Nothing Special   »   [go: up one dir, main page]

0000 A0 060 Cal 0001

Download as pdf or txt
Download as pdf or txt
You are on page 1of 418

Page No.

:
KUWAIT OIL COMPANY (K.S.C) 1
Date:
A Subsidiary of Kuwait Petroleum Corporation
17-02-19
Contract Project Title Rev.
Document Number:
No.:
17051820-0000-A60-060-CAL-0001
17051820 1
Project No.: GC-32, NEW GATHERING CENTRE FOR SEK
EF/1931
Job No.: Document Title:
JI-2035 PIPELINE MECHANICAL CALCULATION REPORT

PIPELINE MECHANICAL CALCULATION REPORT

1 Re-Issued for Design FT KP KR GS 17-02-19


0 Issued for Design FT KP KR GS 17-10-18
D Re-Issued for Review FT KP KR JD 26-04-18
C Re-Issued for Review FT KP KR JD 09-11-17
B Re-Issued for Review FT AM KP KR/JD 23-08-17
A Issued for Review FT AM KP KR/JD 05-07-17
Rev. Issue Description Prepared Checked Approved Approved Date
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

REVISION DESCRIPTION SHEET

Rev. Para. Revision Description

A Issued for Review


B Re-Issued for Review
C Re-Issued for Review
D Re-Issued for Review
0 Issued for Design
1 Re-Issued for Design
Hold
Para. Description of Hold
No.

Page 2 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

TABLE OF CONTENTS
1. PROJECT INTRODUCTION .................................................................. 5
2. SCOPE AND PURPOSE ....................................................................... 5
3. REFERENCE DOCUMENTS ................................................................... 6
3.1 PROJECT DOCUMENT ........................................................................... 6
3.2 INTERNATIONAL CODES AND STANDARDS ................................................... 7
3.3 KOC STANDARDS AND SPECIFICATIONS ...................................................... 7

4. DESIGN DATA ................................................................................. 8


5. DESIGN FACTOR & ZONING ................................................................ 9
6. CALCULATION METHODOLOGY........................................................... 10
6.1 PIPELINE WALL THICKNESS CALCULATION ................................................. 10
6.2 PIPELINE STRESS CALCULATION ............................................................. 12
6.3 PIPELINE ELASTIC BEND RADIUS CALCULATION ............................................ 15
6.4 PIPELINE TEST PRESSURE CALCULATION ................................................... 16
6.5 PIPELINE STRESS LIMITS....................................................................... 17
6.6 MOTHER PIPE THICKNESS CALCULATION ................................................... 17
6.7 FREE END EXPANSION AND ANCHOR LOADS ................................................ 18
6.8 PIPELINE BUOYANCY .......................................................................... 18
6.9 ABOVE GROUND EXPANSION LOOP .......................................................... 19

7. SUMMARY OF RESULTS .................................................................... 19


7.1 PIPELINE WALL THICKNESS ................................................................... 19
7.2 PIPELINE COMBINED STRESS .................................................................. 20
7.3 PIPELINE ELASTIC BEND RADIUS ............................................................. 23
7.4 PIPELINE TEST PRESSURE ..................................................................... 27
7.5 COLD FIELD BEND AND MOTHER PIPE FOR HOT INDUCTION BEND WALL THICKNESS . 28
7.6 ANCHOR LOAD AND FREE END EXPANSION ................................................. 29
7.7 BUOYANCY CALCULATION .................................................................... 30

8. APPENDIXES ................................................................................. 31
8.1 APPENDIX-A PIPELINES WALL THICKNESS CALCULATION ................................. 31
8.2 APPENDIX-B COMBINED STRESS CALCULATION FOR DESIGN FACTOR 0.72 ............. 31
8.3 APPENDIX-C COMBINED STRESS CALCULATION FOR DESIGN FACTOR 0.6 .............. 31
8.4 APPENDIX-D ELASTIC BEND RADIUS CALCULATION FOR DESIGN FACTOR 0.72 ........ 31
8.5 APPENDIX-E ELASTIC BEND RADIUS CALCULATION FOR DESIGN FACTOR 0.6 .......... 31

Page 3 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

8.6 APPENDIX-F HYDROSTATIC TEST PRESSURE CALCULATION FOR DESIGN FACTOR


0.72 ............................................................................................. 31
8.7 APPENDIX-G HYDROSTATIC TEST PRESSURE CALCULATION FOR DESIGN FACTOR 0.6 31
8.8 APPENDIX-H COLD FIELD BEND AND MOTHER PIPE FOR HOT INDUCTION BEND WALL
THICKNESS CALCULATION FOR DESIGN FACTOR 0.72 ..................................... 31
8.9 APPENDIX-I COLD FIELD BEND AND MOTHER PIPE FOR HOT INDUCTION BEND WALL
THICKNESS CALCULATION FOR DESIGN FACTOR 0.6 ...................................... 31
8.10 APPENDIX J – ANCHOR LOAD AND FREE END EXPANSION CALCULATION ............... 31
8.11 APPENDIX K – PIPELINE BUOYANCY CALCULATION ........................................ 31

Page 4 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

1. PROJECT INTRODUCTION
Kuwait Oil Company (KOC) (hereafter called Company) have awarded Petrofac
International Ltd. (PIL), Sharjah (hereafter called Petrofac or Contractor) the Contract
for the Project: GC-32, New Gathering Centre for SEK in South East Kuwait (Project
EF/1931) on Lumpsum Turnkey (LSTK) Basis.

The GC-32-New Gathering Center for SEK shall process crude oil and associated gas,
produced from the Arifjan, Marat, Minagish Oolite and Burgan Wara fields. GC-32 Facility
shall separate oil, gas and water, to recover condensate from the gas and to export these
streams following their treatment.

The sour export crude is pumped to the South Tank Farm (STF) P-header or Ahmadi
Distribution Manifold (ADM) / KMH (Project EF-1669) or NTF (36” Ratawi-Burgan oil
pipeline at TB1 Manifold).

GC-32 gas and condensate export lines will tie-in to the West Kuwait gas and condensate
export pipelines via ISC-171A facility where gas slug catcher facilities as well as gas and
condensate pipeline pigging facilities are provided.

Effluent water will be exported to EWDP-II via 28” pipeline joining existing header inside
EWDP-II.

The gathering centre shall be designed to produce up to 120,000 BOPD Crude Oil, 83
MMSCFD Gas, 12,500 BCPD Condensate and 280,000 BWPD Effluent Water.

2. SCOPE AND PURPOSE


The scope of this document is to determine the Wall Thickness for the following Carbon
Steel Pipelines.

 10” LP Gathering Header Trunkline (10 No.)


1
 10” HP Gathering Header Trunkline (5 No.)
 6” Sour Liquid Return Pipeline
 6” Sour Condensate Export Pipeline
 14” Sour Gas Export Pipeline
 6” Fuel Gas Import Pipeline

Page 5 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

 6” Flowlines from Remote Manifolds (90 No. Flowlines beyond 1m from the
remote manifold plot area are not part of the scope of the GC-32 Project Pipeline 1
Scope).
This report does not cover the followings and this analysis will be presented in a separate
report.

 Road Crossing Calculation


 Pipeline Upheaval Buckling Calculation
Note: - The mechanical design of RTRP pipelines will be carried out by RTRP vendor.

3. REFERENCE DOCUMENTS
3.1 PROJECT DOCUMENT
The following are the reference documents

17051820-0000-A0-060-BOD-0001 Pipeline Design Basis

17051820-0000-A0-060-BOD-0002 Pipeline Stress Analysis Basis

17051820-0032-A0-020-BOD-0001 Process Design Basis

17051820-0000-A0-060-DAT-0001 Data Sheet for CS Line pipe (Seamless)

17051820-0000-A0-060-DAT-0002 Data Sheet for CS Line pipe (LSAW)

17051820-0000-A0-060-DAT-0005 Data Sheet for Hot Induction Bends

17051820-0032-C1-060-STA-0001 Stress Reports for 10" LP Trunklines

to 0009

17051820-0000-A0-060-CAL-0002 Road Crossing Calculation

17051820-0000-A0-060-CAL-0003 Pipeline Upheaval Buckling Calculation

17051820-0000-A0-060-STD-0012 Typical drawing for Expansion loop & support


details for Aboveground 10” LP Trunklines

17051820-0000-A0-060-RPT-0003 Pipeline FEA Analysis Report for Field Cold Pipe


Bending

Page 6 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

3.2 INTERNATIONAL CODES AND STANDARDS


Pipeline design shall make reference to the following documents and documents
referenced therein.

The latest revision of documents current at time of Contract award shall be used.

ASME B 31.4 Pipeline Transportation for Liquids and Slurries

ASME B 31.8 Gas Transmission and Distribution Piping Systems

ASME B36.10 Welded and Seamless Wrought Steel Pipes

API 5L Specification for Line pipe

API RP1110 Recommended Practice for the Pressure Testing of Steel Pipelines
for the Transportation of Gas, Petroleum Gas, Hazardous Liquids,
Highly Volatile Liquids, or Carbon Di Oxide

3.3 KOC STANDARDS AND SPECIFICATIONS


KOC-MS-001-Part 1 KOC Material Specification LinePipe for Sour Services

CRT-1931-KOC-MS-001 Criteria to KOC-MS-001 Part 1 Rev 2 KOC Mater Specification

Line Pipe for Sour Service

015-IH-1001 Pipeline Construction

ADD-1931-015-IH-1001 Addendum to Specification 015-IH-1001 Rev 1 Pipeline

Construction

015-IH-1002 Pipeline Design

ADD-1931-015-IH-1002 Addendum to specification 015-IH-1002 Rev 1 Pipeline Design

015-IH-1004 Pipeline pigging and Hydrostatic Test

ADD-1931-015-IH-1004 Addendum to Specification 015-IH-1004 Rev 1 Pipeline Pigging and


Hydrostatic Test

KOC-G-007 KOC Standard for Basic Design Data

1931-032-ZA-E-Z0001 Specification for Materials in Sour Service

Page 7 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

4. DESIGN DATA
Pipeline design data parameters presented in this section are extracted from Pipeline
Design Basis (Doc.No. 17051820-0000-A0-060-BOD-0001). The pipeline mechanical
design calculations were performed based on the following design data.

TABLE 4.1: DESIGN DATA

LP SOUR
HP GATHERING SOUR LIQUID SOUR GAS SOUR OIL FUEL GAS
GATHERING CONDENSATE
PARAMETERS HEADER RETURN EXPORT EXPORT IMPORT
HEADER EXPORT
TRUNKLINE PIPELINE PIPELINE PIPELINE PIPELINE
TRUNKLINE PIPELINE

Pipe Size (Inch) 10 10 6 6 14 20 6

Pipe Material Grade API 5L Gr API 5L Gr X52 API 5L Gr API 5L Gr API 5L Gr API 5L Gr API 5L Gr X52
X52 X52 X52 X52 X52

Pipeline Design Code ASME B 31.8 ASME B 31.8 ASME B 31.8 ASME B 31.8 ASME B 31.8 ASME B 31.4 ASME B 31.8

Design Factor 0.72 & 0.6 0.72 & 0.6 0.72 & 0.6 0.72 & 0.6 0.72 & 0.6 0.72 0.72 & 0.6

Corrosion Allowance 3.2 3.2 3.2 3.2 3.2 3.2 3.2


(mm)

Max./Min. Design 76/ (-)19 76/ (-)19 50/ (-)19 50/ (-)19 45/ (-) 19 65 / (-)3 50/ (-)19
Temperature-Buried
Pipeline Section (°c)

Max./Min. Design 93/ (-)19 93/ (-)19 93/ (-)19 93/ (-)19 93/ (-)19 93/ (-)3 93/ (-)19
Temperature-Above
Ground Pipeline
Section (°C)

Installation 8 8 8 8 8 8 8
Temperature (°C)

Design Pressure (barg) 94.2 94.2 98 98 75 43.43 37.9

External Coating Above 3LPE 3LPE 3LPE 3LPE 3LPE 3LPE


Ground
Portion –
Paint as per
KOC-P-001
Under
Ground
Portion (at
Road
Crossing) –
3LPE

Page 8 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

LP SOUR
HP GATHERING SOUR LIQUID SOUR GAS SOUR OIL FUEL GAS
GATHERING CONDENSATE
PARAMETERS HEADER RETURN EXPORT EXPORT IMPORT
HEADER EXPORT
TRUNKLINE PIPELINE PIPELINE PIPELINE PIPELINE
TRUNKLINE PIPELINE

Installation Above Under Ground Under Under Under Under Under Ground
Ground Ground Ground Ground Ground

Specified Minimum 360 MPa 360 MPa 360 MPa 360 MPa 360 MPa 360 MPa 360 MPa
Yield Stress (SMYS)
(52200 PSI) (52200 PSI) (52200 PSI) (52200 PSI) (52200 PSI) (52200 PSI) (52200 PSI)

Young’s Modulus of 199948 MPa ~ 199948 MPa ~ 199948 MPa ~ 199948 MPa ~ 199948 MPa ~ 199948 MPa ~ 199948 MPa ~
Elasticity
203000 MPa 203000 MPa 203000 MPa 203000 MPa 203000 MPa 203000 MPa 203000 MPa

Poisson’s Ratio 0.3 0.3 0.3 0.3 0.3 0.3 0.3

-5
Co-efficient of 1.17 X 10 / 1.17 X 10 -5 / k 1.17 X 10 -5
/ 1.17 X 10 -5
/ 1.17 X 10 -5
/ 1.17 X 10 -5
/ 1.17 X 10 -5 / k
Thermal Expansion
k k k k k

Hydrostatic Test At Hoop At Hoop Stress At Hoop At Hoop At Hoop At Hoop At Hoop Stress
Stress 90% of 90% of SMYS Stress 90% of Stress 90% of Stress 90% of Stress 90% of 90% of SMYS
SMYS SMYS SMYS SMYS SMYS

5. DESIGN FACTOR & ZONING


The pipeline design factors for the pipelines are in accordance with Table 5.1 and shall
be reviewed during detailed design upon completion of pipeline routes. Final wall
thickness requirements throughout the pipeline routes shall be as per the detail stress
analysis & finalised route design.

TABLE 5.1 DESIGN FACTOR


Product(s): Produced Fluids, Fuel Gas, Sour Gas, Sour Condensate

Facility
Design Factor Reference

Location Class1 Location Location


Div2 Class2 Class3

Main Pipeline (Outside Plant Areas) 0.72 0.6 0.5

Table 841.1.6-2 of
Plant Areas 0.6 0.6 0.5 ASME B31.8 (Note-1)

Page 9 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

Product(s): Produced Fluids, Fuel Gas, Sour Gas, Sour Condensate

Facility
Design Factor Reference

Location Class1 Location Location


Div2 Class2 Class3

Fabricated Assemblies (Pig Traps, SVSs, etc.) 0.6 0.6 0.5

Cased Road Crossings 0.72 0.6 0.5

Uncased Private Road Crossings 0.72 0.6 0.5

Uncased Public Road Crossings 0.6 0.6 0.5

Product(s): Sour Oil

Facility Design Factor Reference

Main Pipeline (Outside Plant Areas) 0.72


Table 403.3.1-1 of ASME B31.4

Plant Areas 0.72

Fabricated Assemblies (Pig Traps, SVSs, etc.) 0.72

Cased Road Crossings 0.72

Uncased Private Road Crossings 0.72

Uncased Public Road Crossings 0.72

Note-1: The design factor for each pipeline section shall be based on the location class
determined in accordance with section 840 of ASME B31.8, taking account of any
pipeline future development in the vicinity of the pipeline corridor.

6. CALCULATION METHODOLOGY
6.1 PIPELINE WALL THICKNESS CALCULATION
6.1.1 GENERAL

Wall thickness calculations for Pipelines are performed in accordance with ASME B31.4
(clause 403.2.1) and ASME B31.8 (clause 841.1.1). Stresses have been checked for
adequacy of wall thickness using method specified in ASME B 31.4 and ASME B 31.8.
Design factor consideration shall be as per clause 4 of this document.

Page 10 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

A corrosion allowance shall be added to the calculated thickness to arrive the minimum
wall thickness requirement.

The minimum selected wall thickness is then checked for acceptability;

Diameter to Thickness (D / t) ratio maximum ≤ 96

The final thickness derived as specified above, is then round up to the next ASME B36.10M
wall Thickness to select the actual thickness.

6.1.2 WALL THICKNESS FORMULA

Pipeline wall thickness shall be calculated as per with ASME B31.4 (clause 403.2.1) and
ASME B31.8 (clause 841.1.1). The nominal wall thickness is calculated in accordance with
the following formulas:

tn ≥ t + A

and

ASME B 31.4 ASME B 31.8

P×D P×D
t= , t=
2 × DF × E × SMYS 2 × DF × E × SMYS × T

where

A = Sum of allowances for threading, grooving, corrosion and erosion, (mm)

t n = Nominal wall thickness satisfying requirements for pressure and allowances, (mm)

t = Pressure design wall thickness as calculated, (mm)

D = Outside diameter of pipe (mm)

P = Internal design pressure (MPa)

E = Weld Joint Factor

DF = Design Factor

SMYS = Specified Minimum Yield Strength of the Pipe (MPa)

T = Temperature Derating Factor

Page 11 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

6.2 PIPELINE STRESS CALCULATION


All pipeline stress components shall be checked with respect to the pipeline stress limits
as indicated in the Table 6.5.

ASME B31.4 & ASME B 31.8 qualifies the pipeline with regard to location classes, and as
per Pipeline Design Basis; Trunklines/Pipelines/Flowlines come under design factor of
0.72 & 0.6 (Refer Table 5.1).

6.2.1 HOOP STRESS

For both restrained and unrestrained pipelines, the circumferential (hoop) stress due to
pressure containment shall be computed in accordance with ASME B31.4 (clause 402.3)
& ASME B 31.8 (clause 805.2.3) as per following equation:

PD
SH =
2t

where

D= Outside diameter of pipe, (mm)


P= Internal design gauge pressure, (MPa)

SH = Circumferential (hoop) stress due to internal pressure, (MPa)

t= Pressure design wall thickness of pipe, (mm)

6.2.2 LONGITUDINAL STRESS DUE TO INTERNAL PRESSURE

Pipeline Longitudinal stress due to internal pressure shall be computed in accordance


with ASME B31.4 & ASME B31.8 (Clause 833.2) as following equations below

SP = 0.3SH for restrained lines

SP = 0.5SH for unrestrained lines

6.2.3 LONGITUDINAL STRESS OF RESTRAINED LINES DUE TO THERMAL EXPANSION

Pipeline Longitudinal stress for Restrained Pipe due to thermal Expansion shall be
computed in accordance with ASME B31.4 (clause 402.5.1) & ASME B 31.8 (clause 833.2)
as following equation below:

ST = Eα(Ti − T)

where

Page 12 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

E= Moduli of elasticity, (MPa)


ST = Thermal expansion stress, (MPa)

Ti = Temperature of the pipe at installation or completion of final tie-in, (°C)

T= Max/Min design temperature, (°C)

α= Coefficient of thermal expansion, (mm/mm/°C)

6.2.4 TOTAL LONGITUDINAL STRESS OF RESTRAINED LINES

Buried pipeline is considered as restrained lines where the axial displacement or flexure
at bends is prevented by soil. Commonly, restrained pipeline may include straight
section of buried pipeline, bends in consolidated soil, and above ground pipeline
attached to closely spaced on rigid supports.

The pipeline will be subject to longitudinal stress due to the combined effects of
Temperature rise and fluid pressure. The longitudinal stress of the restrained line shall
be calculated in accordance with ASME B31.4 (clause 402.6.1) & ASME B31.8 (clause
833.3).

Total longitudinal stress in restrained pipe:

SL = SP + ST + SX + SB

Where

SP = longitudinal stress due to internal Pressure, (MPa)

ST = thermal expansion stress, (MPa)

SX = axial stress due to external force, (MPa)

= R
Ac
Ac = Cross-sectional area not including corrosion allowance, (m2)

R = External axial force, (N)

SB = Bending stress, (MPa)

Note: SP , ST , SX , SB can have negative values.

Page 13 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

6.2.5 COMBINED STRESS OF RESTRAINED LINES

The equivalent combined stress of the restrained pipe shall be not greater than 90% of
SMYS and shall be computed as per Shear Theory or Von Mises criteria as presented
below:

Shear Stress (As per Clause 402.7 of ASME B31.4 & ASME B 31.8)

Where:

Seq = Equivalent combined stress of restrained pipe, (MPa)

St = torsional stress (Mpa)

SL = Total longitudinal stress

SH = Hoop stress

Von Mises Equation (As per Clause A402.3.5 of ASME B31.4 & Clause A824.2.2 of ASME
B31.8)

σVon = √SL2 − SL SH + SH
2

Where:

SL = Total longitudinal stress

SH = Hoop stress

σVon = Equivalent combined stress of restrained pipe, (MPa)

Von Mises Equation have been chosen to calculate the Combined Stress of Restrained
Pipes.

Page 14 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

6.2.6 TOTAL LONGITUDINAL STRESS OF UNRESTRAINED LINES

Unrestrained section of the pipeline is pipeline which is free to displace axially or flex
at bends. Unrestrained section may include aboveground pipeline that is configured to
accommodate thermal expansion or anchor movement through the flexibility, bends and
adjacent pipeline buried in soft or unconsolidated soil, and unbackfilled section of
otherwise buried pipeline that is sufficiently flexible to displace laterally. The total
longitudinal stress from pressure, weight and external loadings in unrestrained pipeline
shall be calculated with ASME B31.4 (clause 402.6.2) & ASME B31.8 (clause 833.6).

Total longitudinal stress in unrestrained pipe:

SL = SP + SX + SB ,

where

SP = Longitudinal stress due to internal Pressure, (MPa)

= 0.5SH
SX = Axial stress due to external force, (MPa)

SB = Bending stress, (MPa)

= M
Z
M= bending moment across the nominal pipe cross section due to weight, (Nm)

Z= section modulus of the pipe, (m3)

6.3 PIPELINE ELASTIC BEND RADIUS CALCULATION

Change in direction, vertically and horizontally, shall be routed by elastic bending where
adequate space is available. Elastic bend loads will produce bending stress to the
pipeline. The longitudinal and combined stress of the pipeline which is subject to the
elastic bend loads shall not exceed the limits shown in the Table 6.5

Minimum elastic bend radii allowable in the fully restrained section were calculated,
using the following standard formula:

Page 15 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

DE
R=
2SB

where

D= Outside diameter of pipe, (mm)


E= Moduli of elasticity, (MPa)
SB = Bending stress, (MPa)

6.4 PIPELINE TEST PRESSURE CALCULATION


After construction, the pipeline shall be pressure tested to ensure the integrity of all
the pipeline Sections. The pressure at any point of the pipeline shall be within the range
minimum and maximum field test pressures as indicated below.

The hydrostatic pressure testing of the new pipelines shall be done in compliance with
API RP 1110 and KOC Specification for Pipeline Pigging and Hydrostatic Test KOC
Specification Pipeline Pigging and Hydrostatic Test (015-IH-1004 Rev.1). Clause 7.3 of
015-IH-1004 Rev.1 requires pipe to be hydro tested at a pressure equal to 1.25 times of
design pressure.

The minimum and maximum hydrostatic test pressures are used for calculating
maximum allowable elevation difference in the section which forms a vital input to
sectionalize the pipeline test section in consideration with other constraints.

Minimum Test Pressure = 1.25 x Design Pressure (DP)

(0.9×SMYS)(2×t×E)
Maximum Test Pressure =[ ]
D
(as per Clause 437.4.1(a) ASME B31.4 & Clause 816 of ASME B 31.8)

where

SMYS = Specified Minimum Yield Strength of the Pipe (MPa)

t = Wall Thickness (mm)

E = Weld Joint Factor

D = Outside diameter of pipe (mm)

Page 16 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

6.5 PIPELINE STRESS LIMITS


Allowable stresses for the pipeline used in this pipeline design calculation, are taken
from ASME 31.4 (Table 403.3.1-1) & ASME B 31.8 as tabulated in table below.

Table 6.5 ALLOWABLE STRESSES

SL.NO PARAMETERS VALUE REMARK

Stress Limits for Restrained Pipe

1 Max. Circumferential Stress 72% of SMYS

2 Max Longitudinal Stress 90% of SMYS As per Table 403.3.1-1


of ASME B31.4
3 Max Equivalent Combined Stress 90% of SMYS

Stress Limits for Unrestrained Pipe

75% of SMYS x As per Clause 833.6 of


4 Max Longitudinal Stress Temperature Derating ASME B 31.8
Factor

Minimum Hydrotest Pressure

As per Clause
437.4.1(a) ASME B31.4
5 Field Hydrotest Pressure 90% of SMYS
& Clause 816 of ASME
B 31.8

6.6 MOTHER PIPE THICKNESS CALCULATION


The minimum bending radius allowable for Hot bend is 5D, where D is the nominal outer
diameter of pipe.

The wall thickness of finished bend shall take into account wall thinning at the outer
radius and will be greater than design thickness.

Wall thinning percentage of mother pipe wall thickness is computed with formula
indicated in BS PD 8010-1 para. 6.2.2.3.

50%
t thin = = 0.09
(n + 1)

where

t thin = wall thinning, as a percentage (%)

n = inner bend radius divided by pipe diameter

(5D−0.5D)
n= = 4.5
D
Page 17 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

The minimum pipe thickness before bending:

tw
t Bend =
(1 − t Thin1h )

Where

t w = nominal wall thickness selected for linepipe (mm)

Note: The above formula does not consider other factors that depend on the bending
process and the bend manufacturer shall be consulted where wall thinning is critical.

6.7 FREE END EXPANSION AND ANCHOR LOADS


Pipeline movement shall occur due to high temperature and pressure. Pipeline systems
shall have sufficient flexibility to allow for pipe thermal expansion.

Where the anchors are not available in the pipeline, the transition zone and aboveground
portion will be expanded due to thermal load. Aboveground pipe that is configured to
accommodate thermal expansion. The above-ground pipelines shall be routed in a
manner such that no excessive movement occurs on the pipes due to the effects of
thermal expansion and / or contraction, internal pressure and other design internal or
external loads. Pipeline end expansion in the transition zone between above ground and
underground shall be limited to 50mm and verify by stress analysis, to maintain this limit,
including adding flexibility provisions in aboveground and underground, increasing burial
depth and/or providing anchor blocks.

6.8 PIPELINE BUOYANCY


The requirement for stability of the pipelines in areas susceptible to soil liquefaction will
be investigated where there is a need and subsequent mitigation measures will be
investigated and employed.

The pipeline to be laid in a trench covered by soil, which will provide a hold down force
to prevent buoyancy. Depending on the buoyancy requirement, suitable buoyancy
preventive method (such as concrete coating or any other option) shall be applied. This
force is calculated by determining the submerged weight of soil above the pipeline.

The method used to determine the vertical stability of the pipeline is to calculate the
total weight of the pipeline, the soil hold down force and compare them with the weight
of the external fluid (water) the pipeline would displace.

Page 18 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

6.9 ABOVE GROUND EXPANSION LOOP


Flexibility of above ground pipeline shall be obtained through pipe routing or expansion
loops. Expansion loops, provided, shall clear adjacent pipeline and can be 2 Dimensional
or 3 Dimensional based on process requirements and layout feasibility.

Expansion loops shall be provided as per Stress Reports for 10" LP Trunklines (Doc. No.
17051820-0032-C1-060-STA-0001 to 0009) and Typical drawing for Expansion loop &
support details for Aboveground 10” LP Trunklines (Dwg. No 17051820-0000-A0-060-STD-
0012).

7. SUMMARY OF RESULTS
7.1 PIPELINE WALL THICKNESS
Below table presents the result of the selected pipeline wall thickness. Detailed
calculations are available in Appendix A.

TABLE 7.1: WALL THICKNESS CALCULATION SUMMARY

CALCULATED WALL SELECTED WALL


SL.NO DESCRIPTION DESIGN FACTOR
THICKNESS (mm) THICKNESS (mm)

0.72 8.17 9.27


1 10” LP Gathering Header Trunkline
0.60 9.16 11.13
0.72 8.17 9.27
2 10” HP Gathering Header Trunkline
0.60 9.16 11.13
0.72 6.39 7.11
4 6” Sour Liquid Return Pipeline
0.60 7.02 7.11
0.72 6.39 7.11
5 6” Sour Condensate Export Pipeline
0.60 7.02 7.11

0.72 8.35 8.74


6 14” Sour Gas Export Pipeline
0.60 9.38 10.31
7 20” Sour Oil Export Pipeline 0.72 7.46 7.92
0.72 4.44 7.11
8 6” Fuel Gas Import Pipeline
0.60 4.68 7.11
0.72 6.26 7.11
11 6” Flowlines from Remote Manifolds
0.60 6.88 7.92

Page 19 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

7.2 PIPELINE COMBINED STRESS


Pipeline combined stress calculation have been performed pipe for below 4 conditions:

i. Installation 8 + Minimum Design Temperature

ii. Installation 8 + Maximum Design Temperature

iii. Installation 35 + Minimum Design Temperature

iv. Installation 35 + Maximum Design Temperature

TABLE 6.2.1: COMBINED STRESS SUMMARY FOR RESTRAINED PIPE (Condition (i) & (ii))

HOOP STRESS TOTAL LONGITUDINAL STRESS COMBINED STRESS

DESIGN
SL.NO DESCRIPTION
FACTOR Calculated Allowable Calculated Allowable Calculated Allowable
Stress Stress
Stress Ratio
(MPa) (MPa) Ratio (MPa) (MPa) (MPa) (MPa) Ratio

10” LP
0.72 211.8 259.2 81.7% 138.3 324 42.6% 305.5 324 94.2%
Gathering
1
Header
Trunkline 0.6 162.1 216 75% 153.2 324 47.2% 273.2 324 84.3%
10” HP
Gathering 0.72 211.8 259.2 81.7% 127.7 324 46% 258.8 324 80%
2
Header
Trunkline 0.6 162.1 216 75% 153.2 324 47.2% 273.2 324 84.3%

6” Sour Liquid 0.72 210.9 259.2 81.3% 127.4 324 39.3% 231.3 324 71.3%
3 Return
Pipeline 0.6 210.9 216 97.6% 138.6 324 42.7% 304.8 324 94%
6” Sour
0.72 210.9 259.2 81.3% 127.4 324 39.3% 231.3 324 71.3%
Condensate
4
Export
Pipeline 0.6 210.9 216 97.6% 138.6 324 42.7% 304.8 324 94%

14” Sour Gas 0.72 240.7 259.2 92.8% 136.3 324 42% 248.9 324 76.8%
5 Export
Pipeline 0.6 187.6 216 86.8% 145.6 324 45% 289.3 324 89.2%
20” Sour Oil
6 Export 0.72 233.6 259.2 90.1% 131.8 324 40.6% 320.5 324 98.9%
Pipeline

6” Fuel Gas 0.72 81.6 259.2 31.4% 88.6 324 27% 135.9 324 41.9%
7 Import
Pipeline 0.6 81.6 216 37.7% 177.4 324 54.7% 229.3 324 70.7%

6” Flowlines 0.72 202.7 259.2 78.2% 124.9 324 38.5% 267.7 324 82.6%
8 from Remote
Manifolds 0.6 202.7 216 93.8% 141.1 324 43.5% 299.3 324 92.3%

Page 20 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

TABLE 6.2.2: COMBINED STRESS SUMMARY FOR RESTRAINED PIPE (Condition (iii) & (iv))

HOOP STRESS TOTAL LONGITUDINAL STRESS COMBINED STRESS

DESIGN
SL.NO DESCRIPTION
FACTOR Calculated Allowable Calculated Allowable Calculated Allowable
Stress Stress
Stress Ratio
(MPa) (MPa) Ratio (MPa) (MPa) Ratio (MPa) (MPa)

10” LP
0.72 211.8 259.2 81.7% 191.8 324 59.1% 257.1 324 79.3%
Gathering
1
Header
Trunkline 0.6 162.1 216 75% 176.9 324 54.6% 220.6 324 68%
10” HP
Gathering 0.72 211.8 259.2 81.7% 191.8 324 59.1% 230.6 324 71.1%
2
Header
Trunkline 0.6 162.1 216 75% 176.9 324 54.6% 220.6 324 68%

6” Sour Liquid 0.72 210.9 259.2 81.3% 191.5 324 59.1% 201.9 324 62.3%
3 Return
Pipeline 0.6 210.9 216 97.6% 191.5 324 59.1% 256.4 324 79.1%
6” Sour
0.72 210.9 259.2 81.3% 191.5 324 59.1% 201.9 324 62.3%
Condensate
4
Export
Pipeline 0.6 210.9 216 97.6% 191.5 324 59.1% 256.4 324 79.1%

14” Sour Gas 0.72 240.7 259.2 92.8% 200.5 324 61.8% 223.3 324 68.9%
5 Export
Pipeline 0.6 187.6 216 86.8% 184.5 324 56.9% 239 324 73.7%
20” Sour Oil
6 Export 0.72 233.6 259.2 90.1% 160.3 324 49.4% 273.7 324 84.4%
Pipeline

6” Fuel Gas 0.72 81.6 259.2 31.4% 152.7 324 47.1% 132.4 324 40.8%
7 Import
Pipeline 0.6 81.6 216 37.7% 152.7 324 47.1% 169.5 324 52.3%

6” Flowlines 0.72 202.7 259.2 78.2% 189.1 324 58.3% 223.3 324 68.9%
8 from Remote
Manifolds 0.6 202.7 216 93.8% 189.1 324 58.3% 250.2 324 77.2%

Note: It is observed that the stress ratios are more in condition (i) & (ii) (refer Table
6.2.1 & 6.2.2). Detailed calculations have been performed for condition (i) & (ii) and
available in Appendix B.

Page 21 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

TABLE 6.2.3: COMBINED STRESS SUMMARY FOR UNRESTRASINED PIPE

HOOP STRESS TOTAL LONGITUDINAL STRESS COMBINED STRESS

DESIGN
SL.NO DESCRIPTION
FACTOR Calculated Allowable Stress Ratio Calculated Allowable Stress Calculated Allowable Stress
(MPa) (MPa) (MPa) (MPa) Ratio (MPa) (MPa) Ratio

10” LP
0.72 211.8 259.2 81.7% 140.5 270 52% 186.7 324 57.6%
Gathering
1
Header
Trunkline 0.6 162.1 216 75% 111.1 270 41.1% 143.6 324 44.3%
10” HP
Gathering 0.72 211.8 259.2 81.7% 140.5 270 52% 186.7 324 57.6%
2
Header
Trunkline 0.6 162.1 216 75% 111.1 270 41.1% 143.6 324 44.3%
6” Sour
0.72 210.9 259.2 81.3% 160.2 270 59.3% 190.7 324 58.8%
Liquid
3
Return
Pipeline 0.6 210.9 216 97.6% 160.2 270 59.3% 190.7 324 58.8%

6” Sour
0.72 210.9 259.2 81.3% 160.2 270 59.3% 190.7 324 58.8%
Condensate
4
Export
Pipeline 0.6 174.7 216 67.3% 123.8 270 45.8% 155.6 324 48%

0.72 240.7 259.2 92.8% 153.4 270 56.8% 211.1 324 65.1%
14” Sour Gas
5 Export
Pipeline 0.6 187.6 216 86.8% 122 270 45% 164.9 324 50.8%

0.72
(Above 233.6 259.2 90.1% 150.4 270 55.7% 205 324 63.2%
20” Sour Oil Ground)
6 Export
Pipeline 0.72
(Below 233.6 259.2 90.1% 150.4 270 55.7% 205 324 63.2%
Ground)
89.3 324 27.5%
6” Fuel Gas 0.72 81.6 259.2 31.4% 95.5 270 35.3%
7 Import
Pipeline 0.6 81.6 216 37.7% 95.5 270 35.3% 89.3 324 27.5%

6” Flowlines 0.72 202.7 259.2 78.2% 156.1 270 57.8% 183.9 324 56.7%
8 from Remote
Manifolds 0.6 202.7 216 93.8% 156.1 270 57.8% 183.9 324 56.7%

Note: Detailed calculations are available in Appendix C.

Page 22 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

7.3 PIPELINE ELASTIC BEND RADIUS


The route and profile of any fully restrained sections of the pipelines shall be controlled
to ensure that the minimum elastic bending is met. Detailed calculations are available
in Appendix D.

TABLE 7.3: ELASTIC BEND SUMMARY (FOR DESIGN FACTOR 0.72)

SELECTED ALLOWABLE
CALCULATED MIN.
RESTRAINED MIN. ELASTIC CALCULATED
SL.NO DESCRIPTION CASES ELASTIC BENDING COMBINED
CONDITION BENDING STRESS (MPa)
RADIUS (m) STRESS (MPa)
RADIUS (m)
Long. Stress 160.95
Max Design
Comb. 90.7
Temp. 323.84
10” LP Gathering Stress
1. 1Header Trunkline- 1225 324
For Corroded Pipe Long. Stress 150.30
Min Design
Comb. 141.1
Temp. 188.75
Stress
Long. Stress 229.54
Max Design
Comb. 106.9
Temp. 322.13
10” LP Gathering Stress
2. 2Header Trunkline- 400 324
For New Pipe Long. Stress 175.01
Min Design
Comb. 127
Temp. 159.98
Stress
Long. Stress 159.53
Max Design
Comb. 101
Temp. 322.67
10” HP Gathering Stress
3. 3Header Trunkline- 450 324
For Corroded Pipe Long. Stress 189.25
Min Design
Comb. 141.1
Temp. 201.5
Stress
Long. Stress 230.73
Max Design
Comb. 123.6
Temp. 323.24
10” HP Gathering Stress
4. 4Header Trunkline- 250 324
For New Pipe Long. Stress 216.58
Min Design
Comb. 127
Temp. 190.01
Stress
Long. Stress 150.63
Max Design
Comb. 59.4
6” Sour Liquid Temp. 314.34
Stress
5. Return Pipeline- 150 324
For Corroded Pipe Long. Stress 241.28
Min Design
Comb. 86.9
Temp. 227.62
Stress
Long. Stress 235.78
Max Design
Comb. 65.9
6” Sour Liquid Temp. 310.47
Stress
6. 4Return Pipeline- 100 324
For New Pipe Long. Stress 269.75
Min Design
Comb. 75.9
Temp. 234.37
Stress
Long. Stress 150.36
Max Design
7. 56” Sour Comb. 59.4 150 324
Condensate Temp. 314.34
Stress

Page 23 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

SELECTED ALLOWABLE
CALCULATED MIN.
RESTRAINED MIN. ELASTIC CALCULATED
SL.NO DESCRIPTION CASES ELASTIC BENDING COMBINED
CONDITION BENDING STRESS (MPa)
RADIUS (m) STRESS (MPa)
RADIUS (m)
Export Pipeline- Long. Stress 241.28
For Corroded Pipe Min Design
Comb. 86.9
Temp. 227.62
Stress
Long. Stress 235.78
Max Design
6” Sour Comb. 65.9
Temp. 310.47
Condensate Stress
8. 6 100 324
Export Pipeline- Long. Stress 269.75
For New Pipe Min Design
Comb. 75.9
Temp. 234.37
Stress
Long. Stress 126.72
Max Design
Comb. 117.1
14” Sour Gas Temp. 323.27
Stress
9. 7Export Pipeline- 325 324
For Corroded Pipe Long. Stress 247.40
Min Design
Comb. 172.6
Temp. 244.12
Stress
Long. Stress 202.52
Max Design
Comb. 128
14” Sour Gas Temp. 308.53
Stress
10. 8Export Pipeline- 225 324
For New Pipe Long. Stress 270.32
Min Design
Comb. 168.6
Temp. 234.75
Stress
Long. Stress 134.02
Max Design
Comb. 189.4
20” Sour Oil Temp. 322.34
Stress
11. 9Export Pipeline- 750 324
For Corroded Pipe Long. Stress 164.99
Min Design
Comb. 226.4
Temp. 221.25
Stress
Long. Stress 222.50
Max Design
Comb. 223.8
20” Sour Oil Temp. 316.06
12. 1 Stress
Export Pipeline- 400 324
0 Long. Stress 196.82
For New Pipe Min Design
Comb. 210.3
Temp. 177.81
Stress
Long. Stress 246.11
Max Design
Comb. 68.7
6” Fuel Gas Temp. 295.46
13. 1 Stress
Import Pipeline- 100 324
1 Long. Stress 259.42
For Corroded Pipe Min Design
Comb. 72.6
Temp. 229.77
Stress
Long. Stress 257.12
Max Design
Comb. 71.9
6” Fuel Gas Temp. 282.24
14. 1 Stress
Import Pipeline- 100 324
2 Min Design Long. Stress 248.41
For New Pipe
Temp. Comb. 69.3
229.30
Stress
Long. Stress 169.02
Max Design
6” Flowlines from Comb. 63.8
Temp. 322.39
15. 1Remote Stress
250 324
3Manifolds-For Min Design Long. Stress 193.28
Corroded Pipe Temp. 85.8
Comb.
198.18
Stress

Page 24 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

SELECTED ALLOWABLE
CALCULATED MIN.
RESTRAINED MIN. ELASTIC CALCULATED
SL.NO DESCRIPTION CASES ELASTIC BENDING COMBINED
CONDITION BENDING STRESS (MPa)
RADIUS (m) STRESS (MPa)
RADIUS (m)
Long. Stress 241.94
Max Design
6” Flowlines from Comb. 82.3
Temp. 312.95
16. 1Remote Stress
150 324
4Manifolds-For Min Design Long. Stress 211.46
New Pipe Temp. 75.4
Comb.
183.22
Stress

TABLE 7.4: ELASTIC BEND SUMMARY (FOR DESIGN FACTOR 0.6)

SELECTED ALLOWABLE
CALCULATED MIN.
RESTRAINED MIN. ELASTIC CALCULATED
SL.NO DESCRIPTION CASES ELASTIC BENDING COMBINED
CONDITION BENDING STRESS (MPa)
RADIUS (m) STRESS (MPa)
RADIUS (m)
Long. Stress 208.66
Max Design
Comb. 101.4
Temp. 321.97
10” LP Gathering Stress
1. 1Header Trunkline- 500 324
For Corroded Pipe Long. Stress 168.19
Min Design
Comb. 131.2
Temp. 165.25
Stress
Long. Stress 246.40
Max Design
Comb. 112.5
Temp. 320.19
10” LP Gathering Stress
2. 2Header Trunkline- 350 324
For New Pipe Long. Stress 177.96
Min Design
Comb. 123
Temp. 156.38
Stress
Long. Stress 208.66
Max Design
Comb. 101.4
Temp. 321.97
10” HP Gathering Stress
3. 3Header Trunkline- 500 324
For Corroded Pipe Long. Stress 168.19
Min Design
Comb. 131.2
Temp. 165.25
Stress
Long. Stress 246.40
Max Design
Comb. 112.5
Temp. 320.19
10” HP Gathering Stress
4. 4Header Trunkline- Long. Stress 350 177.96 324
For New Pipe
Min Design
Comb. 123
Temp. 156.38
Stress

Long. Stress 161.39


Max Design
Comb. 56
6” Sour Liquid Temp. 323.37
Stress
5. 3Return Pipeline- 750 324
For Corroded Pipe Long. Stress 150.18
Min Design
Comb. 86.9
Temp. 188.05
Stress
6. 4 Long. Stress 69.3 225 243.01 324

Page 25 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

SELECTED ALLOWABLE
CALCULATED MIN.
RESTRAINED MIN. ELASTIC CALCULATED
SL.NO DESCRIPTION CASES ELASTIC BENDING COMBINED
CONDITION BENDING STRESS (MPa)
RADIUS (m) STRESS (MPa)
RADIUS (m)
Max Design Comb.
317.32
6” Sour Liquid Temp. Stress
Return Pipeline- Long. Stress 174.85
For New Pipe Min Design
Comb. 75.9
Temp. 154.09
Stress
Long. Stress 161.39
Max Design
6” Sour Comb. 56
Temp. 323.37
Condensate Stress
7. 5 750 324
Export Pipeline- Long. Stress 150.18
For Corroded Pipe Min Design
Comb. 86.9
Temp. 188.05
Stress
Long. Stress 243.01
Max Design
6” Sour Comb. 69.3
Temp. 317.32
Condensate Stress
8. 6 225 324
Export Pipeline- Long. Stress 174.85
For New Pipe Min Design
Comb. 75.9
Temp. 154.09
Stress
Long. Stress 185.72
Max Design
Comb. 124.8
14” Sour Gas Temp. 323.27
Stress
9. 7Export Pipeline- 900 324
For Corroded Pipe Long. Stress 160.50
Min Design
Comb. 177.3
Temp. 175.60
Stress
Long. Stress 239.07
Max Design
Comb. 142.2
14” Sour Gas Temp. 323.73
Stress
10. 8Export Pipeline- 475 324
For New Pipe Long. Stress 178.92
Min Design
Comb. 163.3
Temp. 160
Stress
Long. Stress 275.03
Max Design
Comb. 74.5
6” Fuel Gas Temp. 323.61
11. 1 Stress
Import Pipeline- 175 324
0 Long. Stress 186.21
For Corroded Pipe Min Design
Comb. 72.6
Temp. 161.68
Stress
Long. Stress 286.04
Max Design
Comb. 79.7
6” Fuel Gas Temp. 310.91
12. 1 Stress
Import Pipeline- 175 324
1 Long. Stress 175.20
For New Pipe Min Design
Comb. 69.3
Temp. 157.63
Stress
Long. Stress 167.34
Max Design
6” Flowlines from Comb. 57.1
Temp. 320.99
13. 1Remote Stress
650 324
2Manifolds-For Long. Stress 151.23
Corroded Pipe Min Design
Comb. 85.8
Temp. 182.53
Stress
Long. Stress 236.77
14. 16” Flowlines from Max Design
Comb. 70 250 324
3Remote Temp. 308.03
Stress

Page 26 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

SELECTED ALLOWABLE
CALCULATED MIN.
RESTRAINED MIN. ELASTIC CALCULATED
SL.NO DESCRIPTION CASES ELASTIC BENDING COMBINED
CONDITION BENDING STRESS (MPa)
RADIUS (m) STRESS (MPa)
RADIUS (m)
Manifolds-For Long. Stress 165.90
New Pipe Min Design
Comb. 75
Temp. 146.48
Stress

7.4 PIPELINE TEST PRESSURE


The below table present the results of minimum and maximum value of pipeline test
pressure. The maximum hydrostatic test pressure has been checked to be within the
allowable stress limit. Detailed calculations are available in Appendix F & Appendix G.

