeline is restrained as incase of pipeline in buried condition.
P D 0
FUG := A E α ( T3 - T1) + ( 0.5 - ν) = 8.104 105 N
2 t
2.1.2 Frictional Resistance Force of Soil ( f spfr ):
The m ovem ent of buried pipeline due to tem perature is resisted by the soil resistance force in the axial direction,
The Soil Cover above Center of Pipeline (equal to depth of pipe centerline)
D0
H p := + h = 1.084 m
2
Soil Adhesion Factor
K := 1 - sin( ϕ) = 0.455
End Expansion of the Pipeline at UG/AG transition in axial direction is given below:
FUG L1
δ1 := = 9.147 mm
2.A E
Page 2 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.3
Doc No.: 6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
δactual := δ1 = 9.147 mm
3 Summary of Results
Page 3 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.4
Doc No.: 14" SOUR GAS EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
Pipe Data
The following data listed pertaining to the line pipe, are required for the calculation of wall thickness.
Soil Data
Type of Soil
Soil Cohesive
c := 0kPa
c
c1 := =0
ksf
Coating Material
-3
Density of Soil ρ := 1785 kg m
Page 1 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.4
Doc No.: 14" SOUR GAS EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
2 Calculation
π 2 2 -3 2
A :=
4
(D 0 ) (
- D0 - 2t ) = 9.524 10 m
Anchor load is the axial compressive force caused by internal pressure and tem perature difference & is realized only
when the pipeline is restrained as incase of pipeline in buried condition.
P D 0
FUG := A E α ( T3 - T1) + ( 0.5 - ν) = 2.213 106 N
2 t
2.1.2 Frictional Resistance Force of Soil ( f spfr ):
The m ovem ent of buried pipeline due to tem perature is resisted by the soil resistance force in the axial direction,
The Soil Cover above Center of Pipeline (equal to depth of pipe centerline)
D0
H p := + h = 1.178 m
2
Soil Adhesion Factor
K := 1 - sin( ϕ) = 0.455
End Expansion of the Pipeline at UG/AG transition in axial direction is given below:
FUG L1
δ1 := = 11.305 mm
2.A E
Page 2 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.4
Doc No.: 14" SOUR GAS EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
δactual := δ1 = 11.305 mm
3 Summary of Results
Page 3 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.5
Doc No.: 20" SOUR OIL EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
Pipe Data
The following data listed pertaining to the line pipe, are required for the calculation of wall thickness.
Soil Data
Type of Soil
Soil Cohesive
c := 0kPa
c
c1 := =0
ksf
Coating Material
-3
Density of Soil ρ := 1785 kg m
Page 1 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.5
Doc No.: 20" SOUR OIL EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
2 Calculation
π 2 2 2
A :=
4
(D 0 ) (
- D0 - 2t ) = 0.012 m
2.1.1 Under Ground Anchor Load ( FUG):
Anchor load is the axial compressive force caused by internal pressure and tem perature difference & is realized only
when the pipeline is restrained as incase of pipeline in buried condition.
P D 0
FUG := A E α ( T3 - T1) + ( 0.5 - ν) = 2.859 106 N
2 t
2.1.2 Frictional Resistance Force of Soil ( f spfr ):
The m ovem ent of buried pipeline due to tem perature is resisted by the soil resistance force in the axial direction,
The Soil Cover above Center of Pipeline (equal to depth of pipe centerline)
D0
H p := + h = 1.254 m
2
Soil Adhesion Factor
K := 1 - sin( ϕ) = 0.455
End Expansion of the Pipeline at UG/AG transition in axial direction is given below:
FUG L1
δ1 := = 12.279 mm
2.A E
Page 2 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.5
Doc No.: 20" SOUR OIL EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001
δactual := δ1 = 12.279 mm
3 Summary of Results
Page 3 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.6
Doc No.: 6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001
1 INPUT DATA
Pipe Data
The following data listed pertaining to the line pipe, are required for the calculation of wall thickness.
Soil Data
Type of Soil
Soil Cohesive
c := 0kPa
c
c1 := =0
ksf
Coating Material
-3
Density of Soil ρ := 1785 kg m
Page 1 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.6
Doc No.: 6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001
2 Calculation
π 2 2 -3 2
A :=
4
(D 0 ) (
- D0 - 2t ) = 3.6 10 m
Anchor load is the axial compressive force caused by internal pressure and tem perature difference & is realized only
when the pipeline is restrained as incase of pipeline in buried condition.