TABLE 7.4.1: PIPELINE HYDROTEST PRESSURE SUMMARY (FOR DESIGN FACTOR 0.72)

CALCULATED TEST PRESSURE (MPa)


ALLOWABLE
SL.NO ELEVATION
DESCRIPTION DIFFERENCE (m)
MAX. MIN.

1 10” LP Gathering Header Trunkline 22.78 11.78 1094.52

2 10” HP Gathering Header Trunkline 22.78 11.78 1094.52

3 6” Sour Liquid Return Pipeline 28.58 12.25 1624.87

4 6” Sour Condensate Export Pipeline 28.58 12.25 1624.87

5 14” Sour Gas Export Pipeline 16.33 9.38 691.71

6 20” Sour Oil Export Pipeline 10.26 5.43 480.90

7 6” Fuel Gas Import Pipeline 28.58 4.74 2372.25

8 6” Flowlines from Remote Manifolds 28.58 11.78 1672.13

TABLE 7.4.2: PIPELINE HYDROTEST PRESSURE SUMMARY (FOR DESIGN FACTOR 0.6)

ALLOWABLE
CALCULATED TEST PRESSURE (MPa) ELEVATION
SL.NO DESCRIPTION DIFFERENCE (m)

MAX. MIN.

1 10” LP Gathering Header Trunkline 22.78 11.78 1094.52

2 10” HP Gathering Header Trunkline 22.78 11.78 1094.52

3 6” Sour Liquid Return Pipeline 28.58 12.25 1624.87

Page 27 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

ALLOWABLE
CALCULATED TEST PRESSURE (MPa) ELEVATION
SL.NO DESCRIPTION DIFFERENCE (m)

MAX. MIN.

4 6” Sour Condensate Export Pipeline 28.58 12.25 1624.87

5 14” Sour Gas Export Pipeline 16.33 9.38 691.71

6 6” Fuel Gas Import Pipeline 28.58 4.74 2372.25

7 6” Flowlines from Remote Manifolds 28.58 11.78 1672.13

7.5 COLD FIELD BEND AND MOTHER PIPE FOR HOT INDUCTION BEND WALL THICKNESS
The below table presents the results for selected wall thickness for both cold field bends
and hot induction bends. Detailed calculations are available in Appendix H &
Appendix-I.

TABLE 7.5.1: MOTHERPIPE THICKNESS SUMMARY (FOR DESIGN FACTOR 0.72)

SELECTED WALL THICKNESS (mm)


SL.NO DESCRIPTION
COLD FIELD BEND MOTHER PIPE FOR HOT
INDUCTION BEND

1 10” LP Gathering Header Trunkline 11.13 14.27

2 10” HP Gathering Header Trunkline 11.13 14.27

3 6” Sour Liquid Return Pipeline 7.11 9.53

4 6” Sour Condensate Export Pipeline 7.11 9.53

5 14” Sour Gas Export Pipeline 8.74 11.91

6 20” Sour Oil Export Pipeline 7.92 12.7

7 6” Fuel Gas Import Pipeline 7.11 9.53

8 6” Flowlines from Remote Manifolds 7.11 9.53

Page 28 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

TABLE 7.5.2: MOTHERPIPE THICKNESS SUMMARY (FOR DESIGN FACTOR 0.6)

SELECTED WALL THICKNESS (mm)


SL.NO DESCRIPTION
COLD FIELD BEND MOTHER PIPE FOR HOT
INDUCTION BEND

1 10” LP Gathering Header Trunkline 11.13 14.27

2 10” HP Gathering Header Trunkline 11.13 14.27

3 6” Sour Liquid Return Pipeline 7.11 9.53

4 6” Sour Condensate Export Pipeline 7.11 9.53

5 14” Sour Gas Export Pipeline 8.74 11.91

6 6” Fuel Gas Import Pipeline 7.11 9.53

7 6” Flowlines from Remote Manifolds 7.11 9.53

7.6 ANCHOR LOAD AND FREE END EXPANSION


The below table presents the results of Anchor Load and Free end expansion. Detailed
calculations are available in Appendix J.

TABLE 7.6.1: ANCHOR LOAD AND FREE END EXPANSION SUMMARY

SL.NO DESCRIPTION ANCHOR LOAD (kN) TOTAL EXPANSION (mm)

1 10” HP Gathering Header Trunkline 1763.6 13.3

2 6” Sour Liquid Return Pipeline 810.4 9.1

3 6” Sour Condensate Export Pipeline 810.4 9.1

4 14” Sour Gas Export Pipeline 2213.3 11.3

5 20” Sour Oil Export Pipeline 2858.6 12.3

6 6” Fuel Gas Import Pipeline 759.2 9.1

Page 29 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

7.7 BUOYANCY CALCULATION


The below table presents the results of buoyancy. Detailed calculations are available in
Appendix K.

TABLE 7.7.1: BUOYANCY SUMMARY

FACTOR SAFETY FACTOR OF


SL.NO DESCRIPTION CONDITION
AGAINST FLOTATION SAFETY CHECK

New Pipe-Compacted 6.73 SAFE


New Pipe-Uncompacted 5.97 SAFE
10” LP Gathering Header Corroded Pipe-
1 6.73 SAFE
Trunkline Compacted
Corroded Pipe-
5.97 SAFE
Uncompacted
New Pipe-Compacted 6.73 SAFE
New Pipe-Uncompacted 5.97 SAFE
10” HP Gathering Header Corroded Pipe-
2 6.73 SAFE
Trunkline Compacted
Corroded Pipe-
5.97 SAFE
Uncompacted
New Pipe-Compacted 10.27 SAFE
New Pipe-Uncompacted 9.06 SAFE
Corroded Pipe-
3 6” Sour Liquid Return Pipeline 10.27 SAFE
Compacted
Corroded Pipe-
9.06 SAFE
Uncompacted
New Pipe-Compacted 10.27 SAFE
New Pipe-Uncompacted 9.06 SAFE
6” Sour Condensate Export Corroded Pipe-
4 10.27 SAFE
Pipeline Compacted
Corroded Pipe-
9.06 SAFE
Uncompacted
New Pipe-Compacted 5.18 SAFE
New Pipe-Uncompacted 4.59 SAFE
Corroded Pipe-
5 14” Sour Gas Export Pipeline 5.18 SAFE
Compacted
Corroded Pipe-
4.59 SAFE
Uncompacted
New Pipe-Compacted 3.62 SAFE
New Pipe-Uncompacted 3.20 SAFE
Corroded Pipe-
6 20” Sour Oil Export Pipeline 3.62 SAFE
Compacted
Corroded Pipe-
3.20 SAFE
Uncompacted
New Pipe-Compacted 10.27 SAFE
New Pipe-Uncompacted 9.06 SAFE
Corroded Pipe-
7 6” Fuel Gas Import Pipeline 10.27 SAFE
Compacted
Corroded Pipe-
9.06 SAFE
Uncompacted

Page 30 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

8. APPENDIXES
8.1 APPENDIX-A PIPELINES WALL THICKNESS CALCULATION
8.2 APPENDIX-B COMBINED STRESS CALCULATION FOR DESIGN FACTOR 0.72

8.3 APPENDIX-C COMBINED STRESS CALCULATION FOR DESIGN FACTOR 0.6


8.4 APPENDIX-D ELASTIC BEND RADIUS CALCULATION FOR DESIGN FACTOR 0.72
8.5 APPENDIX-E ELASTIC BEND RADIUS CALCULATION FOR DESIGN FACTOR 0.6
8.6 APPENDIX-F HYDROSTATIC TEST PRESSURE CALCULATION FOR DESIGN FACTOR 0.72
8.7 APPENDIX-G HYDROSTATIC TEST PRESSURE CALCULATION FOR DESIGN FACTOR 0.6
8.8 APPENDIX-H COLD FIELD BEND AND MOTHER PIPE FOR HOT INDUCTION BEND WALL
THICKNESS CALCULATION FOR DESIGN FACTOR 0.72
8.9 APPENDIX-I COLD FIELD BEND AND MOTHER PIPE FOR HOT INDUCTION BEND WALL
THICKNESS CALCULATION FOR DESIGN FACTOR 0.6
8.10 APPENDIX J – ANCHOR LOAD AND FREE END EXPANSION CALCULATION
8.11 APPENDIX K – PIPELINE BUOYANCY CALCULATION

Page 31 of 31
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

APPENDIX-A PIPELINES WALL THICKNESS CALCULATION

APPENDIX A.1 10 “LP Gathering Header Trunkline

APPENDIX A.2 10 “HP Gathering Header Trunkline

APPENDIX A.3 6” Sour Liquid Return Pipeline

APPENDIX A.4 6” Sour Condensate Export Pipeline

APPENDIX A.5 14” Sour Gas Export Pipeline

APPENDIX A.6 20” Sour Oil Export Pipeline

APPENDIX A.7 6” Fuel Gas Import Pipeline

APPENDIX A.8 6” Flowlines from Remote Manifolds


JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.1
Doc No.:
10" LP GATHERING TRUNKLINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA

The following data listed pertaining to the line pipe, are required for the calculation of wall thickness:
Nominal Outer Diam eter of Pipe D := 273mm

Internal Design Pressure P := 94.2bar

Type of Service

Corrosion Allowance A := 3.2  mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type
(As per ASME B 31.8: Table 841.1.7-1)
Longitudinal Joint Factor E := 1

Specified Minim um Yield Strength S y := 52200  psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Ground) Tda := 93 °C
Tdu := 76 °C
Maxim um Design Temperature (Under Ground)
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Number of Design Factors n := 2 i := 0 .. n - 1

Design Factor DF :=
i

0.72
0.60

Page 1 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.1
Doc No.:
10" LP GATHERING TRUNKLINE
17051820-0000-A0-060-CAL-0001

2 CALCULATION
Nominal wall thickness required for pressure design is calculated as per Clasue 841.1.1 of ASME B 31.8:

Nominal Minim um Wall Thickness without


P D  4.96   mm
t := t=  
allowances (t) for design factor (DF) as stated 2  DF E T  S y  5.95 
above

Nominal wall thickness with allowances (tn) is calculated as:


 8.17   mm
tn := Ceil( t + A , 0.01mm) tn =  
 9.16 

Selected Wall Thickness for DF 0.72 t s1 := 9.27 mm

D
= 29.45
Diam eter / Thickness Ratio t s1

D
Diam eter / Thickness Ratio Check Ratio1 := "PASS" if  96
ts1

"FAIL" otherwise

Ratio1 = "PASS"

Selected Wall Thickness for DF 0.6 t s2 := 11.13 mm

D
Diam eter / Thickness Ratio = 24.528
t s2

D
Diam eter / Thickness Ratio Check Ratio2 := "PASS" if  96
ts2

"FAIL" otherwise

Ratio2 = "PASS"

π 2 2  53.4  kg
Line Pipe Unit Weight w := D - (D - 2 tn)   ρ w=  
4  59.6  m

Page 2 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.1
Doc No.:
10" LP GATHERING TRUNKLINE
17051820-0000-A0-060-CAL-0001

3 SUMMARY OF RESULT

TABLE-1: Wall Thickness Summary


Calculated
Nominal Wall
Minimum
Nominal Internal Thickness
Design Wall Selected Wall Line Pipe
Outer Design Corrosion with
Sr.No. Factor Thickness thickness Unit
Diameter Pressure Allowance Corrosion
without Weight
Allowance
Corrosion
Allowances
mm barg mm mm mm mm kg/m

1 0.72 4.96 8.17 9.27 53.36


273.0 94.2 3.20
2 0.60 5.95 9.16 11.13 59.60

Page 3 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.2
Doc No.:
10" HP GATHERING TRUNKLINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA

The following data listed pertaining to the line pipe, are required for the calculation of wall thickness:
Nominal Outer Diam eter of Pipe D := 273mm

Internal Design Pressure P := 94.2bar

Type of Service

Corrosion Allowance A := 3.2  mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type
(As per ASME B 31.8: Table 841.1.7-1)
Longitudinal Joint Factor E := 1

Specified Minim um Yield Strength S y := 52200  psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Ground) Tda := 93 °C
Tdu := 76 °C
Maxim um Design Temperature (Under Ground)

Tem perature Derating Factor T=1 (As per ASME B 31.8: Table 841.1.8-1)

Number of Design Factors n := 2 i := 0 .. n - 1

Design Factor DF :=
i

0.72
0.60

Page 1 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.2
Doc No.:
10" HP GATHERING TRUNKLINE
17051820-0000-A0-060-CAL-0001

2 CALCULATION
Nominal wall thickness required for pressure design is calculated as per Clasue 841.1.1 of ASME B 31.8:

Nominal Minim um Wall Thickness without


P D  4.96   mm
t := t=  
allowances (t) for design factor (DF) as stated 2  DF E T  S y  5.95 
above

Nominal wall thickness with allowances (tn) is calculated as:


 8.17   mm
tn := Ceil( t + A , 0.01mm) tn =  
 9.16 

Selected Wall Thickness for DF 0.72 t s1 := 9.27 mm

D
= 29.45
Diam eter / Thickness Ratio t s1

D
Diam eter / Thickness Ratio Check Ratio1 := "PASS" if  96
ts1

"FAIL" otherwise

Ratio1 = "PASS"

Selected Wall Thickness for DF 0.6 t s2 := 11.13 mm

D
Diam eter / Thickness Ratio = 24.528
t s2

D
Diam eter / Thickness Ratio Check Ratio2 := "PASS" if  96
ts2

"FAIL" otherwise

Ratio2 = "PASS"

π 2 2  53.4  kg
Line Pipe Unit Weight w := D - (D - 2 tn)   ρ w=  
4  59.6  m

Page 2 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.2
Doc No.:
10" HP GATHERING TRUNKLINE
17051820-0000-A0-060-CAL-0001

3 SUMMARY OF RESULT

TABLE-1: Wall Thickness Summary


Calculated
Nominal Wall
Minimum
Nominal Internal Thickness Line Pipe
Design Wall Selected Wall
Outer Design Corrosion with Unit
Sr.No. Factor Thickness thickness
Diameter Pressure Allowance Corrosion Weight
without
Allowance
Corrosion
Allowance
mm barg mm mm mm mm kg/m

1 0.72 4.96 8.17 9.27 53.36


273.0 94.2 3.20
2 0.60 5.95 9.16 11.13 59.60

Page 3 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.3
Doc No.:
6" SOUR LIQUID RETURN PIPELINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA

The following data listed pertaining to the line pipe, are required for the calculation of wall thickness:
Nominal Outer Diam eter of Pipe D := 168.3mm

Internal Design Pressure P := 98bar

Type of Service

Corrosion Allowance A := 3.2  mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type
(As per ASME B 31.8: Table 841.1.7-1)
Longitudinal Joint Factor E := 1

Specified Minim um Yield Strength S y := 52200  psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Aground) Tda := 93 °C

Maxim um Design Temperature (Under ground) Tdu := 50 °C

Tem perature Derating Factor T := 1 (As per ASME B 31.8: Table 841.1.8-1)

Number of Design Factors n := 2 i := 0 .. n - 1

Design Factor DF :=
i

0.72
0.60

Page 1 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.3
Doc No.:
6" SOUR LIQUID RETURN PIPELINE
17051820-0000-A0-060-CAL-0001

2 CALCULATION
Nominal wall thickness required for pressure design is calculated as per Clasue 841.1.1 of ASME B 31.8:

Nominal Minim um Wall Thickness without


P D  3.18   mm
t := t=  
allowances (t) for design factor (DF) as stated 2  DF E T  S y  3.82 
above

Nominal wall thickness with allowances (tn) is calculated as:


 6.39   mm
tn := Ceil( t + A , 0.01mm) tn =  
 7.02 

Selected Wall Thickness for DF 0.72 t s1 := 7.11 mm

D
= 23.671
Diam eter / Thickness Ratio t s1

D
Diam eter / Thickness Ratio Check Ratio1 := "PASS" if  96
ts1

"FAIL" otherwise

Ratio1 = "PASS"

Selected Wall Thickness for DF 0.6 t s2 := 7.11 mm

D
Diam eter / Thickness Ratio = 23.671
t s2

D
Diam eter / Thickness Ratio Check Ratio2 := "PASS" if  96
ts2

"FAIL" otherwise

Ratio2 = "PASS"

π 2 2  25.5  kg
Line Pipe Unit Weight w := D - (D - 2 tn)   ρ w=  
4  27.9  m

Page 2 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.3
Doc No.:
6" SOUR LIQUID RETURN PIPELINE
17051820-0000-A0-060-CAL-0001

3 SUMMARY OF RESULT

TABLE-1: Wall Thickness Summary


Calculated
Nominal Wall
Minimum
Nominal Internal Thickness Line Pipe
Design Wall Selected Wall
Outer Design Corrosion with Unit
Sr.No. Factor Thickness thickness
Diameter Pressure Allowance Corrosion Weight
without
Allowance
Corrosion
Allowance
mm barg mm mm mm mm kg/m

1 0.72 3.18 6.39 7.11 25.51


168.3 98.0 3.20
2 0.60 3.82 7.02 7.11 27.92

Page 3 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.4
Doc No.:
6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA

The following data listed pertaining to the line pipe, are required for the calculation of wall thickness:
Nominal Outer Diam eter of Pipe D := 168.3mm

Internal Design Pressure P := 98bar

Type of Service

Corrosion Allowance A := 3.2  mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type
(As per ASME B 31.8: Table 841.1.7-1)
Longitudinal Joint Factor E := 1

Specified Minim um Yield Strength S y := 52200  psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Ground) Tda := 93 °C

Maxim um Design Temperature (Under Ground) Tdu := 50 °C

Tem perature Derating Factor T := 1 (As per ASME B 31.8: Table 841.1.8-1)

Number of Design Factors n := 2 i := 0 .. n - 1

Design Factor DF :=
i

0.72
0.60

Page 1 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.4
Doc No.:
6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

2 CALCULATION
Nominal wall thickness required for pressure design is calculated as per Clasue 841.1.1 of ASME B 31.8:

Nominal Minim um Wall Thickness without


P D  3.18   mm
t := t=  
allowances (t) for design factor (DF) as stated 2  DF E T  S y  3.82 
above

Nominal wall thickness with allowances (tn) is calculated as:


 6.39   mm
tn := Ceil( t + A , 0.01mm) tn =  
 7.02 

Selected Wall Thickness for DF 0.72 t s1 := 7.11 mm

D
= 23.671
Diam eter / Thickness Ratio t s1

D
Diam eter / Thickness Ratio Check Ratio1 := "PASS" if  96
ts1

"FAIL" otherwise

Ratio1 = "PASS"

Selected Wall Thickness for DF 0.6 t s2 := 7.11 mm

D
Diam eter / Thickness Ratio = 23.671
t s2

D
Diam eter / Thickness Ratio Check Ratio2 := "PASS" if  96
ts2

"FAIL" otherwise

Ratio2 = "PASS"

π 2 2  25.5  kg
Line Pipe Unit Weight w := D - (D - 2 tn)   ρ w=  
4  27.9  m

Page 2 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.4
Doc No.:
6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

3 SUMMARY OF RESULT

TABLE-1: Wall Thickness Summary


Calculated
Nominal Wall
Minimum
Nominal Internal Thickness Line Pipe
Design Wall Selected Wall
Outer Design Corrosion with Unit
Sr.No. Factor Thickness thickness
Diameter Pressure Allowance Corrosion Weight
without
Allowance
Corrosion
Allowance
mm barg mm mm mm mm kg/m

1 0.72 3.18 6.39 7.11 25.51


168.3 98.0 3.20
2 0.60 3.82 7.02 7.11 27.92

Page 3 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC
APPENDIX A.5
Doc No.:
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

1 INPUT DATA

The following data listed pertaining to the line pipe, are required for the calculation of wall thickness:
Nominal Outer Diam eter of Pipe D := 355.6mm

Internal Design Pressure P := 75bar

Type of Service

Corrosion Allowance A := 3.2  mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type
(As per ASME B 31.8: Table 841.1.7-1)
Longitudinal Joint Factor E := 1

Specified Minim um Yield Strength S y := 52200  psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Ground) Tda := 93 °C
Maxim um Design Temperature (Under Ground) Tdu := 45 °C
Tem perature Derating Factor T := 1 (As per ASME B 31.8: Table 841.1.8-1)

Number of Design Factors n := 2 i := 0 .. n - 1

Design Factor DF :=
i

0.72
0.60

Page 1 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC
APPENDIX A.5
Doc No.:
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

2 CALCULATION
Nominal wall thickness required for pressure design is calculated as per Clasue 841.1.1 of ASME B 31.8:

Nominal Minim um Wall Thickness without


P D  5.15   mm
t := t=  
allowances (t) for design factor (DF) as stated 2  DF E T  S y  6.18 
above

Nominal wall thickness with allowances (tn) is calculated as:


 8.35   mm
tn := Ceil( t + A , 0.01mm) tn =  
 9.38 

Selected Wall Thickness for DF 0.72 t s1 := 8.74 mm

D
= 40.686
Diam eter / Thickness Ratio t s1

D
Diam eter / Thickness Ratio Check Ratio1 := "PASS" if  96
ts1

"FAIL" otherwise

Ratio1 = "PASS"

Selected Wall Thickness for DF 0.6 t s2 := 10.31 mm

D
Diam eter / Thickness Ratio = 34.491
t s2

D
Diam eter / Thickness Ratio Check Ratio2 := "PASS" if  96
ts2

"FAIL" otherwise

Ratio2 = "PASS"

π 2 2  71.5  kg
Line Pipe Unit Weight w := D - (D - 2 tn)   ρ w=  
4  80.1  m

Page 2 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC
APPENDIX A.5
Doc No.:
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

3 SUMMARY OF RESULT

TABLE-1: Wall Thickness Summary


Calculated
Nominal Wall
Minimum
Nominal Internal Thickness Line Pipe
Design Wall Selected Wall
Outer Design Corrosion with Unit
Sr.No. Factor Thickness thickness
Diameter Pressure Allowance Corrosion Weight
without
Allowance
Corrosion
Allowance
mm barg mm mm mm mm kg/m

1 0.72 5.15 8.35 8.74 71.51


355.6 75.0 3.20
2 0.60 6.18 9.38 10.31 80.09

Page 3 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.6
Doc No.:
20" SOUR OIL EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of wall thickness.
Nominal Outer Diam eter of Pipe D := 508mm

Internal Design Pressure P := 43.43bar

Type of Service

Corrosion Allowance A := 3.2  mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type

Longitudinal Joint Factor E := 1 (As per ASME B 31.4: Table 403.2.1-1)

Specified Minim um Yield Strength SMYS := 52200  psi (As per API 5L; Table 6&7)

kg
Density of Steel ρ := 7850 
3
m
Maxim um Design Temperature (Above Ground) Tda := 93 °C

Maxim um Design Temperature (Under Ground) Tdu := 65 °C

Number of Design Factors n := 1 i := 0 .. n - 1

Design Factor
DF := 0.72
i

Page 1 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.6
Doc No.:
20" SOUR OIL EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

2 CALCULATION

Nom inal wall thickness required for pressure design is calculated as per Clause 403.2.1 of ASME B 31.4:

P D
Nominal Minim um Wall Thickness ( t) for design t := t = ( 4.26 )  mm
factor (DF) as stated above 2  DF E SMYS

Wall thickness with allowances ( tn1) is calculated as:


tn1 := Ceil( t + A , 0.01mm) tn1 = ( 7.46 )  mm

Selected Wall Thickness for DF 0.72 t s1 := 7.92 mm

D
= 64.141
Diam eter / Thickness Ratio t s1

D
Diam eter / Thickness Ratio Check Ratio1 := "PASS" if  96
ts1

"FAIL" otherwise

Ratio1 = "PASS"

π 2 kg
D - (D - 2 tn1)   ρ
2
Line Pipe Unit Weight w := w = ( 92.1 )
4 m

Page 2 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.6
Doc No.:
20" SOUR OIL EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

3 SUMMARY OF RESULT

TABLE-1: Wall Thickness Summary


Calculated
Nominal
Minimum
Nominal Internal Wall
Design Wall Selected Line Pipe Unit
Outer Design Corrosion Thickness
Sr.No. Factor Thickness Wall Weight
Diameter Pressure Allowance with
without Thickness
Corrosion
Corrosion
Allowance
Allowance
mm bar mm mm mm mm kg/m

1 508.0 43.43 0.72 4.26 3.20 7.46 7.92 92.1

Page 3 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.7
Doc No.:
6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA

The following data listed pertaining to the line pipe, are required for the calculation of wall thickness:
Nominal Outer Diam eter of Pipe D := 168.3mm

Internal Design Gauge Pressure (Barg) P := 37.9bar

Type of Service

Corrosion Allowance A := 3.2  mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type
(As per ASME B 31.8: Table 841.1.7-1)
Longitudinal Joint Factor E := 1

Specified Minim um Yield Strength S y := 52200  psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Ground) Tda := 93 °C

Maxim um Design Temperature (Under Ground) Tdu := 50 °C

Tem perature Derating Factor T := 1 (As per ASME B 31.8: Table 841.1.8-1)

Number of Design Factors n := 2 i := 0 .. n - 1

Design Factor DF :=
i

0.72
0.60

Page 1 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.7
Doc No.:
6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001

2 CALCULATION
Nominal wall thickness required for pressure design is calculated as per Clasue 841.1.1 of ASME B 31.8:

Nominal Minim um Wall Thickness without


P D  1.23   mm
t := t=  
allowances (t) for design factor (DF) as stated 2  DF E T  S y  1.48 
above

Nominal wall thickness with allowances (tn) is calculated as:


 4.44   mm
tn := Ceil( t + A , 0.01mm) tn =  
 4.68 

Selected Wall Thickness for DF 0.72 t s1 := 7.11 mm

D
= 23.671
Diam eter / Thickness Ratio t s1

D
Diam eter / Thickness Ratio Check Ratio1 := "PASS" if  96
ts1

"FAIL" otherwise

Ratio1 = "PASS"

Selected Wall Thickness for DF 0.6 t s2 := 7.11 mm

D
Diam eter / Thickness Ratio = 23.671
t s2

D
Diam eter / Thickness Ratio Check Ratio2 := "PASS" if  96
ts2

"FAIL" otherwise

Ratio2 = "PASS"

π 2 2  17.9  kg
Line Pipe Unit Weight w := D - (D - 2 tn)   ρ w=  
4  18.9  m

Page 2 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.7
Doc No.:
6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001

3 SUMMARY OF RESULTS

TABLE-1: Wall Thickness Summary


Calculated
Minimum Nominal Wall
Nominal Line Pipe
Internal Design Wall Thickness Selected Wall
Outer Corrosion Unit
Sr.No. Design Factor Thickness with thickness
Diameter Allowance Weight
Pressure without Corrosion
Corrosion Allowance
Allowance
mm barg mm mm mm mm kg/m

1 0.72 1.23 4.44 7.11 17.94


168.3 37.9 3.20
2 0.60 1.48 4.68 7.11 18.88

Page 3 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.8
Doc No.:
6" FLOWLINES FROM REMOTE MANIFOLD
17051820-0000-A0-060-CAL-0001

1 INPUT DATA

The following data listed pertaining to the line pipe, are required for the calculation of wall thickness:
Nominal Outer Diam eter of Pipe D := 168.3mm

Internal Design Pressure P := 94.2bar

Type of Service

Corrosion Allowance A := 3.2  mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type
(As per ASME B 31.8: Table 841.1.7-1)
Longitudinal Joint Factor E := 1

Specified Minim um Yield Strength S y := 52200  psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Aground) Tda := 93 °C

Tem perature Derating Factor T := 1 (As per ASME B 31.8: Table 841.1.8-1)

Number of Design Factors n := 2 i := 0 .. n - 1

Design Factor DF :=
i

0.72
0.60

Page 1 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.8
Doc No.:
6" FLOWLINES FROM REMOTE MANIFOLD
17051820-0000-A0-060-CAL-0001

2 CALCULATION
Nominal wall thickness required for pressure design is calculated as per Clasue 841.1.1 of ASME B 31.8:

Nominal Minim um Wall Thickness without


P D  3.06   mm
t := t=  
allowances (t) for design factor (DF) as stated 2  DF E T  S y  3.67 
above

Nominal wall thickness with allowances (tn) is calculated as:


 6.26   mm
tn := Ceil( t + A , 0.01mm) tn =  
 6.88 

Selected Wall Thickness for DF 0.72 t s1 := 7.11 mm

D
= 23.671
Diam eter / Thickness Ratio t s1

D
Diam eter / Thickness Ratio Check Ratio1 := "PASS" if  96
ts1

"FAIL" otherwise

Ratio1 = "PASS"

Selected Wall Thickness for DF 0.6 t s2 := 7.11 mm

D
Diam eter / Thickness Ratio = 23.671
t s2

D
Diam eter / Thickness Ratio Check Ratio2 := "PASS" if  96
ts2

"FAIL" otherwise

Ratio2 = "PASS"

π 2 2  25  kg
Line Pipe Unit Weight w := D - (D - 2 tn)   ρ w=  
4  27.4  m

Page 2 of 3
JOB No: JI-2035 WALL THICKNESS CALCULATION
Client: KOC APPENDIX A.8
Doc No.:
6" FLOWLINES FROM REMOTE MANIFOLD
17051820-0000-A0-060-CAL-0001

3 SUMMARY OF RESULT

TABLE-1: Wall Thickness Summary


Calculated
Nominal Wall
Minimum
Nominal Internal Thickness Line Pipe
Design Wall Selected Wall
Outer Design Corrosion with Unit
Sr.No. Factor Thickness thickness
Diameter Pressure Allowance Corrosion Weight
without
Allowance
Corrosion
Allowance
mm barg mm mm mm mm kg/m

1 0.72 3.06 6.26 7.11 25.02


168.3 94.2 3.20
2 0.60 3.67 6.88 7.11 27.39

Page 3 of 3
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

APPENDIX-B COMBINED STRESS CALCULATION FOR DESIGN


FACTOR 0.72

APPENDIX B.1 10 “LP Gathering Header Trunkline

APPENDIX B.2 10 “HP Gathering Header Trunkline

APPENDIX B.3 6” Sour Liquid Return Pipeline

APPENDIX B.4 6” Sour Condensate Export Pipeline

APPENDIX B.5 14” Sour Gas Export Pipeline

APPENDIX B.6 20” Sour Oil Export (Above Ground) Pipeline

APPENDIX B.7 20” Sour Oil Export (Under Ground) Pipeline

APPENDIX B.8 6” Fuel Gas Import Pipeline

APPENDIX B.9 6” Flowlines from Remote Manifolds


JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE

1 INPUT DATA

Nominal Outer Diam eter of Pipe D := 273mm

Nominal Pipe Wall Thickness t w := 9.27mm

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L Gr X52"

Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)

Design Factor F := 0.72

Internal Design Pressure P := 9.42MPa


Maxim um Design Temperature (Above Ground) Tmax := 93 °C

Minimum Design Tem perature (Above Ground) Tmin := -19 °C

Installation Temperature Ti := 8 °C

Ambient Tem perature Tamb := 35 °C


-5 1 (As per ASME B31.8;
Coefficient of thermal expansion α = 1.17  10
K Clause 832.2)
Modulus of Elasticity at Tamb E := 203000MPa

Longitudinal Joint Factor E1 := 1 (As per ASME B31.8;


Table 841.1.7-1)
(As per ASME B 31.8:
Tem perature Derating Factor Tdf := 1
Table 841.1.8-1)
kg
Density of Steel ρs := 7850.
3
m
kg
ρf := 1005.80
Density of Fluid 3
m
External Axial Force
R := 0N

Pipe Span Length (Assum ed) Ls := 10m


(Support spacing for Aboveground pipeline installation)

Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE

2 CALCULATIONS

Wall Thickness t := tw - A = 6.07 mm


(Not including corrosion allowance)
Cross Sectional Area Ac :=  π   D 2 - (D - 2  t )2 = 5.09  10- 3 m 2
4
(Not including corrosion allowance)  

Flow Area (N ot inc luding corrosion allowanc e) Af :=  π   ( D - 2  t ) 2 = 0.053 m 2


4
 
N
Unit Weight of Pipe ws := Ac  ρs  g = 391.856 
m

N
Unit Weight of Fluid wf := Af  ρf  g = 527.154 
m

Pipe Section Modulus Z :=  π   ( D ) 4 - ( D - 2  t) 4 = 3.323  10- 4 m 3


 32 D 
 

R
Axial Stress due to External Force S X := = 0  MPa
Ac

2.1 Restrained Section

2.1.1 Calculation of Stresses

P D (As per ASME B31.8,


A) Hoop Stress S H := = 211.834  MPa
2 t Clause 805.2.3)

Stress Check (Hoop)

Maxim um Allowable Stress (Hoop)


σAH := F  Tdf  SMYS = 259.2 MPa

SH
Ratio1 := = 0.817
σAH

Hoop R := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"
B) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P1 := 0.3S H = 63.55 MPa

Longitudinal Stress due to Therm al Expansion (


S T1 := E α Ti - Tmax )
(for Tmax)
S T1 = -201.9 MPa
(-) ve Sign Indicate Com pressive Stress
Page 2 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE

Bending Stress for straight restrained pipe S B := 0MPa

S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -138.3 MPa

(-) ve Sign Indicate Com pressive Stress

Longitudinal Stress due to Therm al Expansion (


S T2 := E α Ti - Tmin )
(for Tmin)
S T2 = 64.1 MPa

Total Longitudinal Stress (for Tmin) S L2 := S X + S P1 + S B + ST2

S L2 = 127.7 MPa

Stress Check (Total Longitudinal)

Total Longitudinal Stress (


σL := max S L1 , S L2 ) = 138.3 MPa
Maxim um Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
σL
Ratio2 := = 0.427
σALR
Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

C) Von Mises equation: (Combined Stress)

Combined Stress (considering Maxim um Design Temp):


2 2
σVon1 := S L1 - S L1 SH + S H σVon1 = 305.5 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 184.739  MPa

( )
σVon := max σVon1 , σVon2 = 305.472  MPa

Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE

Stress Check ( Von Mises )

Combined Stress ( )
σVon := max σVon1 , σVon2 = 305.472  MPa

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa
σVon
Ratio3 := = 0.943
σAER

CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

Notes: CombinedVon = "PASS"

1) Von Mises have been considered in analysis

2.2 Unrestrained Section

2.2.1 Calculation of Stresses

D) Hoop Stress P D
S H := = 211.834  MPa
2 t

Maxim um Allowable Stress (Hoop) σAH := F  Tdf  SMYS = 259.2 MPa

SH
Ratio4 := = 0.817
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop U = "PASS"
E) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P3 := 0.5S H = 105.917  MPa

Bending Mom ent-Pipe supported


( ws + wf ) Ls2 4
M := = 1.149  10  N  m
aboveground 8

M
Bending Stress S B3 := = 34.57 MPa
Z

S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 140.5 MPa

Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE

Stress Check (Total Longitudinal)

Total Longitudinal Stress S L3 = 140.5 MPa

σALU := 0.75 Tdf  SMYS = 270 MPa


Maxim um Allowable Stress (Total Longitudinal)
S L3
Ratio5 := = 0.52
σALU

Total Longitudinal U := "PASS" if S L3  σALU

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal U = "PASS"

F) Von Mises equation: (Combined Stress)


2 2
Combined Stress σVon3 := S L3 - S L3 SH + S H

σVon3 = 186.7 MPa

Stress Check ( Von Mises )


σVon3 = 186.7 MPa
Combined Stress
σAER2 := 0.9  Tdf  SMYS = 324 MPa
Maxim um Allowable Stress (Com bined)
σVon3
Ratio6 := = 0.576
σAER2

CombinedVon3 := "PASS" if σVon3  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE

3 SUMMARY OF RESULTS

Table-1: Summary of Results for Restrained Section


Stress Stress
Hoop Stress Total Longitudinal Stress Combined Stress
Stress Check Check
Check (Total (Combined
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudi - Von
(Von Mises)
nal) Mises)
MPa MPa MPa MPa MPa MPa

211.8 259.2 0.8 138.3 324.0 0.4 305.5 324.0 0.9 PASS PASS PASS

Table-2: Summary of Results for Un-Restrained Section


Hoop Stress Total Longitudinal Stress Combined Stress
Stress Stress Stress Check
Check Check (Total (Combined -
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudinal) Von Mises)
(Von M ises)
MPa MPa MPa MPa MPa MPa

211.8 259.2 0.8 140.5 270.0 0.5 186.7 324.0 0.6 PASS PASS PASS

Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE

1 INPUT DATA

Nominal Outer Diam eter of Pipe D := 273mm

Nominal Pipe Wall Thickness t w := 9.27mm

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L Gr X52"

Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)

Design Factor F := 0.72

Internal Design Pressure P := 9.42MPa


Maxim um Design Temperature (Under Ground) Tmax := 76 °C

Minimum Design Tem perature (Under Ground) Tmin := -19 °C

Installation Temperature Ti := 8 °C

Ambient Tem perature Tamb := 35 °C


-5 1 (As per ASME B31.8;
Coefficient of thermal expansion α = 1.17  10
K Clause 832.2)
Modulus of Elasticity at Tamb E := 203000MPa

Longitudinal Joint Factor E1 := 1 (As per ASME B31.8;


Table 841.1.7-1)
(As per ASME B 31.8:
Tem perature Derating Factor Tdf := 1
Table 841.1.8-1)
kg
Density of Steel ρs := 7850.
3
m
kg
ρf := 1005.80
Density of Fluid 3
m
External Axial Force
R := 0N

Pipe Span Length (Assum ed) Ls := 10m


(Support spacing for Aboveground pipeline installation)

Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE

2 CALCULATIONS

Wall Thickness t := tw - A = 6.07 mm


(Not including corrosion allowance)
Cross Sectional Area Ac :=  π   D 2 - (D - 2  t )2 = 5.09  10- 3 m 2
4
(Not including corrosion allowance)  

Flow Area (N ot inc luding corrosion allowanc e) Af :=  π   ( D - 2  t ) 2 = 0.053 m 2


4
 
N
Unit Weight of Pipe ws := Ac  ρs  g = 391.856 
m

N
Unit Weight of Fluid wf := Af  ρf  g = 527.154 
m

Pipe Section Modulus Z :=  π   ( D ) 4 - ( D - 2  t) 4 = 3.323  10- 4 m 3


 32 D 
 

R
Axial Stress due to External Force S X := = 0  MPa
Ac

2.1 Restrained Section

2.1.1 Calculation of Stresses

P D (As per ASME B31.8,


A) Hoop Stress S H := = 211.834  MPa
2 t Clause 805.2.3)

Stress Check (Hoop)

Maxim um Allowable Stress (Hoop)


σAH := F  Tdf  SMYS = 259.2 MPa

SH
Ratio1 := = 0.817
σAH

Hoop R := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"
B) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P1 := 0.3S H = 63.55 MPa

Longitudinal Stress due to Therm al Expansion (


S T1 := E α Ti - Tmax )
(for Tmax)
S T1 = -161.5 MPa
(-) ve Sign Indicate Com pressive Stress
Page 2 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE

Bending Stress for straight restrained pipe S B := 0MPa

S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -98 MPa

(-) ve Sign Indicate Com pressive Stress

Longitudinal Stress due to Therm al Expansion (


S T2 := E α Ti - Tmin )
(for Tmin)
S T2 = 64.1 MPa

Total Longitudinal Stress (for Tmin) S L2 := S X + S P1 + S B + ST2

S L2 = 127.7 MPa

Stress Check (Total Longitudinal)

Total Longitudinal Stress (


σL := max S L1 , S L2 ) = 127.7 MPa
Maxim um Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
σL
Ratio2 := = 0.394
σALR
Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

C) Von Mises equation: (Combined Stress)

Combined Stress (considering Maxim um Design Temp):


2 2
σVon1 := S L1 - S L1 SH + S H σVon1 = 274.3 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 184.739  MPa

( )
σVon := max σVon1 , σVon2 = 274.262  MPa

Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE

Stress Check ( Von Mises )

Combined Stress ( )
σVon := max σVon1 , σVon2 = 274.262  MPa

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa
σVon
Ratio3 := = 0.846
σAER

CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

Notes: CombinedVon = "PASS"

1) Von Mises have been considered in analysis

2.2 Unrestrained Section

2.2.1 Calculation of Stresses

D) Hoop Stress P D
S H := = 211.834  MPa
2 t

Maxim um Allowable Stress (Hoop) σAH := F  Tdf  SMYS = 259.2 MPa

SH
Ratio4 := = 0.817
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop U = "PASS"
E) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P3 := 0.5S H = 105.917  MPa

Bending Mom ent-Pipe supported


( ws + wf ) Ls2 4
M := = 1.149  10  N  m
aboveground 8

M
Bending Stress S B3 := = 34.57 MPa
Z

S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 140.5 MPa

Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE

Stress Check (Total Longitudinal)

Total Longitudinal Stress S L3 = 140.5 MPa

σALU := 0.75 Tdf  SMYS = 270 MPa


Maxim um Allowable Stress (Total Longitudinal)
S L3
Ratio5 := = 0.52
σALU

Total Longitudinal U := "PASS" if S L3  σALU

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal U = "PASS"

F) Von Mises equation: (Combined Stress)


2 2
Combined Stress σVon3 := S L3 - S L3 SH + S H

σVon3 = 186.7 MPa

Stress Check ( Von Mises )


σVon3 = 186.7 MPa
Combined Stress
σAER2 := 0.9  Tdf  SMYS = 324 MPa
Maxim um Allowable Stress (Com bined)
σVon3
Ratio6 := = 0.576
σAER2

CombinedVon3 := "PASS" if σVon3  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE

3 SUMMARY OF RESULTS

Table-1: Summary of Results for Restrained Section


Stress Stress
Hoop Stress Total Longitudinal Stress Combined Stress
Stress Check Check
Check (Total (Combined
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudi - Von
(Von Mises)
nal) Mises)
MPa MPa MPa MPa MPa MPa

211.8 259.2 0.8 127.7 324.0 0.4 274.3 324.0 0.8 PASS PASS PASS

Table-2: Summary of Results for Un-Restrained Section


Hoop Stress Total Longitudinal Stress Combined Stress
Stress Stress Stress Check
Check Check (Total (Combined -
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudinal) Von Mises)
(Von M ises)
MPa MPa MPa MPa MPa MPa

211.8 259.2 0.8 140.5 270.0 0.5 186.7 324.0 0.6 PASS PASS PASS

Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

1 INPUT DATA

Nominal Outer Diam eter of Pipe D := 168.3mm

Nominal Pipe Wall Thickness t w := 7.11mm

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L Gr X52"

Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)

Design Factor F := 0.72

Internal Design Pressure P := 9.8MPa


Maxim um Design Temperature (Under Ground) Tmax := 50 °C

Minimum Design Tem perature (Under Ground) Tmin := -19 °C

Installation Temperature Ti := 8 °C

Ambient Tem perature Tamb := 35 °C


-5 1 (As per ASME B31.8;
Coefficient of thermal expansion α = 1.17  10
K Clause 832.2)
Modulus of Elasticity at Tamb E := 203000MPa

Longitudinal Joint Factor E1 := 1 (As per ASME B31.8;


Table 841.1.7-1)
(As per ASME B 31.8:
Tem perature Derating Factor Tdf := 1
Table 841.1.8-1)
kg
Density of Steel ρs := 7850.
3
m
kg
ρf := 1005.80
Density of Fluid 3
m
External Axial Force
R := 0N

Pipe Span Length (Assum ed) Ls := 10m


(Support spacing for Aboveground pipeline installation)

Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

2 CALCULATIONS

Wall Thickness t := tw - A = 3.91 mm


(Not including corrosion allowance)
Cross Sectional Area Ac :=  π   D 2 - (D - 2  t )2 = 2.019  10- 3 m 2
4
(Not including corrosion allowance)  

Flow Area (N ot inc luding corrosion allowanc e) Af :=  π   ( D - 2  t ) 2 = 0.02 m 2


4
 
N
Unit Weight of Pipe ws := Ac  ρs  g = 155.451 
m

N
Unit Weight of Fluid wf := Af  ρf  g = 199.51
m

Pipe Section Modulus Z :=  π   ( D ) 4 - ( D - 2  t) 4 = 8.111  10- 5 m 3


 32 D 
 

R
Axial Stress due to External Force S X := = 0  MPa
Ac

2.1 Restrained Section

2.1.1 Calculation of Stresses

P D (As per ASME B31.8,


A) Hoop Stress S H := = 210.913  MPa
2 t Clause 805.2.3)

Stress Check (Hoop)

Maxim um Allowable Stress (Hoop)


σAH := F  Tdf  SMYS = 259.2 MPa

SH
Ratio1 := = 0.814
σAH

Hoop R := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"
B) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P1 := 0.3S H = 63.274  MPa

Longitudinal Stress due to Therm al Expansion (


S T1 := E α Ti - Tmax )
(for Tmax)
S T1 = -99.8 MPa
(-) ve Sign Indicate Com pressive Stress
Page 2 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

Bending Stress for straight restrained pipe S B := 0MPa

S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -36.5 MPa

(-) ve Sign Indicate Com pressive Stress

Longitudinal Stress due to Therm al Expansion (


S T2 := E α Ti - Tmin )
(for Tmin)
S T2 = 64.1 MPa

Total Longitudinal Stress (for Tmin) S L2 := S X + S P1 + S B + ST2

S L2 = 127.4 MPa

Stress Check (Total Longitudinal)

Total Longitudinal Stress (


σL := max S L1 , S L2 ) = 127.4 MPa
Maxim um Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
σL
Ratio2 := = 0.393
σALR
Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

C) Von Mises equation: (Combined Stress)

Combined Stress (considering Maxim um Design Temp):


2 2
σVon1 := S L1 - S L1 SH + S H σVon1 = 231.3 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 183.97 MPa

( )
σVon := max σVon1 , σVon2 = 231.321  MPa

Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

Stress Check ( Von Mises )

Combined Stress ( )
σVon := max σVon1 , σVon2 = 231.321  MPa

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa
σVon
Ratio3 := = 0.714
σAER

CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

Notes: CombinedVon = "PASS"

1) Von Mises have been considered in analysis

2.2 Unrestrained Section

2.2.1 Calculation of Stresses

D) Hoop Stress P D
S H := = 210.913  MPa
2 t

Maxim um Allowable Stress (Hoop) σAH := F  Tdf  SMYS = 259.2 MPa

SH
Ratio4 := = 0.814
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop U = "PASS"
E) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P3 := 0.5S H = 105.457  MPa

Bending Mom ent-Pipe supported


( ws + wf ) Ls2 3
M := = 4.437  10  N  m
aboveground 8

M
Bending Stress S B3 := = 54.706  MPa
Z

S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 160.2 MPa

Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

Stress Check (Total Longitudinal)

Total Longitudinal Stress S L3 = 160.2 MPa

σALU := 0.75 Tdf  SMYS = 270 MPa


Maxim um Allowable Stress (Total Longitudinal)
S L3
Ratio5 := = 0.593
σALU

Total Longitudinal U := "PASS" if S L3  σALU

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal U = "PASS"

F) Von Mises equation: (Combined Stress)


2 2
Combined Stress σVon3 := S L3 - S L3 SH + S H

σVon3 = 190.7 MPa

Stress Check ( Von Mises )


σVon3 = 190.7 MPa
Combined Stress
σAER2 := 0.9  Tdf  SMYS = 324 MPa
Maxim um Allowable Stress (Com bined)
σVon3
Ratio6 := = 0.588
σAER2

CombinedVon3 := "PASS" if σVon3  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

3 SUMMARY OF RESULTS

Table-1: Summary of Results for Restrained Section


Stress Stress
Hoop Stress Total Longitudinal Stress Combined Stress
Stress Check Check
Check (Total (Combined
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudi - Von
(Von Mises)
nal) Mises)
MPa MPa MPa MPa MPa MPa

210.9 259.2 0.8 127.4 324.0 0.4 231.3 324.0 0.7 PASS PASS PASS

Table-2: Summary of Results for Un-Restrained Section


Hoop Stress Total Longitudinal Stress Combined Stress
Stress Stress Stress Check
Check Check (Total (Combined -
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudinal) Von Mises)
(Von M ises)
MPa MPa MPa MPa MPa MPa

210.9 259.2 0.8 160.2 270.0 0.6 190.7 324.0 0.6 PASS PASS PASS

Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE

1 INPUT DATA

Nominal Outer Diam eter of Pipe D := 168.3mm

Nominal Pipe Wall Thickness t w := 7.11mm

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L Gr X52"

Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)

Design Factor F := 0.72

Internal Design Pressure P := 9.8MPa


Maxim um Design Temperature (Under Ground) Tmax := 50 °C

Minimum Design Tem perature (Under Ground) Tmin := -19 °C

Installation Temperature Ti := 8 °C

Ambient Tem perature Tamb := 35 °C


-5 1 (As per ASME B31.8;
Coefficient of thermal expansion α = 1.17  10
K Clause 832.2)
Modulus of Elasticity at Tamb E := 203000MPa

Longitudinal Joint Factor E1 := 1 (As per ASME B31.8;


Table 841.1.7-1)
(As per ASME B 31.8:
Tem perature Derating Factor Tdf := 1
Table 841.1.8-1)
kg
Density of Steel ρs := 7850.
3
m
kg
ρf := 1005.80
Density of Fluid 3
m
External Axial Force
R := 0N

Pipe Span Length (Assum ed) Ls := 10m


(Support spacing for Aboveground pipeline installation)

Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE

2 CALCULATIONS

Wall Thickness t := tw - A = 3.91 mm


(Not including corrosion allowance)
Cross Sectional Area Ac :=  π   D 2 - (D - 2  t )2 = 2.019  10- 3 m 2
4
(Not including corrosion allowance)  

Flow Area (N ot inc luding corrosion allowanc e) Af :=  π   ( D - 2  t ) 2 = 0.02 m 2


4
 
N
Unit Weight of Pipe ws := Ac  ρs  g = 155.451 
m

N
Unit Weight of Fluid wf := Af  ρf  g = 199.51
m

Pipe Section Modulus Z :=  π   ( D ) 4 - ( D - 2  t) 4 = 8.111  10- 5 m 3


 32 D 
 

R
Axial Stress due to External Force S X := = 0  MPa
Ac

2.1 Restrained Section

2.1.1 Calculation of Stresses

P D (As per ASME B31.8,


A) Hoop Stress S H := = 210.913  MPa
2 t Clause 805.2.3)

Stress Check (Hoop)

Maxim um Allowable Stress (Hoop)


σAH := F  Tdf  SMYS = 259.2 MPa

SH
Ratio1 := = 0.814
σAH

Hoop R := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"
B) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P1 := 0.3S H = 63.274  MPa

Longitudinal Stress due to Therm al Expansion (


S T1 := E α Ti - Tmax )
(for Tmax)
S T1 = -99.8 MPa
(-) ve Sign Indicate Com pressive Stress
Page 2 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE

Bending Stress for straight restrained pipe S B := 0MPa

S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -36.5 MPa

(-) ve Sign Indicate Com pressive Stress

Longitudinal Stress due to Therm al Expansion (


S T2 := E α Ti - Tmin )
(for Tmin)
S T2 = 64.1 MPa

Total Longitudinal Stress (for Tmin) S L2 := S X + S P1 + S B + ST2

S L2 = 127.4 MPa

Stress Check (Total Longitudinal)

Total Longitudinal Stress (


σL := max S L1 , S L2 ) = 127.4 MPa
Maxim um Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
σL
Ratio2 := = 0.393
σALR
Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

C) Von Mises equation: (Combined Stress)

Combined Stress (considering Maxim um Design Temp):


2 2
σVon1 := S L1 - S L1 SH + S H σVon1 = 231.3 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 183.97 MPa

( )
σVon := max σVon1 , σVon2 = 231.321  MPa

Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE

Stress Check ( Von Mises )

Combined Stress ( )
σVon := max σVon1 , σVon2 = 231.321  MPa

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa
σVon
Ratio3 := = 0.714
σAER

CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

Notes: CombinedVon = "PASS"

1) Von Mises have been considered in analysis

2.2 Unrestrained Section

2.2.1 Calculation of Stresses

D) Hoop Stress P D
S H := = 210.913  MPa
2 t

Maxim um Allowable Stress (Hoop) σAH := F  Tdf  SMYS = 259.2 MPa

SH
Ratio4 := = 0.814
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop U = "PASS"
E) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P3 := 0.5S H = 105.457  MPa

Bending Mom ent-Pipe supported


( ws + wf ) Ls2 3
M := = 4.437  10  N  m
aboveground 8

M
Bending Stress S B3 := = 54.706  MPa
Z

S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 160.2 MPa

Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE

Stress Check (Total Longitudinal)

Total Longitudinal Stress S L3 = 160.2 MPa

σALU := 0.75 Tdf  SMYS = 270 MPa


Maxim um Allowable Stress (Total Longitudinal)
S L3
Ratio5 := = 0.593
σALU

Total Longitudinal U := "PASS" if S L3  σALU

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal U = "PASS"

F) Von Mises equation: (Combined Stress)


2 2
Combined Stress σVon3 := S L3 - S L3 SH + S H

σVon3 = 190.7 MPa

Stress Check ( Von Mises )


σVon3 = 190.7 MPa
Combined Stress
σAER2 := 0.9  Tdf  SMYS = 324 MPa
Maxim um Allowable Stress (Com bined)
σVon3
Ratio6 := = 0.588
σAER2

CombinedVon3 := "PASS" if σVon3  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE

3 SUMMARY OF RESULTS

Table-1: Summary of Results for Restrained Section


Stress Stress
Hoop Stress Total Longitudinal Stress Combined Stress
Stress Check Check
Check (Total (Combined
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudi - Von
(Von Mises)
nal) Mises)
MPa MPa MPa MPa MPa MPa

210.9 259.2 0.8 127.4 324.0 0.4 231.3 324.0 0.7 PASS PASS PASS

Table-2: Summary of Results for Un-Restrained Section


Hoop Stress Total Longitudinal Stress Combined Stress
Stress Stress Stress Check
Check Check (Total (Combined -
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudinal) Von Mises)
(Von M ises)
MPa MPa MPa MPa MPa MPa

210.9 259.2 0.8 160.2 270.0 0.6 190.7 324.0 0.6 PASS PASS PASS

Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

1 INPUT DATA

Nominal Outer Diam eter of Pipe D := 355.6mm

Nominal Pipe Wall Thickness t w := 8.74mm

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L Gr X52"

Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)

Design Factor F := 0.72

Internal Design Pressure P := 7.5MPa


Maxim um Design Temperature (Under Ground) Tmax := 45 °C

Minimum Design Tem perature (Under Ground) Tmin := -19 °C

Installation Temperature Ti := 8 °C

Ambient Tem perature Tamb := 35 °C


-5 1 (As per ASME B31.8;
Coefficient of thermal expansion α = 1.17  10
K Clause 832.2)
Modulus of Elasticity at Tamb E := 203000MPa

Longitudinal Joint Factor E1 := 1 (As per ASME B31.8;


Table 841.1.7-1)
(As per ASME B 31.8:
Tem perature Derating Factor Tdf := 1
Table 841.1.8-1)
kg
Density of Steel ρs := 7850.
3
m
kg
ρf := 1005.80
Density of Fluid 3
m
External Axial Force
R := 0N

Pipe Span Length (Assum ed) Ls := 10m


(Support spacing for Aboveground pipeline installation)

Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

2 CALCULATIONS

Wall Thickness t := tw - A = 5.54 mm


(Not including corrosion allowance)
Cross Sectional Area Ac :=  π   D 2 - (D - 2  t )2 = 6.093  10- 3 m 2
4
(Not including corrosion allowance)  

Flow Area (N ot inc luding corrosion allowanc e) Af :=  π   ( D - 2  t ) 2 = 0.093 m 2


4
 
N
Unit Weight of Pipe ws := Ac  ρs  g = 469.021 
m

N
Unit Weight of Fluid wf := Af  ρf  g = 919.499 
m

Pipe Section Modulus Z :=  π   ( D ) 4 - ( D - 2  t) 4 = 5.25  10- 4 m 3


 32 D 
 

R
Axial Stress due to External Force S X := = 0  MPa
Ac

2.1 Restrained Section

2.1.1 Calculation of Stresses

P D (As per ASME B31.8,


A) Hoop Stress S H := = 240.704  MPa
2 t Clause 805.2.3)

Stress Check (Hoop)

Maxim um Allowable Stress (Hoop)


σAH := F  Tdf  SMYS = 259.2 MPa

SH
Ratio1 := = 0.929
σAH

Hoop R := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"
B) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P1 := 0.3S H = 72.211  MPa

Longitudinal Stress due to Therm al Expansion (


S T1 := E α Ti - Tmax )
(for Tmax)
S T1 = -87.9 MPa
(-) ve Sign Indicate Com pressive Stress
Page 2 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

Bending Stress for straight restrained pipe S B := 0MPa

S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -15.7 MPa

(-) ve Sign Indicate Com pressive Stress

Longitudinal Stress due to Therm al Expansion (


S T2 := E α Ti - Tmin )
(for Tmin)
S T2 = 64.1 MPa

Total Longitudinal Stress (for Tmin) S L2 := S X + S P1 + S B + ST2

S L2 = 136.3 MPa

Stress Check (Total Longitudinal)

Total Longitudinal Stress (


σL := max S L1 , S L2 ) = 136.3 MPa
Maxim um Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
σL
Ratio2 := = 0.421
σALR
Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

C) Von Mises equation: (Combined Stress)

Combined Stress (considering Maxim um Design Temp):


2 2
σVon1 := S L1 - S L1 SH + S H σVon1 = 248.9 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 209.068  MPa

( )
σVon := max σVon1 , σVon2 = 248.908  MPa

Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

Stress Check ( Von Mises )

Combined Stress ( )
σVon := max σVon1 , σVon2 = 248.908  MPa

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa
σVon
Ratio3 := = 0.768
σAER

CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

Notes: CombinedVon = "PASS"

1) Von Mises have been considered in analysis

2.2 Unrestrained Section

2.2.1 Calculation of Stresses

D) Hoop Stress P D
S H := = 240.704  MPa
2 t

Maxim um Allowable Stress (Hoop) σAH := F  Tdf  SMYS = 259.2 MPa

SH
Ratio4 := = 0.929
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop U = "PASS"
E) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P3 := 0.5S H = 120.352  MPa

Bending Mom ent-Pipe supported


( ws + wf ) Ls2 4
M := = 1.736  10  N  m
aboveground 8

M
Bending Stress S B3 := = 33.059  MPa
Z

S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 153.4 MPa

Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

Stress Check (Total Longitudinal)

Total Longitudinal Stress S L3 = 153.4 MPa

σALU := 0.75 Tdf  SMYS = 270 MPa


Maxim um Allowable Stress (Total Longitudinal)
S L3
Ratio5 := = 0.568
σALU

Total Longitudinal U := "PASS" if S L3  σALU

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal U = "PASS"

F) Von Mises equation: (Combined Stress)


2 2
Combined Stress σVon3 := S L3 - S L3 SH + S H

σVon3 = 211.1 MPa

Stress Check ( Von Mises )


σVon3 = 211.1 MPa
Combined Stress
σAER2 := 0.9  Tdf  SMYS = 324 MPa
Maxim um Allowable Stress (Com bined)
σVon3
Ratio6 := = 0.651
σAER2

CombinedVon3 := "PASS" if σVon3  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

3 SUMMARY OF RESULTS

Table-1: Summary of Results for Restrained Section


Stress Stress
Hoop Stress Total Longitudinal Stress Combined Stress
Stress Check Check
Check (Total (Combined
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudi - Von
(Von Mises)
nal) Mises)
MPa MPa MPa MPa MPa MPa

240.7 259.2 0.9 136.3 324.0 0.4 248.9 324.0 0.8 PASS PASS PASS

Table-2: Summary of Results for Un-Restrained Section


Hoop Stress Total Longitudinal Stress Combined Stress
Stress Stress Stress Check
Check Check (Total (Combined -
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudinal) Von Mises)
(Von M ises)
MPa MPa MPa MPa MPa MPa

240.7 259.2 0.9 153.4 270.0 0.6 211.1 324.0 0.7 PASS PASS PASS

Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
ABOVE GROUND

1 INPUT DATA

Nominal Outer Diam eter of Pipe D := 508mm

Nominal Pipe Wall Thickness t w := 7.92mm

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L Gr X52"

Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)

Design Factor F := 0.72

Internal Design Pressure P := 4.34MPa


Maxim um Design Temperature (Above Ground) Tmax := 93 °C

Minimum Design Tem perature (Above Ground) Tmin := -3 °C

Installation Temperature Ti := 8 °C

Ambient Tem perature Tamb := 35 °C


-5 1 (As per ASME B31.4;
Coefficient of thermal expansion α = 1.17  10
K Clause 402.2.1)
Modulus of Elasticity at Tamb E := 203000MPa

Longitudinal Joint Factor E1 := 1 (As per ASME B31.4;


Table 403.2.1-1)
kg
Density of Steel ρs := 7850.
3
m
kg
ρf := 1005.80
Density of Fluid 3
m
External Axial Force
R := 0N

Pipe Span Length (Assum ed) Ls := 10m


(Support spacing for Aboveground pipeline installation)

Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
ABOVE GROUND

2 CALCULATIONS

Wall Thickness t := tw - A = 4.72 mm


(Not including corrosion allowance)
Cross Sectional Area Ac :=  π   D 2 - (D - 2  t )2 = 7.463  10- 3 m 2
4
(Not including corrosion allowance)  

Flow Area (N ot inc luding corrosion allowanc e) Af :=  π   ( D - 2  t ) 2 = 0.195 m 2


4
 
N
Unit Weight of Pipe ws := Ac  ρs  g = 574.502 
m

3 N
Unit Weight of Fluid wf := Af  ρf  g = 1.926  10 
m

Pipe Section Modulus Z :=  π   ( D ) 4 - ( D - 2  t) 4 = 9.303  10- 4 m 3


 32 D 
 

R
Axial Stress due to External Force S X := = 0  MPa
Ac

2.1 Restrained Section

2.1.1 Calculation of Stresses

P D (As per ASME B31.8,


A) Hoop Stress S H := = 233.551  MPa
2 t Clause 805.2.3)

Stress Check (Hoop)

Maxim um Allowable Stress (Hoop)


σAH := F  SMYS = 259.2 MPa

SH
Ratio1 := = 0.901
σAH

Hoop R := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"
B) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P1 := 0.3S H = 70.065  MPa

Longitudinal Stress due to Therm al Expansion (


S T1 := E α Ti - Tmax )
(for Tmax)
S T1 = -201.9 MPa
(-) ve Sign Indicate Com pressive Stress
Page 2 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
ABOVE GROUND

Bending Stress for straight restrained pipe S B := 0MPa

S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -131.8 MPa

(-) ve Sign Indicate Com pressive Stress

Longitudinal Stress due to Therm al Expansion (


S T2 := E α Ti - Tmin )
(for Tmin)
S T2 = 26.1 MPa

Total Longitudinal Stress (for Tmin) S L2 := S X + S P1 + S B + ST2

S L2 = 96.2 MPa

Stress Check (Total Longitudinal)

Total Longitudinal Stress (


σL := max S L1 , S L2 ) = 131.8 MPa
Maxim um Allowable Stress (Total Longitudinal) σALR := 0.9  SMYS = 324 MPa
(For Restrained)
σL
Ratio2 := = 0.407
σALR
Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

C) Von Mises equation: (Combined Stress)

Combined Stress (considering Maxim um Design Temp):


2 2
σVon1 := S L1 - S L1 SH + S H σVon1 = 320.5 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 203.306  MPa

( )
σVon := max σVon1 , σVon2 = 320.481  MPa

Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
ABOVE GROUND

Stress Check ( Von Mises )

Combined Stress ( )
σVon := max σVon1 , σVon2 = 320.481  MPa

Maxim um Allowable Stress (Com bined) σAER := 0.9  SMYS = 324 MPa
σVon
Ratio3 := = 0.989
σAER

CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

Notes: CombinedVon = "PASS"

1) Von Mises have been considered in analysis

2.2 Unrestrained Section

2.2.1 Calculation of Stresses

D) Hoop Stress P D
S H := = 233.551  MPa
2 t

Maxim um Allowable Stress (Hoop) σAH := F  SMYS = 259.2 MPa

SH
Ratio4 := = 0.901
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop U = "PASS"
E) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P3 := 0.5S H = 116.775  MPa

Bending Mom ent-Pipe supported


( ws + wf ) Ls2 4
M := = 3.125  10  N  m
aboveground 8

M
Bending Stress S B3 := = 33.591  MPa
Z

S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 150.4 MPa

Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
ABOVE GROUND

Stress Check (Total Longitudinal)

Total Longitudinal Stress S L3 = 150.4 MPa

σALU := 0.75 SMYS = 270 MPa


Maxim um Allowable Stress (Total Longitudinal)
S L3
Ratio5 := = 0.557
σALU

Total Longitudinal U := "PASS" if S L3  σALU

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal U = "PASS"

F) Von Mises equation: (Combined Stress)


2 2
Combined Stress σVon3 := S L3 - S L3 SH + S H

σVon3 = 205 MPa

Stress Check ( Von Mises )


σVon3 = 205 MPa
Combined Stress
σAER2 := 0.9  SMYS = 324 MPa
Maxim um Allowable Stress (Com bined)
σVon3
Ratio6 := = 0.633
σAER2

CombinedVon3 := "PASS" if σVon3  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
ABOVE GROUND

3 SUMMARY OF RESULTS

Table-1: Summary of Results for Restrained Section


Stress Stress
Hoop Stress Total Longitudinal Stress Combined Stress
Stress Check Check
Check (Total (Combined
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudi - Von
(Von Mises)
nal) Mises)
MPa MPa MPa MPa MPa MPa

233.6 259.2 0.9 131.8 324.0 0.4 320.5 324.0 1.0 PASS PASS PASS

Table-2: Summary of Results for Un-Restrained Section


Hoop Stress Total Longitudinal Stress Combined Stress
Stress Stress Stress Check
Check Check (Total (Combined -
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudinal) Von Mises)
(Von M ises)
MPa MPa MPa MPa MPa MPa

233.6 259.2 0.9 150.4 270.0 0.6 205.0 324.0 0.6 PASS PASS PASS

Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.7
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
UNDER GROUND

1 INPUT DATA

Nominal Outer Diam eter of Pipe D := 508mm

Nominal Pipe Wall Thickness t w := 7.92mm

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L Gr X52"

Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)

Design Factor F := 0.72

Internal Design Pressure P := 4.34MPa


Maxim um Design Temperature (Under Ground) Tmax := 65 °C

Minimum Design Tem perature (Under Ground) Tmin := -3 °C

Installation Temperature Ti := 8 °C

Ambient Tem perature Tamb := 35 °C


-5 1
Coefficient of thermal expansion α = 1.17  10 (As per ASME B31.4;
K Clause 402.2.1)
Modulus of Elasticity at Tamb E := 203000MPa

(As per ASME B31.4;


Longitudinal Joint Factor E1 := 1
Table 403.2.1-1)
kg
Density of Steel ρs := 7850.
3
m
kg
ρf := 1005.80
Density of Fluid 3
m
External Axial Force
R := 0N

Pipe Span Length (Assum ed) Ls := 10m


(Support spacing for Aboveground pipeline installation)

Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.7
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
UNDER GROUND

2 CALCULATIONS

Wall Thickness t := tw - A = 4.72 mm


(Not including corrosion allowance)
Cross Sectional Area Ac :=  π   D 2 - (D - 2  t )2 = 7.463  10- 3 m 2
4
(Not including corrosion allowance)  

Flow Area (N ot inc luding corrosion allowanc e) Af :=  π   ( D - 2  t ) 2 = 0.195 m 2


4
 
N
Unit Weight of Pipe ws := Ac  ρs  g = 574.502 
m

3 N
Unit Weight of Fluid wf := Af  ρf  g = 1.926  10 
m

Pipe Section Modulus Z :=  π   ( D ) 4 - ( D - 2  t) 4 = 9.303  10- 4 m 3


 32 D 
 

R
Axial Stress due to External Force S X := = 0  MPa
Ac

2.1 Restrained Section

2.1.1 Calculation of Stresses

P D (As per ASME B31.4,


A) Hoop Stress S H := = 233.551  MPa
2 t Clause 403.2.1)

Stress Check (Hoop)

Maxim um Allowable Stress (Hoop)


σAH := F  SMYS = 259.2 MPa

SH
Ratio1 := = 0.901
σAH

Hoop R := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"
B) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P1 := 0.3S H = 70.065  MPa

Longitudinal Stress due to Therm al Expansion (


S T1 := E α Ti - Tmax )
(for Tmax)
S T1 = -135.4 MPa
(-) ve Sign Indicate Com pressive Stress
Page 2 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.7
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
UNDER GROUND

Bending Stress for straight restrained pipe S B := 0MPa

S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -65.3 MPa

(-) ve Sign Indicate Com pressive Stress

Longitudinal Stress due to Therm al Expansion (


S T2 := E α Ti - Tmin )
(for Tmin)
S T2 = 26.1 MPa

Total Longitudinal Stress (for Tmin) S L2 := S X + S P1 + S B + ST2

S L2 = 96.2 MPa

Stress Check (Total Longitudinal)

Total Longitudinal Stress (


σL := max S L1 , S L2 ) = 96.2 MPa
Maxim um Allowable Stress (Total Longitudinal) σALR := 0.9  SMYS = 324 MPa
(For Restrained)
σL
Ratio2 := = 0.297
σALR
Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

C) Von Mises equation: (Combined Stress)

Combined Stress (considering Maxim um Design Temp):


2 2
σVon1 := S L1 - S L1 SH + S H σVon1 = 272.2 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 203.306  MPa

( )
σVon := max σVon1 , σVon2 = 272.152  MPa

Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.7
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
UNDER GROUND

Stress Check ( Von Mises )

Combined Stress ( )
σVon := max σVon1 , σVon2 = 272.152  MPa

Maxim um Allowable Stress (Com bined) σAER := 0.9  SMYS = 324 MPa
σVon
Ratio3 := = 0.84
σAER

CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

Notes: CombinedVon = "PASS"

1) Von Mises have been considered in analysis

2.2 Unrestrained Section

2.2.1 Calculation of Stresses

D) Hoop Stress P D
S H := = 233.551  MPa
2 t

Maxim um Allowable Stress (Hoop) σAH := F  Tdf  SMYS = 259.2 MPa

SH
Ratio4 := = 0.901
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop U = "PASS"
E) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P3 := 0.5S H = 116.775  MPa

Bending Mom ent-Pipe supported


( ws + wf ) Ls2 4
M := = 3.125  10  N  m
aboveground 8

M
Bending Stress S B3 := = 33.591  MPa
Z

S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 150.4 MPa

Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.7
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
UNDER GROUND

Stress Check (Total Longitudinal)

Total Longitudinal Stress S L3 = 150.4 MPa

σALU := 0.75 SMYS = 270 MPa


Maxim um Allowable Stress (Total Longitudinal)
S L3
Ratio5 := = 0.557
σALU

Total Longitudinal U := "PASS" if S L3  σALU

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal U = "PASS"

F) Von Mises equation: (Combined Stress)


2 2
Combined Stress σVon3 := S L3 - S L3 SH + S H

σVon3 = 205 MPa

Stress Check ( Von Mises )


σVon3 = 205 MPa
Combined Stress
σAER2 := 0.9  SMYS = 324 MPa
Maxim um Allowable Stress (Com bined)
σVon3
Ratio6 := = 0.633
σAER2

CombinedVon3 := "PASS" if σVon3  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.7
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE -
UNDER GROUND

3 SUMMARY OF RESULTS

Table-1: Summary of Results for Restrained Section


Stress Stress
Hoop Stress Total Longitudinal Stress Combined Stress
Stress Check Check
Check (Total (Combined
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudi - Von
(Von Mises)
nal) Mises)
MPa MPa MPa MPa MPa MPa

233.6 259.2 0.9 96.2 324.0 0.3 272.2 324.0 0.8 PASS PASS PASS

Table-2: Summary of Results for Un-Restrained Section


Hoop Stress Total Longitudinal Stress Combined Stress
Stress Stress Stress Check
Check Check (Total (Combined -
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudinal) Von Mises)
(Von M ises)
MPa MPa MPa MPa MPa MPa

233.6 259.2 0.9 150.4 270.0 0.6 205.0 324.0 0.6 PASS PASS PASS

Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.8
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

1 INPUT DATA

Nominal Outer Diam eter of Pipe D := 168.3mm

Nominal Pipe Wall Thickness t w := 7.11mm

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L Gr X52"

Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)

Design Factor F := 0.72

Internal Design Pressure P := 3.79MPa


Maxim um Design Temperature (Under Ground) Tmax := 50 °C

Minimum Design Tem perature (Under Ground) Tmin := -19 °C

Installation Temperature Ti := 8 °C

Ambient Tem perature Tamb := 35 °C


-5 1 (As per ASME B31.8;
Coefficient of thermal expansion α = 1.17  10
K Clause 832.2)
Modulus of Elasticity at Tamb E := 203000MPa

Longitudinal Joint Factor E1 := 1 (As per ASME B31.8;


Table 841.1.7-1)
(As per ASME B 31.8:
Tem perature Derating Factor Tdf := 1
Table 841.1.8-1)
kg
Density of Steel ρs := 7850.
3
m
kg
ρf := 1005.80
Density of Fluid 3
m
External Axial Force
R := 0N

Pipe Span Length (Assum ed) Ls := 10m


(Support spacing for Aboveground pipeline installation)

Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.8
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

2 CALCULATIONS

Wall Thickness t := tw - A = 3.91 mm


(Not including corrosion allowance)
Cross Sectional Area Ac :=  π   D 2 - (D - 2  t )2 = 2.019  10- 3 m 2
4
(Not including corrosion allowance)  

Flow Area (N ot inc luding corrosion allowanc e) Af :=  π   ( D - 2  t ) 2 = 0.02 m 2


4
 
N
Unit Weight of Pipe ws := Ac  ρs  g = 155.451 
m

N
Unit Weight of Fluid wf := Af  ρf  g = 199.51
m

Pipe Section Modulus Z :=  π   ( D ) 4 - ( D - 2  t) 4 = 8.111  10- 5 m 3


 32 D 
 

R
Axial Stress due to External Force S X := = 0  MPa
Ac

2.1 Restrained Section

2.1.1 Calculation of Stresses

P D (As per ASME B31.8,


A) Hoop Stress S H := = 81.567 MPa
2 t Clause 805.2.3)

Stress Check (Hoop)

Maxim um Allowable Stress (Hoop)


σAH := F  Tdf  SMYS = 259.2 MPa

SH
Ratio1 := = 0.315
σAH

Hoop R := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"
B) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P1 := 0.3S H = 24.47 MPa

Longitudinal Stress due to Therm al Expansion (


S T1 := E α Ti - Tmax )
(for Tmax)
S T1 = -99.8 MPa
(-) ve Sign Indicate Com pressive Stress
Page 2 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.8
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

Bending Stress for straight restrained pipe S B := 0MPa

S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -75.3 MPa

(-) ve Sign Indicate Com pressive Stress

Longitudinal Stress due to Therm al Expansion (


S T2 := E α Ti - Tmin )
(for Tmin)
S T2 = 64.1 MPa

Total Longitudinal Stress (for Tmin) S L2 := S X + S P1 + S B + ST2

S L2 = 88.6 MPa

Stress Check (Total Longitudinal)

Total Longitudinal Stress (


σL := max S L1 , S L2 ) = 88.6 MPa
Maxim um Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
σL
Ratio2 := = 0.273
σALR
Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

C) Von Mises equation: (Combined Stress)

Combined Stress (considering Maxim um Design Temp):


2 2
σVon1 := S L1 - S L1 SH + S H σVon1 = 135.9 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 85.3 MPa

( )
σVon := max σVon1 , σVon2 = 135.874  MPa

Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.8
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

Stress Check ( Von Mises )

Combined Stress ( )
σVon := max σVon1 , σVon2 = 135.874  MPa

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa
σVon
Ratio3 := = 0.419
σAER

CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

Notes: CombinedVon = "PASS"

1) Von Mises have been considered in analysis

2.2 Unrestrained Section

2.2.1 Calculation of Stresses

D) Hoop Stress P D
S H := = 81.567 MPa
2 t

Maxim um Allowable Stress (Hoop) σAH := F  Tdf  SMYS = 259.2 MPa

SH
Ratio4 := = 0.315
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop U = "PASS"
E) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P3 := 0.5S H = 40.784  MPa

Bending Mom ent-Pipe supported


( ws + wf ) Ls2 3
M := = 4.437  10  N  m
aboveground 8

M
Bending Stress S B3 := = 54.706  MPa
Z

S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 95.5 MPa

Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.8
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

Stress Check (Total Longitudinal)

Total Longitudinal Stress S L3 = 95.5 MPa

σALU := 0.75 Tdf  SMYS = 270 MPa


Maxim um Allowable Stress (Total Longitudinal)
S L3
Ratio5 := = 0.354
σALU

Total Longitudinal U := "PASS" if S L3  σALU

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal U = "PASS"

F) Von Mises equation: (Combined Stress)


2 2
Combined Stress σVon3 := S L3 - S L3 SH + S H

σVon3 = 89.3 MPa

Stress Check ( Von Mises )


σVon3 = 89.3 MPa
Combined Stress
σAER2 := 0.9  Tdf  SMYS = 324 MPa
Maxim um Allowable Stress (Com bined)
σVon3
Ratio6 := = 0.276
σAER2

CombinedVon3 := "PASS" if σVon3  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.8
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

3 SUMMARY OF RESULTS

Table-1: Summary of Results for Restrained Section


Stress Stress
Hoop Stress Total Longitudinal Stress Combined Stress
Stress Check Check
Check (Total (Combined
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudi - Von
(Von Mises)
nal) Mises)
MPa MPa MPa MPa MPa MPa

81.6 259.2 0.3 88.6 324.0 0.3 135.9 324.0 0.4 PASS PASS PASS

Table-2: Summary of Results for Un-Restrained Section


Hoop Stress Total Longitudinal Stress Combined Stress
Stress Stress Stress Check
Check Check (Total (Combined -
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudinal) Von Mises)
(Von M ises)
MPa MPa MPa MPa MPa MPa

81.6 259.2 0.3 95.5 270.0 0.4 89.3 324.0 0.3 PASS PASS PASS

Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.9
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD

1 INPUT DATA

Nominal Outer Diam eter of Pipe D := 168.3mm

Nominal Pipe Wall Thickness t w := 7.11mm

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L Gr X52"

Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)

Design Factor F := 0.72

Internal Design Pressure P := 9.42MPa


Maxim um Design Temperature (Under Ground) Tmax := 76 °C

Minimum Design Tem perature (Under Ground) Tmin := -19 °C

Installation Temperature Ti := 8 °C

Ambient Tem perature Tamb := 35 °C


-5 1 (As per ASME B31.8;
Coefficient of thermal expansion α = 1.17  10
K Clause 832.2)
Modulus of Elasticity at Tamb E := 203000MPa

Longitudinal Joint Factor E1 := 1 (As per ASME B31.8;


Table 841.1.7-1)
(As per ASME B 31.8:
Tem perature Derating Factor Tdf := 1
Table 841.1.8-1)
kg
Density of Steel ρs := 7850.
3
m
kg
ρf := 1005.80
Density of Fluid 3
m
External Axial Force
R := 0N

Pipe Span Length (Assum ed) Ls := 10m


(Support spacing for Aboveground pipeline installation)

Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.9
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD

2 CALCULATIONS

Wall Thickness t := tw - A = 3.91 mm


(Not including corrosion allowance)
Cross Sectional Area Ac :=  π   D 2 - (D - 2  t )2 = 2.019  10- 3 m 2
4
(Not including corrosion allowance)  

Flow Area (N ot inc luding corrosion allowanc e) Af :=  π   ( D - 2  t ) 2 = 0.02 m 2


4
 
N
Unit Weight of Pipe ws := Ac  ρs  g = 155.451 
m

N
Unit Weight of Fluid wf := Af  ρf  g = 199.51
m

Pipe Section Modulus Z :=  π   ( D ) 4 - ( D - 2  t) 4 = 8.111  10- 5 m 3


 32 D 
 

R
Axial Stress due to External Force S X := = 0  MPa
Ac

2.1 Restrained Section

2.1.1 Calculation of Stresses

P D (As per ASME B31.8,


A) Hoop Stress S H := = 202.735  MPa
2 t Clause 805.2.3)

Stress Check (Hoop)

Maxim um Allowable Stress (Hoop)


σAH := F  Tdf  SMYS = 259.2 MPa

SH
Ratio1 := = 0.782
σAH

Hoop R := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"
B) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P1 := 0.3S H = 60.82 MPa

Longitudinal Stress due to Therm al Expansion (


S T1 := E α Ti - Tmax )
(for Tmax)
S T1 = -161.5 MPa
(-) ve Sign Indicate Com pressive Stress
Page 2 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.9
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD

Bending Stress for straight restrained pipe S B := 0MPa

S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -100.7 MPa

(-) ve Sign Indicate Com pressive Stress

Longitudinal Stress due to Therm al Expansion (


S T2 := E α Ti - Tmin )
(for Tmin)
S T2 = 64.1 MPa

Total Longitudinal Stress (for Tmin) S L2 := S X + S P1 + S B + ST2

S L2 = 124.9 MPa

Stress Check (Total Longitudinal)

Total Longitudinal Stress (


σL := max S L1 , S L2 ) = 124.9 MPa
Maxim um Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
σL
Ratio2 := = 0.386
σALR
Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

C) Von Mises equation: (Combined Stress)

Combined Stress (considering Maxim um Design Temp):


2 2
σVon1 := S L1 - S L1 SH + S H σVon1 = 267.7 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 177.15 MPa

( )
σVon := max σVon1 , σVon2 = 267.678  MPa

Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.9
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD

Stress Check ( Von Mises )

Combined Stress ( )
σVon := max σVon1 , σVon2 = 267.678  MPa

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa
σVon
Ratio3 := = 0.826
σAER

CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

Notes: CombinedVon = "PASS"

1) Von Mises have been considered in analysis

2.2 Unrestrained Section

2.2.1 Calculation of Stresses

D) Hoop Stress P D
S H := = 202.735  MPa
2 t

Maxim um Allowable Stress (Hoop) σAH := F  Tdf  SMYS = 259.2 MPa

SH
Ratio4 := = 0.782
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop U = "PASS"
E) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P3 := 0.5S H = 101.367  MPa

Bending Mom ent-Pipe supported


( ws + wf ) Ls2 3
M := = 4.437  10  N  m
aboveground 8

M
Bending Stress S B3 := = 54.706  MPa
Z

S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 156.1 MPa

Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.9
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD

Stress Check (Total Longitudinal)

Total Longitudinal Stress S L3 = 156.1 MPa

σALU := 0.75 Tdf  SMYS = 270 MPa


Maxim um Allowable Stress (Total Longitudinal)
S L3
Ratio5 := = 0.578
σALU

Total Longitudinal U := "PASS" if S L3  σALU

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal U = "PASS"

F) Von Mises equation: (Combined Stress)


2 2
Combined Stress σVon3 := S L3 - S L3 SH + S H

σVon3 = 183.9 MPa

Stress Check ( Von Mises )


σVon3 = 183.9 MPa
Combined Stress
σAER2 := 0.9  Tdf  SMYS = 324 MPa
Maxim um Allowable Stress (Com bined)
σVon3
Ratio6 := = 0.568
σAER2

CombinedVon3 := "PASS" if σVon3  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX B.9
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD

3 SUMMARY OF RESULTS

Table-1: Summary of Results for Restrained Section


Stress Stress
Hoop Stress Total Longitudinal Stress Combined Stress
Stress Check Check
Check (Total (Combined
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudi - Von
(Von Mises)
nal) Mises)
MPa MPa MPa MPa MPa MPa

202.7 259.2 0.8 124.9 324.0 0.4 267.7 324.0 0.8 PASS PASS PASS

Table-2: Summary of Results for Un-Restrained Section


Hoop Stress Total Longitudinal Stress Combined Stress
Stress Stress Stress Check
Check Check (Total (Combined -
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudinal) Von Mises)
(Von M ises)
MPa MPa MPa MPa MPa MPa

202.7 259.2 0.8 156.1 270.0 0.6 183.9 324.0 0.6 PASS PASS PASS

Page 6 of 6
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

APPENDIX-C COMBINED STRESS CALCULATION FOR DESIGN


FACTOR 0.6

APPENDIX C.1 10 “LP Gathering Header Trunkline

APPENDIX C.2 10 “HP Gathering Header Trunkline

APPENDIX C.3 6” Sour Liquid Return Pipeline

APPENDIX C.4 6” Sour Condensate Export Pipeline

APPENDIX C.5 14” Sour Gas Export Pipeline

APPENDIX C.6 6” Fuel Gas Import Pipeline

APPENDIX C.7 6” Flowlines from Remote Manifolds


JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE

1 INPUT DATA

Nominal Outer Diam eter of Pipe D := 273mm

Nominal Pipe Wall Thickness t w := 11.13mm

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L Gr X52"

Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)

Design Factor F := 0.6

Internal Design Pressure P := 9.42MPa


Maxim um Design Temperature (Above Ground) Tmax := 93 °C

Minimum Design Tem perature (Above Ground) Tmin := -19 °C

Installation Temperature Ti := 8 °C

Ambient Tem perature Tamb := 35 °C


-5 1 (As per ASME B31.8;
Coefficient of thermal expansion α = 1.17  10
K Clause 832.2)
Modulus of Elasticity at Tamb E := 203000MPa

Longitudinal Joint Factor E1 := 1 (As per ASME B31.8;


Table 841.1.7-1)
(As per ASME B 31.8:
Tem perature Derating Factor Tdf := 1
Table 841.1.8-1)
kg
Density of Steel ρs := 7850.
3
m
kg
ρf := 1005.80
Density of Fluid 3
m
External Axial Force
R := 0N

Pipe Span Length (Assum ed) Ls := 10m


(Support spacing for Aboveground pipeline installation)

Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE

2 CALCULATIONS

Wall Thickness t := tw - A = 7.93 mm


(Not including corrosion allowance)
Cross Sectional Area Ac :=  π   D 2 - (D - 2  t )2 = 6.604  10- 3 m 2
4
(Not including corrosion allowance)  

Flow Area (N ot inc luding corrosion allowanc e) Af :=  π   ( D - 2  t ) 2 = 0.052 m 2


4
 
N
Unit Weight of Pipe ws := Ac  ρs  g = 508.363 
m

N
Unit Weight of Fluid wf := Af  ρf  g = 512.226 
m

Pipe Section Modulus Z :=  π   ( D ) 4 - ( D - 2  t) 4 = 4.253  10- 4 m 3


 32 D 
 

R
Axial Stress due to External Force S X := = 0  MPa
Ac

2.1 Restrained Section

2.1.1 Calculation of Stresses

P D (As per ASME B31.8,


A) Hoop Stress S H := = 162.148  MPa
2 t Clause 805.2.3)

Stress Check (Hoop)

Maxim um Allowable Stress (Hoop)


σAH := F  Tdf  SMYS = 216 MPa

SH
Ratio1 := = 0.751
σAH

Hoop R := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"
B) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P1 := 0.3S H = 48.644  MPa

Longitudinal Stress due to Therm al Expansion (


S T1 := E α Ti - Tmax )
(for Tmax)
S T1 = -201.9 MPa
(-) ve Sign Indicate Com pressive Stress
Page 2 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE

Bending Stress for straight restrained pipe S B := 0MPa

S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -153.2 MPa

(-) ve Sign Indicate Com pressive Stress

Longitudinal Stress due to Therm al Expansion (


S T2 := E α Ti - Tmin )
(for Tmin)
S T2 = 64.1 MPa

Total Longitudinal Stress (for Tmin) S L2 := S X + S P1 + S B + ST2

S L2 = 112.8 MPa

Stress Check (Total Longitudinal)

Total Longitudinal Stress (


σL := max S L1 , S L2 ) = 153.2 MPa
Maxim um Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
σL
Ratio2 := = 0.473
σALR
Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

C) Von Mises equation: (Combined Stress)

Combined Stress (considering Maxim um Design Temp):


2 2
σVon1 := S L1 - S L1 SH + S H σVon1 = 273.2 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 143.957  MPa

( )
σVon := max σVon1 , σVon2 = 273.169  MPa

Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE

Stress Check ( Von Mises )

Combined Stress ( )
σVon := max σVon1 , σVon2 = 273.169  MPa

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa
σVon
Ratio3 := = 0.843
σAER

CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

Notes: CombinedVon = "PASS"

1) Von Mises have been considered in analysis

2.2 Unrestrained Section

2.2.1 Calculation of Stresses

D) Hoop Stress P D
S H := = 162.148  MPa
2 t

Maxim um Allowable Stress (Hoop) σAH := F  Tdf  SMYS = 216 MPa

SH
Ratio4 := = 0.751
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop U = "PASS"
E) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P3 := 0.5S H = 81.074  MPa

Bending Mom ent-Pipe supported


( ws + wf ) Ls2 4
M := = 1.276  10  N  m
aboveground 8

M
Bending Stress S B3 := = 29.998  MPa
Z

S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 111.1 MPa

Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE

Stress Check (Total Longitudinal)

Total Longitudinal Stress S L3 = 111.1 MPa

σALU := 0.75 Tdf  SMYS = 270 MPa


Maxim um Allowable Stress (Total Longitudinal)
S L3
Ratio5 := = 0.411
σALU

Total Longitudinal U := "PASS" if S L3  σALU

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal U = "PASS"

F) Von Mises equation: (Combined Stress)


2 2
Combined Stress σVon3 := S L3 - S L3 SH + S H

σVon3 = 143.6 MPa

Stress Check ( Von Mises )


σVon3 = 143.6 MPa
Combined Stress
σAER2 := 0.9  Tdf  SMYS = 324 MPa
Maxim um Allowable Stress (Com bined)
σVon3
Ratio6 := = 0.443
σAER2

CombinedVon3 := "PASS" if σVon3  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER
TRUNKLINE

3 SUMMARY OF RESULTS

Table-1: Summary of Results for Restrained Section


Stress Stress
Hoop Stress Total Longitudinal Stress Combined Stress
Stress Check Check
Check (Total (Combined
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudi - Von
(Von Mises)
nal) Mises)
MPa MPa MPa MPa MPa MPa

162.1 216.0 0.8 153.2 324.0 0.5 273.2 324.0 0.8 PASS PASS PASS

Table-2: Summary of Results for Un-Restrained Section


Hoop Stress Total Longitudinal Stress Combined Stress
Stress Stress Stress Check
Check Check (Total (Combined -
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudinal) Von Mises)
(Von M ises)
MPa MPa MPa MPa MPa MPa

162.1 216.0 0.8 111.1 270.0 0.4 143.6 324.0 0.4 PASS PASS PASS

Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE

1 INPUT DATA

Nominal Outer Diam eter of Pipe D := 273mm

Nominal Pipe Wall Thickness t w := 11.13mm

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L Gr X52"

Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)

Design Factor F := 0.6

Internal Design Pressure P := 9.42MPa


Maxim um Design Temperature (Above Ground) Tmax := 93 °C

Minimum Design Tem perature (Above Ground) Tmin := -19 °C

Installation Temperature Ti := 8 °C

Ambient Tem perature Tamb := 35 °C


-5 1 (As per ASME B31.8;
Coefficient of thermal expansion α = 1.17  10
K Clause 832.2)
Modulus of Elasticity at Tamb E := 203000MPa

Longitudinal Joint Factor E1 := 1 (As per ASME B31.8;


Table 841.1.7-1)
(As per ASME B 31.8:
Tem perature Derating Factor Tdf := 1
Table 841.1.8-1)
kg
Density of Steel ρs := 7850.
3
m
kg
ρf := 1005.80
Density of Fluid 3
m
External Axial Force
R := 0N

Pipe Span Length (Assum ed) Ls := 10m


(Support spacing for Aboveground pipeline installation)

Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE

2 CALCULATIONS

Wall Thickness t := tw - A = 7.93 mm


(Not including corrosion allowance)
Cross Sectional Area Ac :=  π   D 2 - (D - 2  t )2 = 6.604  10- 3 m 2
4
(Not including corrosion allowance)  

Flow Area (N ot inc luding corrosion allowanc e) Af :=  π   ( D - 2  t ) 2 = 0.052 m 2