P D 0
FUG := A E α ( T3 - T1) + ( 0.5 - ν) = 7.592 105 N
2 t
2.1.2 Frictional Resistance Force of Soil ( f spfr ):
The m ovem ent of buried pipeline due to tem perature is resisted by the soil resistance force in the axial direction,
The Soil Cover above Center of Pipeline (equal to depth of pipe centerline)
D0
H p := + h = 1.084 m
2
Soil Adhesion Factor
K := 1 - sin( ϕ) = 0.455
End Expansion of the Pipeline at UG/AG transition in axial direction is given below:
FUG L1
δ1 := = 9.089 mm
2.A E
Page 2 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.6
Doc No.: 6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001
δactual := δ1 = 9.089 mm
3 Summary of Results
Page 3 of 3
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet:
kg
Density of Buoyant Fluid ρbf := 1025
3
m
kg
Density Pipe Steel ρs := 7850
3
m
kg
Density of FBE ρfbe := 1550
3
m
kg
Density of Adhesive ρad := 930
3
m
kg
Density of HDPE ρpe := 955
3
m
kg
Density of Soil ρso := 1785
3
m
kg
Content Density max ρcont := 63.80
3
m
Backfill dry soil density kg
ρbc := 1785
(compacted) 3
m
Backfill dry soil density kg
ρbuc := 1550
(uncompacted) 3
m
Depth of Burial H := 1.2m
Page 1 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
2 CALCULATIONS
2.1 General
Outside diameter of all coating OD := D + 2 t1 + 2 t2 + 2 t3 = 279 mm
πD - D i
2
Cross-sectional Area Steel As :=
( )2 = 7.68 10
-3
m
2
4
kg
Weight of Steel Ws := As ρs = 60.292
m
Compacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG bc
FOSec := = 6.732
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
Page 2 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
Uncompacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG buc
FOSeu := = 5.967
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
kg
Weight of Steel Ws1 := As ρs = 39.958
m
Compacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG bc
FOSec1 := = 6.732
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
Page 3 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE
Uncompacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG buc
FOSeu1 := = 5.967
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
3 SUMMARY OF RESULTS
TABLE-1: Buoyancy Summary
Nominal Nominal
Factor of Safety
Outer Pipe Wall Factor of
S.No. against Remark
Diameter Thickness Safety Check
Flotation
mm mm
New Pipe-
1 6.73 SAFE
Compacted
New Pipe-
2 5.97 SAFE
Uncompacted
273.0 9.3
Corroded Pipe-
3 6.73 SAFE
Compacted
Corroded Pipe-
4 5.97 SAFE
Uncompacted
Page 4 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet:
kg
Density of Buoyant Fluid ρbf := 1025
3
m
kg
Density Pipe Steel ρs := 7850
3
m
kg
Density of FBE ρfbe := 1550
3
m
kg
Density of Adhesive ρad := 930
3
m
kg
Density of HDPE ρpe := 955
3
m
kg
Density of Soil ρso := 1785
3
m
kg
Content Density max ρcont := 63.80
3
m
Backfill dry soil density kg
ρbc := 1785
(compacted) 3
m
Backfill dry soil density kg
ρbuc := 1550
(uncompacted) 3
m
Depth of Burial H := 1.2m
Page 1 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
2 CALCULATIONS
2.1 General
Outside diameter of all coating OD := D + 2 t1 + 2 t2 + 2 t3 = 279 mm
πD - D i
2
Cross-sectional Area Steel As :=
( )2 = 7.68 10
-3
m
2
4
kg
Weight of Steel Ws := As ρs = 60.292
m
Compacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG bc
FOSec := = 6.732
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
Page 2 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
Uncompacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG buc
FOSeu := = 5.967
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
kg
Weight of Steel Ws1 := As ρs = 39.958
m
Compacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG bc
FOSec1 := = 6.732
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
Page 3 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE
Uncompacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG buc
FOSeu1 := = 5.967
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
3 SUMMARY OF RESULTS
TABLE-1: Buoyancy Summary
Nominal Nominal
Factor of Safety
Outer Pipe Wall Factor of
S.No. against Remark
Diameter Thickness Safety Check
Flotation
mm mm
New Pipe-
1 6.73 SAFE
Compacted
New Pipe-
2 5.97 SAFE
Uncompacted
273.0 9.3
Corroded Pipe-
3 6.73 SAFE
Compacted
Corroded Pipe-
4 5.97 SAFE
Uncompacted
Page 4 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet:
kg
Density of Buoyant Fluid ρbf := 1025
3
m
kg
Density Pipe Steel ρs := 7850
3
m
kg