4
 
N
Unit Weight of Pipe ws := Ac  ρs  g = 508.363 
m

N
Unit Weight of Fluid wf := Af  ρf  g = 512.226 
m

Pipe Section Modulus Z :=  π   ( D ) 4 - ( D - 2  t) 4 = 4.253  10- 4 m 3


 32 D 
 

R
Axial Stress due to External Force S X := = 0  MPa
Ac

2.1 Restrained Section

2.1.1 Calculation of Stresses

P D (As per ASME B31.8,


A) Hoop Stress S H := = 162.148  MPa
2 t Clause 805.2.3)

Stress Check (Hoop)

Maxim um Allowable Stress (Hoop)


σAH := F  Tdf  SMYS = 216 MPa

SH
Ratio1 := = 0.751
σAH

Hoop R := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"
B) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P1 := 0.3S H = 48.644  MPa

Longitudinal Stress due to Therm al Expansion (


S T1 := E α Ti - Tmax )
(for Tmax)
S T1 = -201.9 MPa
(-) ve Sign Indicate Com pressive Stress
Page 2 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE

Bending Stress for straight restrained pipe S B := 0MPa

S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -153.2 MPa

(-) ve Sign Indicate Com pressive Stress

Longitudinal Stress due to Therm al Expansion (


S T2 := E α Ti - Tmin )
(for Tmin)
S T2 = 64.1 MPa

Total Longitudinal Stress (for Tmin) S L2 := S X + S P1 + S B + ST2

S L2 = 112.8 MPa

Stress Check (Total Longitudinal)

Total Longitudinal Stress (


σL := max S L1 , S L2 ) = 153.2 MPa
Maxim um Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
σL
Ratio2 := = 0.473
σALR
Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

C) Von Mises equation: (Combined Stress)

Combined Stress (considering Maxim um Design Temp):


2 2
σVon1 := S L1 - S L1 SH + S H σVon1 = 273.2 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 143.957  MPa

( )
σVon := max σVon1 , σVon2 = 273.169  MPa

Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE

Stress Check ( Von Mises )

Combined Stress ( )
σVon := max σVon1 , σVon2 = 273.169  MPa

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa
σVon
Ratio3 := = 0.843
σAER

CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

Notes: CombinedVon = "PASS"

1) Von Mises have been considered in analysis

2.2 Unrestrained Section

2.2.1 Calculation of Stresses

D) Hoop Stress P D
S H := = 162.148  MPa
2 t

Maxim um Allowable Stress (Hoop) σAH := F  Tdf  SMYS = 216 MPa

SH
Ratio4 := = 0.751
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop U = "PASS"
E) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P3 := 0.5S H = 81.074  MPa

Bending Mom ent-Pipe supported


( ws + wf ) Ls2 4
M := = 1.276  10  N  m
aboveground 8

M
Bending Stress S B3 := = 29.998  MPa
Z

S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 111.1 MPa

Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE

Stress Check (Total Longitudinal)

Total Longitudinal Stress S L3 = 111.1 MPa

σALU := 0.75 Tdf  SMYS = 270 MPa


Maxim um Allowable Stress (Total Longitudinal)
S L3
Ratio5 := = 0.411
σALU

Total Longitudinal U := "PASS" if S L3  σALU

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal U = "PASS"

F) Von Mises equation: (Combined Stress)


2 2
Combined Stress σVon3 := S L3 - S L3 SH + S H

σVon3 = 143.6 MPa

Stress Check ( Von Mises )


σVon3 = 143.6 MPa
Combined Stress
σAER2 := 0.9  Tdf  SMYS = 324 MPa
Maxim um Allowable Stress (Com bined)
σVon3
Ratio6 := = 0.443
σAER2

CombinedVon3 := "PASS" if σVon3  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER
TRUNKLINE

3 SUMMARY OF RESULTS

Table-1: Summary of Results for Restrained Section


Stress Stress
Hoop Stress Total Longitudinal Stress Combined Stress
Stress Check Check
Check (Total (Combined
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudi - Von
(Von Mises)
nal) Mises)
MPa MPa MPa MPa MPa MPa

162.1 216.0 0.8 153.2 324.0 0.5 273.2 324.0 0.8 PASS PASS PASS

Table-2: Summary of Results for Un-Restrained Section


Hoop Stress Total Longitudinal Stress Combined Stress
Stress Stress Stress Check
Check Check (Total (Combined -
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudinal) Von Mises)
(Von M ises)
MPa MPa MPa MPa MPa MPa

162.1 216.0 0.8 111.1 270.0 0.4 143.6 324.0 0.4 PASS PASS PASS

Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

1 INPUT DATA

Nominal Outer Diam eter of Pipe D := 168.3mm

Nominal Pipe Wall Thickness t w := 7.11mm

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L Gr X52"

Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)

Design Factor F := 0.6

Internal Design Pressure P := 9.8MPa


Maxim um Design Temperature (Above Ground) Tmax := 93 °C

Minimum Design Tem perature (Above Ground) Tmin := -19 °C

Installation Temperature Ti := 8 °C

Ambient Tem perature Tamb := 35 °C


-5 1 (As per ASME B31.8;
Coefficient of thermal expansion α = 1.17  10
K Clause 832.2)
Modulus of Elasticity at Tamb E := 203000MPa

Longitudinal Joint Factor E1 := 1 (As per ASME B31.8;


Table 841.1.7-1)
(As per ASME B 31.8:
Tem perature Derating Factor Tdf := 1
Table 841.1.8-1)
kg
Density of Steel ρs := 7850.
3
m
kg
ρf := 1005.80
Density of Fluid 3
m
External Axial Force
R := 0N

Pipe Span Length (Assum ed) Ls := 10m


(Support spacing for Aboveground pipeline installation)

Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

2 CALCULATIONS

Wall Thickness t := tw - A = 3.91 mm


(Not including corrosion allowance)
Cross Sectional Area Ac :=  π   D 2 - (D - 2  t )2 = 2.019  10- 3 m 2
4
(Not including corrosion allowance)  

Flow Area (N ot inc luding corrosion allowanc e) Af :=  π   ( D - 2  t ) 2 = 0.02 m 2


4
 
N
Unit Weight of Pipe ws := Ac  ρs  g = 155.451 
m

N
Unit Weight of Fluid wf := Af  ρf  g = 199.51
m

Pipe Section Modulus Z :=  π   ( D ) 4 - ( D - 2  t) 4 = 8.111  10- 5 m 3


 32 D 
 

R
Axial Stress due to External Force S X := = 0  MPa
Ac

2.1 Restrained Section

2.1.1 Calculation of Stresses

P D (As per ASME B31.8,


A) Hoop Stress S H := = 210.913  MPa
2 t Clause 805.2.3)

Stress Check (Hoop)

Maxim um Allowable Stress (Hoop)


σAH := F  Tdf  SMYS = 216 MPa

SH
Ratio1 := = 0.976
σAH

Hoop R := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"
B) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P1 := 0.3S H = 63.274  MPa

Longitudinal Stress due to Therm al Expansion (


S T1 := E α Ti - Tmax )
(for Tmax)
S T1 = -201.9 MPa
(-) ve Sign Indicate Com pressive Stress
Page 2 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

Bending Stress for straight restrained pipe S B := 0MPa

S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -138.6 MPa

(-) ve Sign Indicate Com pressive Stress

Longitudinal Stress due to Therm al Expansion (


S T2 := E α Ti - Tmin )
(for Tmin)
S T2 = 64.1 MPa

Total Longitudinal Stress (for Tmin) S L2 := S X + S P1 + S B + ST2

S L2 = 127.4 MPa

Stress Check (Total Longitudinal)

Total Longitudinal Stress (


σL := max S L1 , S L2 ) = 138.6 MPa
Maxim um Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
σL
Ratio2 := = 0.428
σALR
Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

C) Von Mises equation: (Combined Stress)

Combined Stress (considering Maxim um Design Temp):


2 2
σVon1 := S L1 - S L1 SH + S H σVon1 = 304.8 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 183.97 MPa

( )
σVon := max σVon1 , σVon2 = 304.847  MPa

Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

Stress Check ( Von Mises )

Combined Stress ( )
σVon := max σVon1 , σVon2 = 304.847  MPa

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa
σVon
Ratio3 := = 0.941
σAER

CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

Notes: CombinedVon = "PASS"

1) Von Mises have been considered in analysis

2.2 Unrestrained Section

2.2.1 Calculation of Stresses

D) Hoop Stress P D
S H := = 210.913  MPa
2 t

Maxim um Allowable Stress (Hoop) σAH := F  Tdf  SMYS = 216 MPa

SH
Ratio4 := = 0.976
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop U = "PASS"
E) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P3 := 0.5S H = 105.457  MPa

Bending Mom ent-Pipe supported


( ws + wf ) Ls2 3
M := = 4.437  10  N  m
aboveground 8

M
Bending Stress S B3 := = 54.706  MPa
Z

S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 160.2 MPa

Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

Stress Check (Total Longitudinal)

Total Longitudinal Stress S L3 = 160.2 MPa

σALU := 0.75 Tdf  SMYS = 270 MPa


Maxim um Allowable Stress (Total Longitudinal)
S L3
Ratio5 := = 0.593
σALU

Total Longitudinal U := "PASS" if S L3  σALU

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal U = "PASS"

F) Von Mises equation: (Combined Stress)


2 2
Combined Stress σVon3 := S L3 - S L3 SH + S H

σVon3 = 190.7 MPa

Stress Check ( Von Mises )


σVon3 = 190.7 MPa
Combined Stress
σAER2 := 0.9  Tdf  SMYS = 324 MPa
Maxim um Allowable Stress (Com bined)
σVon3
Ratio6 := = 0.588
σAER2

CombinedVon3 := "PASS" if σVon3  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

3 SUMMARY OF RESULTS

Table-1: Summary of Results for Restrained Section


Stress Stress
Hoop Stress Total Longitudinal Stress Combined Stress
Stress Check Check
Check (Total (Combined
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudi - Von
(Von Mises)
nal) Mises)
MPa MPa MPa MPa MPa MPa

210.9 216.0 1.0 138.6 324.0 0.4 304.8 324.0 0.9 PASS PASS PASS

Table-2: Summary of Results for Un-Restrained Section


Hoop Stress Total Longitudinal Stress Combined Stress
Stress Stress Stress Check
Check Check (Total (Combined -
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudinal) Von Mises)
(Von M ises)
MPa MPa MPa MPa MPa MPa

210.9 216.0 1.0 160.2 270.0 0.6 190.7 324.0 0.6 PASS PASS PASS

Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE

1 INPUT DATA

Nominal Outer Diam eter of Pipe D := 168.3mm

Nominal Pipe Wall Thickness t w := 7.11mm

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L Gr X52"

Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)

Design Factor F := 0.6

Internal Design Pressure P := 9.8MPa


Maxim um Design Temperature (Above Ground) Tmax := 93 °C

Minimum Design Tem perature (Above Ground) Tmin := -19 °C

Installation Temperature Ti := 8 °C

Ambient Tem perature Tamb := 35 °C


-5 1 (As per ASME B31.8;
Coefficient of thermal expansion α = 1.17  10
K Clause 832.2)
Modulus of Elasticity at Tamb E := 203000MPa

Longitudinal Joint Factor E1 := 1 (As per ASME B31.8;


Table 841.1.7-1)
(As per ASME B 31.8:
Tem perature Derating Factor Tdf := 1
Table 841.1.8-1)
kg
Density of Steel ρs := 7850.
3
m
kg
ρf := 1005.80
Density of Fluid 3
m
External Axial Force
R := 0N

Pipe Span Length (Assum ed) Ls := 10m


(Support spacing for Aboveground pipeline installation)

Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE

2 CALCULATIONS

Wall Thickness t := tw - A = 3.91 mm


(Not including corrosion allowance)
Cross Sectional Area Ac :=  π   D 2 - (D - 2  t )2 = 2.019  10- 3 m 2
4
(Not including corrosion allowance)  

Flow Area (N ot inc luding corrosion allowanc e) Af :=  π   ( D - 2  t ) 2 = 0.02 m 2


4
 
N
Unit Weight of Pipe ws := Ac  ρs  g = 155.451 
m

N
Unit Weight of Fluid wf := Af  ρf  g = 199.51
m

Pipe Section Modulus Z :=  π   ( D ) 4 - ( D - 2  t) 4 = 8.111  10- 5 m 3


 32 D 
 

R
Axial Stress due to External Force S X := = 0  MPa
Ac

2.1 Restrained Section

2.1.1 Calculation of Stresses

P D (As per ASME B31.8,


A) Hoop Stress S H := = 210.913  MPa
2 t Clause 805.2.3)

Stress Check (Hoop)

Maxim um Allowable Stress (Hoop)


σAH := F  Tdf  SMYS = 216 MPa

SH
Ratio1 := = 0.976
σAH

Hoop R := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"
B) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P1 := 0.3S H = 63.274  MPa

Longitudinal Stress due to Therm al Expansion (


S T1 := E α Ti - Tmax )
(for Tmax)
S T1 = -201.9 MPa
(-) ve Sign Indicate Com pressive Stress
Page 2 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE

Bending Stress for straight restrained pipe S B := 0MPa

S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -138.6 MPa

(-) ve Sign Indicate Com pressive Stress

Longitudinal Stress due to Therm al Expansion (


S T2 := E α Ti - Tmin )
(for Tmin)
S T2 = 64.1 MPa

Total Longitudinal Stress (for Tmin) S L2 := S X + S P1 + S B + ST2

S L2 = 127.4 MPa

Stress Check (Total Longitudinal)

Total Longitudinal Stress (


σL := max S L1 , S L2 ) = 138.6 MPa
Maxim um Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
σL
Ratio2 := = 0.428
σALR
Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

C) Von Mises equation: (Combined Stress)

Combined Stress (considering Maxim um Design Temp):


2 2
σVon1 := S L1 - S L1 SH + S H σVon1 = 304.8 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 183.97 MPa

( )
σVon := max σVon1 , σVon2 = 304.847  MPa

Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE

Stress Check ( Von Mises )

Combined Stress ( )
σVon := max σVon1 , σVon2 = 304.847  MPa

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa
σVon
Ratio3 := = 0.941
σAER

CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

Notes: CombinedVon = "PASS"

1) Von Mises have been considered in analysis

2.2 Unrestrained Section

2.2.1 Calculation of Stresses

D) Hoop Stress P D
S H := = 210.913  MPa
2 t

Maxim um Allowable Stress (Hoop) σAH := F  Tdf  SMYS = 216 MPa

SH
Ratio4 := = 0.976
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop U = "PASS"
E) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P3 := 0.5S H = 105.457  MPa

Bending Mom ent-Pipe supported


( ws + wf ) Ls2 3
M := = 4.437  10  N  m
aboveground 8

M
Bending Stress S B3 := = 54.706  MPa
Z

S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 160.2 MPa

Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE

Stress Check (Total Longitudinal)

Total Longitudinal Stress S L3 = 160.2 MPa

σALU := 0.75 Tdf  SMYS = 270 MPa


Maxim um Allowable Stress (Total Longitudinal)
S L3
Ratio5 := = 0.593
σALU

Total Longitudinal U := "PASS" if S L3  σALU

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal U = "PASS"

F) Von Mises equation: (Combined Stress)


2 2
Combined Stress σVon3 := S L3 - S L3 SH + S H

σVon3 = 190.7 MPa

Stress Check ( Von Mises )


σVon3 = 190.7 MPa
Combined Stress
σAER2 := 0.9  Tdf  SMYS = 324 MPa
Maxim um Allowable Stress (Com bined)
σVon3
Ratio6 := = 0.588
σAER2

CombinedVon3 := "PASS" if σVon3  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT
PIPELINE

3 SUMMARY OF RESULTS

Table-1: Summary of Results for Restrained Section


Stress Stress
Hoop Stress Total Longitudinal Stress Combined Stress
Stress Check Check
Check (Total (Combined
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudi - Von
(Von Mises)
nal) Mises)
MPa MPa MPa MPa MPa MPa

210.9 216.0 1.0 138.6 324.0 0.4 304.8 324.0 0.9 PASS PASS PASS

Table-2: Summary of Results for Un-Restrained Section


Hoop Stress Total Longitudinal Stress Combined Stress
Stress Stress Stress Check
Check Check (Total (Combined -
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudinal) Von Mises)
(Von M ises)
MPa MPa MPa MPa MPa MPa

210.9 216.0 1.0 160.2 270.0 0.6 190.7 324.0 0.6 PASS PASS PASS

Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

1 INPUT DATA

Nominal Outer Diam eter of Pipe D := 355.6mm

Nominal Pipe Wall Thickness t w := 10.31mm

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L Gr X52"

Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)

Design Factor F := 0.6

Internal Design Pressure P := 7.5MPa


Maxim um Design Temperature (Above Ground) Tmax := 93 °C

Minimum Design Tem perature (Above Ground) Tmin := -19 °C

Installation Temperature Ti := 8 °C

Ambient Tem perature Tamb := 35 °C


-5 1 (As per ASME B31.8;
Coefficient of thermal expansion α = 1.17  10
K Clause 832.2)
Modulus of Elasticity at Tamb E := 203000MPa

Longitudinal Joint Factor E1 := 1 (As per ASME B31.8;


Table 841.1.7-1)
(As per ASME B 31.8:
Tem perature Derating Factor Tdf := 1
Table 841.1.8-1)
kg
Density of Steel ρs := 7850.
3
m
kg
ρf := 1005.80
Density of Fluid 3
m
External Axial Force
R := 0N

Pipe Span Length (Assum ed) Ls := 10m


(Support spacing for Aboveground pipeline installation)

Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

2 CALCULATIONS

Wall Thickness t := tw - A = 7.11 mm


(Not including corrosion allowance)
Cross Sectional Area Ac :=  π   D 2 - (D - 2  t )2 = 7.784  10- 3 m 2
4
(Not including corrosion allowance)  

Flow Area (N ot inc luding corrosion allowanc e) Af :=  π   ( D - 2  t ) 2 = 0.092 m 2


4
 
N
Unit Weight of Pipe ws := Ac  ρs  g = 599.239 
m

N
Unit Weight of Fluid wf := Af  ρf  g = 902.814 
m

Pipe Section Modulus Z :=  π   ( D ) 4 - ( D - 2  t) 4 = 6.649  10- 4 m 3


 32 D 
 

R
Axial Stress due to External Force S X := = 0  MPa
Ac

2.1 Restrained Section

2.1.1 Calculation of Stresses

P D (As per ASME B31.8,


A) Hoop Stress S H := = 187.553  MPa
2 t Clause 805.2.3)

Stress Check (Hoop)

Maxim um Allowable Stress (Hoop)


σAH := F  Tdf  SMYS = 216 MPa

SH
Ratio1 := = 0.868
σAH

Hoop R := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"
B) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P1 := 0.3S H = 56.266  MPa

Longitudinal Stress due to Therm al Expansion (


S T1 := E α Ti - Tmax )
(for Tmax)
S T1 = -201.9 MPa
(-) ve Sign Indicate Com pressive Stress
Page 2 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

Bending Stress for straight restrained pipe S B := 0MPa

S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -145.6 MPa

(-) ve Sign Indicate Com pressive Stress

Longitudinal Stress due to Therm al Expansion (


S T2 := E α Ti - Tmin )
(for Tmin)
S T2 = 64.1 MPa

Total Longitudinal Stress (for Tmin) S L2 := S X + S P1 + S B + ST2

S L2 = 120.4 MPa

Stress Check (Total Longitudinal)

Total Longitudinal Stress (


σL := max S L1 , S L2 ) = 145.6 MPa
Maxim um Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
σL
Ratio2 := = 0.449
σALR
Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

C) Von Mises equation: (Combined Stress)

Combined Stress (considering Maxim um Design Temp):


2 2
σVon1 := S L1 - S L1 SH + S H σVon1 = 289.3 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 164.592  MPa

( )
σVon := max σVon1 , σVon2 = 289.295  MPa

Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

Stress Check ( Von Mises )

Combined Stress ( )
σVon := max σVon1 , σVon2 = 289.295  MPa

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa
σVon
Ratio3 := = 0.893
σAER

CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

Notes: CombinedVon = "PASS"

1) Von Mises have been considered in analysis

2.2 Unrestrained Section

2.2.1 Calculation of Stresses

D) Hoop Stress P D
S H := = 187.553  MPa
2 t

Maxim um Allowable Stress (Hoop) σAH := F  Tdf  SMYS = 216 MPa

SH
Ratio4 := = 0.868
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop U = "PASS"
E) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P3 := 0.5S H = 93.776  MPa

Bending Mom ent-Pipe supported


( ws + wf ) Ls2 4
M := = 1.878  10  N  m
aboveground 8

M
Bending Stress S B3 := = 28.239  MPa
Z

S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 122 MPa

Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

Stress Check (Total Longitudinal)

Total Longitudinal Stress S L3 = 122 MPa

σALU := 0.75 Tdf  SMYS = 270 MPa


Maxim um Allowable Stress (Total Longitudinal)
S L3
Ratio5 := = 0.452
σALU

Total Longitudinal U := "PASS" if S L3  σALU

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal U = "PASS"

F) Von Mises equation: (Combined Stress)


2 2
Combined Stress σVon3 := S L3 - S L3 SH + S H

σVon3 = 164.9 MPa

Stress Check ( Von Mises )


σVon3 = 164.9 MPa
Combined Stress
σAER2 := 0.9  Tdf  SMYS = 324 MPa
Maxim um Allowable Stress (Com bined)
σVon3
Ratio6 := = 0.509
σAER2

CombinedVon3 := "PASS" if σVon3  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

3 SUMMARY OF RESULTS

Table-1: Summary of Results for Restrained Section


Stress Stress
Hoop Stress Total Longitudinal Stress Combined Stress
Stress Check Check
Check (Total (Combined
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudi - Von
(Von Mises)
nal) Mises)
MPa MPa MPa MPa MPa MPa

187.6 216.0 0.9 145.6 324.0 0.4 289.3 324.0 0.9 PASS PASS PASS

Table-2: Summary of Results for Un-Restrained Section


Hoop Stress Total Longitudinal Stress Combined Stress
Stress Stress Stress Check
Check Check (Total (Combined -
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudinal) Von Mises)
(Von M ises)
MPa MPa MPa MPa MPa MPa

187.6 216.0 0.9 122.0 270.0 0.5 164.9 324.0 0.5 PASS PASS PASS

Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

1 INPUT DATA

Nominal Outer Diam eter of Pipe D := 168.3mm

Nominal Pipe Wall Thickness t w := 7.11mm

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L Gr X52"

Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)

Design Factor F := 0.6

Internal Design Pressure P := 3.79MPa


Maxim um Design Temperature (Above Ground) Tmax := 93 °C

Minimum Design Tem perature (Above Ground) Tmin := -19 °C

Installation Temperature Ti := 8 °C

Ambient Tem perature Tamb := 35 °C


-5 1 (As per ASME B31.8;
Coefficient of thermal expansion α = 1.17  10
K Clause 832.2)
Modulus of Elasticity at Tamb E := 203000MPa

Longitudinal Joint Factor E1 := 1 (As per ASME B31.8;


Table 841.1.7-1)
(As per ASME B 31.8:
Tem perature Derating Factor Tdf := 1
Table 841.1.8-1)
kg
Density of Steel ρs := 7850.
3
m
kg
ρf := 1005.80
Density of Fluid 3
m
External Axial Force
R := 0N

Pipe Span Length (Assum ed) Ls := 10m


(Support spacing for Aboveground pipeline installation)

Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

2 CALCULATIONS

Wall Thickness t := tw - A = 3.91 mm


(Not including corrosion allowance)
Cross Sectional Area Ac :=  π   D 2 - (D - 2  t )2 = 2.019  10- 3 m 2
4
(Not including corrosion allowance)  

Flow Area (N ot inc luding corrosion allowanc e) Af :=  π   ( D - 2  t ) 2 = 0.02 m 2


4
 
N
Unit Weight of Pipe ws := Ac  ρs  g = 155.451 
m

N
Unit Weight of Fluid wf := Af  ρf  g = 199.51
m

Pipe Section Modulus Z :=  π   ( D ) 4 - ( D - 2  t) 4 = 8.111  10- 5 m 3


 32 D 
 

R
Axial Stress due to External Force S X := = 0  MPa
Ac

2.1 Restrained Section

2.1.1 Calculation of Stresses

P D (As per ASME B31.8,


A) Hoop Stress S H := = 81.567 MPa
2 t Clause 805.2.3)

Stress Check (Hoop)

Maxim um Allowable Stress (Hoop)


σAH := F  Tdf  SMYS = 216 MPa

SH
Ratio1 := = 0.378
σAH

Hoop R := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"
B) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P1 := 0.3S H = 24.47 MPa

Longitudinal Stress due to Therm al Expansion (


S T1 := E α Ti - Tmax )
(for Tmax)
S T1 = -201.9 MPa
(-) ve Sign Indicate Com pressive Stress
Page 2 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

Bending Stress for straight restrained pipe S B := 0MPa

S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -177.4 MPa

(-) ve Sign Indicate Com pressive Stress

Longitudinal Stress due to Therm al Expansion (


S T2 := E α Ti - Tmin )
(for Tmin)
S T2 = 64.1 MPa

Total Longitudinal Stress (for Tmin) S L2 := S X + S P1 + S B + ST2

S L2 = 88.6 MPa

Stress Check (Total Longitudinal)

Total Longitudinal Stress (


σL := max S L1 , S L2 ) = 177.4 MPa
Maxim um Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
σL
Ratio2 := = 0.548
σALR
Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

C) Von Mises equation: (Combined Stress)

Combined Stress (considering Maxim um Design Temp):


2 2
σVon1 := S L1 - S L1 SH + S H σVon1 = 229.3 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 85.3 MPa

( )
σVon := max σVon1 , σVon2 = 229.347  MPa

Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

Stress Check ( Von Mises )

Combined Stress ( )
σVon := max σVon1 , σVon2 = 229.347  MPa

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa
σVon
Ratio3 := = 0.708
σAER

CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

Notes: CombinedVon = "PASS"

1) Von Mises have been considered in analysis

2.2 Unrestrained Section

2.2.1 Calculation of Stresses

D) Hoop Stress P D
S H := = 81.567 MPa
2 t

Maxim um Allowable Stress (Hoop) σAH := F  Tdf  SMYS = 216 MPa

SH
Ratio4 := = 0.378
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop U = "PASS"
E) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P3 := 0.5S H = 40.784  MPa

Bending Mom ent-Pipe supported


( ws + wf ) Ls2 3
M := = 4.437  10  N  m
aboveground 8

M
Bending Stress S B3 := = 54.706  MPa
Z

S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 95.5 MPa

Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

Stress Check (Total Longitudinal)

Total Longitudinal Stress S L3 = 95.5 MPa

σALU := 0.75 Tdf  SMYS = 270 MPa


Maxim um Allowable Stress (Total Longitudinal)
S L3
Ratio5 := = 0.354
σALU

Total Longitudinal U := "PASS" if S L3  σALU

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal U = "PASS"

F) Von Mises equation: (Combined Stress)


2 2
Combined Stress σVon3 := S L3 - S L3 SH + S H

σVon3 = 89.3 MPa

Stress Check ( Von Mises )


σVon3 = 89.3 MPa
Combined Stress
σAER2 := 0.9  Tdf  SMYS = 324 MPa
Maxim um Allowable Stress (Com bined)
σVon3
Ratio6 := = 0.276
σAER2

CombinedVon3 := "PASS" if σVon3  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

3 SUMMARY OF RESULTS

Table-1: Summary of Results for Restrained Section


Stress Stress
Hoop Stress Total Longitudinal Stress Combined Stress
Stress Check Check
Check (Total (Combined
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudi - Von
(Von Mises)
nal) Mises)
MPa MPa MPa MPa MPa MPa

81.6 216.0 0.4 177.4 324.0 0.5 229.3 324.0 0.7 PASS PASS PASS

Table-2: Summary of Results for Un-Restrained Section


Hoop Stress Total Longitudinal Stress Combined Stress
Stress Stress Stress Check
Check Check (Total (Combined -
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudinal) Von Mises)
(Von M ises)
MPa MPa MPa MPa MPa MPa

81.6 216.0 0.4 95.5 270.0 0.4 89.3 324.0 0.3 PASS PASS PASS

Page 6 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD

1 INPUT DATA

Nominal Outer Diam eter of Pipe D := 168.3mm

Nominal Pipe Wall Thickness t w := 7.11mm

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L Gr X52"

Specified Minim um Yield Strength SMYS := 360MPa (As per API 5L, Table 6&7)

Design Factor F := 0.6

Internal Design Pressure P := 9.42MPa


Maxim um Design Temperature (Above Ground) Tmax := 93 °C

Minimum Design Tem perature (Above Ground) Tmin := -19 °C

Installation Temperature Ti := 8 °C

Ambient Tem perature Tamb := 35 °C


-5 1 (As per ASME B31.8;
Coefficient of thermal expansion α = 1.17  10
K Clause 832.2)
Modulus of Elasticity at Tamb E := 203000MPa

Longitudinal Joint Factor E1 := 1 (As per ASME B31.8;


Table 841.1.7-1)
(As per ASME B 31.8:
Tem perature Derating Factor Tdf := 1
Table 841.1.8-1)
kg
Density of Steel ρs := 7850.
3
m
kg
ρf := 1005.80
Density of Fluid 3
m
External Axial Force
R := 0N

Pipe Span Length (Assum ed) Ls := 10m


(Support spacing for Aboveground pipeline installation)

Page 1 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD

2 CALCULATIONS

Wall Thickness t := tw - A = 3.91 mm


(Not including corrosion allowance)
Cross Sectional Area Ac :=  π   D 2 - (D - 2  t )2 = 2.019  10- 3 m 2
4
(Not including corrosion allowance)  

Flow Area (N ot inc luding corrosion allowanc e) Af :=  π   ( D - 2  t ) 2 = 0.02 m 2


4
 
N
Unit Weight of Pipe ws := Ac  ρs  g = 155.451 
m

N
Unit Weight of Fluid wf := Af  ρf  g = 199.51
m

Pipe Section Modulus Z :=  π   ( D ) 4 - ( D - 2  t) 4 = 8.111  10- 5 m 3


 32 D 
 

R
Axial Stress due to External Force S X := = 0  MPa
Ac

2.1 Restrained Section

2.1.1 Calculation of Stresses

P D (As per ASME B31.8,


A) Hoop Stress S H := = 202.735  MPa
2 t Clause 805.2.3)

Stress Check (Hoop)

Maxim um Allowable Stress (Hoop)


σAH := F  Tdf  SMYS = 216 MPa

SH
Ratio1 := = 0.939
σAH

Hoop R := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"
B) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P1 := 0.3S H = 60.82 MPa

Longitudinal Stress due to Therm al Expansion (


S T1 := E α Ti - Tmax )
(for Tmax)
S T1 = -201.9 MPa
(-) ve Sign Indicate Com pressive Stress
Page 2 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD

Bending Stress for straight restrained pipe S B := 0MPa

S L1 := S P1 + S T1 + S X + S B
Total Longitudinal Stress (for Tmax)
S L1 = -141.1 MPa

(-) ve Sign Indicate Com pressive Stress

Longitudinal Stress due to Therm al Expansion (


S T2 := E α Ti - Tmin )
(for Tmin)
S T2 = 64.1 MPa

Total Longitudinal Stress (for Tmin) S L2 := S X + S P1 + S B + ST2

S L2 = 124.9 MPa

Stress Check (Total Longitudinal)

Total Longitudinal Stress (


σL := max S L1 , S L2 ) = 141.1 MPa
Maxim um Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
σL
Ratio2 := = 0.435
σALR
Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

C) Von Mises equation: (Combined Stress)

Combined Stress (considering Maxim um Design Temp):


2 2
σVon1 := S L1 - S L1 SH + S H σVon1 = 299.3 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 SH + S H σVon2 = 177.15 MPa

( )
σVon := max σVon1 , σVon2 = 299.33 MPa

Page 3 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD

Stress Check ( Von Mises )

Combined Stress ( )
σVon := max σVon1 , σVon2 = 299.33 MPa

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa
σVon
Ratio3 := = 0.924
σAER

CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

Notes: CombinedVon = "PASS"

1) Von Mises have been considered in analysis

2.2 Unrestrained Section

2.2.1 Calculation of Stresses

D) Hoop Stress P D
S H := = 202.735  MPa
2 t

Maxim um Allowable Stress (Hoop) σAH := F  Tdf  SMYS = 216 MPa

SH
Ratio4 := = 0.939
σAH
Stress Check (Hoop)
Hoop U := "PASS" if S H  σAH

"FAIL, Redesign Pipeline" otherwise

Hoop U = "PASS"
E) Longitudinal Stress

Longitudinal Stress due to Internal Pressure S P3 := 0.5S H = 101.367  MPa

Bending Mom ent-Pipe supported


( ws + wf ) Ls2 3
M := = 4.437  10  N  m
aboveground 8

M
Bending Stress S B3 := = 54.706  MPa
Z

S L3 := S P3 + S X + S B3
Total Longitudinal Stress
S L3 = 156.1 MPa

Page 4 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD

Stress Check (Total Longitudinal)

Total Longitudinal Stress S L3 = 156.1 MPa

σALU := 0.75 Tdf  SMYS = 270 MPa


Maxim um Allowable Stress (Total Longitudinal)
S L3
Ratio5 := = 0.578
σALU

Total Longitudinal U := "PASS" if S L3  σALU

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal U = "PASS"

F) Von Mises equation: (Combined Stress)


2 2
Combined Stress σVon3 := S L3 - S L3 SH + S H

σVon3 = 183.9 MPa

Stress Check ( Von Mises )


σVon3 = 183.9 MPa
Combined Stress
σAER2 := 0.9  Tdf  SMYS = 324 MPa
Maxim um Allowable Stress (Com bined)
σVon3
Ratio6 := = 0.568
σAER2

CombinedVon3 := "PASS" if σVon3  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 5 of 6
JOB No: JI-2035 COMBINED STRESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX C.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE
MANIFOLD

3 SUMMARY OF RESULTS

Table-1: Summary of Results for Restrained Section


Stress Stress
Hoop Stress Total Longitudinal Stress Combined Stress
Stress Check Check
Check (Total (Combined
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudi - Von
(Von Mises)
nal) Mises)
MPa MPa MPa MPa MPa MPa

202.7 216.0 0.9 141.1 324.0 0.4 299.3 324.0 0.9 PASS PASS PASS

Table-2: Summary of Results for Un-Restrained Section


Hoop Stress Total Longitudinal Stress Combined Stress
Stress Stress Stress Check
Check Check (Total (Combined -
Calculated
Calculated Allow able Ratio Calculated Allow able Ratio Allow able Ratio (Hoop) Longitudinal) Von Mises)
(Von M ises)
MPa MPa MPa MPa MPa MPa

202.7 216.0 0.9 156.1 270.0 0.6 183.9 324.0 0.6 PASS PASS PASS

Page 6 of 6
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

APPENDIX-D ELASTIC BEND RADIUS CALCULATION FOR DESIGN


FACTOR 0.72

APPENDIX D.1 10 “LP Gathering Header Trunkline

APPENDIX D.2 10 “HP Gathering Header Trunkline

APPENDIX D.3 6” Sour Liquid Return Pipeline

APPENDIX D.4 6” Sour Condensate Export Pipeline

APPENDIX D.5 14” Sour Gas Export Pipeline

APPENDIX D.6 20” Sour Oil Export Pipeline

APPENDIX D.7 6” Fuel Gas Import Pipeline

APPENDIX D.8 6” Flowlines from Remote Manifolds


JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.

Nominal Outer Diam eter of Pipe D := 273mm

Nominal Pipe Wall Thickness tw := 9.27mm

Corrosion Allowance A := 3.2mm

Type of Service

Material Specification and Grade Material := "API 5L X52"

Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)

Design Factor F := 0.72

Internal Design Pressure P := 94.2bar

Modulus of Elasticity at Tamb E := 203000 MPa

Maximum Design Tem perature (Above ground) Tmax := 93 °C

Minim um Design Temperature (Above ground) Tmin := -19 °C

Installation Tem perature Ti := 8 °C

Ambient Temperature Tamb := 35 °C

Longitudinal Joint Factor E1 := 1 (As per ASME B 31.8: Table 841.1.7-1)

-5 1 (As per ASME B 31.8: C lause 832.2)


Coefficient of Thermal Expansion α := 1.17 10 
K
Tem perature Derating Fact or Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

2 CALCULATIONS (CORRODED PIPE)


2.1 Calculation of Stresses
Wall Thickness t := tw - A = 6.07 mm

P D
Hoop Stress S H := = 211.834  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 63.55 MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -201.883  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -138.333  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 127.678  MPa
Elastic Bending Stress (for Tm in)

2.2 Calculation of Bending Radius

2.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 138.3 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 185.667  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 305.5 MPa

( )
S B2 := max S B1 , σVon1 = 305.472  MPa

DE
Minim um Elastic Bend Radius R1 := = 90.7 m
(
2  S B2 )

Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

2.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 127.7 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 196.322  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 184.739  MPa

( )
S B4 := max S B3 , σVon2 = 196.322  MPa

DE
Minim um Elastic Bend Radius R2 := = 141.1 m
(
2  S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 141.143 m

2.2.4. Selected Elastic Bend Radius R4 := 1225m

2.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 22.6 MPa
2  R4

2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -115.7 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -161 MPa

(
σL5 := max σL1 , σL2 = 161 MPa )
σL5
Ratio1 := = 0.497
0.90 SMYS

CODE_CHECK1 := "PASS" if σL5  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 287.7 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 323.8 MPa

( )
σe3 := max σe1 , σe2 = 323.8 MPa

σe3
Ratio2 := =1
0.90 SMYS

CODE_CHECK2 := "PASS" if σe3  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"

Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 150.3 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 105.1 MPa

( )
σL6 := max σL3 , σL4 = 150.3 MPa
σL6
Ratio3 := = 0.464
0.90 SMYS

CODE_CHECK3 := "PASS" if σL6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 188.7 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 183.5 MPa

( )
σe6 := max σe4 , σe5 = 188.745  MPa

σe6
Ratio4 := = 0.583
0.90 SMYS

CODE_CHECK4 := "PASS" if σe6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"

3 CALCULATIONS (NEW PIPE)


3.1 Calculation of Stresses
Wall Thickness t := tw = 9.27 mm

P D
Hoop Stress S H := = 138.709  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 41.613  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -201.883  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -160.271  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 105.74  MPa
Elastic Bending Stress (for Tm in)

Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

3.2 Calculation of Bending Radius


3.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 160.3 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 163.729  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 259.1 MPa

( )
S B2 := max S B1 , σVon1 = 259.148  MPa

DE
Minim um Elastic Bend Radius R1 := = 106.9 m
(
2  S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 105.7 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 218.26 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 125.515  MPa

( )
S B4 := max S B3 , σVon2 = 218.26 MPa

DE
Minim um Elastic Bend Radius R2 := = 127 m
(
2  S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 126.957 m
3.2.4. Selected Elastic Bend Radius R6 := 400m

3.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 69.3 MPa
2  R6

Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -91 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -229.5 MPa

( )
σL7 := max σL1 , σL2 = 229.5 MPa

σL7
Ratio5 := = 0.708
0.90 SMYS

CODE_CHECK5 := "PASS" if σL7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 200.4 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 322.1 MPa

( )
σe7 := max σe1 , σe2 = 322.1 MPa
σe7
Ratio6 := = 0.994
0.90 SMYS

CODE_CHECK6 := "PASS" if σe7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 175 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 36.5 MPa

( )
σL8 := max σL3 , σL4 = 175 MPa
σL8
Ratio7 := = 0.54
0.90 SMYS

CODE_CHECK7 := "PASS" if σL8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 160 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 124.5 MPa

( )
σe8 := max σe4 , σe5 = 159.981  MPa
σe8
Ratio8 := = 0.494
0.90 SMYS

CODE_CHECK8 := "PASS" if σe8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"

Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

3 SUMMARY OF RESULTS

For Corroded Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 160.95 PASS 0.4968
Stress σL5
Design Temp. is
Combined
2 Max.) 323.84 PASS 0.9995
Stress σe3
1225.00 324.00
Longitudinal
3 Restrained (When 150.30 PASS 0.4639
Stress σL6
Design Temp. is
Combined
4 Min.) 188.75 PASS 0.5825
Stress σe6

For New Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 229.54 PASS 0.7085
Stress σL7
(When Design
Combined
2 Temp. is Max.) 322.13 PASS 0.9942
Stress σe7
400.00 324.00
Longitudinal
3 Restrained 175.01 PASS 0.5402
Stress σL8
(When Design
Combined
4 Temp. is Min.) 159.98 PASS 0.4938
Stress σe8

Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.

Nominal Outer Diam eter of Pipe D := 273mm

Nominal Pipe Wall Thickness tw := 9.27mm

Corrosion Allowance A := 3.2mm

Type of Service

Material Specification and Grade Material := "API 5L X52"

Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)

Design Factor F := 0.72

Internal Design Pressure P := 94.2bar

Modulus of Elasticity at Tamb E := 203000 MPa

Maximum Design Tem perature (Under ground) Tmax := 76 °C

Minim um Design Temperature (Under ground) Tmin := -19 °C

Installation Tem perature Ti := 8 °C

Ambient Temperature Tamb := 35 °C

Longitudinal Joint Factor E1 := 1 (As per ASME B 31.8: Table 841.1.7-1)

-5 1 (As per ASME B 31.8: C lause 832.2)


Coefficient of Thermal Expansion α := 1.17 10 
K
Tem perature Derating Fact or Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

2 CALCULATIONS (CORRODED PIPE)


2.1 Calculation of Stresses
Wall Thickness t := tw - A = 6.07 mm

P D
Hoop Stress S H := = 211.834  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 63.55 MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -161.507  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -97.957  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 127.678  MPa
Elastic Bending Stress (for Tm in)

2.2 Calculation of Bending Radius

2.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 98 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 226.043  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 274.3 MPa

( )
S B2 := max S B1 , σVon1 = 274.262  MPa

DE
Minim um Elastic Bend Radius R1 := = 101 m
(
2  S B2 )

Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

2.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 127.7 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 196.322  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 184.739  MPa

( )
S B4 := max S B3 , σVon2 = 196.322  MPa

DE
Minim um Elastic Bend Radius R2 := = 141.1 m
(
2  S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 141.143 m

2.2.4. Selected Elastic Bend Radius R4 := 450m

2.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 61.6 MPa
2  R4

2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -36.4 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -159.5 MPa

(
σL5 := max σL1 , σL2 = 159.5 MPa )
σL5
Ratio1 := = 0.492
0.90 SMYS

CODE_CHECK1 := "PASS" if σL5  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 232.2 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 322.7 MPa

( )
σe3 := max σe1 , σe2 = 322.7 MPa

σe3
Ratio2 := = 0.996
0.90 SMYS

CODE_CHECK2 := "PASS" if σe3  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"

Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 189.3 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 66.1 MPa

( )
σL6 := max σL3 , σL4 = 189.3 MPa
σL6
Ratio3 := = 0.584
0.90 SMYS

CODE_CHECK3 := "PASS" if σL6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 201.5 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 187.7 MPa

( )
σe6 := max σe4 , σe5 = 201.495  MPa

σe6
Ratio4 := = 0.622
0.90 SMYS

CODE_CHECK4 := "PASS" if σe6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"

3 CALCULATIONS (NEW PIPE)


3.1 Calculation of Stresses
Wall Thickness t := tw = 9.27 mm

P D
Hoop Stress S H := = 138.709  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 41.613  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -161.507  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -119.894  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 105.74  MPa
Elastic Bending Stress (for Tm in)

Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

3.2 Calculation of Bending Radius


3.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 119.9 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 204.106  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 224.2 MPa

( )
S B2 := max S B1 , σVon1 = 224.154  MPa

DE
Minim um Elastic Bend Radius R1 := = 123.6 m
(
2  S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 105.7 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 218.26 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 125.515  MPa

( )
S B4 := max S B3 , σVon2 = 218.26 MPa

DE
Minim um Elastic Bend Radius R2 := = 127 m
(
2  S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 126.957 m
3.2.4. Selected Elastic Bend Radius R6 := 250m

3.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 110.8 MPa
2  R6

Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -9.1  MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -230.7 MPa

( )
σL7 := max σL1 , σL2 = 230.7 MPa

σL7
Ratio5 := = 0.712
0.90 SMYS

CODE_CHECK5 := "PASS" if σL7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 143.5 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 323.2 MPa

( )
σe7 := max σe1 , σe2 = 323.2 MPa
σe7
Ratio6 := = 0.998
0.90 SMYS

CODE_CHECK6 := "PASS" if σe7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 216.6 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -5.1  MPa

( )
σL8 := max σL3 , σL4 = 216.6 MPa
σL8
Ratio7 := = 0.668
0.90 SMYS

CODE_CHECK7 := "PASS" if σL8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 190 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 141.3 MPa

( )
σe8 := max σe4 , σe5 = 190.013  MPa
σe8
Ratio8 := = 0.586
0.90 SMYS

CODE_CHECK8 := "PASS" if σe8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"

Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

3 SUMMARY OF RESULTS

For Corroded Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 159.53 PASS 0.492
Stress σL5
Design Temp. is
Combined
2 Max.) 322.67 PASS 0.996
Stress σe3
450.00 324.00
Longitudinal
3 Restrained (When 189.25 PASS 0.584
Stress σL6
Design Temp. is
Combined
4 Min.) 201.50 PASS 0.622
Stress σe6

For New Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 230.73 PASS 0.712
Stress σL7
(When Design
Combined
2 Temp. is Max.) 323.24 PASS 0.998
Stress σe7
250.00 324.00
Longitudinal
3 Restrained 216.58 PASS 0.668
Stress σL8
(When Design
Combined
4 Temp. is Min.) 190.01 PASS 0.586
Stress σe8

Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.

Nominal Outer Diam eter of Pipe D := 168.3mm

Nominal Pipe Wall Thickness tw := 7.11mm

Corrosion Allowance A := 3.2mm

Type of Service

Material Specification and Grade Material := "API 5L X52"

Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)

Design Factor F := 0.72

Internal Design Pressure P := 98bar

Modulus of Elasticity at Tamb E := 203000 MPa

Maximum Design Tem perature (Under ground) Tmax := 50 °C

Minim um Design Temperature (Under ground) Tmin := -19 °C

Installation Tem perature Ti := 8 °C

Ambient Temperature Tamb := 35 °C

Longitudinal Joint Factor E1 := 1 (As per ASME B 31.8: Table 841.1.7-1)

-5 1 (As per ASME B 31.8: C lause 832.2)


Coefficient of Thermal Expansion α := 1.17 10 
K
Tem perature Derating Fact or Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

2 CALCULATIONS (CORRODED PIPE)


2.1 Calculation of Stresses
Wall Thickness t := tw - A = 3.91 mm

P D
Hoop Stress S H := = 210.913  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 63.274  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -99.754 MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -36.48 MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 127.402  MPa
Elastic Bending Stress (for Tm in)

2.2 Calculation of Bending Radius

2.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 36.5 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 287.52 MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 231.3 MPa

( )
S B2 := max S B1 , σVon1 = 287.52 MPa

DE
Minim um Elastic Bend Radius R1 := = 59.4 m
(
2  S B2 )

Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

2.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 127.4 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 196.598  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 183.97  MPa

( )
S B4 := max S B3 , σVon2 = 196.598  MPa

DE
Minim um Elastic Bend Radius R2 := = 86.9 m
(
2  S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 86.89 m

2.2.4. Selected Elastic Bend Radius R4 := 150m

2.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 113.9 MPa
2  R4

2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 77.4 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -150.4 MPa

(
σL5 := max σL1 , σL2 = 150.4 MPa )
σL5
Ratio1 := = 0.464
0.90 SMYS

CODE_CHECK1 := "PASS" if σL5  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 184.8 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 314.3 MPa

( )
σe3 := max σe1 , σe2 = 314.3 MPa

σe3
Ratio2 := = 0.97
0.90 SMYS

CODE_CHECK2 := "PASS" if σe3  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"

Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 241.3 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 13.5 MPa

( )
σL6 := max σL3 , σL4 = 241.3 MPa
σL6
Ratio3 := = 0.745
0.90 SMYS

CODE_CHECK3 := "PASS" if σL6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 227.6 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 204.5 MPa

( )
σe6 := max σe4 , σe5 = 227.624  MPa

σe6
Ratio4 := = 0.703
0.90 SMYS

CODE_CHECK4 := "PASS" if σe6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"

3 CALCULATIONS (NEW PIPE)


3.1 Calculation of Stresses
Wall Thickness t := tw = 7.11 mm

P D
Hoop Stress S H := = 115.987  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 34.796  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -99.754 MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -64.958  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 98.924  MPa
Elastic Bending Stress (for Tm in)

Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

3.2 Calculation of Bending Radius


3.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 65 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 259.042  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 158.8 MPa

( )
S B2 := max S B1 , σVon1 = 259.042  MPa

DE
Minim um Elastic Bend Radius R1 := = 65.9 m
(
2  S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 98.9 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 225.076  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 108.467  MPa

( )
S B4 := max S B3 , σVon2 = 225.076  MPa

DE
Minim um Elastic Bend Radius R2 := = 75.9 m
(
2  S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 75.896 m
3.2.4. Selected Elastic Bend Radius R6 := 100m

3.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 170.8 MPa
2  R6

Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 105.9 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -235.8 MPa

( )
σL7 := max σL1 , σL2 = 235.8 MPa

σL7
Ratio5 := = 0.728
0.90 SMYS

CODE_CHECK5 := "PASS" if σL7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 111.3 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 310.5 MPa

( )
σe7 := max σe1 , σe2 = 310.5 MPa
σe7
Ratio6 := = 0.958
0.90 SMYS

CODE_CHECK6 := "PASS" if σe7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 269.7 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -71.9 MPa

( )
σL8 := max σL3 , σL4 = 269.7 MPa
σL8
Ratio7 := = 0.833
0.90 SMYS

CODE_CHECK7 := "PASS" if σL8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 234.4 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 164.2 MPa

( )
σe8 := max σe4 , σe5 = 234.371  MPa
σe8
Ratio8 := = 0.723
0.90 SMYS

CODE_CHECK8 := "PASS" if σe8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"

Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

3 SUMMARY OF RESULTS

For Corroded Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 150.36 PASS 0.46
Stress σL5
Design Temp. is
Combined
2 Max.) 314.34 PASS 0.97
Stress σe3
150.00 324.00
Longitudinal
3 Restrained (When 241.28 PASS 0.74
Stress σL6
Design Temp. is
Combined
4 Min.) 227.62 PASS 0.70
Stress σe6

For New Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 235.78 PASS 0.73
Stress σL7
(When Design
Combined
2 Temp. is Max.) 310.47 PASS 0.96
Stress σe7
100.00 324.00
Longitudinal
3 Restrained 269.75 PASS 0.83
Stress σL8
(When Design
Combined
4 Temp. is Min.) 234.37 PASS 0.72
Stress σe8

Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.

Nominal Outer Diam eter of Pipe D := 168.3mm

Nominal Pipe Wall Thickness tw := 7.11mm

Corrosion Allowance A := 3.2mm

Type of Service

Material Specification and Grade Material := "API 5L X52"

Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)

Design Factor F := 0.72

Internal Design Pressure P := 98bar

Modulus of Elasticity at Tamb E := 203000 MPa

Maximum Design Tem perature (Under ground) Tmax := 50 °C

Minim um Design Temperature (Under ground) Tmin := -19 °C

Installation Tem perature Ti := 8 °C

Ambient Temperature Tamb := 35 °C

Longitudinal Joint Factor E1 := 1 (As per ASME B 31.8: Table 841.1.7-1)

-5 1 (As per ASME B 31.8: C lause 832.2)


Coefficient of Thermal Expansion α := 1.17 10 
K
Tem perature Derating Fact or Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

2 CALCULATIONS (CORRODED PIPE)


2.1 Calculation of Stresses
Wall Thickness t := tw - A = 3.91 mm

P D
Hoop Stress S H := = 210.913  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 63.274  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -99.754 MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -36.48 MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 127.402  MPa
Elastic Bending Stress (for Tm in)

2.2 Calculation of Bending Radius

2.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 36.5 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 287.52 MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 231.3 MPa

( )
S B2 := max S B1 , σVon1 = 287.52 MPa

DE
Minim um Elastic Bend Radius R1 := = 59.4 m
(
2  S B2 )

Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

2.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 127.4 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 196.598  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 183.97  MPa

( )
S B4 := max S B3 , σVon2 = 196.598  MPa

DE
Minim um Elastic Bend Radius R2 := = 86.9 m
(
2  S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 86.89 m

2.2.4. Selected Elastic Bend Radius R4 := 150m

2.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 113.9 MPa
2  R4

2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 77.4 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -150.4 MPa

(
σL5 := max σL1 , σL2 = 150.4 MPa )
σL5
Ratio1 := = 0.464
0.90 SMYS

CODE_CHECK1 := "PASS" if σL5  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 184.8 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 314.3 MPa

( )
σe3 := max σe1 , σe2 = 314.3 MPa

σe3
Ratio2 := = 0.97
0.90 SMYS

CODE_CHECK2 := "PASS" if σe3  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"

Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 241.3 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 13.5 MPa

( )
σL6 := max σL3 , σL4 = 241.3 MPa
σL6
Ratio3 := = 0.745
0.90 SMYS

CODE_CHECK3 := "PASS" if σL6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 227.6 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 204.5 MPa

( )
σe6 := max σe4 , σe5 = 227.624  MPa

σe6
Ratio4 := = 0.703
0.90 SMYS

CODE_CHECK4 := "PASS" if σe6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"

3 CALCULATIONS (NEW PIPE)


3.1 Calculation of Stresses
Wall Thickness t := tw = 7.11 mm

P D
Hoop Stress S H := = 115.987  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 34.796  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -99.754 MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -64.958  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 98.924  MPa
Elastic Bending Stress (for Tm in)

Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

3.2 Calculation of Bending Radius


3.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 65 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 259.042  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 158.8 MPa

( )
S B2 := max S B1 , σVon1 = 259.042  MPa

DE
Minim um Elastic Bend Radius R1 := = 65.9 m
(
2  S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 98.9 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 225.076  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 108.467  MPa

( )
S B4 := max S B3 , σVon2 = 225.076  MPa

DE
Minim um Elastic Bend Radius R2 := = 75.9 m
(
2  S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 75.896 m
3.2.4. Selected Elastic Bend Radius R6 := 100m

3.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 170.8 MPa
2  R6

Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 105.9 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -235.8 MPa

( )
σL7 := max σL1 , σL2 = 235.8 MPa

σL7
Ratio5 := = 0.728
0.90 SMYS

CODE_CHECK5 := "PASS" if σL7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 111.3 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 310.5 MPa

( )
σe7 := max σe1 , σe2 = 310.5 MPa
σe7
Ratio6 := = 0.958
0.90 SMYS

CODE_CHECK6 := "PASS" if σe7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 269.7 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -71.9 MPa

( )
σL8 := max σL3 , σL4 = 269.7 MPa
σL8
Ratio7 := = 0.833
0.90 SMYS

CODE_CHECK7 := "PASS" if σL8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 234.4 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 164.2 MPa

( )
σe8 := max σe4 , σe5 = 234.371  MPa
σe8
Ratio8 := = 0.723
0.90 SMYS

CODE_CHECK8 := "PASS" if σe8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"

Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

3 SUMMARY OF RESULTS

For Corroded Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 150.36 PASS 0.46
Stress σL5
Design Temp. is
Combined
2 Max.) 314.34 PASS 0.97
Stress σe3
150.00 324.00
Longitudinal
3 Restrained (When 241.28 PASS 0.74
Stress σL6
Design Temp. is
Combined
4 Min.) 227.62 PASS 0.70
Stress σe6

For New Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 235.78 PASS 0.73
Stress σL7
(When Design
Combined
2 Temp. is Max.) 310.47 PASS 0.96
Stress σe7
100.00 324.00
Longitudinal
3 Restrained 269.75 PASS 0.83
Stress σL8
(When Design
Combined
4 Temp. is Min.) 234.37 PASS 0.72
Stress σe8

Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.

Nominal Outer Diam eter of Pipe D := 355.6mm

Nominal Pipe Wall Thickness tw := 8.74mm

Corrosion Allowance A := 3.2mm

Type of Service

Material Specification and Grade Material := "API 5L X52"

Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)

Design Factor F := 0.72

Internal Design Pressure P := 75bar

Modulus of Elasticity at Tamb E := 203000 MPa

Maximum Design Tem perature (Under ground) Tmax := 45 °C

Minim um Design Temperature (Under ground) Tmin := -19 °C

Installation Tem perature Ti := 8 °C

Ambient Temperature Tamb := 35 °C

Longitudinal Joint Factor E1 := 1 (As per ASME B 31.8: Table 841.1.7-1)

-5 1 (As per ASME B 31.8: C lause 832.2)


Coefficient of Thermal Expansion α := 1.17 10 
K
Tem perature Derating Fact or Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

2 CALCULATIONS (CORRODED PIPE)


2.1 Calculation of Stresses
Wall Thickness t := tw - A = 5.54 mm

P D
Hoop Stress S H := = 240.704  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 72.211  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -87.879 MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -15.668  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 136.339  MPa
Elastic Bending Stress (for Tm in)

2.2 Calculation of Bending Radius

2.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 15.7 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 308.332  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 248.9 MPa

( )
S B2 := max S B1 , σVon1 = 308.332  MPa

DE
Minim um Elastic Bend Radius R1 := = 117.1 m
(
2  S B2 )

Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

2.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 136.3 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 187.661  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 209.068  MPa

( )
S B4 := max S B3 , σVon2 = 209.068  MPa

DE
Minim um Elastic Bend Radius R2 := = 172.6 m
(
2  S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 172.64 m

2.2.4. Selected Elastic Bend Radius R4 := 325m

2.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 111.1 MPa
2  R4

2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 95.4 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -126.7 MPa

(
σL5 := max σL1 , σL2 = 126.7 MPa )
σL5
Ratio1 := = 0.391
0.90 SMYS

CODE_CHECK1 := "PASS" if σL5  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 209.9 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 323.3 MPa

( )
σe3 := max σe1 , σe2 = 323.3 MPa

σe3
Ratio2 := = 0.998
0.90 SMYS

CODE_CHECK2 := "PASS" if σe3  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"

Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 247.4 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 25.3 MPa

( )
σL6 := max σL3 , σL4 = 247.4 MPa
σL6
Ratio3 := = 0.764
0.90 SMYS

CODE_CHECK3 := "PASS" if σL6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 244.1 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 229.1 MPa

( )
σe6 := max σe4 , σe5 = 244.119  MPa

σe6
Ratio4 := = 0.753
0.90 SMYS

CODE_CHECK4 := "PASS" if σe6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"

3 CALCULATIONS (NEW PIPE)


3.1 Calculation of Stresses
Wall Thickness t := tw = 8.74 mm

P D
Hoop Stress S H := = 152.574  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 45.772  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -87.879 MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -42.106  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 109.9 MPa
Elastic Bending Stress (for Tm in)

Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

3.2 Calculation of Bending Radius


3.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 42.1 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 281.894  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 177.4 MPa

( )
S B2 := max S B1 , σVon1 = 281.894  MPa

DE
Minim um Elastic Bend Radius R1 := = 128 m
(
2  S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 109.9 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 214.1 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 136.342  MPa

( )
S B4 := max S B3 , σVon2 = 214.1 MPa

DE
Minim um Elastic Bend Radius R2 := = 168.6 m
(
2  S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 168.582 m
3.2.4. Selected Elastic Bend Radius R6 := 225m

3.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 160.4 MPa
2  R6

Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 118.3 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -202.5 MPa

( )
σL7 := max σL1 , σL2 = 202.5 MPa

σL7
Ratio5 := = 0.625
0.90 SMYS

CODE_CHECK5 := "PASS" if σL7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 138.7 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 308.5 MPa

( )
σe7 := max σe1 , σe2 = 308.5 MPa
σe7
Ratio6 := = 0.952
0.90 SMYS

CODE_CHECK6 := "PASS" if σe7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 270.3 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -50.5 MPa

( )
σL8 := max σL3 , σL4 = 270.3 MPa
σL8
Ratio7 := = 0.834
0.90 SMYS

CODE_CHECK7 := "PASS" if σL8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 234.7 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 183.1 MPa

( )
σe8 := max σe4 , σe5 = 234.747  MPa
σe8
Ratio8 := = 0.725
0.90 SMYS

CODE_CHECK8 := "PASS" if σe8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"

Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

3 SUMMARY OF RESULTS

For Corroded Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 126.72 PASS 0.391
Stress σL5
Design Temp. is
Combined
2 Max.) 323.27 PASS 0.998
Stress σe3
325.00 324.00
Longitudinal
3 Restrained (When 247.40 PASS 0.764
Stress σL6
Design Temp. is
Combined
4 Min.) 244.12 PASS 0.753
Stress σe6

For New Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 202.52 PASS 0.625
Stress σL7
(When Design
Combined
2 Temp. is Max.) 308.53 PASS 0.952
Stress σe7
225.00 324.00
Longitudinal
3 Restrained 270.32 PASS 0.834
Stress σL8
(When Design
Combined
4 Temp. is Min.) 234.75 PASS 0.725
Stress σe8

Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.

Nominal Outer Diam eter of Pipe D := 508mm

Nominal Pipe Wall Thickness tw := 7.92mm

Corrosion Allowance A := 3.2mm

Type of Service

Material Specification and Grade Material := "API 5L X52"

Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)

Design Factor F := 0.72

Internal Design Pressure P := 43.43bar

Modulus of Elasticity at Tamb E := 203000 MPa

Maximum Design Tem perature (Under ground) Tmax := 65 °C

Minim um Design Temperature (Under ground) Tmin := -3 °C

Installation Tem perature Ti := 8 °C

Ambient Temperature Tamb := 35 °C

Longitudinal Joint Factor E1 := 1 (As per ASME B 31.4: Table 403.2.1-1)

-5 1 (As per ASME B 31.4: C lause 402.2.1)


Coefficient of Thermal Expansion α := 1.17 10 
K

Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE

2 CALCULATIONS (CORRODED PIPE)


2.1 Calculation of Stresses
Wall Thickness t := tw - A = 4.72 mm

P D
Hoop Stress S H := = 233.712  MPa (As per ASME B 31.4:
2t Clause 403.2.1)

Longitudinal Stress S P := 0.3S H = 70.114  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -135.381  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -65.267  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 26.126 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 96.24 MPa
Elastic Bending Stress (for Tm in)

2.2 Calculation of Bending Radius

2.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 65.3 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 258.733  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 272.3 MPa

( )
S B2 := max S B1 , σVon1 = 272.277  MPa

DE
Minim um Elastic Bend Radius R1 := = 189.4 m
(
2  S B2 )

Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE

2.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 96.2 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 227.76 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 203.448  MPa

( )
S B4 := max S B3 , σVon2 = 227.76 MPa

DE
Minim um Elastic Bend Radius R2 := = 226.4 m
(
2  S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 226.387 m

2.2.4. Selected Elastic Bend Radius R4 := 750m

2.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 68.7 MPa
2  R4

2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 3.5  MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -134 MPa

(
σL5 := max σL1 , σL2 = 134 MPa )
σL5
Ratio1 := = 0.414
0.90 SMYS

CODE_CHECK1 := "PASS" if σL5  0.90 SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 232 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 322.3 MPa

( )
σe3 := max σe1 , σe2 = 322.3 MPa

σe3
Ratio2 := = 0.995
0.90 SMYS

CODE_CHECK2 := "PASS" if σe3  0.90 SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"

Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE

2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 165 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 27.5 MPa

( )
σL6 := max σL3 , σL4 = 165 MPa
σL6
Ratio3 := = 0.509
0.90 SMYS

CODE_CHECK3 := "PASS" if σL6  0.90 SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 208 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 221.3 MPa

( )
σe6 := max σe4 , σe5 = 221.252  MPa

σe6
Ratio4 := = 0.683
0.90 SMYS

CODE_CHECK4 := "PASS" if σe6  0.90 SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"

3 CALCULATIONS (NEW PIPE)


3.1 Calculation of Stresses
Wall Thickness t := tw = 7.92 mm

P D
Hoop Stress S H := = 139.283  MPa (As per ASME B 31.4:
2t Clause 403.2.1)

Longitudinal Stress S P := 0.3S H = 41.785  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -135.381  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -93.596  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 26.126 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 67.911  MPa
Elastic Bending Stress (for Tm in)

Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE

3.2 Calculation of Bending Radius


3.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 93.6 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 230.404  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 203 MPa

( )
S B2 := max S B1 , σVon1 = 230.404  MPa

DE
Minim um Elastic Bend Radius R1 := = 223.8 m
(
2  S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 67.9 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 256.089  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 120.635  MPa

( )
S B4 := max S B3 , σVon2 = 256.089  MPa

DE
Minim um Elastic Bend Radius R2 := = 201.3 m
(
2  S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 223.789 m
3.2.4. Selected Elastic Bend Radius R6 := 400m

3.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 128.9 MPa
2  R6

Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE

3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 35.3 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -222.5 MPa

( )
σL7 := max σL1 , σL2 = 222.5 MPa

σL7
Ratio5 := = 0.687
0.90 SMYS

CODE_CHECK5 := "PASS" if σL7  0.90 SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 125.4 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 316.1 MPa

( )
σe7 := max σe1 , σe2 = 316.1 MPa
σe7
Ratio6 := = 0.976
0.90 SMYS

CODE_CHECK6 := "PASS" if σe7  0.90 SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 196.8 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -61 MPa

( )
σL8 := max σL3 , σL4 = 196.8 MPa
σL8
Ratio7 := = 0.607
0.90 SMYS

CODE_CHECK7 := "PASS" if σL8  0.90 SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 175.3 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 177.8 MPa

( )
σe8 := max σe4 , σe5 = 177.807  MPa
σe8
Ratio8 := = 0.549
0.90 SMYS

CODE_CHECK8 := "PASS" if σe8  0.90 SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"

Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE

3 SUMMARY OF RESULTS

For Corroded Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 134.02 PASS 0.41
Stress σL5
Design Temp. is
Combined
2 Max.) 322.34 PASS 0.99
Stress σe3
750.00 324.00
Longitudinal
3 Restrained (When 164.99 PASS 0.51
Stress σL6
Design Temp. is
Combined
4 Min.) 221.25 PASS 0.68
Stress σe6

For New Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 222.50 PASS 0.69
Stress σL7
(When Design
Combined
2 Temp. is Max.) 316.06 PASS 0.98
Stress σe7
400.00 324.00
Longitudinal
3 Restrained 196.82 PASS 0.61
Stress σL8
(When Design
Combined
4 Temp. is Min.) 177.81 PASS 0.55
Stress σe8

Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.

Nominal Outer Diam eter of Pipe D := 168.3mm

Nominal Pipe Wall Thickness tw := 7.11mm

Corrosion Allowance A := 3.2mm

Type of Service

Material Specification and Grade Material := "API 5L X52"

Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)

Design Factor F := 0.72

Internal Design Pressure P := 37.9bar

Modulus of Elasticity at Tamb E := 203000 MPa

Maximum Design Tem perature (Under ground) Tmax := 50 °C

Minim um Design Temperature (Under ground) Tmin := -19 °C

Installation Tem perature Ti := 8 °C

Ambient Temperature Tamb := 35 °C

Longitudinal Joint Factor E1 := 1 (As per ASME B 31.8: Table 841.1.7-1)

-5 1 (As per ASME B 31.8: C lause 832.2)


Coefficient of Thermal Expansion α := 1.17 10 
K
Tem perature Derating Fact or Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

2 CALCULATIONS (CORRODED PIPE)


2.1 Calculation of Stresses
Wall Thickness t := tw - A = 3.91 mm

P D
Hoop Stress S H := = 81.567  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 24.47 MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -99.754 MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -75.284  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 88.598  MPa
Elastic Bending Stress (for Tm in)

2.2 Calculation of Bending Radius

2.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 75.3 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 248.716  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 135.9 MPa

( )
S B2 := max S B1 , σVon1 = 248.716  MPa

DE
Minim um Elastic Bend Radius R1 := = 68.7 m
(
2  S B2 )

Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

2.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 88.6 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 235.402  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 85.3 MPa

( )
S B4 := max S B3 , σVon2 = 235.402  MPa

DE
Minim um Elastic Bend Radius R2 := = 72.6 m
(
2  S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 72.567 m

2.2.4. Selected Elastic Bend Radius R4 := 100m

2.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 170.8 MPa
2  R4

2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 95.5 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -246.1 MPa

(
σL5 := max σL1 , σL2 = 246.1 MPa )
σL5
Ratio1 := = 0.76
0.90 SMYS

CODE_CHECK1 := "PASS" if σL5  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 89.4 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 295.5 MPa

( )
σe3 := max σe1 , σe2 = 295.5 MPa

σe3
Ratio2 := = 0.912
0.90 SMYS

CODE_CHECK2 := "PASS" if σe3  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"

Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 259.4 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -82.2 MPa

( )
σL6 := max σL3 , σL4 = 259.4 MPa
σL6
Ratio3 := = 0.801
0.90 SMYS

CODE_CHECK3 := "PASS" if σL6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 229.8 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 141.9 MPa

( )
σe6 := max σe4 , σe5 = 229.767  MPa

σe6
Ratio4 := = 0.709
0.90 SMYS

CODE_CHECK4 := "PASS" if σe6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"

3 CALCULATIONS (NEW PIPE)


3.1 Calculation of Stresses
Wall Thickness t := tw = 7.11 mm

P D
Hoop Stress S H := = 44.856  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 13.457  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -99.754 MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -86.297  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 77.585  MPa
Elastic Bending Stress (for Tm in)

Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

3.2 Calculation of Bending Radius


3.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 86.3 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 237.703  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 115.5 MPa

( )
S B2 := max S B1 , σVon1 = 237.703  MPa

DE
Minim um Elastic Bend Radius R1 := = 71.9 m
(
2  S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 77.6 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 246.415  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 67.463  MPa

( )
S B4 := max S B3 , σVon2 = 246.415  MPa

DE
Minim um Elastic Bend Radius R2 := = 69.3 m
(
2  S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 71.865 m
3.2.4. Selected Elastic Bend Radius R6 := 100m

3.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 170.8 MPa
2  R6

Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = 84.5 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -257.1 MPa

( )
σL7 := max σL1 , σL2 = 257.1 MPa

σL7
Ratio5 := = 0.794
0.90 SMYS

CODE_CHECK5 := "PASS" if σL7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 73.2 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 282.2 MPa

( )
σe7 := max σe1 , σe2 = 282.2 MPa
σe7
Ratio6 := = 0.871
0.90 SMYS

CODE_CHECK6 := "PASS" if σe7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 248.4 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -93.2 MPa

( )
σL8 := max σL3 , σL4 = 248.4 MPa
σL8
Ratio7 := = 0.767
0.90 SMYS

CODE_CHECK7 := "PASS" if σL8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 229.3 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 122 MPa

( )
σe8 := max σe4 , σe5 = 229.296  MPa
σe8
Ratio8 := = 0.708
0.90 SMYS

CODE_CHECK8 := "PASS" if σe8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"

Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

3 SUMMARY OF RESULTS

For Corroded Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 246.11 PASS 0.76
Stress σL5
Design Temp. is
Combined
2 Max.) 295.46 PASS 0.91
Stress σe3
100.00 324.00
Longitudinal
3 Restrained (When 259.42 PASS 0.80
Stress σL6
Design Temp. is
Combined
4 Min.) 229.77 PASS 0.71
Stress σe6

For New Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 257.12 PASS 0.79
Stress σL7
(When Design
Combined
2 Temp. is Max.) 282.24 PASS 0.87
Stress σe7
100.00 324.00
Longitudinal
3 Restrained 248.41 PASS 0.77
Stress σL8
(When Design
Combined
4 Temp. is Min.) 229.30 PASS 0.71
Stress σe8

Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.

Nominal Outer Diam eter of Pipe D := 168.3mm

Nominal Pipe Wall Thickness tw := 7.11mm

Corrosion Allowance A := 3.2mm

Type of Service

Material Specification and Grade Material := "API 5L X52"

Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)

Design Factor F := 0.72

Internal Design Pressure P := 94.2bar

Modulus of Elasticity at Tamb E := 203000 MPa

Maximum Design Tem perature (Under ground) Tmax := 76 °C

Minim um Design Temperature (Under ground) Tmin := -19 °C

Installation Tem perature Ti := 8 °C

Ambient Temperature Tamb := 35 °C

Longitudinal Joint Factor E1 := 1 (As per ASME B 31.8: Table 841.1.7-1)

-5 1 (As per ASME B 31.8: C lause 832.2)


Coefficient of Thermal Expansion α := 1.17 10 
K
Tem perature Derating Fact or Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

2 CALCULATIONS (CORRODED PIPE)


2.1 Calculation of Stresses
Wall Thickness t := tw - A = 3.91 mm

P D
Hoop Stress S H := = 202.735  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 60.82 MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -161.507  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -100.686  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 124.948  MPa
Elastic Bending Stress (for Tm in)

2.2 Calculation of Bending Radius

2.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 100.7 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 223.314  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 267.7 MPa

( )
S B2 := max S B1 , σVon1 = 267.678  MPa

DE
Minim um Elastic Bend Radius R1 := = 63.8 m
(
2  S B2 )

Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

2.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 124.9 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 199.052  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 177.15  MPa

( )
S B4 := max S B3 , σVon2 = 199.052  MPa

DE
Minim um Elastic Bend Radius R2 := = 85.8 m
(
2  S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 85.819 m

2.2.4. Selected Elastic Bend Radius R4 := 250m

2.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 68.3 MPa
2  R4

2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -32.4 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -169 MPa

(
σL5 := max σL1 , σL2 = 169 MPa )
σL5
Ratio1 := = 0.522
0.90 SMYS

CODE_CHECK1 := "PASS" if σL5  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 220.7 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 322.4 MPa

( )
σe3 := max σe1 , σe2 = 322.4 MPa

σe3
Ratio2 := = 0.995
0.90 SMYS

CODE_CHECK2 := "PASS" if σe3  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"

Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 193.3 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 56.6 MPa

( )
σL6 := max σL3 , σL4 = 193.3 MPa
σL6
Ratio3 := = 0.597
0.90 SMYS

CODE_CHECK3 := "PASS" if σL6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 198.2 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 181.2 MPa

( )
σe6 := max σe4 , σe5 = 198.176  MPa

σe6
Ratio4 := = 0.612
0.90 SMYS

CODE_CHECK4 := "PASS" if σe6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"

3 CALCULATIONS (NEW PIPE)


3.1 Calculation of Stresses
Wall Thickness t := tw = 7.11 mm

P D
Hoop Stress S H := = 111.49  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 33.447  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -161.507  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -128.06  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 97.575  MPa
Elastic Bending Stress (for Tm in)

Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

3.2 Calculation of Bending Radius


3.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 128.1 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 195.94 MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 207.6 MPa

( )
S B2 := max S B1 , σVon1 = 207.622  MPa

DE
Minim um Elastic Bend Radius R1 := = 82.3 m
(
2  S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 97.6 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 226.425  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 105.225  MPa

( )
S B4 := max S B3 , σVon2 = 226.425  MPa

DE
Minim um Elastic Bend Radius R2 := = 75.4 m
(
2  S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 82.277 m
3.2.4. Selected Elastic Bend Radius R6 := 150m

3.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 113.9 MPa
2  R6

Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -14.2 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -241.9 MPa

( )
σL7 := max σL1 , σL2 = 241.9 MPa

σL7
Ratio5 := = 0.747
0.90 SMYS

CODE_CHECK5 := "PASS" if σL7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 119.2 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 313 MPa

( )
σe7 := max σe1 , σe2 = 313 MPa
σe7
Ratio6 := = 0.966
0.90 SMYS

CODE_CHECK6 := "PASS" if σe7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 211.5 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -16.3 MPa

( )
σL8 := max σL3 , σL4 = 211.5 MPa
σL8
Ratio7 := = 0.653
0.90 SMYS

CODE_CHECK7 := "PASS" if σL8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 183.2 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 120.5 MPa

( )
σe8 := max σe4 , σe5 = 183.218  MPa
σe8
Ratio8 := = 0.565
0.90 SMYS

CODE_CHECK8 := "PASS" if σe8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"

Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.72
Doc No.: APPENDIX D.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

3 SUMMARY OF RESULTS

For Corroded Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 169.02 PASS 0.522
Stress σL5
Design Temp. is
Combined
2 Max.) 322.39 PASS 0.995
Stress σe3
250.00 324.00
Longitudinal
3 Restrained (When 193.28 PASS 0.597
Stress σL6
Design Temp. is
Combined
4 Min.) 198.18 PASS 0.612
Stress σe6

For New Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 241.94 PASS 0.747
Stress σL7
(When Design
Combined
2 Temp. is Max.) 312.95 PASS 0.966
Stress σe7
150.00 324.00
Longitudinal
3 Restrained 211.46 PASS 0.653
Stress σL8
(When Design
Combined
4 Temp. is Min.) 183.22 PASS 0.565
Stress σe8

Page 7 of 7
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

APPENDIX-E ELASTIC BEND RADIUS CALCULATION FOR DESIGN


FACTOR 0.6

APPENDIX E.1 10 “LP Gathering Header Trunkline

APPENDIX E.2 10 “HP Gathering Header Trunkline

APPENDIX E.3 6” Sour Liquid Return Pipeline

APPENDIX E.4 6” Sour Condensate Export Pipeline

APPENDIX E.5 14” Sour Gas Export Pipeline

APPENDIX E.6 6” Fuel Gas Import Pipeline

APPENDIX E.7 6” Flowlines from Remote Manifolds


JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.

Nominal Outer Diam eter of Pipe D := 273mm

Nominal Pipe Wall Thickness tw := 11.13mm

Corrosion Allowance A := 3.2mm

Type of Service

Material Specification and Grade Material := "API 5L X52"

Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)

Design Factor F := 0.6

Internal Design Pressure P := 94.2bar

Modulus of Elasticity at Tamb E := 203000 MPa

Maximum Design Tem perature (Above ground) Tmax := 93 °C

Minim um Design Temperature (Above ground) Tmin := -19 °C

Installation Tem perature Ti := 8 °C

Ambient Temperature Tamb := 35 °C

Longitudinal Joint Factor E1 := 1 (As per ASME B 31.8: Table 841.1.7-1)

-5 1 (As per ASME B 31.8: C lause 832.2)


Coefficient of Thermal Expansion α := 1.17 10 
K
Tem perature Derating Fact or Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

2 CALCULATIONS (CORRODED PIPE)


2.1 Calculation of Stresses
Wall Thickness t := tw - A = 7.93 mm

P D
Hoop Stress S H := = 162.148  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 48.644  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -201.883  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -153.239  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 112.772  MPa
Elastic Bending Stress (for Tm in)

2.2 Calculation of Bending Radius

2.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 153.2 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 170.761  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 273.2 MPa

( )
S B2 := max S B1 , σVon1 = 273.169  MPa

DE
Minim um Elastic Bend Radius R1 := = 101.4 m
(
2  S B2 )

Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

2.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 112.8 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 211.228  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 143.957  MPa

( )
S B4 := max S B3 , σVon2 = 211.228  MPa

DE
Minim um Elastic Bend Radius R2 := = 131.2 m
(
2  S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 131.183 m

2.2.4. Selected Elastic Bend Radius R4 := 500m

2.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 55.4 MPa
2  R4

2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -97.8 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -208.7 MPa

(
σL5 := max σL1 , σL2 = 208.7 MPa )
σL5
Ratio1 := = 0.644
0.90 SMYS

CODE_CHECK1 := "PASS" if σL5  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 227.4 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 322 MPa

(
σe3 := max σe1 , σe2 = 322 MPa)
σe3
Ratio2 := = 0.994
0.90 SMYS

CODE_CHECK2 := "PASS" if σe3  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"

Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 168.2 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 57.4 MPa

( )
σL6 := max σL3 , σL4 = 168.2 MPa
σL6
Ratio3 := = 0.519
0.90 SMYS

CODE_CHECK3 := "PASS" if σL6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 165.3 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 142.4 MPa

( )
σe6 := max σe4 , σe5 = 165.252  MPa

σe6
Ratio4 := = 0.51
0.90 SMYS

CODE_CHECK4 := "PASS" if σe6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"

3 CALCULATIONS (NEW PIPE)


3.1 Calculation of Stresses
Wall Thickness t := tw = 11.13 mm

P D
Hoop Stress S H := = 115.528  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 34.658  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -201.883  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -167.225  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 98.786  MPa
Elastic Bending Stress (for Tm in)

Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

3.2 Calculation of Bending Radius


3.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 167.2 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 156.775  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 246.2 MPa

( )
S B2 := max S B1 , σVon1 = 246.232  MPa

DE
Minim um Elastic Bend Radius R1 := = 112.5 m
(
2  S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 98.8 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 225.214  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 108.134  MPa

( )
S B4 := max S B3 , σVon2 = 225.214  MPa

DE
Minim um Elastic Bend Radius R2 := = 123 m
(
2  S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 123.036 m
3.2.4. Selected Elastic Bend Radius R6 := 350m

3.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 79.2 MPa
2  R6

Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -88.1 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -246.4 MPa

( )
σL7 := max σL1 , σL2 = 246.4 MPa

σL7
Ratio5 := = 0.76
0.90 SMYS

CODE_CHECK5 := "PASS" if σL7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 176.8 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 320.2 MPa

( )
σe7 := max σe1 , σe2 = 320.2 MPa
σe7
Ratio6 := = 0.988
0.90 SMYS

CODE_CHECK6 := "PASS" if σe7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 178 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 19.6 MPa

( )
σL8 := max σL3 , σL4 = 178 MPa
σL8
Ratio7 := = 0.549
0.90 SMYS

CODE_CHECK7 := "PASS" if σL8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 156.4 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 107.1 MPa

( )
σe8 := max σe4 , σe5 = 156.385  MPa
σe8
Ratio8 := = 0.483
0.90 SMYS

CODE_CHECK8 := "PASS" if σe8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"

Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

3 SUMMARY OF RESULTS

For Corroded Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 208.66 PASS 0.64
Stress σL5
Design Temp. is
Combined
2 Max.) 321.97 PASS 0.99
Stress σe3
500.00 324.00
Longitudinal
3 Restrained (When 168.19 PASS 0.52
Stress σL6
Design Temp. is
Combined
4 Min.) 165.25 PASS 0.51
Stress σe6

For New Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 246.40 PASS 0.76
Stress σL7
(When Design
Combined
2 Temp. is Max.) 320.19 PASS 0.99
Stress σe7
350.00 324.00
Longitudinal
3 Restrained 177.96 PASS 0.55
Stress σL8
(When Design
Combined
4 Temp. is Min.) 156.38 PASS 0.48
Stress σe8

Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.

Nominal Outer Diam eter of Pipe D := 273mm

Nominal Pipe Wall Thickness tw := 11.13mm

Corrosion Allowance A := 3.2mm

Type of Service

Material Specification and Grade Material := "API 5L X52"

Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)

Design Factor F := 0.6

Internal Design Pressure P := 94.2bar

Modulus of Elasticity at Tamb E := 203000 MPa

Maximum Design Tem perature (Above ground) Tmax := 93 °C

Minim um Design Temperature (Above ground) Tmin := -19 °C

Installation Tem perature Ti := 8 °C

Ambient Temperature Tamb := 35 °C

Longitudinal Joint Factor E1 := 1 (As per ASME B 31.8: Table 841.1.7-1)

-5 1 (As per ASME B 31.8: C lause 832.2)


Coefficient of Thermal Expansion α := 1.17 10 
K
Tem perature Derating Fact or Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

2 CALCULATIONS (CORRODED PIPE)


2.1 Calculation of Stresses
Wall Thickness t := tw - A = 7.93 mm

P D
Hoop Stress S H := = 162.148  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 48.644  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -201.883  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -153.239  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 112.772  MPa
Elastic Bending Stress (for Tm in)

2.2 Calculation of Bending Radius

2.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 153.2 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 170.761  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 273.2 MPa

( )
S B2 := max S B1 , σVon1 = 273.169  MPa

DE
Minim um Elastic Bend Radius R1 := = 101.4 m
(
2  S B2 )

Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

2.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 112.8 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 211.228  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 143.957  MPa

( )
S B4 := max S B3 , σVon2 = 211.228  MPa

DE
Minim um Elastic Bend Radius R2 := = 131.2 m
(
2  S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 131.183 m

2.2.4. Selected Elastic Bend Radius R4 := 500m

2.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 55.4 MPa
2  R4

2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -97.8 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -208.7 MPa

(
σL5 := max σL1 , σL2 = 208.7 MPa )
σL5
Ratio1 := = 0.644
0.90 SMYS

CODE_CHECK1 := "PASS" if σL5  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 227.4 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 322 MPa

(
σe3 := max σe1 , σe2 = 322 MPa)
σe3
Ratio2 := = 0.994
0.90 SMYS

CODE_CHECK2 := "PASS" if σe3  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"

Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 168.2 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 57.4 MPa

( )
σL6 := max σL3 , σL4 = 168.2 MPa
σL6
Ratio3 := = 0.519
0.90 SMYS

CODE_CHECK3 := "PASS" if σL6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 165.3 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 142.4 MPa

( )
σe6 := max σe4 , σe5 = 165.252  MPa

σe6
Ratio4 := = 0.51
0.90 SMYS

CODE_CHECK4 := "PASS" if σe6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"

3 CALCULATIONS (NEW PIPE)


3.1 Calculation of Stresses
Wall Thickness t := tw = 11.13 mm

P D
Hoop Stress S H := = 115.528  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 34.658  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -201.883  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -167.225  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 98.786  MPa
Elastic Bending Stress (for Tm in)

Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

3.2 Calculation of Bending Radius


3.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 167.2 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 156.775  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 246.2 MPa

( )
S B2 := max S B1 , σVon1 = 246.232  MPa

DE
Minim um Elastic Bend Radius R1 := = 112.5 m
(
2  S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 98.8 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 225.214  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 108.134  MPa

( )
S B4 := max S B3 , σVon2 = 225.214  MPa

DE
Minim um Elastic Bend Radius R2 := = 123 m
(
2  S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 123.036 m
3.2.4. Selected Elastic Bend Radius R6 := 350m

3.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 79.2 MPa
2  R6

Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -88.1 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -246.4 MPa

( )
σL7 := max σL1 , σL2 = 246.4 MPa

σL7
Ratio5 := = 0.76
0.90 SMYS

CODE_CHECK5 := "PASS" if σL7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 176.8 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 320.2 MPa

( )
σe7 := max σe1 , σe2 = 320.2 MPa
σe7
Ratio6 := = 0.988
0.90 SMYS

CODE_CHECK6 := "PASS" if σe7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 178 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 19.6 MPa

( )
σL8 := max σL3 , σL4 = 178 MPa
σL8
Ratio7 := = 0.549
0.90 SMYS

CODE_CHECK7 := "PASS" if σL8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 156.4 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 107.1 MPa

( )
σe8 := max σe4 , σe5 = 156.385  MPa
σe8
Ratio8 := = 0.483
0.90 SMYS

CODE_CHECK8 := "PASS" if σe8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"

Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

3 SUMMARY OF RESULTS

For Corroded Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 208.66 PASS 0.64
Stress σL5
Design Temp. is
Combined
2 Max.) 321.97 PASS 0.99
Stress σe3
500.00 324.00
Longitudinal
3 Restrained (When 168.19 PASS 0.52
Stress σL6
Design Temp. is
Combined
4 Min.) 165.25 PASS 0.51
Stress σe6

For New Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 246.40 PASS 0.76
Stress σL7
(When Design
Combined
2 Temp. is Max.) 320.19 PASS 0.99
Stress σe7
350.00 324.00
Longitudinal
3 Restrained 177.96 PASS 0.55
Stress σL8
(When Design
Combined
4 Temp. is Min.) 156.38 PASS 0.48
Stress σe8

Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.

Nominal Outer Diam eter of Pipe D := 168.3mm

Nominal Pipe Wall Thickness tw := 7.11mm

Corrosion Allowance A := 3.2mm

Type of Service

Material Specification and Grade Material := "API 5L X52"

Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)

Design Factor F := 0.6

Internal Design Pressure P := 98bar

Modulus of Elasticity at Tamb E := 203000 MPa

Maximum Design Tem perature (Above ground) Tmax := 93 °C

Minim um Design Temperature (Above ground) Tmin := -19 °C

Installation Tem perature Ti := 8 °C

Ambient Temperature Tamb := 35 °C

Longitudinal Joint Factor E1 := 1 (As per ASME B 31.8: Table 841.1.7-1)

-5 1 (As per ASME B 31.8: C lause 832.2)


Coefficient of Thermal Expansion α := 1.17 10 
K
Tem perature Derating Fact or Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

2 CALCULATIONS (CORRODED PIPE)


2.1 Calculation of Stresses
Wall Thickness t := tw - A = 3.91 mm

P D
Hoop Stress S H := = 210.913  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 63.274  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -201.883  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -138.61  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 127.402  MPa
Elastic Bending Stress (for Tm in)

2.2 Calculation of Bending Radius

2.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 138.6 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 185.39 MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 304.8 MPa

( )
S B2 := max S B1 , σVon1 = 304.847  MPa

DE
Minim um Elastic Bend Radius R1 := = 56 m
(
2  S B2 )

Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

2.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 127.4 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 196.598  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 183.97  MPa

( )
S B4 := max S B3 , σVon2 = 196.598  MPa

DE
Minim um Elastic Bend Radius R2 := = 86.9 m
(
2  S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 86.89 m

2.2.4. Selected Elastic Bend Radius R4 := 750m

2.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 22.8 MPa
2  R4

2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -115.8 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -161.4 MPa

(
σL5 := max σL1 , σL2 = 161.4 MPa )
σL5
Ratio1 := = 0.498
0.90 SMYS

CODE_CHECK1 := "PASS" if σL5  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 286.9 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 323.4 MPa

( )
σe3 := max σe1 , σe2 = 323.4 MPa

σe3
Ratio2 := = 0.998
0.90 SMYS

CODE_CHECK2 := "PASS" if σe3  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"

Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 150.2 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 104.6 MPa

( )
σL6 := max σL3 , σL4 = 150.2 MPa
σL6
Ratio3 := = 0.464
0.90 SMYS

CODE_CHECK3 := "PASS" if σL6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 188.1 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 182.7 MPa

( )
σe6 := max σe4 , σe5 = 188.051  MPa

σe6
Ratio4 := = 0.58
0.90 SMYS

CODE_CHECK4 := "PASS" if σe6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"

3 CALCULATIONS (NEW PIPE)


3.1 Calculation of Stresses
Wall Thickness t := tw = 7.11 mm

P D
Hoop Stress S H := = 115.987  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 34.796  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -201.883  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -167.087  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 98.924  MPa
Elastic Bending Stress (for Tm in)

Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

3.2 Calculation of Bending Radius


3.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 167.1 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 156.913  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 246.5 MPa

( )
S B2 := max S B1 , σVon1 = 246.478  MPa

DE
Minim um Elastic Bend Radius R1 := = 69.3 m
(
2  S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 98.9 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 225.076  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 108.467  MPa

( )
S B4 := max S B3 , σVon2 = 225.076  MPa

DE
Minim um Elastic Bend Radius R2 := = 75.9 m
(
2  S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 75.896 m
3.2.4. Selected Elastic Bend Radius R6 := 225m

3.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 75.9 MPa
2  R6

Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -91.2 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -243 MPa

( )
σL7 := max σL1 , σL2 = 243 MPa

σL7
Ratio5 := = 0.75
0.90 SMYS

CODE_CHECK5 := "PASS" if σL7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 179.8 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 317.3 MPa

( )
σe7 := max σe1 , σe2 = 317.3 MPa
σe7
Ratio6 := = 0.979
0.90 SMYS

CODE_CHECK6 := "PASS" if σe7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 174.8 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 23 MPa

( )
σL8 := max σL3 , σL4 = 174.8 MPa
σL8
Ratio7 := = 0.54
0.90 SMYS

CODE_CHECK7 := "PASS" if σL8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 154.1 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 106.4 MPa

( )
σe8 := max σe4 , σe5 = 154.092  MPa
σe8
Ratio8 := = 0.476
0.90 SMYS

CODE_CHECK8 := "PASS" if σe8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"

Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

3 SUMMARY OF RESULTS

For Corroded Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 161.39 PASS 0.498
Stress σL5
Design Temp. is
Combined
2 Max.) 323.37 PASS 0.998
Stress σe3
750.00 324.00
Longitudinal
3 Restrained (When 150.18 PASS 0.464
Stress σL6
Design Temp. is
Combined
4 Min.) 188.05 PASS 0.580
Stress σe6

For New Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 243.01 PASS 0.750
Stress σL7
(When Design
Combined
2 Temp. is Max.) 317.32 PASS 0.979
Stress σe7
225.00 324.00
Longitudinal
3 Restrained 174.85 PASS 0.540
Stress σL8
(When Design
Combined
4 Temp. is Min.) 154.09 PASS 0.476
Stress σe8

Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.