Density of FBE ρfbe := 1550
3
m
kg
Density of Adhesive ρad := 930
3
m
kg
Density of HDPE ρpe := 955
3
m
kg
Density of Soil ρso := 1785
3
m
kg
Content Density max ρcont := 63.80
3
m
Backfill dry soil density kg
ρbc := 1785
(compacted) 3
m
Backfill dry soil density kg
ρbuc := 1550
(uncompacted) 3
m
Depth of Burial H := 1.2m
Page 1 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
2 CALCULATIONS
2.1 General
Outside diameter of all coating OD := D + 2 t1 + 2 t2 + 2 t3 = 174.3 mm
πD - D i
2
Cross-sectional Area Steel As :=
( )2 -3 2
= 3.6 10 m
4
kg
Weight of Steel Ws := As ρs = 28.264
m
Compacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG bc
FOSec := = 10.269
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
Page 2 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
Uncompacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG buc
FOSeu := = 9.06
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
kg
Weight of Steel Ws1 := As ρs = 15.852
m
Compacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG bc
FOSec1 := = 10.269
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
Page 3 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE
Uncompacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG buc
FOSeu1 := = 9.06
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
3 SUMMARY OF RESULTS
TABLE-1: Buoyancy Summary
Nominal Nominal
Factor of Safety
Outer Pipe Wall Factor of
S.No. against Remark
Diameter Thickness Safety Check
Flotation
mm mm
New Pipe-
1 10.27 SAFE
Compacted
New Pipe-
2 9.06 SAFE
Uncompacted
168.3 7.11
Corroded Pipe-
3 10.27 SAFE
Compacted
Corroded Pipe-
4 9.06 SAFE
Uncompacted
Page 4 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet:
kg
Density of Buoyant Fluid ρbf := 1025
3
m
kg
Density Pipe Steel ρs := 7850
3
m
kg
Density of FBE ρfbe := 1550
3
m
kg
Density of Adhesive ρad := 930
3
m
kg
Density of HDPE ρpe := 955
3
m
kg
Density of Soil ρso := 1785
3
m
kg
Content Density max ρcont := 63.80
3
m
Backfill dry soil density kg
ρbc := 1785
(compacted) 3
m
Backfill dry soil density kg
ρbuc := 1550
(uncompacted) 3
m
Depth of Burial H := 1.2m
Page 1 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
2 CALCULATIONS
2.1 General
Outside diameter of all coating OD := D + 2 t1 + 2 t2 + 2 t3 = 174.3 mm
πD - D i
2
Cross-sectional Area Steel As :=
( )2 -3 2
= 3.6 10 m
4
kg
Weight of Steel Ws := As ρs = 28.264
m
Compacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG bc
FOSec := = 10.269
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
Page 2 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
Uncompacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG buc
FOSeu := = 9.06
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
kg
Weight of Steel Ws1 := As ρs = 15.852
m
Compacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG bc
FOSec1 := = 10.269
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
Page 3 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE
Uncompacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG buc
FOSeu1 := = 9.06
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
3 SUMMARY OF RESULTS
TABLE-1: Buoyancy Summary
Nominal Nominal
Factor of Safety
Outer Pipe Wall Factor of
S.No. against Remark
Diameter Thickness Safety Check
Flotation
mm mm
New Pipe-
1 10.27 SAFE
Compacted
New Pipe-
2 9.06 SAFE
Uncompacted
168.3 7.11
Corroded Pipe-
3 10.27 SAFE
Compacted
Corroded Pipe-
4 9.06 SAFE
Uncompacted
Page 4 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet:
kg
Density of Buoyant Fluid ρbf := 1025
3
m
kg
Density Pipe Steel ρs := 7850
3
m
kg
Density of FBE ρfbe := 1550
3
m
kg
Density of Adhesive ρad := 930
3
m
kg
Density of HDPE ρpe := 955
3
m
kg
Density of Soil ρso := 1785
3
m
kg
Content Density max ρcont := 63.80
3
m
Backfill dry soil density kg
ρbc := 1785
(compacted) 3
m
Backfill dry soil density kg
ρbuc := 1550
(uncompacted) 3
m
Depth of Burial H := 1.2m
Page 1 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
2 CALCULATIONS
2.1 General
Outside diameter of all coating OD := D + 2 t1 + 2 t2 + 2 t3 = 361.6 mm
πD - D i
2
Cross-sectional Area Steel As :=
( )2 = 9.524 10
-3
m
2
4
kg
Weight of Steel Ws := As ρs = 74.763
m
Compacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG bc
FOSec := = 5.184
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
Page 2 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
Uncompacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG buc