Nominal Outer Diam eter of Pipe D := 168.3mm

Nominal Pipe Wall Thickness tw := 7.11mm

Corrosion Allowance A := 3.2mm

Type of Service

Material Specification and Grade Material := "API 5L X52"

Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)

Design Factor F := 0.6

Internal Design Pressure P := 98bar

Modulus of Elasticity at Tamb E := 203000 MPa

Maximum Design Tem perature (Above ground) Tmax := 93 °C

Minim um Design Temperature (Above ground) Tmin := -19 °C

Installation Tem perature Ti := 8 °C

Ambient Temperature Tamb := 35 °C

Longitudinal Joint Factor E1 := 1 (As per ASME B 31.8: Table 841.1.7-1)

-5 1 (As per ASME B 31.8: C lause 832.2)


Coefficient of Thermal Expansion α := 1.17 10 
K
Tem perature Derating Fact or Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

2 CALCULATIONS (CORRODED PIPE)


2.1 Calculation of Stresses
Wall Thickness t := tw - A = 3.91 mm

P D
Hoop Stress S H := = 210.913  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 63.274  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -201.883  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -138.61  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 127.402  MPa
Elastic Bending Stress (for Tm in)

2.2 Calculation of Bending Radius

2.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 138.6 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 185.39 MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 304.8 MPa

( )
S B2 := max S B1 , σVon1 = 304.847  MPa

DE
Minim um Elastic Bend Radius R1 := = 56 m
(
2  S B2 )

Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

2.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 127.4 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 196.598  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 183.97  MPa

( )
S B4 := max S B3 , σVon2 = 196.598  MPa

DE
Minim um Elastic Bend Radius R2 := = 86.9 m
(
2  S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 86.89 m

2.2.4. Selected Elastic Bend Radius R4 := 750m

2.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 22.8 MPa
2  R4

2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -115.8 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -161.4 MPa

(
σL5 := max σL1 , σL2 = 161.4 MPa )
σL5
Ratio1 := = 0.498
0.90 SMYS

CODE_CHECK1 := "PASS" if σL5  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 286.9 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 323.4 MPa

( )
σe3 := max σe1 , σe2 = 323.4 MPa

σe3
Ratio2 := = 0.998
0.90 SMYS

CODE_CHECK2 := "PASS" if σe3  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"

Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 150.2 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 104.6 MPa

( )
σL6 := max σL3 , σL4 = 150.2 MPa
σL6
Ratio3 := = 0.464
0.90 SMYS

CODE_CHECK3 := "PASS" if σL6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 188.1 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 182.7 MPa

( )
σe6 := max σe4 , σe5 = 188.051  MPa

σe6
Ratio4 := = 0.58
0.90 SMYS

CODE_CHECK4 := "PASS" if σe6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"

3 CALCULATIONS (NEW PIPE)


3.1 Calculation of Stresses
Wall Thickness t := tw = 7.11 mm

P D
Hoop Stress S H := = 115.987  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 34.796  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -201.883  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -167.087  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 98.924  MPa
Elastic Bending Stress (for Tm in)

Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

3.2 Calculation of Bending Radius


3.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 167.1 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 156.913  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 246.5 MPa

( )
S B2 := max S B1 , σVon1 = 246.478  MPa

DE
Minim um Elastic Bend Radius R1 := = 69.3 m
(
2  S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 98.9 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 225.076  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 108.467  MPa

( )
S B4 := max S B3 , σVon2 = 225.076  MPa

DE
Minim um Elastic Bend Radius R2 := = 75.9 m
(
2  S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 75.896 m
3.2.4. Selected Elastic Bend Radius R6 := 225m

3.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 75.9 MPa
2  R6

Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -91.2 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -243 MPa

( )
σL7 := max σL1 , σL2 = 243 MPa

σL7
Ratio5 := = 0.75
0.90 SMYS

CODE_CHECK5 := "PASS" if σL7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 179.8 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 317.3 MPa

( )
σe7 := max σe1 , σe2 = 317.3 MPa
σe7
Ratio6 := = 0.979
0.90 SMYS

CODE_CHECK6 := "PASS" if σe7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 174.8 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 23 MPa

( )
σL8 := max σL3 , σL4 = 174.8 MPa
σL8
Ratio7 := = 0.54
0.90 SMYS

CODE_CHECK7 := "PASS" if σL8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 154.1 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 106.4 MPa

( )
σe8 := max σe4 , σe5 = 154.092  MPa
σe8
Ratio8 := = 0.476
0.90 SMYS

CODE_CHECK8 := "PASS" if σe8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"

Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

3 SUMMARY OF RESULTS

For Corroded Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 161.39 PASS 0.498
Stress σL5
Design Temp. is
Combined
2 Max.) 323.37 PASS 0.998
Stress σe3
750.00 324.00
Longitudinal
3 Restrained (When 150.18 PASS 0.464
Stress σL6
Design Temp. is
Combined
4 Min.) 188.05 PASS 0.580
Stress σe6

For New Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 243.01 PASS 0.750
Stress σL7
(When Design
Combined
2 Temp. is Max.) 317.32 PASS 0.979
Stress σe7
225.00 324.00
Longitudinal
3 Restrained 174.85 PASS 0.540
Stress σL8
(When Design
Combined
4 Temp. is Min.) 154.09 PASS 0.476
Stress σe8

Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.

Nominal Outer Diam eter of Pipe D := 355.6mm

Nominal Pipe Wall Thickness tw := 10.31mm

Corrosion Allowance A := 3.2mm

Type of Service

Material Specification and Grade Material := "API 5L X52"

Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)

Design Factor F := 0.6

Internal Design Pressure P := 75bar

Modulus of Elasticity at Tamb E := 203000 MPa

Maximum Design Tem perature (Above ground) Tmax := 93 °C

Minim um Design Temperature (Above ground) Tmin := -19 °C

Installation Tem perature Ti := 8 °C

Ambient Temperature Tamb := 35 °C

Longitudinal Joint Factor E1 := 1 (As per ASME B 31.8: Table 841.1.7-1)

-5 1 (As per ASME B 31.8: C lause 832.2)


Coefficient of Thermal Expansion α := 1.17 10 
K
Tem perature Derating Fact or Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

2 CALCULATIONS (CORRODED PIPE)


2.1 Calculation of Stresses
Wall Thickness t := tw - A = 7.11 mm

P D
Hoop Stress S H := = 187.553  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 56.266  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -201.883  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -145.618  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 120.394  MPa
Elastic Bending Stress (for Tm in)

2.2 Calculation of Bending Radius

2.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 145.6 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 178.382  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 289.3 MPa

( )
S B2 := max S B1 , σVon1 = 289.295  MPa

DE
Minim um Elastic Bend Radius R1 := = 124.8 m
(
2  S B2 )

Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

2.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 120.4 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 203.606  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 164.592  MPa

( )
S B4 := max S B3 , σVon2 = 203.606  MPa

DE
Minim um Elastic Bend Radius R2 := = 177.3 m
(
2  S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 177.27 m

2.2.4. Selected Elastic Bend Radius R4 := 900m

2.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 40.1 MPa
2  R4

2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -105.5 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -185.7 MPa

(
σL5 := max σL1 , σL2 = 185.7 MPa )
σL5
Ratio1 := = 0.573
0.90 SMYS

CODE_CHECK1 := "PASS" if σL5  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 257.1 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 323.3 MPa

( )
σe3 := max σe1 , σe2 = 323.3 MPa

σe3
Ratio2 := = 0.998
0.90 SMYS

CODE_CHECK2 := "PASS" if σe3  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"

Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 160.5 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 80.3 MPa

( )
σL6 := max σL3 , σL4 = 160.5 MPa
σL6
Ratio3 := = 0.495
0.90 SMYS

CODE_CHECK3 := "PASS" if σL6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 175.6 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 163 MPa

( )
σe6 := max σe4 , σe5 = 175.595  MPa

σe6
Ratio4 := = 0.542
0.90 SMYS

CODE_CHECK4 := "PASS" if σe6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"

3 CALCULATIONS (NEW PIPE)


3.1 Calculation of Stresses
Wall Thickness t := tw = 10.31 mm

P D
Hoop Stress S H := = 129.34  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 38.802  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -201.883  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -163.081  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 102.93  MPa
Elastic Bending Stress (for Tm in)

Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

3.2 Calculation of Bending Radius


3.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 163.1 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 160.919  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 253.8 MPa

( )
S B2 := max S B1 , σVon1 = 253.806  MPa

DE
Minim um Elastic Bend Radius R1 := = 142.2 m
(
2  S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 102.9 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 221.07 MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 118.366  MPa

( )
S B4 := max S B3 , σVon2 = 221.07 MPa

DE
Minim um Elastic Bend Radius R2 := = 163.3 m
(
2  S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 163.267 m
3.2.4. Selected Elastic Bend Radius R6 := 475m

3.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 76 MPa
2  R6

Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -87.1 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -239.1 MPa

( )
σL7 := max σL1 , σL2 = 239.1 MPa

σL7
Ratio5 := = 0.738
0.90 SMYS

CODE_CHECK5 := "PASS" if σL7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 188.6 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 323.7 MPa

( )
σe7 := max σe1 , σe2 = 323.7 MPa
σe7
Ratio6 := = 0.999
0.90 SMYS

CODE_CHECK6 := "PASS" if σe7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 178.9 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 26.9 MPa

( )
σL8 := max σL3 , σL4 = 178.9 MPa
σL8
Ratio7 := = 0.552
0.90 SMYS

CODE_CHECK7 := "PASS" if σL8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 160 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 118.2 MPa

( )
σe8 := max σe4 , σe5 = 159.996  MPa
σe8
Ratio8 := = 0.494
0.90 SMYS

CODE_CHECK8 := "PASS" if σe8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"

Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

3 SUMMARY OF RESULTS

For Corroded Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 185.72 PASS 0.573
Stress σL5
Design Temp. is
Combined
2 Max.) 323.27 PASS 0.998
Stress σe3
900.00 324.00
Longitudinal
3 Restrained (When 160.50 PASS 0.495
Stress σL6
Design Temp. is
Combined
4 Min.) 175.60 PASS 0.542
Stress σe6

For New Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 239.07 PASS 0.738
Stress σL7
(When Design
Combined
2 Temp. is Max.) 323.73 PASS 0.999
Stress σe7
475.00 324.00
Longitudinal
3 Restrained 178.92 PASS 0.552
Stress σL8
(When Design
Combined
4 Temp. is Min.) 160.00 PASS 0.494
Stress σe8

Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.

Nominal Outer Diam eter of Pipe D := 168.3mm

Nominal Pipe Wall Thickness tw := 7.11mm

Corrosion Allowance A := 3.2mm

Type of Service

Material Specification and Grade Material := "API 5L X52"

Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)

Design Factor F := 0.6

Internal Design Pressure P := 37.9bar

Modulus of Elasticity at Tamb E := 203000 MPa

Maximum Design Tem perature (Above ground) Tmax := 93 °C

Minim um Design Temperature (Above ground) Tmin := -19 °C

Installation Tem perature Ti := 8 °C

Ambient Temperature Tamb := 35 °C

Longitudinal Joint Factor E1 := 1 (As per ASME B 31.8: Table 841.1.7-1)

-5 1 (As per ASME B 31.8: C lause 832.2)


Coefficient of Thermal Expansion α := 1.17 10 
K
Tem perature Derating Fact or Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

2 CALCULATIONS (CORRODED PIPE)


2.1 Calculation of Stresses
Wall Thickness t := tw - A = 3.91 mm

P D
Hoop Stress S H := = 81.567  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 24.47 MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -201.883  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -177.413  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 88.598  MPa
Elastic Bending Stress (for Tm in)

2.2 Calculation of Bending Radius

2.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 177.4 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 146.587  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 229.3 MPa

( )
S B2 := max S B1 , σVon1 = 229.347  MPa

DE
Minim um Elastic Bend Radius R1 := = 74.5 m
(
2  S B2 )

Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

2.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 88.6 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 235.402  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 85.3 MPa

( )
S B4 := max S B3 , σVon2 = 235.402  MPa

DE
Minim um Elastic Bend Radius R2 := = 72.6 m
(
2  S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 74.483 m

2.2.4. Selected Elastic Bend Radius R4 := 175m

2.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 97.6 MPa
2  R4

2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -79.8 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -275 MPa

(
σL5 := max σL1 , σL2 = 275 MPa )
σL5
Ratio1 := = 0.849
0.90 SMYS

CODE_CHECK1 := "PASS" if σL5  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 139.8 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 323.6 MPa

( )
σe3 := max σe1 , σe2 = 323.6 MPa

σe3
Ratio2 := = 0.999
0.90 SMYS

CODE_CHECK2 := "PASS" if σe3  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"

Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 186.2 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -9  MPa

( )
σL6 := max σL3 , σL4 = 186.2 MPa
σL6
Ratio3 := = 0.575
0.90 SMYS

CODE_CHECK3 := "PASS" if σL6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 161.7 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 86.4 MPa

( )
σe6 := max σe4 , σe5 = 161.677  MPa

σe6
Ratio4 := = 0.499
0.90 SMYS

CODE_CHECK4 := "PASS" if σe6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"

3 CALCULATIONS (NEW PIPE)


3.1 Calculation of Stresses
Wall Thickness t := tw = 7.11 mm

P D
Hoop Stress S H := = 44.856  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 13.457  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -201.883  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -188.427  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 77.585  MPa
Elastic Bending Stress (for Tm in)

Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

3.2 Calculation of Bending Radius


3.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 188.4 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 135.573  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 214.4 MPa

( )
S B2 := max S B1 , σVon1 = 214.403  MPa

DE
Minim um Elastic Bend Radius R1 := = 79.7 m
(
2  S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 77.6 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 246.415  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 67.463  MPa

( )
S B4 := max S B3 , σVon2 = 246.415  MPa

DE
Minim um Elastic Bend Radius R2 := = 69.3 m
(
2  S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 79.674 m
3.2.4. Selected Elastic Bend Radius R6 := 175m

3.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 97.6 MPa
2  R6

Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -90.8 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -286 MPa

( )
σL7 := max σL1 , σL2 = 286 MPa

σL7
Ratio5 := = 0.883
0.90 SMYS

CODE_CHECK5 := "PASS" if σL7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 119.7 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 310.9 MPa

( )
σe7 := max σe1 , σe2 = 310.9 MPa
σe7
Ratio6 := = 0.96
0.90 SMYS

CODE_CHECK6 := "PASS" if σe7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 175.2 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = -20 MPa

( )
σL8 := max σL3 , σL4 = 175.2 MPa
σL8
Ratio7 := = 0.541
0.90 SMYS

CODE_CHECK7 := "PASS" if σL8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 157.6 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 57.5 MPa

( )
σe8 := max σe4 , σe5 = 157.632  MPa
σe8
Ratio8 := = 0.487
0.90 SMYS

CODE_CHECK8 := "PASS" if σe8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"

Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

3 SUMMARY OF RESULTS

For Corroded Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 275.03 PASS 0.849
Stress σL5
Design Temp. is
Combined
2 Max.) 323.61 PASS 0.999
Stress σe3
175.00 324.00
Longitudinal
3 Restrained (When 186.21 PASS 0.575
Stress σL6
Design Temp. is
Combined
4 Min.) 161.68 PASS 0.499
Stress σe6

For New Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 286.04 PASS 0.883
Stress σL7
(When Design
Combined
2 Temp. is Max.) 310.91 PASS 0.960
Stress σe7
175.00 324.00
Longitudinal
3 Restrained 175.20 PASS 0.541
Stress σL8
(When Design
Combined
4 Temp. is Min.) 157.63 PASS 0.487
Stress σe8

Page 7 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet.

Nominal Outer Diam eter of Pipe D := 168.3mm

Nominal Pipe Wall Thickness tw := 7.11mm

Corrosion Allowance A := 3.2mm

Type of Service

Material Specification and Grade Material := "API 5L X52"

Specified Minimum Yield Strength SMYS := 360MPa (As per API 5L; Table 6&7)

Design Factor F := 0.6

Internal Design Pressure P := 94.2bar

Modulus of Elasticity at Tamb E := 203000 MPa

Maximum Design Tem perature (Above ground) Tmax := 93 °C

Minim um Design Temperature (Above ground) Tmin := -19 °C

Installation Tem perature Ti := 8 °C

Ambient Temperature Tamb := 35 °C

Longitudinal Joint Factor E1 := 1 (As per ASME B 31.8: Table 841.1.7-1)

-5 1 (As per ASME B 31.8: C lause 832.2)


Coefficient of Thermal Expansion α := 1.17 10 
K
Tem perature Derating Fact or Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Page 1 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

2 CALCULATIONS (CORRODED PIPE)


2.1 Calculation of Stresses
Wall Thickness t := tw - A = 3.91 mm

P D
Hoop Stress S H := = 202.735  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 60.82 MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -201.883  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -141.063  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 124.948  MPa
Elastic Bending Stress (for Tm in)

2.2 Calculation of Bending Radius

2.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 141.1 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 182.937  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 299.3 MPa

( )
S B2 := max S B1 , σVon1 = 299.33 MPa

DE
Minim um Elastic Bend Radius R1 := = 57.1 m
(
2  S B2 )

Page 2 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

2.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 124.9 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 199.052  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 177.15  MPa

( )
S B4 := max S B3 , σVon2 = 199.052  MPa

DE
Minim um Elastic Bend Radius R2 := = 85.8 m
(
2  S B4 )
2.2.3. Calculated Elastic Bend Radius R3 := max( R1 , R2 ) = 85.819 m

2.2.4. Selected Elastic Bend Radius R4 := 650m

2.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 26.3 MPa
2  R4

2.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -114.8 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -167.3 MPa

(
σL5 := max σL1 , σL2 = 167.3 MPa )
σL5
Ratio1 := = 0.516
0.90 SMYS

CODE_CHECK1 := "PASS" if σL5  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK1 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 278.5 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 321 MPa

(
σe3 := max σe1 , σe2 = 321 MPa)
σe3
Ratio2 := = 0.991
0.90 SMYS

CODE_CHECK2 := "PASS" if σe3  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK2 = "PASS"

Page 3 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

2.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 151.2 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 98.7 MPa

( )
σL6 := max σL3 , σL4 = 151.2 MPa
σL6
Ratio3 := = 0.467
0.90 SMYS

CODE_CHECK3 := "PASS" if σL6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK3 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 182.5 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 175.6 MPa

( )
σe6 := max σe4 , σe5 = 182.516  MPa

σe6
Ratio4 := = 0.563
0.90 SMYS

CODE_CHECK4 := "PASS" if σe6  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK4 = "PASS"

3 CALCULATIONS (NEW PIPE)


3.1 Calculation of Stresses
Wall Thickness t := tw = 7.11 mm

P D
Hoop Stress S H := = 111.49  MPa (As per ASME B 31.8:
2t Clause 805.2.3)

Longitudinal Stress S P := 0.3S H = 33.447  MPa

Longitudinal Stress due to Thermal ( )


S T1 := E α Ti - Tmax = -201.883  MPa
Expansion (for Tm ax)

Stress due to External Force S X := 0

Total Longit udinal Stress Excluding S L1 := S T1 + S P + S X = -168.437  MPa


Elastic Bending Stress (for Tm ax)

Longitudinal Stress due to ( )


S T2 := E α Ti - Tmin = 64.128 MPa
Thermal Expansion (for Tmin)
Total Longit udinal Stress Excluding S L2 := S T2 + S P + S X = 97.575  MPa
Elastic Bending Stress (for Tm in)

Page 4 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

3.2 Calculation of Bending Radius


3.2.1. Calculation of Bending Radius for Maximum Design Temperature(Tmax):

Total Longit udinal Stress σL := S L1 = 168.4 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B1 := σALR - σL = 155.563  MPa

Combined Stress (considering Maximum Design Tem p):


2 2
σVon1 := S L1 - S L1 S H + S H

σVon1 = 244.1 MPa

( )
S B2 := max S B1 , σVon1 = 244.09 MPa

DE
Minim um Elastic Bend Radius R1 := = 70 m
(
2  S B2 )
3.2.2. Calculation of Bending Radius for Minimum Design Temperature (Tmin):

Total Longit udinal Stress σL := S L2 = 97.6 MPa

Maximum Allowable Stress (Total Longitudinal) σALR := 0.9  Tdf  SMYS = 324 MPa
(For Restrained)
S B3 := σALR - σL = 226.425  MPa

Combined Stress (considering Minimum Design Tem p):

2 2
σVon2 := S L2 - S L2 S H + S H

σVon2 = 105.225  MPa

( )
S B4 := max S B3 , σVon2 = 226.425  MPa

DE
Minim um Elastic Bend Radius R2 := = 75.4 m
(
2  S B4 )
3.2.3. Calculated Elastic Bend Radius R5 := max( R1 , R2 ) = 75.444 m
3.2.4. Selected Elastic Bend Radius R6 := 250m

3.3. Calculation & Check of Combined Stress


D E
Longitudinal Stress due to Elastic Bending (Bending Stress) S B := = 68.3 MPa
2  R6

Page 5 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

3.3.1. Calculation of Total Longitudinal & Combined Stress for Maximum Design Temperature (Tmax)
Total Longit udinal Stress when bending stress is tensile σL1 := S P + S T1 + S X + S B = -100.1 MPa
Total Longit udinal Stress when bending stress is compressive σL2 := S P + S T1 + S X - S B = -236.8 MPa

( )
σL7 := max σL1 , σL2 = 236.8 MPa

σL7
Ratio5 := = 0.731
0.90 SMYS

CODE_CHECK5 := "PASS" if σL7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK5 = "PASS"

2 2
Combined Stress when bending stress is tensile σe1 := σL1 - σL1 S H + SH = 183.3 MPa
2 2
Combined Stress when bending stress is compressive σe2 := σL2 - σL2 S H + SH = 308 MPa

( )
σe7 := max σe1 , σe2 = 308 MPa
σe7
Ratio6 := = 0.951
0.90 SMYS

CODE_CHECK6 := "PASS" if σe7  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK6 = "PASS"
3.3.2. Calculation of Total Longitudinal & Combined Stress for Minimum DesignTemperature (Tmin)
Total Longit udinal Stress when bending stress is tensile σL3 := S P + S T2 + S X + S B = 165.9 MPa
Total Longit udinal Stress when bending stress is compressive σL4 := S P + S T2 + S X - S B = 29.2 MPa

( )
σL8 := max σL3 , σL4 = 165.9 MPa
σL8
Ratio7 := = 0.512
0.90 SMYS

CODE_CHECK7 := "PASS" if σL8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK7 = "PASS"

2 2
Combined Stress when bending stress is tensile σe4 := σL3 - σL3 S H + SH = 146.5 MPa
2 2
Combined Stress when bending stress is compressive σe5 := σL4 - σL4 S H + SH = 100.1 MPa

( )
σe8 := max σe4 , σe5 = 146.484  MPa
σe8
Ratio8 := = 0.452
0.90 SMYS

CODE_CHECK8 := "PASS" if σe8  0.90 Tdf  SMYS

"FAIL, Increase Bend Radius and/or Wall thickness" otherwise CODE_CHECK8 = "PASS"

Page 6 of 7
JOB No: JI-2035 ELASTIC BEND RADIUS CALCULATION
Client: KOC FOR DESIGN FACTOR-0.6
Doc No.: APPENDIX E.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

3 SUMMARY OF RESULTS

For Corroded Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained (When 167.34 PASS 0.52
Stress σL5
Design Temp. is
Combined
2 Max.) 320.99 PASS 0.99
Stress σe3
650.00 324.00
Longitudinal
3 Restrained (When 151.23 PASS 0.47
Stress σL6
Design Temp. is
Combined
4 Min.) 182.52 PASS 0.56
Stress σe6

For New Pipe

SELECTED CODE
Sr. CALCULATED
CONDITION CASES ELASTIC BENDING ALLOWABLE CHECK RATIO
No. STRESS
RADIUS STRESS
(m) (MPa) (MPa)
Longitudinal
1 Restrained 236.77 PASS 0.73
Stress σL7
(When Design
Combined
2 Temp. is Max.) 308.03 PASS 0.95
Stress σe7
250.00 324.00
Longitudinal
3 Restrained 165.90 PASS 0.51
Stress σL8
(When Design
Combined
4 Temp. is Min.) 146.48 PASS 0.45
Stress σe8

Page 7 of 7
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

APPENDIX-F HYDROSTATIC TEST PRESSURE CALCULATION


FOR DESIGN FACTOR 0.72

APPENDIX F.1 10 “LP Gathering Header Trunkline

APPENDIX F.2 10 “HP Gathering Header Trunkline

APPENDIX F.3 6” Sour Liquid Return Pipeline

APPENDIX F.4 6” Sour Condensate Export Pipeline

APPENDIX F.5 14” Sour Gas Export Pipeline

APPENDIX F.6 20” Sour Oil Export Pipeline

APPENDIX F.7 6” Fuel Gas Import Pipeline

APPENDIX F.8 6” Flowlines from Remote Manifolds


JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

1.0 INPUT DATA


Nominal Outer Diam eter of Pipe D := 273mm

Internal Design Pressure P := 94.2bar

Nominal Pipe Wall Thickness t := 9.27 mm


A := 3.2mm
Corrosion Allowance

Material Specification and Grade

Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)

Longitudinal Joint Factor E := 1 (As per ASME B 31.8: Table 841.1.7-1)

Installation Temperature Ti := 8 °C

Ambient Tem perature Tw := 35 °C


kg
ρw := 1025 
Density of Test Water 3
m
Modulus of Elasticity of Steel ES := 206 GPa
-1
Linear Coefficient of Therm al Expansion α := 0.0000117  K (As per ASME B 31.8: C lause 832.2)

Poisson's Ratio of Steel Pipe υS := 0.30

Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor F := 0.72


Hydrostatic Test Factor
FDP := 1.25
(based on design pressure)

Hydrostatic Test Factor FSMYS := 0.9


(based on SMYS)

External Axial Force R := 0N

Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

2.0 CALCULATION

Wall Thickness t w := t = 9.27 mm

 π   D 2 - D - 2  t 2 = 7.68  10- 3 m 2
Cross Sectional Area Ac := 4 
 
( w) 

2.1 Hydrostatic Test Pressure

Minimum Hydrostatic Test Pressure TPMin := FDP P = 11.775 MPa


(based on design pressure)

Maxim um Hydrostatic Test Pressure  ( FSMYS SMYS)  2  ( tw)  Tdf  E 
TPMax :=   = 22.777 MPa
(based on SMYS) D - tw
 

Hydrotest Pressure Check

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa

Maxim um Hydrostatic Test Pressure TPMax = 22.777 MPa

Hydrotest := "PASS" if TPMax  σAER

"FAIL, Redesign Pipeline" otherwise

Hydrotest = "PASS"

Maxim um Allowable Static Pressure ΔTP := TPMax - TPMin = 11.002  MPa


due to Elevation Difference

Maxim um Allowable Elevation D ifference ELALL :=  ΔTP  = 1.095  103 m


 ρ g 
 w 

2.2 Calculation of Stresses

(a) Hoop stress on Pipe wall

At lowest point, Maximum Allowable Hoop Stress

 TPMax ( D - t w)
S H1 :=   = 324 MPa
2  tw
 

Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

At highest point, Maxim um Allowable Hoop stress

 TPMin ( D - t w)
S H2 :=   = 167.498  MPa
2  tw
 

Maxim um Calculated Hoop stress

( )
S H := max S H1 , SH2 = 324 MPa

Allowable Hoop Stress (SH a)

S Ha := 0.9SMYS = 324 MPa

Stress Check (Hoop)

Hoop R := "PASS" if S H  S Ha

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"

(b) Longitudinal stresses


Longitudinal Stress due to Internal Pressure (at lowest point)

S P1 := υS S H1 = 97.2 MPa

Longitudinal Stress due to Internal Pressure (at highest point)


S P2 := υS S H2 = 50.25 MPa

Longitudinal Stress due to Therm al Expansion

( )
S T := ES  α Ti - Tw = -65.075 MPa

Bending Stress for Straight pipe


S B := 69.3MPa

Axial Stress due to External Force


R
S X := = 0  MPa
Ac
At lowest point, Maximum Allowable Longitudinal Stress

S L1 := S P1 + S T + SX + SB = 101.425  MPa

Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

At highest point, Maxim um Allowable Longitudinal Stress

S L2 := S P2 + S T + SX + SB = 54.474  MPa

Maxim um Calculated Longitudinal Stress

( )
σL := max S L1 , S L2 = 101.425  MPa

Maxim um Allowable Stress (Total Longitudinal)


(For Restrained)

σALR := 0.9  SMYS = 324 MPa

Stress Check (Total Longitudinal)

Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

(c) Combined stress


Von Mises equation:
At lowest point, Maximum Anticipated Combined Stress

2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 287.1 MPa

At highest point, Maxim um Anticipated Com bined Stress

2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 147.983  MPa

( )
σVon := max σVon1 , σVon2 = 287.056  MPa

Maxim um Allowable Stress (Com bined)

σAER := 0.9  Tdf  SMYS = 324 MPa

Combined Stress Check


Stress Check (Combined)
Von Mises Check:
CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

A3.0 SUMMARY OF RESULTS

TABLE-1 : SUMMARY OF RESULTS


Nominal Hydrotest Max. Combined
Wall Internal Allowable Combined Stress Check
Outer Pressure Stress
Thickness Design Elevation
Diameter Von
(tw) Pressure Max. Min. difference Allowable
(D) Mises
Von Mises
(mm) (mm) (MPa) (MPa) (MPa) m (MPa) (MPa)

273.00 9.27 9.42 22.78 11.78 1094.52 287.06 324.00 PASS

Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

1.0 INPUT DATA


Nominal Outer Diam eter of Pipe D := 273mm

Internal Design Pressure P := 94.2bar

Nominal Pipe Wall Thickness t := 9.27 mm


A := 3.2mm
Corrosion Allowance

Material Specification and Grade

Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)

Longitudinal Joint Factor E := 1 (As per ASME B 31.8: Table 841.1.7-1)

Installation Temperature Ti := 8 °C

Ambient Tem perature Tw := 35 °C


kg
ρw := 1025 
Density of Test Water 3
m
Modulus of Elasticity of Steel ES := 206 GPa
-1
Linear Coefficient of Therm al Expansion α := 0.0000117  K (As per ASME B 31.8: C lause 832.2)

Poisson's Ratio of Steel Pipe υS := 0.30

Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor F := 0.72


Hydrostatic Test Factor
FDP := 1.25
(based on design pressure)

Hydrostatic Test Factor FSMYS := 0.9


(based on SMYS)

External Axial Force R := 0N

Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

2.0 CALCULATION

Wall Thickness t w := t = 9.27 mm

 π   D 2 - D - 2  t 2 = 7.68  10- 3 m 2
Cross Sectional Area Ac := 4 
 
( w) 

2.1 Hydrostatic Test Pressure

Minimum Hydrostatic Test Pressure TPMin := FDP P = 11.775 MPa


(based on design pressure)

Maxim um Hydrostatic Test Pressure  ( FSMYS SMYS)  2  ( tw)  Tdf  E 
TPMax :=   = 22.777 MPa
(based on SMYS) D - tw
 

Hydrotest Pressure Check

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa

Maxim um Hydrostatic Test Pressure TPMax = 22.777 MPa

Hydrotest := "PASS" if TPMax  σAER

"FAIL, Redesign Pipeline" otherwise

Hydrotest = "PASS"

Maxim um Allowable Static Pressure ΔTP := TPMax - TPMin = 11.002  MPa


due to Elevation Difference

Maxim um Allowable Elevation D ifference ELALL :=  ΔTP  = 1.095  103 m


 ρ g 
 w 

2.2 Calculation of Stresses

(a) Hoop stress on Pipe wall

At lowest point, Maximum Allowable Hoop Stress

 TPMax ( D - t w)
S H1 :=   = 324 MPa
2  tw
 

Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

At highest point, Maxim um Allowable Hoop stress

 TPMin ( D - t w)
S H2 :=   = 167.498  MPa
2  tw
 

Maxim um Calculated Hoop stress

( )
S H := max S H1 , SH2 = 324 MPa

Allowable Hoop Stress (SH a)

S Ha := 0.9SMYS = 324 MPa

Stress Check (Hoop)

Hoop R := "PASS" if S H  S Ha

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"

(b) Longitudinal stresses


Longitudinal Stress due to Internal Pressure (at lowest point)

S P1 := υS S H1 = 97.2 MPa

Longitudinal Stress due to Internal Pressure (at highest point)


S P2 := υS S H2 = 50.25 MPa

Longitudinal Stress due to Therm al Expansion

( )
S T := ES  α Ti - Tw = -65.075 MPa

Bending Stress for Straight pipe


S B := 110.8MPa

Axial Stress due to External Force


R
S X := = 0  MPa
Ac
At lowest point, Maximum Allowable Longitudinal Stress

S L1 := S P1 + S T + SX + SB = 142.925  MPa

Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

At highest point, Maxim um Allowable Longitudinal Stress

S L2 := S P2 + S T + SX + SB = 95.974  MPa

Maxim um Calculated Longitudinal Stress

( )
σL := max S L1 , S L2 = 142.925  MPa

Maxim um Allowable Stress (Total Longitudinal)


(For Restrained)

σALR := 0.9  SMYS = 324 MPa

Stress Check (Total Longitudinal)

Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

(c) Combined stress


Von Mises equation:
At lowest point, Maximum Anticipated Combined Stress

2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 281.2 MPa

At highest point, Maxim um Anticipated Com bined Stress

2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 145.572  MPa

( )
σVon := max σVon1 , σVon2 = 281.24 MPa

Maxim um Allowable Stress (Com bined)

σAER := 0.9  Tdf  SMYS = 324 MPa

Combined Stress Check


Stress Check (Combined)
Von Mises Check:
CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

A3.0 SUMMARY OF RESULTS

TABLE-1 : SUMMARY OF RESULTS


Nominal Hydrotest Max. Combined
Wall Internal Allowable Combined Stress Check
Outer Pressure Stress
Thickness Design Elevation
Diameter Von
(tw) Pressure Max. Min. difference Allowable
(D) Mises
Von Mises
(mm) (mm) (MPa) (MPa) (MPa) m (MPa) (MPa)

273.00 9.27 9.42 22.78 11.78 1094.52 281.24 324.00 PASS

Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

1.0 INPUT DATA


Nominal Outer Diam eter of Pipe D := 168.3mm

Internal Design Pressure P := 98bar

Nominal Pipe Wall Thickness t := 7.11 mm


A := 3.2mm
Corrosion Allowance

Material Specification and Grade

Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)

Longitudinal Joint Factor E := 1 (As per ASME B 31.8: Table 841.1.7-1)

Installation Temperature Ti := 8 °C

Hydrostatic Test Tem perature Tw := 35 °C


kg
ρw := 1025 
Density of Test Water 3
m
Modulus of Elasticity of Steel ES := 206 GPa
-1
Linear Coefficient of Therm al Expansion α := 0.0000117  K (As per ASME B 31.8: C lause 832.2)

Poisson's Ratio of Steel Pipe υS := 0.30

Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor F := 0.72


Hydrostatic Test Factor
FDP := 1.25
(based on design pressure)

Hydrostatic Test Factor FSMYS := 0.9


(based on SMYS)

External Axial Force R := 0N

Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

2.0 CALCULATION

Wall Thickness t w := t = 7.11 mm

 π   D 2 - D - 2  t 2 = 3.6  10- 3 m 2
Cross Sectional Area Ac := 4 
 
( w) 

2.1 Hydrostatic Test Pressure

Minimum Hydrostatic Test Pressure TPMin := FDP P = 12.25 MPa


(based on design pressure)

Maxim um Hydrostatic Test Pressure  ( FSMYS SMYS)  2  ( tw)  Tdf  E 
TPMax :=   = 28.583 MPa
(based on SMYS) D - tw
 

Hydrotest Pressure Check

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa

Maxim um Hydrostatic Test Pressure TPMax = 28.583 MPa

Hydrotest := "PASS" if TPMax  σAER

"FAIL, Redesign Pipeline" otherwise

Hydrotest = "PASS"

Maxim um Allowable Static Pressure ΔTP := TPMax - TPMin = 16.333  MPa


due to Elevation Difference

Maxim um Allowable Elevation D ifference ELALL :=  ΔTP  = 1.625  103 m


 ρ g 
 w 

2.2 Calculation of Stresses

(a) Hoop stress on Pipe wall

At lowest point, Maximum Allowable Hoop Stress

 TPMax ( D - t w)
S H1 :=   = 324 MPa
2  tw
 

Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

At highest point, Maxim um Allowable Hoop stress

 TPMin ( D - t w)
S H2 :=   = 138.859  MPa
2  tw
 

Maxim um Calculated Hoop stress

( )
S H := max S H1 , SH2 = 324 MPa

Allowable Hoop Stress (SH a)

S Ha := 0.9SMYS = 324 MPa

Stress Check (Hoop)

Hoop R := "PASS" if S H  S Ha

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"

(b) Longitudinal stresses


Longitudinal Stress due to Internal Pressure (at lowest point)

S P1 := υS S H1 = 97.2 MPa

Longitudinal Stress due to Internal Pressure (at highest point)


S P2 := υS S H2 = 41.658  MPa

Longitudinal Stress due to Therm al Expansion

( )
S T := ES  α Ti - Tw = -65.075 MPa

Bending Stress for Straight pipe


S B := 170.8MPa

Axial Stress due to External Force


R
S X := = 0  MPa
Ac
At lowest point, Maximum Allowable Longitudinal Stress

S L1 := S P1 + S T + SX + SB = 202.925  MPa

Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

At highest point, Maxim um Allowable Longitudinal Stress

S L2 := S P2 + S T + SX + SB = 147.382  MPa

Maxim um Calculated Longitudinal Stress

( )
σL := max S L1 , S L2 = 202.925  MPa

Maxim um Allowable Stress (Total Longitudinal)


(For Restrained)

σALR := 0.9  SMYS = 324 MPa

Stress Check (Total Longitudinal)

Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

(c) Combined stress


Von Mises equation:
At lowest point, Maximum Anticipated Combined Stress

2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 283.6 MPa

At highest point, Maxim um Anticipated Com bined Stress

2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 143.311  MPa

( )
σVon := max σVon1 , σVon2 = 283.561  MPa

Maxim um Allowable Stress (Com bined)

σAER := 0.9  Tdf  SMYS = 324 MPa

Combined Stress Check


Stress Check (Combined)
Von Mises Check:
CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

A3.0 SUMMARY OF RESULTS

TABLE-1 : SUMMARY OF RESULTS


Nominal Hydrotest Max. Combined
Wall Internal Allowable Combined Stress Check
Outer Pressure Stress
Thickness Design Elevation
Diameter Von
(tw) Pressure Max. Min. difference Allowable
(D) Mises
Von Mises
(mm) (mm) (MPa) (MPa) (MPa) m (MPa) (MPa)

168.30 7.11 9.80 28.58 12.25 1624.87 283.56 324.00 PASS

Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

1.0 INPUT DATA


Nominal Outer Diam eter of Pipe D := 168.3mm

Internal Design Pressure P := 98bar

Nominal Pipe Wall Thickness t := 7.11 mm


A := 3.2mm
Corrosion Allowance

Material Specification and Grade

Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)

Longitudinal Joint Factor E := 1 (As per ASME B 31.8: Table 841.1.7-1)

Installation Temperature Ti := 8 °C

Hydrostatic Test Tem perature Tw := 35 °C


kg
ρw := 1025 
Density of Test Water 3
m
Modulus of Elasticity of Steel ES := 206 GPa
-1
Linear Coefficient of Therm al Expansion α := 0.0000117  K (As per ASME B 31.8: C lause 832.2)

Poisson's Ratio of Steel Pipe υS := 0.30

Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor F := 0.72


Hydrostatic Test Factor
FDP := 1.25
(based on design pressure)

Hydrostatic Test Factor FSMYS := 0.9


(based on SMYS)

External Axial Force R := 0N

Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

2.0 CALCULATION

Wall Thickness t w := t = 7.11 mm

 π   D 2 - D - 2  t 2 = 3.6  10- 3 m 2
Cross Sectional Area Ac := 4 
 
( w) 

2.1 Hydrostatic Test Pressure

Minimum Hydrostatic Test Pressure TPMin := FDP P = 12.25 MPa


(based on design pressure)

Maxim um Hydrostatic Test Pressure  ( FSMYS SMYS)  2  ( tw)  Tdf  E 
TPMax :=   = 28.583 MPa
(based on SMYS) D - tw
 

Hydrotest Pressure Check

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa

Maxim um Hydrostatic Test Pressure TPMax = 28.583 MPa

Hydrotest := "PASS" if TPMax  σAER

"FAIL, Redesign Pipeline" otherwise

Hydrotest = "PASS"

Maxim um Allowable Static Pressure ΔTP := TPMax - TPMin = 16.333  MPa


due to Elevation Difference

Maxim um Allowable Elevation D ifference ELALL :=  ΔTP  = 1.625  103 m


 ρ g 
 w 

2.2 Calculation of Stresses

(a) Hoop stress on Pipe wall

At lowest point, Maximum Allowable Hoop Stress

 TPMax ( D - t w)
S H1 :=   = 324 MPa
2  tw
 

Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

At highest point, Maxim um Allowable Hoop stress

 TPMin ( D - t w)
S H2 :=   = 138.859  MPa
2  tw
 

Maxim um Calculated Hoop stress

( )
S H := max S H1 , SH2 = 324 MPa

Allowable Hoop Stress (SH a)

S Ha := 0.9SMYS = 324 MPa

Stress Check (Hoop)

Hoop R := "PASS" if S H  S Ha

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"

(b) Longitudinal stresses


Longitudinal Stress due to Internal Pressure (at lowest point)

S P1 := υS S H1 = 97.2 MPa

Longitudinal Stress due to Internal Pressure (at highest point)


S P2 := υS S H2 = 41.658  MPa

Longitudinal Stress due to Therm al Expansion

( )
S T := ES  α Ti - Tw = -65.075 MPa

Bending Stress for Straight pipe


S B := 170.8MPa

Axial Stress due to External Force


R
S X := = 0  MPa
Ac
At lowest point, Maximum Allowable Longitudinal Stress

S L1 := S P1 + S T + SX + SB = 202.925  MPa

Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

At highest point, Maxim um Allowable Longitudinal Stress

S L2 := S P2 + S T + SX + SB = 147.382  MPa

Maxim um Calculated Longitudinal Stress

( )
σL := max S L1 , S L2 = 202.925  MPa

Maxim um Allowable Stress (Total Longitudinal)


(For Restrained)

σALR := 0.9  SMYS = 324 MPa

Stress Check (Total Longitudinal)

Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

(c) Combined stress


Von Mises equation:
At lowest point, Maximum Anticipated Combined Stress

2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 283.6 MPa

At highest point, Maxim um Anticipated Com bined Stress

2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 143.311  MPa

( )
σVon := max σVon1 , σVon2 = 283.561  MPa

Maxim um Allowable Stress (Com bined)

σAER := 0.9  Tdf  SMYS = 324 MPa

Combined Stress Check


Stress Check (Combined)
Von Mises Check:
CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

A3.0 SUMMARY OF RESULTS


Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

TABLE-1 : SUMMARY OF RESULTS


Nominal Hydrotest Max. Combined
Wall Internal Allowable Combined Stress Check
Outer Pressure Stress
Thickness Design Elevation
Diameter Von
(tw) Pressure Max. Min. difference Allowable
(D) Mises
Von Mises
(mm) (mm) (MPa) (MPa) (MPa) m (MPa) (MPa)

168.30 7.11 9.80 28.58 12.25 1624.87 283.56 324.00 PASS

Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

1.0 INPUT DATA


Nominal Outer Diam eter of Pipe D := 355.6mm

Internal Design Pressure P := 75bar

Nominal Pipe Wall Thickness t := 8.74 mm


A := 3.2mm
Corrosion Allowance

Material Specification and Grade

Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)

Longitudinal Joint Factor E := 1 (As per ASME B 31.8: Table 841.1.7-1)

Installation Temperature Ti := 8 °C

AmbientTem perature Tw := 35 °C
kg
ρw := 1025 
Density of Test Water 3
m
Modulus of Elasticity of Steel ES := 206 GPa
-1
Linear Coefficient of Therm al Expansion α := 0.0000117  K (As per ASME B 31.8: C lause 832.2)

Poisson's Ratio of Steel Pipe υS := 0.30

Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor F := 0.72


Hydrostatic Test Factor
FDP := 1.25
(based on design pressure)

Hydrostatic Test Factor FSMYS := 0.9


(based on SMYS)

External Axial Force R := 0N

Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

2.0 CALCULATION

Wall Thickness t w := t = 8.74 mm

 π   D 2 - D - 2  t 2 = 9.524  10- 3 m 2
Cross Sectional Area Ac := 4 
 
( w) 

2.1 Hydrostatic Test Pressure

Minimum Hydrostatic Test Pressure TPMin := FDP P = 9.375 MPa


(based on design pressure)

Maxim um Hydrostatic Test Pressure  ( FSMYS SMYS)  2  ( tw)  Tdf  E 
TPMax :=   = 16.328 MPa
(based on SMYS) D - tw
 

Hydrotest Pressure Check

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa

Maxim um Hydrostatic Test Pressure TPMax = 16.328 MPa

Hydrotest := "PASS" if TPMax  σAER

"FAIL, Redesign Pipeline" otherwise

Hydrotest = "PASS"

Maxim um Allowable Static Pressure ΔTP := TPMax - TPMin = 6.953 MPa


due to Elevation Difference

Maxim um Allowable Elevation D ifference ELALL :=  ΔTP  = 691.713 m


 ρ g 
 w 

2.2 Calculation of Stresses

(a) Hoop stress on Pipe wall

At lowest point, Maximum Allowable Hoop Stress

 TPMax ( D - t w)
S H1 :=   = 324 MPa
2  tw
 

Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

At highest point, Maxim um Allowable Hoop stress

 TPMin ( D - t w)
S H2 :=   = 186.03  MPa
2  tw
 

Maxim um Calculated Hoop stress

( )
S H := max S H1 , SH2 = 324 MPa

Allowable Hoop Stress (SH a)

S Ha := 0.9SMYS = 324 MPa

Stress Check (Hoop)

Hoop R := "PASS" if S H  S Ha

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"

(b) Longitudinal stresses


Longitudinal Stress due to Internal Pressure (at lowest point)

S P1 := υS S H1 = 97.2 MPa

Longitudinal Stress due to Internal Pressure (at highest point)


S P2 := υS S H2 = 55.809  MPa

Longitudinal Stress due to Therm al Expansion

( )
S T := ES  α Ti - Tw = -65.075 MPa

Bending Stress for Straight pipe


S B := 160.4MPa

Axial Stress due to External Force


R
S X := = 0  MPa
Ac
At lowest point, Maximum Allowable Longitudinal Stress

S L1 := S P1 + S T + SX + SB = 192.525  MPa

Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

At highest point, Maxim um Allowable Longitudinal Stress

S L2 := S P2 + S T + SX + SB = 151.134  MPa

Maxim um Calculated Longitudinal Stress

( )
σL := max S L1 , S L2 = 192.525  MPa

Maxim um Allowable Stress (Total Longitudinal)


(For Restrained)

σALR := 0.9  SMYS = 324 MPa

Stress Check (Total Longitudinal)

Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

(c) Combined stress


Von Mises equation:
At lowest point, Maximum Anticipated Combined Stress

2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 282.2 MPa

At highest point, Maxim um Anticipated Com bined Stress

2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 171.27 MPa

( )
σVon := max σVon1 , σVon2 = 282.248  MPa

Maxim um Allowable Stress (Com bined)

σAER := 0.9  Tdf  SMYS = 324 MPa

Combined Stress Check


Stress Check (Combined)
Von Mises Check:
CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

A3.0 SUMMARY OF RESULTS

TABLE-1 : SUMMARY OF RESULTS


Nominal Hydrotest Max. Combined
Wall Internal Allowable Combined Stress Check
Outer Pressure Stress
Thickness Design Elevation
Diameter Von
(tw) Pressure Max. Min. difference Allowable
(D) Mises
Von Mises
(mm) (mm) (MPa) (MPa) (MPa) m (MPa) (MPa)

355.60 8.74 7.50 16.33 9.38 691.71 282.25 324.00 PASS

Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE

1.0 INPUT DATA


Nominal Outer Diam eter of Pipe D := 508mm

Internal Design Pressure P := 43.43bar

Nominal Pipe Wall Thickness t := 7.92 mm


A := 3.2mm
Corrosion Allowance

Material Specification and Grade

Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)

Longitudinal Joint Factor E := 1 (As per ASME B 31.4: Table 403.2.1-1)

Installation Temperature Ti := 8 °C

Ambient Tem perature Tw := 35 °C


kg
ρw := 1025 
Density of Test Water 3
m
Modulus of Elasticity of Steel ES := 206 GPa
-1
Linear Coefficient of Therm al Expansion α := 0.0000117  K (As per ASME B 31.4: C lause 402.2.1)

Poisson's Ratio of Steel Pipe υS := 0.30


Design Factor F := 0.72
Hydrostatic Test Factor
FDP := 1.25
(based on design pressure)

Hydrostatic Test Factor FSMYS := 0.9


(based on SMYS)

External Axial Force R := 0N

Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE

2.0 CALCULATION

Wall Thickness t w := t = 7.92 mm

 π   D 2 - D - 2  t 2 = 0.012 m 2
Cross Sectional Area Ac := 4 
 
( w) 

2.1 Hydrostatic Test Pressure

Minimum Hydrostatic Test Pressure TPMin := FDP P = 5.429 MPa


(based on design pressure)

Maxim um Hydrostatic Test Pressure  ( FSMYS SMYS)  2  ( tw)  E 


TPMax :=   = 10.263 MPa
(based on SMYS) D - tw
 

Hydrotest Pressure Check

Maxim um Allowable Stress (Com bined) σAER := 0.9  SMYS = 324 MPa

Maxim um Hydrostatic Test Pressure TPMax = 10.263 MPa

Hydrotest := "PASS" if TPMax  σAER

"FAIL, Redesign Pipeline" otherwise

Hydrotest = "PASS"

Maxim um Allowable Static Pressure ΔTP := TPMax - TPMin = 4.834 MPa


due to Elevation Difference

Maxim um Allowable Elevation D ifference ELALL :=  ΔTP  = 480.901 m


 ρ g 
 w 

2.2 Calculation of Stresses

(a) Hoop stress on Pipe wall

At lowest point, Maximum Allowable Hoop Stress

 TPMax ( D - t w)
S H1 :=   = 324 MPa
2  tw
 

Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE

At highest point, Maxim um Allowable Hoop stress

 TPMin ( D - t w)
S H2 :=   = 171.389  MPa
2  tw
 

Maxim um Calculated Hoop stress

( )
S H := max S H1 , SH2 = 324 MPa

Allowable Hoop Stress (SH a)

S Ha := 0.9SMYS = 324 MPa

Stress Check (Hoop)

Hoop R := "PASS" if S H  S Ha

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"

(b) Longitudinal stresses


Longitudinal Stress due to Internal Pressure (at lowest point)

S P1 := υS S H1 = 97.2 MPa

Longitudinal Stress due to Internal Pressure (at highest point)


S P2 := υS S H2 = 51.417  MPa

Longitudinal Stress due to Therm al Expansion

( )
S T := ES  α Ti - Tw = -65.075 MPa

Bending Stress for Straight pipe


S B := 128.9MPa

Axial Stress due to External Force


R
S X := = 0  MPa
Ac
At lowest point, Maximum Allowable Longitudinal Stress

S L1 := S P1 + S T + SX + SB = 161.025  MPa

Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE

At highest point, Maxim um Allowable Longitudinal Stress

S L2 := S P2 + S T + SX + SB = 115.241  MPa

Maxim um Calculated Longitudinal Stress

( )
σL := max S L1 , S L2 = 161.025  MPa

Maxim um Allowable Stress (Total Longitudinal)


(For Restrained)

σALR := 0.9  SMYS = 324 MPa

Stress Check (Total Longitudinal)

Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

(c) Combined stress


Von Mises equation:
At lowest point, Maximum Anticipated Combined Stress

2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 280.6 MPa

At highest point, Maxim um Anticipated Com bined Stress

2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 151.34 MPa

( )
σVon := max σVon1 , σVon2 = 280.594  MPa

Maxim um Allowable Stress (Com bined)

σAER := 0.9  SMYS = 324 MPa

Combined Stress Check


Stress Check (Combined)
Von Mises Check:
CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

A3.0 SUMMARY OF RESULTS


Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE

TABLE-1 : SUMMARY OF RESULTS


Nominal Hydrotest Max. Combined
Wall Internal Allowable Combined Stress Check
Outer Pressure Stress
Thickness Design Elevation
Diameter Von
(tw) Pressure Max. Min. difference Allowable
(D) Mises
Von Mises
(mm) (mm) (MPa) (MPa) (MPa) m (MPa) (MPa)

508.00 7.92 4.34 10.26 5.43 480.90 280.59 324.00 PASS

Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

1.0 INPUT DATA


Nominal Outer Diam eter of Pipe D := 168.3mm

Internal Design Pressure P := 37.9bar

Nominal Pipe Wall Thickness t := 7.11 mm


A := 3.2mm
Corrosion Allowance

Material Specification and Grade

Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)

Longitudinal Joint Factor E := 1 (As per ASME B 31.8: Table 841.1.7-1)

Installation Temperature Ti := 8 °C

Ambient Tem perature Tw := 35 °C


kg
ρw := 1025 
Density of Test Water 3
m
Modulus of Elasticity of Steel ES := 206 GPa
-1
Linear Coefficient of Therm al Expansion α := 0.0000117  K (As per ASME B 31.8: C lause 832.2)

Poisson's Ratio of Steel Pipe υS := 0.30

Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor F := 0.72


Hydrostatic Test Factor
FDP := 1.25
(based on design pressure)

Hydrostatic Test Factor FSMYS := 0.9


(based on SMYS)

External Axial Force R := 0N

Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

2.0 CALCULATION

Wall Thickness t w := t = 7.11 mm

 π   D 2 - D - 2  t 2 = 3.6  10- 3 m 2
Cross Sectional Area Ac := 4 
 
( w) 

2.1 Hydrostatic Test Pressure

Minimum Hydrostatic Test Pressure TPMin := FDP P = 4.737 MPa


(based on design pressure)

Maxim um Hydrostatic Test Pressure  ( FSMYS SMYS)  2  ( tw)  Tdf  E 
TPMax :=   = 28.583 MPa
(based on SMYS) D - tw
 

Hydrotest Pressure Check

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa

Maxim um Hydrostatic Test Pressure TPMax = 28.583 MPa

Hydrotest := "PASS" if TPMax  σAER

"FAIL, Redesign Pipeline" otherwise

Hydrotest = "PASS"

Maxim um Allowable Static Pressure ΔTP := TPMax - TPMin = 23.845  MPa


due to Elevation Difference

Maxim um Allowable Elevation D ifference ELALL :=  ΔTP  = 2.372  103 m


 ρ g 
 w 

2.2 Calculation of Stresses

(a) Hoop stress on Pipe wall

At lowest point, Maximum Allowable Hoop Stress

 TPMax ( D - t w)
S H1 :=   = 324 MPa
2  tw
 

Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

At highest point, Maxim um Allowable Hoop stress

 TPMin ( D - t w)
S H2 :=   = 53.702  MPa
2  tw
 

Maxim um Calculated Hoop stress

( )
S H := max S H1 , SH2 = 324 MPa

Allowable Hoop Stress (SH a)

S Ha := 0.9SMYS = 324 MPa

Stress Check (Hoop)

Hoop R := "PASS" if S H  S Ha

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"

(b) Longitudinal stresses


Longitudinal Stress due to Internal Pressure (at lowest point)

S P1 := υS S H1 = 97.2 MPa

Longitudinal Stress due to Internal Pressure (at highest point)


S P2 := υS S H2 = 16.11 MPa

Longitudinal Stress due to Therm al Expansion

( )
S T := ES  α Ti - Tw = -65.075 MPa

Bending Stress for Straight pipe


S B := 170.8MPa

Axial Stress due to External Force


R
S X := = 0  MPa
Ac
At lowest point, Maximum Allowable Longitudinal Stress

S L1 := S P1 + S T + SX + SB = 202.925  MPa

Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

At highest point, Maxim um Allowable Longitudinal Stress

S L2 := S P2 + S T + SX + SB = 121.835  MPa

Maxim um Calculated Longitudinal Stress

( )
σL := max S L1 , S L2 = 202.925  MPa

Maxim um Allowable Stress (Total Longitudinal)


(For Restrained)

σALR := 0.9  SMYS = 324 MPa

Stress Check (Total Longitudinal)

Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

(c) Combined stress


Von Mises equation:
At lowest point, Maximum Anticipated Combined Stress

2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 283.6 MPa

At highest point, Maxim um Anticipated Com bined Stress

2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 105.759  MPa

( )
σVon := max σVon1 , σVon2 = 283.561  MPa

Maxim um Allowable Stress (Com bined)

σAER := 0.9  Tdf  SMYS = 324 MPa

Combined Stress Check


Stress Check (Combined)
Von Mises Check:
CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

A3.0 SUMMARY OF RESULTS

TABLE-1 : SUMMARY OF RESULTS


Nominal Hydrotest Max. Combined
Wall Internal Allowable Combined Stress Check
Outer Pressure Stress
Thickness Design Elevation
Diameter Von
(tw) Pressure Max. Min. difference Allowable
(D) Mises
Von Mises
(mm) (mm) (MPa) (MPa) (MPa) m (MPa) (MPa)

168.30 7.11 3.79 28.58 4.74 2372.25 283.56 324.00 PASS

Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

1.0 INPUT DATA


Nominal Outer Diam eter of Pipe D := 168.3mm

Internal Design Pressure P := 94.2bar

Nominal Pipe Wall Thickness t := 7.11 mm


A := 3.2mm
Corrosion Allowance

Material Specification and Grade

Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)

Longitudinal Joint Factor E := 1 (As per ASME B 31.8: Table 841.1.7-1)

Installation Temperature Ti := 8 °C

Ambient Tem perature Tw := 35 °C


kg
ρw := 1025 
Density of Test Water 3
m
Modulus of Elasticity of Steel ES := 206 GPa
-1
Linear Coefficient of Therm al Expansion α := 0.0000117  K (As per ASME B 31.8: C lause 832.2)

Poisson's Ratio of Steel Pipe υS := 0.30

Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor F := 0.72


Hydrostatic Test Factor
FDP := 1.25
(based on design pressure)

Hydrostatic Test Factor FSMYS := 0.9


(based on SMYS)

External Axial Force R := 0N

Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

2.0 CALCULATION

Wall Thickness t w := t = 7.11 mm

 π   D 2 - D - 2  t 2 = 3.6  10- 3 m 2
Cross Sectional Area Ac := 4 
 
( w) 

2.1 Hydrostatic Test Pressure

Minimum Hydrostatic Test Pressure TPMin := FDP P = 11.775 MPa


(based on design pressure)

Maxim um Hydrostatic Test Pressure  ( FSMYS SMYS)  2  ( tw)  Tdf  E 
TPMax :=   = 28.583 MPa
(based on SMYS) D - tw
 

Hydrotest Pressure Check

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa

Maxim um Hydrostatic Test Pressure TPMax = 28.583 MPa

Hydrotest := "PASS" if TPMax  σAER

"FAIL, Redesign Pipeline" otherwise

Hydrotest = "PASS"

Maxim um Allowable Static Pressure ΔTP := TPMax - TPMin = 16.808  MPa


due to Elevation Difference

Maxim um Allowable Elevation D ifference ELALL :=  ΔTP  = 1.672  103 m


 ρ g 
 w 

2.2 Calculation of Stresses

(a) Hoop stress on Pipe wall

At lowest point, Maximum Allowable Hoop Stress

 TPMax ( D - t w)
S H1 :=   = 324 MPa
2  tw
 

Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

At highest point, Maxim um Allowable Hoop stress

 TPMin ( D - t w)
S H2 :=   = 133.475  MPa
2  tw
 

Maxim um Calculated Hoop stress

( )
S H := max S H1 , SH2 = 324 MPa

Allowable Hoop Stress (SH a)

S Ha := 0.9SMYS = 324 MPa

Stress Check (Hoop)

Hoop R := "PASS" if S H  S Ha

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"

(b) Longitudinal stresses


Longitudinal Stress due to Internal Pressure (at lowest point)

S P1 := υS S H1 = 97.2 MPa

Longitudinal Stress due to Internal Pressure (at highest point)


S P2 := υS S H2 = 40.042  MPa

Longitudinal Stress due to Therm al Expansion

( )
S T := ES  α Ti - Tw = -65.075 MPa

Bending Stress for Straight pipe


S B := 113.9MPa

Axial Stress due to External Force


R
S X := = 0  MPa
Ac
At lowest point, Maximum Allowable Longitudinal Stress

S L1 := S P1 + S T + SX + SB = 146.025  MPa

Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

At highest point, Maxim um Allowable Longitudinal Stress

S L2 := S P2 + S T + SX + SB = 88.867  MPa

Maxim um Calculated Longitudinal Stress

( )
σL := max S L1 , S L2 = 146.025  MPa

Maxim um Allowable Stress (Total Longitudinal)


(For Restrained)

σALR := 0.9  SMYS = 324 MPa

Stress Check (Total Longitudinal)

Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

(c) Combined stress


Von Mises equation:
At lowest point, Maximum Anticipated Combined Stress

2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 281 MPa

At highest point, Maxim um Anticipated Com bined Stress

2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 117.692  MPa

( )
σVon := max σVon1 , σVon2 = 281.047  MPa

Maxim um Allowable Stress (Com bined)

σAER := 0.9  Tdf  SMYS = 324 MPa

Combined Stress Check


Stress Check (Combined)
Von Mises Check:
CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX F.8
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

A3.0 SUMMARY OF RESULTS

TABLE-1 : SUMMARY OF RESULTS


Nominal Hydrotest Max. Combined
Wall Internal Allowable Combined Stress Check
Outer Pressure Stress
Thickness Design Elevation
Diameter Von
(tw) Pressure Max. Min. difference Allowable
(D) Mises
Von Mises
(mm) (mm) (MPa) (MPa) (MPa) m (MPa) (MPa)

168.30 7.11 9.42 28.58 11.78 1672.13 281.05 324.00 PASS

Page 5 of 5
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

APPENDIX-G HYDROSTATIC TEST PRESSURE CALCULATION FOR


DESIGN FACTOR 0.6

APPENDIX G.1 10 “LP Gathering Header Trunkline

APPENDIX G.2 10 “HP Gathering Header Trunkline

APPENDIX G.3 6” Sour Liquid Return Pipeline

APPENDIX G.4 6” Sour Condensate Export Pipeline

APPENDIX G.5 14” Sour Gas Export Pipeline

APPENDIX G.6 6” Fuel Gas Import Pipeline

APPENDIX G.7 6” Flowlines from Remote Manifolds


JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

1.0 INPUT DATA


Nominal Outer Diam eter of Pipe D := 273mm

Internal Design Pressure P := 94.2bar

Nominal Pipe Wall Thickness t := 9.27 mm


A := 3.2mm
Corrosion Allowance

Material Specification and Grade

Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)

Longitudinal Joint Factor E := 1 (As per ASME B 31.8: Table 841.1.7-1)

Installation Temperature Ti := 8 °C

Ambient Tem perature Tw := 35 °C


kg
ρw := 1025 
Density of Test Water 3
m
Modulus of Elasticity of Steel ES := 206 GPa
-1
Linear Coefficient of Therm al Expansion α := 0.0000117  K (As per ASME B 31.8: C lause 832.2)

Poisson's Ratio of Steel Pipe υS := 0.30

Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor F := 0.6


Hydrostatic Test Factor
FDP := 1.25
(based on design pressure)

Hydrostatic Test Factor FSMYS := 0.9


(based on SMYS)

External Axial Force R := 0N

Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

2.0 CALCULATION

Wall Thickness t w := t = 9.27 mm

 π   D 2 - D - 2  t 2 = 7.68  10- 3 m 2
Cross Sectional Area Ac := 4 
 
( w) 

2.1 Hydrostatic Test Pressure

Minimum Hydrostatic Test Pressure TPMin := FDP P = 11.775 MPa


(based on design pressure)

Maxim um Hydrostatic Test Pressure  ( FSMYS SMYS)  2  ( tw)  Tdf  E 
TPMax :=   = 22.777 MPa
(based on SMYS) D - tw
 

Hydrotest Pressure Check

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa

Maxim um Hydrostatic Test Pressure TPMax = 22.777 MPa

Hydrotest := "PASS" if TPMax  σAER

"FAIL, Redesign Pipeline" otherwise

Hydrotest = "PASS"

Maxim um Allowable Static Pressure ΔTP := TPMax - TPMin = 11.002  MPa


due to Elevation Difference

Maxim um Allowable Elevation D ifference ELALL :=  ΔTP  = 1.095  103 m


 ρ g 
 w 

2.2 Calculation of Stresses

(a) Hoop stress on Pipe wall

At lowest point, Maximum Allowable Hoop Stress

 TPMax ( D - t w)
S H1 :=   = 324 MPa
2  tw
 

Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

At highest point, Maxim um Allowable Hoop stress

 TPMin ( D - t w)
S H2 :=   = 167.498  MPa
2  tw
 

Maxim um Calculated Hoop stress

( )
S H := max S H1 , SH2 = 324 MPa

Allowable Hoop Stress (SH a)

S Ha := 0.9SMYS = 324 MPa

Stress Check (Hoop)

Hoop R := "PASS" if S H  S Ha

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"

(b) Longitudinal stresses


Longitudinal Stress due to Internal Pressure (at lowest point)

S P1 := υS S H1 = 97.2 MPa

Longitudinal Stress due to Internal Pressure (at highest point)


S P2 := υS S H2 = 50.25 MPa

Longitudinal Stress due to Therm al Expansion

( )
S T := ES  α Ti - Tw = -65.075 MPa

Bending Stress for Straight pipe


S B := 79.2MPa

Axial Stress due to External Force


R
S X := = 0  MPa
Ac
At lowest point, Maximum Allowable Longitudinal Stress

S L1 := S P1 + S T + SX + SB = 111.325  MPa

Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

At highest point, Maxim um Allowable Longitudinal Stress

S L2 := S P2 + S T + SX + SB = 64.374  MPa

Maxim um Calculated Longitudinal Stress

( )
σL := max S L1 , S L2 = 111.325  MPa

Maxim um Allowable Stress (Total Longitudinal)


(For Restrained)

σALR := 0.9  SMYS = 324 MPa

Stress Check (Total Longitudinal)

Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

(c) Combined stress


Von Mises equation:
At lowest point, Maximum Anticipated Combined Stress

2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 285.1 MPa

At highest point, Maxim um Anticipated Com bined Stress

2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 146.346  MPa

( )
σVon := max σVon1 , σVon2 = 285.132  MPa

Maxim um Allowable Stress (Com bined)

σAER := 0.9  Tdf  SMYS = 324 MPa

Combined Stress Check


Stress Check (Combined)
Von Mises Check:
CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

A3.0 SUMMARY OF RESULTS

TABLE-1 : SUMMARY OF RESULTS


Nominal Hydrotest Max. Combined
Wall Internal Allowable Combined Stress Check
Outer Pressure Stress
Thickness Design Elevation
Diameter Von
(tw) Pressure Max. Min. difference Allowable
(D) Mises
Von Mises
(mm) (mm) (MPa) (MPa) (MPa) m (MPa) (MPa)

273.00 9.27 9.42 22.78 11.78 1094.52 285.13 324.00 PASS

Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

1.0 INPUT DATA


Nominal Outer Diam eter of Pipe D := 273mm

Internal Design Pressure P := 94.2bar

Nominal Pipe Wall Thickness t := 9.27 mm


A := 3.2mm
Corrosion Allowance

Material Specification and Grade

Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)

Longitudinal Joint Factor E := 1 (As per ASME B 31.8: Table 841.1.7-1)

Installation Temperature Ti := 8 °C

Ambient Tem perature Tw := 35 °C


kg
ρw := 1025 
Density of Test Water 3
m
Modulus of Elasticity of Steel ES := 206 GPa
-1
Linear Coefficient of Therm al Expansion α := 0.0000117  K (As per ASME B 31.8: C lause 832.2)

Poisson's Ratio of Steel Pipe υS := 0.30

Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor F := 0.6


Hydrostatic Test Factor
FDP := 1.25
(based on design pressure)

Hydrostatic Test Factor FSMYS := 0.9


(based on SMYS)

External Axial Force R := 0N

Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

2.0 CALCULATION

Wall Thickness t w := t = 9.27 mm

 π   D 2 - D - 2  t 2 = 7.68  10- 3 m 2
Cross Sectional Area Ac := 4 
 
( w) 

2.1 Hydrostatic Test Pressure

Minimum Hydrostatic Test Pressure TPMin := FDP P = 11.775 MPa


(based on design pressure)

Maxim um Hydrostatic Test Pressure  ( FSMYS SMYS)  2  ( tw)  Tdf  E 
TPMax :=   = 22.777 MPa
(based on SMYS) D - tw
 

Hydrotest Pressure Check

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa

Maxim um Hydrostatic Test Pressure TPMax = 22.777 MPa

Hydrotest := "PASS" if TPMax  σAER

"FAIL, Redesign Pipeline" otherwise

Hydrotest = "PASS"

Maxim um Allowable Static Pressure ΔTP := TPMax - TPMin = 11.002  MPa


due to Elevation Difference

Maxim um Allowable Elevation D ifference ELALL :=  ΔTP  = 1.095  103 m


 ρ g 
 w 

2.2 Calculation of Stresses

(a) Hoop stress on Pipe wall

At lowest point, Maximum Allowable Hoop Stress

 TPMax ( D - t w)
S H1 :=   = 324 MPa
2  tw
 

Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

At highest point, Maxim um Allowable Hoop stress

 TPMin ( D - t w)
S H2 :=   = 167.498  MPa
2  tw
 

Maxim um Calculated Hoop stress

( )
S H := max S H1 , SH2 = 324 MPa

Allowable Hoop Stress (SH a)

S Ha := 0.9SMYS = 324 MPa

Stress Check (Hoop)

Hoop R := "PASS" if S H  S Ha

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"

(b) Longitudinal stresses


Longitudinal Stress due to Internal Pressure (at lowest point)

S P1 := υS S H1 = 97.2 MPa

Longitudinal Stress due to Internal Pressure (at highest point)


S P2 := υS S H2 = 50.25 MPa

Longitudinal Stress due to Therm al Expansion

( )
S T := ES  α Ti - Tw = -65.075 MPa

Bending Stress for Straight pipe


S B := 79.2MPa

Axial Stress due to External Force


R
S X := = 0  MPa
Ac
At lowest point, Maximum Allowable Longitudinal Stress

S L1 := S P1 + S T + SX + SB = 111.325  MPa

Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

At highest point, Maxim um Allowable Longitudinal Stress

S L2 := S P2 + S T + SX + SB = 64.374  MPa

Maxim um Calculated Longitudinal Stress

( )
σL := max S L1 , S L2 = 111.325  MPa

Maxim um Allowable Stress (Total Longitudinal)


(For Restrained)

σALR := 0.9  SMYS = 324 MPa

Stress Check (Total Longitudinal)

Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

(c) Combined stress


Von Mises equation:
At lowest point, Maximum Anticipated Combined Stress

2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 285.1 MPa

At highest point, Maxim um Anticipated Com bined Stress

2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 146.346  MPa

( )
σVon := max σVon1 , σVon2 = 285.132  MPa

Maxim um Allowable Stress (Com bined)

σAER := 0.9  Tdf  SMYS = 324 MPa

Combined Stress Check


Stress Check (Combined)
Von Mises Check:
CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

A3.0 SUMMARY OF RESULTS

TABLE-1 : SUMMARY OF RESULTS


Nominal Hydrotest Max. Combined
Wall Internal Allowable Combined Stress Check
Outer Pressure Stress
Thickness Design Elevation
Diameter Von
(tw) Pressure Max. Min. difference Allowable
(D) Mises
Von Mises
(mm) (mm) (MPa) (MPa) (MPa) m (MPa) (MPa)

273.00 9.27 9.42 22.78 11.78 1094.52 285.13 324.00 PASS

Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

1.0 INPUT DATA


Nominal Outer Diam eter of Pipe D := 168.3mm

Internal Design Pressure P := 98bar

Nominal Pipe Wall Thickness t := 7.11 mm


A := 3.2mm
Corrosion Allowance

Material Specification and Grade

Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)

Longitudinal Joint Factor E := 1 (As per ASME B 31.8: Table 841.1.7-1)

Installation Temperature Ti := 8 °C

Hydrostatic Test Tem perature Tw := 35 °C


kg
ρw := 1025 
Density of Test Water 3
m
Modulus of Elasticity of Steel ES := 206 GPa
-1
Linear Coefficient of Therm al Expansion α := 0.0000117  K (As per ASME B 31.8: C lause 832.2)

Poisson's Ratio of Steel Pipe υS := 0.30

Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor F := 0.6


Hydrostatic Test Factor
FDP := 1.25
(based on design pressure)

Hydrostatic Test Factor FSMYS := 0.9


(based on SMYS)

External Axial Force R := 0N

Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

2.0 CALCULATION

Wall Thickness t w := t = 7.11 mm

 π   D 2 - D - 2  t 2 = 3.6  10- 3 m 2
Cross Sectional Area Ac := 4 
 
( w) 

2.1 Hydrostatic Test Pressure

Minimum Hydrostatic Test Pressure TPMin := FDP P = 12.25 MPa


(based on design pressure)

Maxim um Hydrostatic Test Pressure  ( FSMYS SMYS)  2  ( tw)  Tdf  E 
TPMax :=   = 28.583 MPa
(based on SMYS) D - tw
 

Hydrotest Pressure Check

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa

Maxim um Hydrostatic Test Pressure TPMax = 28.583 MPa

Hydrotest := "PASS" if TPMax  σAER

"FAIL, Redesign Pipeline" otherwise

Hydrotest = "PASS"

Maxim um Allowable Static Pressure ΔTP := TPMax - TPMin = 16.333  MPa


due to Elevation Difference

Maxim um Allowable Elevation D ifference ELALL :=  ΔTP  = 1.625  103 m


 ρ g 
 w 

2.2 Calculation of Stresses

(a) Hoop stress on Pipe wall

At lowest point, Maximum Allowable Hoop Stress

 TPMax ( D - t w)
S H1 :=   = 324 MPa
2  tw
 

Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

At highest point, Maxim um Allowable Hoop stress

 TPMin ( D - t w)
S H2 :=   = 138.859  MPa
2  tw
 

Maxim um Calculated Hoop stress

( )
S H := max S H1 , SH2 = 324 MPa

Allowable Hoop Stress (SH a)

S Ha := 0.9SMYS = 324 MPa

Stress Check (Hoop)

Hoop R := "PASS" if S H  S Ha

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"

(b) Longitudinal stresses


Longitudinal Stress due to Internal Pressure (at lowest point)

S P1 := υS S H1 = 97.2 MPa

Longitudinal Stress due to Internal Pressure (at highest point)


S P2 := υS S H2 = 41.658  MPa

Longitudinal Stress due to Therm al Expansion

( )
S T := ES  α Ti - Tw = -65.075 MPa

Bending Stress for Straight pipe


S B := 75.9MPa

Axial Stress due to External Force


R
S X := = 0  MPa
Ac
At lowest point, Maximum Allowable Longitudinal Stress

S L1 := S P1 + S T + SX + SB = 108.025  MPa

Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

At highest point, Maxim um Allowable Longitudinal Stress

S L2 := S P2 + S T + SX + SB = 52.482  MPa

Maxim um Calculated Longitudinal Stress

( )
σL := max S L1 , S L2 = 108.025  MPa

Maxim um Allowable Stress (Total Longitudinal)


(For Restrained)

σALR := 0.9  SMYS = 324 MPa

Stress Check (Total Longitudinal)

Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

(c) Combined stress


Von Mises equation:
At lowest point, Maximum Anticipated Combined Stress

2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 285.7 MPa

At highest point, Maxim um Anticipated Com bined Stress

2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 121.444  MPa

( )
σVon := max σVon1 , σVon2 = 285.736  MPa

Maxim um Allowable Stress (Com bined)

σAER := 0.9  Tdf  SMYS = 324 MPa

Combined Stress Check


Stress Check (Combined)
Von Mises Check:
CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

A3.0 SUMMARY OF RESULTS

TABLE-1 : SUMMARY OF RESULTS


Nominal Hydrotest Max. Combined
Wall Internal Allowable Combined Stress Check
Outer Pressure Stress
Thickness Design Elevation
Diameter Von
(tw) Pressure Max. Min. difference Allowable
(D) Mises
Von Mises
(mm) (mm) (MPa) (MPa) (MPa) m (MPa) (MPa)

168.30 7.11 9.80 28.58 12.25 1624.87 285.74 324.00 PASS

Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX G.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

1.0 INPUT DATA


Nominal Outer Diam eter of Pipe D := 168.3mm

Internal Design Pressure P := 98bar

Nominal Pipe Wall Thickness t := 7.11 mm


A := 3.2mm
Corrosion Allowance

Material Specification and Grade

Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)

Longitudinal Joint Factor E := 1 (As per ASME B 31.8: Table 841.1.7-1)

Installation Temperature Ti := 8 °C

Hydrostatic Test Tem perature Tw := 35 °C


kg
ρw := 1025 
Density of Test Water 3
m
Modulus of Elasticity of Steel ES := 206 GPa
-1
Linear Coefficient of Therm al Expansion α := 0.0000117  K (As per ASME B 31.8: C lause 832.2)

Poisson's Ratio of Steel Pipe υS := 0.30

Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor F := 0.6


Hydrostatic Test Factor
FDP := 1.25
(based on design pressure)

Hydrostatic Test Factor FSMYS := 0.9


(based on SMYS)

External Axial Force R := 0N

Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX G.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

2.0 CALCULATION

Wall Thickness t w := t = 7.11 mm

 π   D 2 - D - 2  t 2 = 3.6  10- 3 m 2
Cross Sectional Area Ac := 4 
 
( w) 

2.1 Hydrostatic Test Pressure

Minimum Hydrostatic Test Pressure TPMin := FDP P = 12.25 MPa


(based on design pressure)

Maxim um Hydrostatic Test Pressure  ( FSMYS SMYS)  2  ( tw)  Tdf  E 
TPMax :=   = 28.583 MPa
(based on SMYS) D - tw
 

Hydrotest Pressure Check

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa

Maxim um Hydrostatic Test Pressure TPMax = 28.583 MPa

Hydrotest := "PASS" if TPMax  σAER

"FAIL, Redesign Pipeline" otherwise

Hydrotest = "PASS"

Maxim um Allowable Static Pressure ΔTP := TPMax - TPMin = 16.333  MPa


due to Elevation Difference

Maxim um Allowable Elevation D ifference ELALL :=  ΔTP  = 1.625  103 m


 ρ g 
 w 

2.2 Calculation of Stresses

(a) Hoop stress on Pipe wall

At lowest point, Maximum Allowable Hoop Stress

 TPMax ( D - t w)
S H1 :=   = 324 MPa
2  tw
 

Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX G.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

At highest point, Maxim um Allowable Hoop stress

 TPMin ( D - t w)
S H2 :=   = 138.859  MPa
2  tw
 

Maxim um Calculated Hoop stress

( )
S H := max S H1 , SH2 = 324 MPa

Allowable Hoop Stress (SH a)

S Ha := 0.9SMYS = 324 MPa

Stress Check (Hoop)

Hoop R := "PASS" if S H  S Ha

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"

(b) Longitudinal stresses


Longitudinal Stress due to Internal Pressure (at lowest point)

S P1 := υS S H1 = 97.2 MPa

Longitudinal Stress due to Internal Pressure (at highest point)


S P2 := υS S H2 = 41.658  MPa

Longitudinal Stress due to Therm al Expansion

( )
S T := ES  α Ti - Tw = -65.075 MPa

Bending Stress for Straight pipe


S B := 75.9MPa

Axial Stress due to External Force


R
S X := = 0  MPa
Ac
At lowest point, Maximum Allowable Longitudinal Stress

S L1 := S P1 + S T + SX + SB = 108.025  MPa

Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX G.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

At highest point, Maxim um Allowable Longitudinal Stress

S L2 := S P2 + S T + SX + SB = 52.482  MPa

Maxim um Calculated Longitudinal Stress

( )
σL := max S L1 , S L2 = 108.025  MPa

Maxim um Allowable Stress (Total Longitudinal)


(For Restrained)

σALR := 0.9  SMYS = 324 MPa

Stress Check (Total Longitudinal)

Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

(c) Combined stress


Von Mises equation:
At lowest point, Maximum Anticipated Combined Stress

2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 285.7 MPa

At highest point, Maxim um Anticipated Com bined Stress

2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 121.444  MPa

( )
σVon := max σVon1 , σVon2 = 285.736  MPa

Maxim um Allowable Stress (Com bined)

σAER := 0.9  Tdf  SMYS = 324 MPa

Combined Stress Check


Stress Check (Combined)
Von Mises Check:
CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

A3.0 SUMMARY OF RESULTS


Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
Doc No.: APPENDIX G.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

TABLE-1 : SUMMARY OF RESULTS


Nominal Hydrotest Max. Combined
Wall Internal Allowable Combined Stress Check
Outer Pressure Stress
Thickness Design Elevation
Diameter Von
(tw) Pressure Max. Min. difference Allowable
(D) Mises
Von Mises
(mm) (mm) (MPa) (MPa) (MPa) m (MPa) (MPa)

168.30 7.11 9.80 28.58 12.25 1624.87 285.74 324.00 PASS

Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

1.0 INPUT DATA


Nominal Outer Diam eter of Pipe D := 355.6mm

Internal Design Pressure P := 75bar

Nominal Pipe Wall Thickness t := 8.74 mm


A := 3.2mm
Corrosion Allowance

Material Specification and Grade

Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)

Longitudinal Joint Factor E := 1 (As per ASME B 31.8: Table 841.1.7-1)

Installation Temperature Ti := 8 °C

AmbientTem perature Tw := 35 °C
kg
ρw := 1025 
Density of Test Water 3
m
Modulus of Elasticity of Steel ES := 206 GPa
-1
Linear Coefficient of Therm al Expansion α := 0.0000117  K (As per ASME B 31.8: C lause 832.2)

Poisson's Ratio of Steel Pipe υS := 0.30

Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor F := 0.6


Hydrostatic Test Factor
FDP := 1.25
(based on design pressure)

Hydrostatic Test Factor FSMYS := 0.9


(based on SMYS)

External Axial Force R := 0N

Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

2.0 CALCULATION

Wall Thickness t w := t = 8.74 mm

 π   D 2 - D - 2  t 2 = 9.524  10- 3 m 2
Cross Sectional Area Ac := 4 
 
( w) 

2.1 Hydrostatic Test Pressure

Minimum Hydrostatic Test Pressure TPMin := FDP P = 9.375 MPa


(based on design pressure)

Maxim um Hydrostatic Test Pressure  ( FSMYS SMYS)  2  ( tw)  Tdf  E 
TPMax :=   = 16.328 MPa
(based on SMYS) D - tw
 

Hydrotest Pressure Check

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa

Maxim um Hydrostatic Test Pressure TPMax = 16.328 MPa

Hydrotest := "PASS" if TPMax  σAER

"FAIL, Redesign Pipeline" otherwise

Hydrotest = "PASS"

Maxim um Allowable Static Pressure ΔTP := TPMax - TPMin = 6.953 MPa


due to Elevation Difference

Maxim um Allowable Elevation D ifference ELALL :=  ΔTP  = 691.713 m


 ρ g 
 w 

2.2 Calculation of Stresses

(a) Hoop stress on Pipe wall

At lowest point, Maximum Allowable Hoop Stress

 TPMax ( D - t w)
S H1 :=   = 324 MPa
2  tw
 

Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

At highest point, Maxim um Allowable Hoop stress

 TPMin ( D - t w)
S H2 :=   = 186.03  MPa
2  tw
 

Maxim um Calculated Hoop stress

( )
S H := max S H1 , SH2 = 324 MPa

Allowable Hoop Stress (SH a)

S Ha := 0.9SMYS = 324 MPa

Stress Check (Hoop)

Hoop R := "PASS" if S H  S Ha

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"

(b) Longitudinal stresses


Longitudinal Stress due to Internal Pressure (at lowest point)

S P1 := υS S H1 = 97.2 MPa

Longitudinal Stress due to Internal Pressure (at highest point)


S P2 := υS S H2 = 55.809  MPa

Longitudinal Stress due to Therm al Expansion

( )
S T := ES  α Ti - Tw = -65.075 MPa

Bending Stress for Straight pipe


S B := 76MPa

Axial Stress due to External Force


R
S X := = 0  MPa
Ac
At lowest point, Maximum Allowable Longitudinal Stress

S L1 := S P1 + S T + SX + SB = 108.125  MPa

Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

At highest point, Maxim um Allowable Longitudinal Stress

S L2 := S P2 + S T + SX + SB = 66.734  MPa

Maxim um Calculated Longitudinal Stress

( )
σL := max S L1 , S L2 = 108.125  MPa

Maxim um Allowable Stress (Total Longitudinal)


(For Restrained)

σALR := 0.9  SMYS = 324 MPa

Stress Check (Total Longitudinal)

Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

(c) Combined stress


Von Mises equation:
At lowest point, Maximum Anticipated Combined Stress

2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 285.7 MPa

At highest point, Maxim um Anticipated Com bined Stress

2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 163.237  MPa

( )
σVon := max σVon1 , σVon2 = 285.718  MPa

Maxim um Allowable Stress (Com bined)

σAER := 0.9  Tdf  SMYS = 324 MPa

Combined Stress Check


Stress Check (Combined)
Von Mises Check:
CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

A3.0 SUMMARY OF RESULTS

TABLE-1 : SUMMARY OF RESULTS


Nominal Hydrotest Max. Combined
Wall Internal Allowable Combined Stress Check
Outer Pressure Stress
Thickness Design Elevation
Diameter Von
(tw) Pressure Max. Min. difference Allowable
(D) Mises
Von Mises
(mm) (mm) (MPa) (MPa) (MPa) m (MPa) (MPa)

355.60 8.74 7.50 16.33 9.38 691.71 285.72 324.00 PASS

Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

1.0 INPUT DATA


Nominal Outer Diam eter of Pipe D := 168.3mm

Internal Design Pressure P := 37.9bar

Nominal Pipe Wall Thickness t := 7.11 mm


A := 3.2mm
Corrosion Allowance

Material Specification and Grade

Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)

Longitudinal Joint Factor E := 1 (As per ASME B 31.8: Table 841.1.7-1)

Installation Temperature Ti := 8 °C

Ambient Tem perature Tw := 35 °C


kg
ρw := 1025 
Density of Test Water 3
m
Modulus of Elasticity of Steel ES := 206 GPa
-1
Linear Coefficient of Therm al Expansion α := 0.0000117  K (As per ASME B 31.8: C lause 832.2)

Poisson's Ratio of Steel Pipe υS := 0.30

Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor F := 0.6


Hydrostatic Test Factor
FDP := 1.25
(based on design pressure)

Hydrostatic Test Factor FSMYS := 0.9


(based on SMYS)

External Axial Force R := 0N

Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

2.0 CALCULATION

Wall Thickness t w := t = 7.11 mm

 π   D 2 - D - 2  t 2 = 3.6  10- 3 m 2
Cross Sectional Area Ac := 4 
 
( w) 

2.1 Hydrostatic Test Pressure

Minimum Hydrostatic Test Pressure TPMin := FDP P = 4.737 MPa


(based on design pressure)

Maxim um Hydrostatic Test Pressure  ( FSMYS SMYS)  2  ( tw)  Tdf  E 
TPMax :=   = 28.583 MPa
(based on SMYS) D - tw
 

Hydrotest Pressure Check

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa

Maxim um Hydrostatic Test Pressure TPMax = 28.583 MPa

Hydrotest := "PASS" if TPMax  σAER

"FAIL, Redesign Pipeline" otherwise

Hydrotest = "PASS"

Maxim um Allowable Static Pressure ΔTP := TPMax - TPMin = 23.845  MPa


due to Elevation Difference

Maxim um Allowable Elevation D ifference ELALL :=  ΔTP  = 2.372  103 m


 ρ g 
 w 

2.2 Calculation of Stresses

(a) Hoop stress on Pipe wall

At lowest point, Maximum Allowable Hoop Stress

 TPMax ( D - t w)
S H1 :=   = 324 MPa
2  tw
 

Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

At highest point, Maxim um Allowable Hoop stress

 TPMin ( D - t w)
S H2 :=   = 53.702  MPa
2  tw
 

Maxim um Calculated Hoop stress

( )
S H := max S H1 , SH2 = 324 MPa

Allowable Hoop Stress (SH a)

S Ha := 0.9SMYS = 324 MPa

Stress Check (Hoop)

Hoop R := "PASS" if S H  S Ha

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"

(b) Longitudinal stresses


Longitudinal Stress due to Internal Pressure (at lowest point)

S P1 := υS S H1 = 97.2 MPa

Longitudinal Stress due to Internal Pressure (at highest point)


S P2 := υS S H2 = 16.11 MPa

Longitudinal Stress due to Therm al Expansion

( )
S T := ES  α Ti - Tw = -65.075 MPa

Bending Stress for Straight pipe


S B := 97.6MPa

Axial Stress due to External Force


R
S X := = 0  MPa
Ac
At lowest point, Maximum Allowable Longitudinal Stress

S L1 := S P1 + S T + SX + SB = 129.725  MPa

Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

At highest point, Maxim um Allowable Longitudinal Stress

S L2 := S P2 + S T + SX + SB = 48.635  MPa

Maxim um Calculated Longitudinal Stress

( )
σL := max S L1 , S L2 = 129.725  MPa

Maxim um Allowable Stress (Total Longitudinal)


(For Restrained)

σALR := 0.9  SMYS = 324 MPa

Stress Check (Total Longitudinal)

Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

(c) Combined stress


Von Mises equation:
At lowest point, Maximum Anticipated Combined Stress

2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 282.4 MPa

At highest point, Maxim um Anticipated Com bined Stress

2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 51.356 MPa

( )
σVon := max σVon1 , σVon2 = 282.442  MPa

Maxim um Allowable Stress (Com bined)

σAER := 0.9  Tdf  SMYS = 324 MPa

Combined Stress Check


Stress Check (Combined)
Von Mises Check:
CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.6
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

A3.0 SUMMARY OF RESULTS

TABLE-1 : SUMMARY OF RESULTS


Nominal Hydrotest Max. Combined
Wall Internal Allowable Combined Stress Check
Outer Pressure Stress
Thickness Design Elevation
Diameter Von
(tw) Pressure Max. Min. difference Allowable
(D) Mises
Von Mises
(mm) (mm) (MPa) (MPa) (MPa) m (MPa) (MPa)

168.30 7.11 3.79 28.58 4.74 2372.25 282.44 324.00 PASS

Page 5 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

1.0 INPUT DATA


Nominal Outer Diam eter of Pipe D := 168.3mm

Internal Design Pressure P := 94.2bar

Nominal Pipe Wall Thickness t := 7.11 mm


A := 3.2mm
Corrosion Allowance

Material Specification and Grade

Specified Minim um Yield Strength SMYS := 360 MPa (As per API 5L; Table 6&7)

Longitudinal Joint Factor E := 1 (As per ASME B 31.8: Table 841.1.7-1)

Installation Temperature Ti := 8 °C

Ambient Tem perature Tw := 35 °C


kg
ρw := 1025 
Density of Test Water 3
m
Modulus of Elasticity of Steel ES := 206 GPa
-1
Linear Coefficient of Therm al Expansion α := 0.0000117  K (As per ASME B 31.8: C lause 832.2)

Poisson's Ratio of Steel Pipe υS := 0.30

Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor F := 0.6


Hydrostatic Test Factor
FDP := 1.25
(based on design pressure)

Hydrostatic Test Factor FSMYS := 0.9


(based on SMYS)

External Axial Force R := 0N

Page 1 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

2.0 CALCULATION

Wall Thickness t w := t = 7.11 mm

 π   D 2 - D - 2  t 2 = 3.6  10- 3 m 2
Cross Sectional Area Ac := 4 
 
( w) 