FOSeu := = 4.591
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
kg
Weight of Steel Ws1 := As ρs = 47.827
m
Compacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG bc
FOSec1 := = 5.184
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
Page 3 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE
Uncompacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG buc
FOSeu1 := = 4.591
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
3 SUMMARY OF RESULTS
TABLE-1: Buoyancy Summary
Nominal Nominal
Factor of Safety
Outer Pipe Wall Factor of
S.No. against Remark
Diameter Thickness Safety Check
Flotation
mm mm
New Pipe-
1 5.18 SAFE
Compacted
New Pipe-
2 4.59 SAFE
Uncompacted
355.6 8.74
Corroded Pipe-
3 5.18 SAFE
Compacted
Corroded Pipe-
4 4.59 SAFE
Uncompacted
Page 4 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet:
kg
Density of Buoyant Fluid ρbf := 1025
3
m
kg
Density Pipe Steel ρs := 7850
3
m
kg
Density of FBE ρfbe := 1550
3
m
kg
Density of Adhesive ρad := 930
3
m
kg
Density of HDPE ρpe := 955
3
m
kg
Density of Soil ρso := 1785
3
m
kg
Content Density max ρcont := 63.80
3
m
Backfill dry soil density kg
ρbc := 1785
(compacted) 3
m
Backfill dry soil density kg
ρbuc := 1550
(uncompacted) 3
m
Depth of Burial H := 1.2m
Page 1 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE
2 CALCULATIONS
2.1 General
Outside diameter of all coating OD := D + 2 t1 + 2 t2 + 2 t3 = 514 mm
πD - D i
2
Cross-sectional Area Steel As :=
( )2 = 0.012 m
2
4
kg
Weight of Steel Ws := As ρs = 97.675
m
Compacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG bc
FOSec := = 3.623
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
Page 2 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE
Uncompacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG buc
FOSeu := = 3.203
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
kg
Weight of Steel Ws1 := As ρs = 58.583
m
Compacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG bc
FOSec1 := = 3.623
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
Page 3 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE
Uncompacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG buc
FOSeu1 := = 3.203
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
3 SUMMARY OF RESULTS
TABLE-1: Buoyancy Summary
Nominal Nominal
Factor of Safety
Outer Pipe Wall Factor of
S.No. against Remark
Diameter Thickness Safety Check
Flotation
mm mm
New Pipe-
1 3.62 SAFE
Compacted
New Pipe-
2 3.20 SAFE
Uncompacted
508.0 7.92
Corroded Pipe-
3 3.62 SAFE
Compacted
Corroded Pipe-
4 3.20 SAFE
Uncompacted
Page 4 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet:
kg
Density of Buoyant Fluid ρbf := 1025
3
m
kg
Density Pipe Steel ρs := 7850
3
m
kg
Density of FBE ρfbe := 1550
3
m
kg
Density of Adhesive ρad := 930
3
m
kg
Density of HDPE ρpe := 955
3
m
kg
Density of Soil ρso := 1785
3
m
kg
Content Density max ρcont := 63.80
3
m
Backfill dry soil density kg
ρbc := 1785
(compacted) 3
m
Backfill dry soil density kg
ρbuc := 1550
(uncompacted) 3
m
Depth of Burial H := 1.2m
Page 1 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
2 CALCULATIONS
2.1 General
Outside diameter of all coating OD := D + 2 t1 + 2 t2 + 2 t3 = 174.3 mm
πD - D i
2
Cross-sectional Area Steel As :=
( )2 -3 2
= 3.6 10 m
4
kg
Weight of Steel Ws := As ρs = 28.264
m
Compacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG bc
FOSec := = 10.269
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
Page 2 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
Uncompacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG buc
FOSeu := = 9.06
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
kg
Weight of Steel Ws1 := As ρs = 15.852
m
Compacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG bc
FOSec1 := = 10.269
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
Page 3 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE
Uncompacted Soil
1
Wte + H D 1 - ρ
Factor of Safety against Flotation, SG buc
FOSeu1 := = 9.06
empty Wgw
SF := 1.5
π
SF
2
(OD) ρbf
C :=
4 = 1.5
Wgw
3 SUMMARY OF RESULTS
TABLE-1: Buoyancy Summary
Nominal Nominal
Factor of Safety
Outer Pipe Wall Factor of
S.No. against Remark
Diameter Thickness Safety Check
Flotation
mm mm
New Pipe-
1 10.27 SAFE
Compacted
New Pipe-
2 9.06 SAFE
Uncompacted
168.3 7.11
Corroded Pipe-
3 10.27 SAFE
Compacted
Corroded Pipe-
4 9.06 SAFE
Uncompacted
Page 4 of 4