2.1 Hydrostatic Test Pressure

Minimum Hydrostatic Test Pressure TPMin := FDP P = 11.775 MPa


(based on design pressure)

Maxim um Hydrostatic Test Pressure  ( FSMYS SMYS)  2  ( tw)  Tdf  E 
TPMax :=   = 28.583 MPa
(based on SMYS) D - tw
 

Hydrotest Pressure Check

Maxim um Allowable Stress (Com bined) σAER := 0.9  Tdf  SMYS = 324 MPa

Maxim um Hydrostatic Test Pressure TPMax = 28.583 MPa

Hydrotest := "PASS" if TPMax  σAER

"FAIL, Redesign Pipeline" otherwise

Hydrotest = "PASS"

Maxim um Allowable Static Pressure ΔTP := TPMax - TPMin = 16.808  MPa


due to Elevation Difference

Maxim um Allowable Elevation D ifference ELALL :=  ΔTP  = 1.672  103 m


 ρ g 
 w 

2.2 Calculation of Stresses

(a) Hoop stress on Pipe wall

At lowest point, Maximum Allowable Hoop Stress

 TPMax ( D - t w)
S H1 :=   = 324 MPa
2  tw
 

Page 2 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

At highest point, Maxim um Allowable Hoop stress

 TPMin ( D - t w)
S H2 :=   = 133.475  MPa
2  tw
 

Maxim um Calculated Hoop stress

( )
S H := max S H1 , SH2 = 324 MPa

Allowable Hoop Stress (SH a)

S Ha := 0.9SMYS = 324 MPa

Stress Check (Hoop)

Hoop R := "PASS" if S H  S Ha

"FAIL, Redesign Pipeline" otherwise

Hoop R = "PASS"

(b) Longitudinal stresses


Longitudinal Stress due to Internal Pressure (at lowest point)

S P1 := υS S H1 = 97.2 MPa

Longitudinal Stress due to Internal Pressure (at highest point)


S P2 := υS S H2 = 40.042  MPa

Longitudinal Stress due to Therm al Expansion

( )
S T := ES  α Ti - Tw = -65.075 MPa

Bending Stress for Straight pipe


S B := 68.3MPa

Axial Stress due to External Force


R
S X := = 0  MPa
Ac
At lowest point, Maximum Allowable Longitudinal Stress

S L1 := S P1 + S T + SX + SB = 100.425  MPa

Page 3 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

At highest point, Maxim um Allowable Longitudinal Stress

S L2 := S P2 + S T + SX + SB = 43.267  MPa

Maxim um Calculated Longitudinal Stress

( )
σL := max S L1 , S L2 = 100.425  MPa

Maxim um Allowable Stress (Total Longitudinal)


(For Restrained)

σALR := 0.9  SMYS = 324 MPa

Stress Check (Total Longitudinal)

Total Longitudinal R := "PASS" if σL  σALR

"FAIL, Redesign Pipeline" otherwise

Total Longitudinal R = "PASS"

(c) Combined stress


Von Mises equation:
At lowest point, Maximum Anticipated Combined Stress

2 2
σVon1 := S L1 - S L1 SH1 + S H1 σVon1 = 287.3 MPa

At highest point, Maxim um Anticipated Com bined Stress

2 2
σVon2 := S L2 - S L2 SH2 + S H2 σVon2 = 117.951  MPa

( )
σVon := max σVon1 , σVon2 = 287.269  MPa

Maxim um Allowable Stress (Com bined)

σAER := 0.9  Tdf  SMYS = 324 MPa

Combined Stress Check


Stress Check (Combined)
Von Mises Check:
CombinedVon := "PASS" if σVon  σAER

"FAIL, Redesign Pipeline" otherwise

CombinedVon = "PASS"

Page 4 of 5
JOB No: JI-2035 HYDROSTATIC TEST PRESSURE CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
Doc No.: APPENDIX G.7
17051820-0000-A0-060-CAL-0001 6" FLOWLINES FROM REMOTE MANIFOLD

A3.0 SUMMARY OF RESULTS

TABLE-1 : SUMMARY OF RESULTS


Nominal Hydrotest Max. Combined
Wall Internal Allowable Combined Stress Check
Outer Pressure Stress
Thickness Design Elevation
Diameter Von
(tw) Pressure Max. Min. difference Allowable
(D) Mises
Von Mises
(mm) (mm) (MPa) (MPa) (MPa) m (MPa) (MPa)

168.30 7.11 9.42 28.58 11.78 1672.13 287.27 324.00 PASS

Page 5 of 5
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

APPENDIX-H COLD FIELD BEND AND MOTHER PIPE FOR HOT


INDUCTION BEND WALL THICKNESS CALCULATION FOR DESIGN
FACTOR 0.72

APPENDIX H.1 10 “LP Gathering Header Trunkline

APPENDIX H.2 10 “HP Gathering Header Trunkline

APPENDIX H.3 6” Sour Liquid Return Pipeline

APPENDIX H.4 6” Sour Condensate Export Pipeline

APPENDIX H.5 14” Sour Gas Export Pipeline

APPENDIX H.6 20” Sour Oil Export Pipeline

APPENDIX H.7 6” Fuel Gas Import Pipeline

APPENDIX H.8 6” Flowlines from Remote Manifolds


JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.1
Doc No.: 10" LP GATHERING HEADER TRUNKLINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:

Nominal Outer Diam eter of Pipe D := 273mm

Design Pressure P := 94.2bar

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type

Longitudinal Joint Factor E := 1 (As per ASME B 31.8:


Table 841.1.7-1)
Specified Minim um Yield Strength SMYS := 52200psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Ground) Tda := 93 °C
Maxim um Design Temperature (Under Ground) Tdu := 76 °C
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor DF := 0.72

2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends

Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 11.13mm

Nominal wall thickness with allowances tw := 8.17mm

Inner Bend Radius divided by Diameter ( 40 D - 0.5  D )


n c1 := = 39.5
D

50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 8.272 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 11.13 mm

Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.1
Doc No.: 10" LP GATHERING HEADER TRUNKLINE
17051820-0000-A0-060-CAL-0001

Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1  tbend1c

"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
Selcted Wall Thickness (for DF) for Hot Bend t hot1 := 14.27mm

Nominal wall thickness with allowances tw1 := 8.17mm


Inner Bend Radius divided by Diameter ( 5  D - 0.5  D )
n h1 := = 4.5
D

50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 8.99 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 14.27 mm

Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1  t bend1h

"Unsafe" otherwise

Check2 = "Safe"

3 SUMMARY OF RESULTS

TABLE-1: Wall Thickness Summary


Nominal Cold Bend Motherpipe Hot Bend Motherpipe
Design
Outer Design Thickness Thickness
S.No. Pressure
Diameter Factor

Minim um Selected Minim um Selected


mm barg mm mm

1 273.0 94.2 0.72 8.27 11.13 8.99 14.27

Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.2
Doc No.: 10" HP GATHERING HEADER TRUNKLINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:

Nominal Outer Diam eter of Pipe D := 273mm

Design Pressure P := 94.2bar

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type

Longitudinal Joint Factor E := 1 (As per ASME B 31.8:


Table 841.1.7-1)
Specified Minim um Yield Strength SMYS := 52200psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Ground) Tda := 93 °C
Maxim um Design Temperature (Under Ground) Tdu := 76 °C
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor DF := 0.72

2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.

2.1 Cold bends

Selcted Wall Thickness (for DF) for Cold Bend


t cold1 := 11.13mm

Nominal wall thickness with allowances tw := 8.17mm

Inner Bend Radius divided by Diameter ( 40 D - 0.5  D )


n c1 := = 39.5
D

50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 8.272 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 11.13 mm

Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.2
Doc No.: 10" HP GATHERING HEADER TRUNKLINE
17051820-0000-A0-060-CAL-0001

Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1  tbend1c

"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
t hot1 := 14.27mm
Selcted Wall Thickness (for DF) for Hot Bend
Nominal wall thickness with allowances tw1 := 8.17mm
Inner Bend Radius divided by Diameter ( 5  D - 0.5  D )
n h1 := = 4.5
D

50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 8.99 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 14.27 mm

Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1  t bend1h

"Unsafe" otherwise

Check2 = "Safe"

3 SUMMARY OF RESULTS

TABLE-1: Wall Thickness Summary

Nominal Cold Bend Motherpipe Hot Bend Motherpipe


Design
Outer Design Thickness Thickness
S.No. Pressure
Diameter Factor

Minim um Selected Minim um Selected


mm barg mm mm

1 273.0 94.2 0.72 8.27 11.13 8.99 14.27

Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.3
Doc No.: 6" SOUR LIQUID RETUN PIPELINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:

Nominal Outer Diam eter of Pipe D := 168.3mm

Design Pressure P := 98bar

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type

Longitudinal Joint Factor E := 1 (As per ASME B 31.8:


Table 841.1.7-1)
Specified Minim um Yield Strength SMYS := 52200psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Aground) Tda := 93 °C

Maxim um Design Temperature (Under ground) Tdu := 50 °C


Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor DF := 0.72

2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends

Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 7.11mm

Nominal wall thickness with allowances tw := 6.39mm

Inner Bend Radius divided by Diameter ( 40 D - 0.5  D )


n c1 := = 39.5
D

50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 6.47 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 7.11 mm

Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.3
Doc No.: 6" SOUR LIQUID RETUN PIPELINE
17051820-0000-A0-060-CAL-0001

Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1  tbend1c

"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
t hot1 := 9.53mm
Selcted Wall Thickness (for DF) for Hot Bend
Nominal wall thickness with allowances tw1 := 6.39mm
Inner Bend Radius divided by Diameter ( 5  D - 0.5  D )
n h1 := = 4.5
D

50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 7.03 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 9.53 mm

Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1  t bend1h

"Unsafe" otherwise

Check2 = "Safe"

3 SUMMARY OF RESULTS

TABLE-1: Wall Thickness Summary


Nominal Cold Bend Motherpipe Hot Bend Motherpipe
Design
Outer Design Thickness Thickness
S.No. Pressure
Diameter Factor

Minim um Selected Minim um Selected


mm barg mm mm

1 168.3 98.0 0.72 6.47 7.11 7.03 9.53

Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.4
Doc No.: 6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:

Nominal Outer Diam eter of Pipe D := 168.3mm

Design Pressure P := 98bar

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type

Longitudinal Joint Factor E := 1 (As per ASME B 31.8:


Table 841.1.7-1)
Specified Minim um Yield Strength SMYS := 52200psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Aground) Tda := 93 °C

Maxim um Design Temperature (Under ground) Tdu := 50 °C


Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor DF := 0.72

2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends
t cold1 := 7.11mm
Selcted Wall Thickness (for DF) for Cold Bend

Nominal wall thickness with allowances tw := 6.39mm

Inner Bend Radius divided by Diameter ( 40 D - 0.5  D )


n c1 := = 39.5
D

50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 6.47 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 7.11 mm

Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.4
Doc No.: 6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1  tbend1c

"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
Selcted Wall Thickness (for DF) for Hot Bend t hot1 := 9.53mm

Nominal wall thickness with allowances tw1 := 6.39mm


Inner Bend Radius divided by Diameter ( 5  D - 0.5  D )
n h1 := = 4.5
D

50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 7.03 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 9.53 mm

Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1  t bend1h

"Unsafe" otherwise

Check2 = "Safe"

3 SUMMARY OF RESULTS

TABLE-1: Wall Thickness Summary


Nominal Cold Bend Motherpipe Hot Bend Motherpipe
Design
Outer Design Thickness Thickness
S.No. Pressure
Diameter Factor

Minim um Selected Minim um Selected


mm barg mm mm

1 168.3 98.0 0.72 6.47 7.11 7.03 9.53

Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.5
Doc No.: 14" SOUR OIL EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:

Nominal Outer Diam eter of Pipe D := 355.6mm

Design Pressure P := 75bar

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type

Longitudinal Joint Factor E := 1 (As per ASME B 31.8:


Table 841.1.7-1)
Specified Minim um Yield Strength SMYS := 52200psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Aground) Tda := 93 °C

Maxim um Design Temperature (Under ground) Tdu := 45 °C


Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor DF := 0.72

2 CALCULATION

Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends

Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 8.74mm

Nominal wall thickness with allowances tw := 8.35mm

Inner Bend Radius divided by Diameter ( 40 D - 0.5  D )


n c1 := = 39.5
D

50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 8.454 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 8.74 mm

Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.5
Doc No.: 14" SOUR OIL EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1  tbend1c

"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
t hot1 := 11.91mm
Selcted Wall Thickness (for DF) for Hot Bend
Nominal wall thickness with allowances tw1 := 8.35mm
Inner Bend Radius divided by Diameter ( 5  D - 0.5  D )
n h1 := = 4.5
D

50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 9.19 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 11.91 mm

Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1  t bend1h

"Unsafe" otherwise

Check2 = "Safe"

3 SUMMARY OF RESULTS

TABLE-1: Wall Thickness Summary


Nominal Cold Bend Motherpipe Hot Bend Motherpipe
Design
Outer Design Thickness Thickness
S.No. Pressure
Diameter Factor

Minim um Selected Minim um Selected


mm barg mm mm

1 355.6 75.0 0.72 8.45 8.74 9.19 11.91

Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.6
Doc No.: 20" SOUR OIL EXXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:

Nominal Outer Diam eter of Pipe D := 508mm

Design Pressure P := 75bar

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type

Longitudinal Joint Factor E := 1 (As per ASME B 31.4:


Table 403.2.1-1)
Specified Minim um Yield Strength SMYS := 52200psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Ground) Tda := 93 °C

Maxim um Design Temperature (Under Ground) Tdu := 65 °C

Design Factor DF := 0.72

2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends
Selcted Wall Thickness (for DF) for Cold Bend
t cold1 := 7.92mm

Nominal wall thickness with allowances tw := 7.46mm

Inner Bend Radius divided by Diameter ( 40 D - 0.5  D )


n c1 := = 39.5
D

50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 7.553 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 7.92 mm

Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.6
Doc No.: 20" SOUR OIL EXXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1  tbend1c

"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
Selcted Wall Thickness (for DF) for Hot Bend t hot1 := 12.7mm
Nominal wall thickness with allowances tw1 := 7.46mm
Inner Bend Radius divided by Diameter ( 5  D - 0.5  D )
n h1 := = 4.5
D

50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 8.21 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 12.7 mm

Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1  t bend1h

"Unsafe" otherwise

Check2 = "Safe"

3 SUMMARY OF RESULTS

TABLE-1: Wall Thickness Summary


Nominal Cold Bend Motherpipe Hot Bend Motherpipe
Design
Outer Design Thickness Thickness
S.No. Pressure
Diameter Factor

Minim um Selected Minim um Selected


mm barg mm mm

1 508.0 75.0 0.72 7.55 7.92 8.21 12.70

Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.7
Doc No.: 6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:

Nominal Outer Diam eter of Pipe D := 168.3mm

Design Pressure P := 37.9bar

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type

Longitudinal Joint Factor E := 1 (As per ASME B 31.8:


Table 841.1.7-1)
Specified Minim um Yield Strength SMYS := 52200psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Aground) Tda := 93 °C

Maxim um Design Temperature (Under ground) Tdu := 50 °C


Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor DF := 0.72

2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends
Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 7.11mm

Nominal wall thickness with allowances tw := 4.44mm

Inner Bend Radius divided by Diameter ( 40 D - 0.5  D )


n c1 := = 39.5
D

50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 4.495 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 7.11 mm

Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.7
Doc No.: 6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001

Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1  tbend1c

"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
t hot1 := 9.53mm
Selcted Wall Thickness (for DF) for Hot Bend
Nominal wall thickness with allowances tw1 := 4.44mm

Inner Bend Radius divided by Diameter ( 5  D - 0.5  D )


n h1 := = 4.5
D

50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 4.88 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 9.53 mm

Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1  t bend1h

"Unsafe" otherwise

Check2 = "Safe"

3 SUMMARY OF RESULTS

TABLE-1: Wall Thickness Summary

Nominal Cold Bend Motherpipe Hot Bend Motherpipe


Design
Outer Design Thickness Thickness
S.No. Pressure
Diameter Factor

Minim um Selected Minim um Selected


mm barg mm mm

1 168.3 37.9 0.72 4.50 7.11 4.88 9.53

Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.8
Doc No.: 6" FLOWLINES FROM REMOTE MANIFOLD
17051820-0000-A0-060-CAL-0001

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:

Nominal Outer Diam eter of Pipe D := 168.3mm

Design Pressure P := 94.2bar

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type

Longitudinal Joint Factor E := 1 (As per ASME B 31.8:


Table 841.1.7-1)
Specified Minim um Yield Strength SMYS := 52200psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Ground) Tda := 93 °C
Maxim um Design Temperature (Under Ground) Tdu := 76 °C
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor DF := 0.72

2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends

Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 7.11mm

Nominal wall thickness with allowances tw := 6.26mm

Inner Bend Radius divided by Diameter ( 40 D - 0.5  D )


n c1 := = 39.5
D

50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 6.338 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 7.11 mm

Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.72
APPENDIX H.8
Doc No.: 6" FLOWLINES FROM REMOTE MANIFOLD
17051820-0000-A0-060-CAL-0001

Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1  tbend1c

"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
Selcted Wall Thickness (for DF) for Hot Bend t hot1 := 9.53mm

Nominal wall thickness with allowances tw1 := 6.26mm


Inner Bend Radius divided by Diameter ( 5  D - 0.5  D )
n h1 := = 4.5
D

50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 6.89 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 9.53 mm

Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1  t bend1h

"Unsafe" otherwise

Check2 = "Safe"

3 SUMMARY OF RESULTS

TABLE-1: Wall Thickness Summary


Nominal Cold Bend Motherpipe Hot Bend Motherpipe
Design
Outer Design Thickness Thickness
S.No. Pressure
Diameter Factor

Minim um Selected Minim um Selected


mm barg mm mm

1 168.3 94.2 0.72 6.34 7.11 6.89 9.53

Page 2 of 2
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

APPENDIX-I COLD FIELD BEND AND MOTHER PIPE FOR HOT


INDUCTION BEND WALL THICKNESS CALCULATION FOR DESIGN
FACTOR 0.6

APPENDIX I.1 10 “LP Gathering Header Trunkline

APPENDIX I.2 10 “HP Gathering Header Trunkline

APPENDIX I.3 6” Sour Liquid Return Pipeline

APPENDIX I.4 6” Sour Condensate Export Pipeline

APPENDIX I.5 14” Sour Gas Export Pipeline

APPENDIX I.6 6” Fuel Gas Import Pipeline

APPENDIX I.7 6” Flowlines from Remote Manifolds


JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.1
Doc No.: 10" LP GATHERING HEADER TRUNKLINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:

Nominal Outer Diam eter of Pipe D := 273mm

Design Pressure P := 94.2bar

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type

Longitudinal Joint Factor E := 1 (As per ASME B 31.8:


Table 841.1.7-1)
Specified Minim um Yield Strength SMYS := 52200psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Ground) Tda := 93 °C
Maxim um Design Temperature (Under Ground) Tdu := 76 °C
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor DF := 0.6

2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends

Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 11.13mm

Nominal wall thickness with allowances tw := 9.16mm

Inner Bend Radius divided by Diameter ( 40 D - 0.5  D )


n c1 := = 39.5
D

50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 9.274 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 11.13 mm

Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.1
Doc No.: 10" LP GATHERING HEADER TRUNKLINE
17051820-0000-A0-060-CAL-0001

Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1  tbend1c

"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
Selcted Wall Thickness (for DF) for Hot Bend t hot1 := 14.27mm

Nominal wall thickness with allowances tw1 := 8.17mm


Inner Bend Radius divided by Diameter ( 5  D - 0.5  D )
n h1 := = 4.5
D

50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 8.99 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 14.27 mm

Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1  t bend1h

"Unsafe" otherwise

Check2 = "Safe"

3 SUMMARY OF RESULTS

TABLE-1: Wall Thickness Summary

Nominal Cold Bend Motherpipe Hot Bend Motherpipe


Design
Outer Design Thickness Thickness
S.No. Pressure
Diameter Factor

Minim um Selected Minim um Selected


mm barg mm mm

1 273.0 94.2 0.60 9.27 11.13 8.99 14.27

Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.2
Doc No.: 10" HP GATHERING HEADER TRUNKLINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:

Nominal Outer Diam eter of Pipe D := 273mm

Design Pressure P := 94.2bar

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type

Longitudinal Joint Factor E := 1 (As per ASME B 31.8:


Table 841.1.7-1)
Specified Minim um Yield Strength SMYS := 52200psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Ground) Tda := 93 °C
Maxim um Design Temperature (Under Ground) Tdu := 76 °C
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor DF := 0.6

2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.

2.1 Cold bends

Selcted Wall Thickness (for DF) for Cold Bend


t cold1 := 11.13mm

Nominal wall thickness with allowances tw := 9.16mm

Inner Bend Radius divided by Diameter ( 40 D - 0.5  D )


n c1 := = 39.5
D

50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 9.274 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 11.13 mm

Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.2
Doc No.: 10" HP GATHERING HEADER TRUNKLINE
17051820-0000-A0-060-CAL-0001

Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1  tbend1c

"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
t hot1 := 14.27mm
Selcted Wall Thickness (for DF) for Hot Bend
Nominal wall thickness with allowances tw1 := 8.17mm
Inner Bend Radius divided by Diameter ( 5  D - 0.5  D )
n h1 := = 4.5
D

50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 8.99 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 14.27 mm

Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1  t bend1h

"Unsafe" otherwise

Check2 = "Safe"

3 SUMMARY OF RESULTS

TABLE-1: Wall Thickness Summary


Nominal Cold Bend Motherpipe Hot Bend Motherpipe
Design
Outer Design Thickness Thickness
S.No. Pressure
Diameter Factor
Minim um Selected Minim um Selected
mm barg mm mm

1 273.0 94.2 0.60 9.27 11.13 8.99 14.27

Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.3
Doc No.: 6" SOUR LIQUID RETURN PIPELINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:

Nominal Outer Diam eter of Pipe D := 168.3mm

Design Pressure P := 98bar

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type

Longitudinal Joint Factor E := 1 (As per ASME B 31.8:


Table 841.1.7-1)
Specified Minim um Yield Strength SMYS := 52200psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Aground) Tda := 93 °C

Maxim um Design Temperature (Under ground) Tdu := 50 °C


Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor DF := 0.6

2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends

Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 7.11mm

Nominal wall thickness with allowances tw := 7.02mm

Inner Bend Radius divided by Diameter ( 40 D - 0.5  D )


n c1 := = 39.5
D

50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 7.108 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 7.11 mm

Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.3
Doc No.: 6" SOUR LIQUID RETURN PIPELINE
17051820-0000-A0-060-CAL-0001

Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1  tbend1c

"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
t hot1 := 9.53mm
Selcted Wall Thickness (for DF) for Hot Bend
Nominal wall thickness with allowances tw1 := 6.39mm
Inner Bend Radius divided by Diameter ( 5  D - 0.5  D )
n h1 := = 4.5
D

50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 7.03 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 9.53 mm

Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1  t bend1h

"Unsafe" otherwise

Check2 = "Safe"

3 SUMMARY OF RESULTS

TABLE-1: Wall Thickness Summary

Nominal Cold Bend Motherpipe Hot Bend Motherpipe


Design
Outer Design Thickness Thickness
S.No. Pressure
Diameter Factor

Minim um Selected Minim um Selected


mm barg mm mm

1 168.3 98.0 0.60 7.11 7.11 7.03 9.53

Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.4
Doc No.: 6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:

Nominal Outer Diam eter of Pipe D := 168.3mm

Design Pressure P := 98bar

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type

Longitudinal Joint Factor E := 1 (As per ASME B 31.8:


Table 841.1.7-1)
Specified Minim um Yield Strength SMYS := 52200psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Aground) Tda := 93 °C

Maxim um Design Temperature (Under ground) Tdu := 50 °C


Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor DF := 0.6

2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends
t cold1 := 7.11mm
Selcted Wall Thickness (for DF) for Cold Bend

Nominal wall thickness with allowances tw := 7.02mm

Inner Bend Radius divided by Diameter ( 40 D - 0.5  D )


n c1 := = 39.5
D

50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 7.108 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 7.11 mm

Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.4
Doc No.: 6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1  tbend1c

"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
Selcted Wall Thickness (for DF) for Hot Bend t hot1 := 9.53mm

Nominal wall thickness with allowances tw1 := 6.39mm


Inner Bend Radius divided by Diameter ( 5  D - 0.5  D )
n h1 := = 4.5
D

50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 7.03 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 9.53 mm

Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1  t bend1h

"Unsafe" otherwise

Check2 = "Safe"

3 SUMMARY OF RESULTS

TABLE-1: Wall Thickness Summary

Nominal Cold Bend Motherpipe Hot Bend Motherpipe


Design
Outer Design Thickness Thickness
S.No. Pressure
Diameter Factor

Minim um Selected Minim um Selected


mm barg mm mm

1 168.3 98.0 0.60 7.11 7.11 7.03 9.53

Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.5
Doc No.: 14" SOUR GAS EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:

Nominal Outer Diam eter of Pipe D := 355.6mm

Design Pressure P := 75bar

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type

Longitudinal Joint Factor E := 1 (As per ASME B 31.8:


Table 841.1.7-1)
Specified Minim um Yield Strength SMYS := 52200psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Aground) Tda := 93 °C

Maxim um Design Temperature (Under ground) Tdu := 45 °C


Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor DF := 0.6

2 CALCULATION

Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends

Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 10.31mm

Nominal wall thickness with allowances tw := 9.38mm

Inner Bend Radius divided by Diameter ( 40 D - 0.5  D )


n c1 := = 39.5
D

50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 9.497 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 10.31 mm

Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.5
Doc No.: 14" SOUR GAS EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1  tbend1c

"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
t hot1 := 11.91mm
Selcted Wall Thickness (for DF) for Hot Bend
Nominal wall thickness with allowances tw1 := 8.35mm
Inner Bend Radius divided by Diameter ( 5  D - 0.5  D )
n h1 := = 4.5
D

50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 9.19 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 11.91 mm

Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1  t bend1h

"Unsafe" otherwise

Check2 = "Safe"

3 SUMMARY OF RESULTS

TABLE-1: Wall Thickness Summary

Nominal Cold Bend Motherpipe Hot Bend Motherpipe


Design
Outer Design Thickness Thickness
S.No. Pressure
Diameter Factor

Minim um Selected Minim um Selected


mm barg mm mm

1 355.6 75.0 0.60 9.50 10.31 9.19 11.91

Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.6
Doc No.: 6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:

Nominal Outer Diam eter of Pipe D := 168.3mm

Design Pressure P := 37.9bar

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type

Longitudinal Joint Factor E := 1 (As per ASME B 31.8:


Table 841.1.7-1)
Specified Minim um Yield Strength SMYS := 52200psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Aground) Tda := 93 °C

Maxim um Design Temperature (Under ground) Tdu := 50 °C


Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor DF := 0.6

2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends
Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 7.11mm

Nominal wall thickness with allowances tw := 4.68mm

Inner Bend Radius divided by Diameter ( 40 D - 0.5  D )


n c1 := = 39.5
D

50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 4.739 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 7.11 mm

Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.6
Doc No.: 6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001

Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1  tbend1c

"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
t hot1 := 9.53mm
Selcted Wall Thickness (for DF) for Hot Bend
Nominal wall thickness with allowances tw1 := 4.44mm

Inner Bend Radius divided by Diameter ( 5  D - 0.5  D )


n h1 := = 4.5
D

50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 4.88 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 9.53 mm

Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1  t bend1h

"Unsafe" otherwise

Check2 = "Safe"

3 SUMMARY OF RESULTS

TABLE-1: Wall Thickness Summary


Nominal Cold Bend Motherpipe Hot Bend Motherpipe
Design
Outer Design Thickness Thickness
S.No. Pressure
Diameter Factor

Minim um Selected Minim um Selected


mm barg mm mm

1 168.3 37.9 0.60 4.74 7.11 4.88 9.53

Page 2 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.7
Doc No.: 6" FLOWLINES FROM REMOTE MANIFOLD
17051820-0000-A0-060-CAL-0001

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of Mother Pipe thickness:

Nominal Outer Diam eter of Pipe D := 168.3mm

Design Pressure P := 94.2bar

Corrosion Allowance A := 3.2mm

Material Specification and Grade Material := "API 5L X52"

Manufacturing Type

Longitudinal Joint Factor E := 1 (As per ASME B 31.8:


Table 841.1.7-1)
Specified Minim um Yield Strength SMYS := 52200psi (As per API 5L; Table 6&7)
kg
ρ := 7850 
Density of Steel 3
m
Maxim um Design Temperature (Above Ground) Tda := 93 °C
Maxim um Design Temperature (Under Ground) Tdu := 76 °C
Tem perature Derating Factor Tdf := 1 (As per ASME B 31.8: Table 841.1.8-1)

Design Factor DF := 0.6

2 CALCULATION
Wall thinning percentage of mother pipe wall thickness is computed with formulae indicated in BS PD 8010-1
para. 6.2.2.3.
2.1 Cold bends

Selcted Wall Thickness (for DF) for Cold Bend t cold1 := 7.11mm

Nominal wall thickness with allowances tw := 6.88mm

Inner Bend Radius divided by Diameter ( 40 D - 0.5  D )


n c1 := = 39.5
D

50 %
Percentage of Wall Thinning t thin1c := = 0.01
( nc1 + 1)
tw
Pipe Thickness before Bending t bend1c := = 6.966 mm
( 1 - tthin1c)
Selected Wall Thickness for Cold Bend ( t cold1) t cold1 = 7.11 mm

Page 1 of 2
JOB No: JI-2035 COLD FIELD BEND & MOTHER PIPE FOR
HOT INDUCTION BEND WALL THICKNESS CALCULATION
Client: KOC FOR DESIGN FACTOR 0.6
APPENDIX I.7
Doc No.: 6" FLOWLINES FROM REMOTE MANIFOLD
17051820-0000-A0-060-CAL-0001

Check 1
Pipe Thickness before Bending < Available for Bending Check1 := "Safe" if tcold1  tbend1c

"Unsafe" otherwise
Check1 = "Safe"
2.2 Hot bends
Selcted Wall Thickness (for DF) for Hot Bend t hot1 := 9.53mm

Nominal wall thickness with allowances tw1 := 6.26mm


Inner Bend Radius divided by Diameter ( 5  D - 0.5  D )
n h1 := = 4.5
D

50 %
Percentage of Wall Thinning t thin1h := = 0.09
( nh1 + 1)
tw1
Pipe Thickness before Bending t bend1h := = 6.89 mm
( 1 - tthin1h)
Selected Wall Thickness for Hot Bend ( thot1) t hot1 = 9.53 mm

Check 2
Pipe Thickness before Bending < Available for Bending
Check2 := "Safe" if thot1  t bend1h

"Unsafe" otherwise

Check2 = "Safe"

3 SUMMARY OF RESULTS

TABLE-1: Wall Thickness Summary


Nominal Cold Bend Motherpipe Hot Bend Motherpipe
Design
Outer Design Thickness Thickness
S.No. Pressure
Diameter Factor

Minim um Selected Minim um Selected


mm barg mm mm

1 168.3 94.2 0.60 6.97 7.11 6.89 9.53

Page 2 of 2
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

APPENDIX-J ANCHOR LOAD AND FREE END EXPANSION

APPENDIX J.1 10 “HP Gathering Header Trunkline

APPENDIX J.2 6” Sour Liquid Return Pipeline

APPENDIX J.3 6” Sour Condensate Export Pipeline

APPENDIX J.4 14” Sour Gas Export Pipeline

APPENDIX J.5 20” Sour Oil Export Pipeline

APPENDIX J.6 6” Fuel Gas Import Pipeline


JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.1
Doc No.: 10" HP GATHERING HEADER TRUNKLINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA

Pipe Data

The following data listed pertaining to the line pipe, are required for the calculation of wall thickness.

Minimum Installation Temperature T1 := 8 °C

Maxim um Design Temperature T2 := 76 °C

Maxim um Above Ground Temperat ure T3 := 93 °C

Maxim um Design Pressure P := 94.2bar

Nominal Outer Diam eter of Line Pipe D 0 := 273 mm

Nominal Wall Thickness t := 9.27 mm

Material Specification / Grade Material := "API 5L/X52"


-5 1 (As per ASME B31.8,
Coefficient of Thermal Expansion α := 1.17  10
K Clause 832.2)

Modulus of Elasticity of Steel E := 203000MPa (As per ASME B31.8,


Clause 832.5-1)
Poisson's Ratio For Steel Pipe ν := 0.3 (As per ASME B31.8,
Clause 402.2.3)
Allowable end expansion near AG/UG δall := 50mm
transition
Is Anc hor Bloc k Allowed for the project

Soil Data
Type of Soil

Depth of Burial to Top of Pipeline


h := 1.2m

Soil Cohesive
c := 0kPa

c
c1 := =0
ksf

Coating Material

Friction Factor f = 0.6

Soil's Angle of Internal Friction ϕ := 33deg

-3
Density of Soil ρ := 1785 kg m

Unit Weight of Soil Y := g  ρ

Page 1 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.1
Doc No.: 10" HP GATHERING HEADER TRUNKLINE
17051820-0000-A0-060-CAL-0001

2 Calculation

2.1 Axial Forces :


Pipeline Cross-sectional area

π 2 2 -3 2
A :=
4
(D 0 ) (
- D0 - 2t )  = 7.68  10 m

2.1.1 Under Ground Anchor Load ( FUG):

Anchor load is the axial compressive force caused by internal pressure and tem perature difference & is realized only
when the pipeline is restrained as incase of pipeline in buried condition.

  P D 0 
FUG := A  E α ( T3 - T1) + ( 0.5 - ν)    = 1.764  106 N
  2  t 
2.1.2 Frictional Resistance Force of Soil ( f spfr ):

The m ovem ent of buried pipeline due to tem perature is resisted by the soil resistance force in the axial direction,

The Soil Cover above Center of Pipeline (equal to depth of pipe centerline)

 D0 
H p :=   + h = 1.337 m
 2 
Soil Adhesion Factor

αs := 0.608 - 0.123 c1 -  0.274  +  0.695  = 1.029


  c 1 2 + 1    c 1 3 + 1 
   
Coefficient of Soil Pressure at Rest

K := 1 - sin( ϕ) = 0.455

Interface Angle Between Pipeline and Soil


θ := f  ϕ = 19.8 deg

Frictional Resistance Force at Pipe-Soil Interface per unit Length of Pipeline


( 1 + K)  1
f spfr := π D 0  αs c + π D 0  H p  Y  
3
  tan( θ ) = 5.257  10 m  N
 2 

2.2 Under Ground Pipeline End Expansion:

2.2.1 Length of Pipeline:

Length of pipeline (between UG/AG transition and pig trap) L1 := 23.5m

2.2.2 End Expansion at UG/AG transition (due to thermal expansion):

End Expansion of the Pipeline at UG/AG transition in axial direction is given below:

FUG L1
δ1 := = 13.291  mm
2.A  E
Page 2 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.1
Doc No.: 10" HP GATHERING HEADER TRUNKLINE
17051820-0000-A0-060-CAL-0001

2.3 Total Expansion of the pipeline at the Pig Trap:

b) With actual anchor:

δactual := δ1 = 13.291  mm

3 Summary of Results

Table 1 : Anchor Load & Free End Summary


Nominal Outer End
Design Active Total
Diameter of Anchor Load Expansion at
Sl.No Pressure Length UG Expansion
Pipe UG/AG Point
m bar kN m mm mm

1 273.0 94.2 1763.6 23.5 13.3 13.3

Page 3 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.2
Doc No.: 6" SOUR LIQUID RETURN PIPELINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA

Pipe Data

The following data listed pertaining to the line pipe, are required for the calculation of wall thickness.

Minimum Installation Temperature T1 := 8 °C

Maxim um Design Temperature T2 := 50 °C

Maxim um Above Ground Temperat ure T3 := 93 °C

Maxim um Design Pressure P := 98bar

Nominal Outer Diam eter of Line Pipe D 0 := 168.3 mm

Nominal Wall Thickness t := 7.11 mm

Material Specification / Grade Material := "API 5L/X52"


-5 1 (As per ASME B31.8,
Coefficient of Thermal Expansion α := 1.17  10
K Clause 832.2)

Modulus of Elasticity of Steel E := 203000MPa (As per ASME B31.8,


Clause 832.5-1)
Poisson's Ratio For Steel Pipe ν := 0.3 (As per ASME B31.8,
Clause 402.2.3)
Allowable end expansion near AG/UG δall := 50mm
transition
Is Anc hor Bloc k Allowed for the project

Soil Data
Type of Soil

Depth of Burial to Top of Pipeline


h := 1m

Soil Cohesive
c := 0kPa

c
c1 := =0
ksf

Coating Material

Friction Factor f = 0.6

Soil's Angle of Internal Friction ϕ := 33deg

-3
Density of Soil ρ := 1785 kg m

Unit Weight of Soil Y := g  ρ

Page 1 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.2
Doc No.: 6" SOUR LIQUID RETURN PIPELINE
17051820-0000-A0-060-CAL-0001

2 Calculation

2.1 Axial Forces :


Pipeline Cross-sectional area

π 2 2 -3 2
A :=
4
(D 0 ) (
- D0 - 2t )  = 3.6  10 m

2.1.1 Under Ground Anchor Load ( FUG):

Anchor load is the axial compressive force caused by internal pressure and tem perature difference & is realized only
when the pipeline is restrained as incase of pipeline in buried condition.

  P D 0 
FUG := A  E α ( T3 - T1) + ( 0.5 - ν)    = 8.104  105 N
  2  t 
2.1.2 Frictional Resistance Force of Soil ( f spfr ):

The m ovem ent of buried pipeline due to tem perature is resisted by the soil resistance force in the axial direction,

The Soil Cover above Center of Pipeline (equal to depth of pipe centerline)

 D0 
H p :=   + h = 1.084 m
 2 
Soil Adhesion Factor

αs := 0.608 - 0.123 c1 -  0.274  +  0.695  = 1.029


  c 1 2 + 1    c 1 3 + 1 
   
Coefficient of Soil Pressure at Rest

K := 1 - sin( ϕ) = 0.455

Interface Angle Between Pipeline and Soil


θ := f  ϕ = 19.8 deg

Frictional Resistance Force at Pipe-Soil Interface per unit Length of Pipeline


( 1 + K)  1
f spfr := π D 0  αs c + π D 0  H p  Y  
3
  tan( θ ) = 2.629  10 m  N
 2 

2.2 Under Ground Pipeline End Expansion:

2.2.1 Length of Pipeline:

Length of pipeline (between UG/AG transition and pig trap) L1 := 16.5m

2.2.2 End Expansion at UG/AG transition (due to thermal expansion):

End Expansion of the Pipeline at UG/AG transition in axial direction is given below:

FUG L1
δ1 := = 9.147 mm
2.A  E
Page 2 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.2
Doc No.: 6" SOUR LIQUID RETURN PIPELINE
17051820-0000-A0-060-CAL-0001

2.3 Total Expansion of the pipeline at the Pig Trap:

b) With actual anchor:

δactual := δ1 = 9.147 mm

3 Summary of Results

Table 1 : Anchor Load & Free End Summary


Nominal Outer End
Design Active Total
Diameter of Anchor Load Expansion at
Sl.No Pressure Length UG Expansion
Pipe UG/AG Point
m bar kN m mm mm

1 168.3 98.0 810.4 16.5 9.1 9.1

Page 3 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.3
Doc No.: 6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA

Pipe Data

The following data listed pertaining to the line pipe, are required for the calculation of wall thickness.

Minimum Installation Temperature T1 := 8 °C

Maxim um Design Temperature T2 := 50 °C

Maxim um Above Ground Temperat ure T3 := 93 °C

Maxim um Design Pressure P := 98bar

Nominal Outer Diam eter of Line Pipe D 0 := 168.3 mm

Nominal Wall Thickness t := 7.11 mm

Material Specification / Grade Material := "API 5L/X52"


-5 1 (As per ASME B31.8,
Coefficient of Thermal Expansion α := 1.17  10
K Clause 832.2)

Modulus of Elasticity of Steel E := 203000MPa (As per ASME B31.8,


Clause 832.5-1)
Poisson's Ratio For Steel Pipe ν := 0.3 (As per ASME B31.8,
Clause 402.2.3)
Allowable end expansion near AG/UG δall := 50mm
transition
Is Anc hor Bloc k Allowed for the project

Soil Data
Type of Soil

Depth of Burial to Top of Pipeline


h := 1m

Soil Cohesive
c := 0kPa

c
c1 := =0
ksf

Coating Material

Friction Factor f = 0.6

Soil's Angle of Internal Friction ϕ := 33deg

-3
Density of Soil ρ := 1785 kg m

Unit Weight of Soil Y := g  ρ

Page 1 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.3
Doc No.: 6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

2 Calculation

2.1 Axial Forces :


Pipeline Cross-sectional area

π 2 2 -3 2
A :=
4
(D 0 ) (
- D0 - 2t )  = 3.6  10 m

2.1.1 Under Ground Anchor Load ( FUG):

Anchor load is the axial compressive force caused by internal pressure and tem perature difference & is realized only
when the pipeline is restrained as incase of pipeline in buried condition.

  P D 0 
FUG := A  E α ( T3 - T1) + ( 0.5 - ν)    = 8.104  105 N
  2  t 
2.1.2 Frictional Resistance Force of Soil ( f spfr ):

The m ovem ent of buried pipeline due to tem perature is resisted by the soil resistance force in the axial direction,

The Soil Cover above Center of Pipeline (equal to depth of pipe centerline)

 D0 
H p :=   + h = 1.084 m
 2 
Soil Adhesion Factor

αs := 0.608 - 0.123 c1 -  0.274  +  0.695  = 1.029


  c 1 2 + 1    c 1 3 + 1 
   
Coefficient of Soil Pressure at Rest

K := 1 - sin( ϕ) = 0.455

Interface Angle Between Pipeline and Soil


θ := f  ϕ = 19.8 deg

Frictional Resistance Force at Pipe-Soil Interface per unit Length of Pipeline


( 1 + K)  1
f spfr := π D 0  αs c + π D 0  H p  Y  
3
  tan( θ ) = 2.629  10 m  N
 2 

2.2 Under Ground Pipeline End Expansion:

2.2.1 Length of Pipeline:

Length of pipeline (between UG/AG transition and pig trap) L1 := 16.5m

2.2.2 End Expansion at UG/AG transition (due to thermal expansion):

End Expansion of the Pipeline at UG/AG transition in axial direction is given below:

FUG L1
δ1 := = 9.147 mm
2.A  E
Page 2 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.3
Doc No.: 6" SOUR CONDENSATE EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

2.3 Total Expansion of the pipeline at the Pig Trap:

b) With actual anchor:

δactual := δ1 = 9.147 mm

3 Summary of Results

Table 1 : Anchor Load & Free End Summary


Nominal Outer End
Design Active Total
Diameter of Anchor Load Expansion at
Sl.No Pressure Length UG Expansion
Pipe UG/AG Point
m bar kN m mm mm

1 168.3 98.0 810.4 16.5 9.1 9.1

Page 3 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.4
Doc No.: 14" SOUR GAS EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA

Pipe Data

The following data listed pertaining to the line pipe, are required for the calculation of wall thickness.

Minimum Installation Temperature T1 := 8 °C

Maxim um Design Temperature T2 := 45 °C

Maxim um Above Ground Temperat ure T3 := 93 °C

Maxim um Design Pressure P := 75bar

Nominal Outer Diam eter of Line Pipe D 0 := 355.6 mm

Nominal Wall Thickness t := 8.74 mm

Material Specification / Grade Material := "API 5L/X52"


-5 1 (As per ASME B31.8,
Coefficient of Thermal Expansion α := 1.17  10
K Clause 832.2)

Modulus of Elasticity of Steel E := 203000MPa (As per ASME B31.8,


Clause 832.5-1)
Poisson's Ratio For Steel Pipe ν := 0.3 (As per ASME B31.8,
Clause 402.2.3)
Allowable end expansion near AG/UG δall := 50mm
transition
Is Anc hor Bloc k Allowed for the project

Soil Data
Type of Soil

Depth of Burial to Top of Pipeline


h := 1m

Soil Cohesive
c := 0kPa

c
c1 := =0
ksf

Coating Material

Friction Factor f = 0.6

Soil's Angle of Internal Friction ϕ := 33deg

-3
Density of Soil ρ := 1785 kg m

Unit Weight of Soil Y := g  ρ

Page 1 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.4
Doc No.: 14" SOUR GAS EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

2 Calculation

2.1 Axial Forces :


Pipeline Cross-sectional area

π 2 2 -3 2
A :=
4
(D 0 ) (
- D0 - 2t )  = 9.524  10 m

2.1.1 Under Ground Anchor Load ( FUG):

Anchor load is the axial compressive force caused by internal pressure and tem perature difference & is realized only
when the pipeline is restrained as incase of pipeline in buried condition.

  P D 0 
FUG := A  E α ( T3 - T1) + ( 0.5 - ν)    = 2.213  106 N
  2  t 
2.1.2 Frictional Resistance Force of Soil ( f spfr ):

The m ovem ent of buried pipeline due to tem perature is resisted by the soil resistance force in the axial direction,

The Soil Cover above Center of Pipeline (equal to depth of pipe centerline)

 D0 
H p :=   + h = 1.178 m
 2 
Soil Adhesion Factor

αs := 0.608 - 0.123 c1 -  0.274  +  0.695  = 1.029


  c 1 2 + 1    c 1 3 + 1 
   
Coefficient of Soil Pressure at Rest

K := 1 - sin( ϕ) = 0.455

Interface Angle Between Pipeline and Soil


θ := f  ϕ = 19.8 deg

Frictional Resistance Force at Pipe-Soil Interface per unit Length of Pipeline


( 1 + K)  1
f spfr := π D 0  αs c + π D 0  H p  Y  
3
  tan( θ ) = 6.034  10 m  N
 2 

2.2 Under Ground Pipeline End Expansion:

2.2.1 Length of Pipeline:

Length of pipeline (between UG/AG transition and pig trap) L1 := 19.75m

2.2.2 End Expansion at UG/AG transition (due to thermal expansion):

End Expansion of the Pipeline at UG/AG transition in axial direction is given below:

FUG L1
δ1 := = 11.305  mm
2.A  E
Page 2 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.4
Doc No.: 14" SOUR GAS EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

2.3 Total Expansion of the pipeline at the Pig Trap:

b) With actual anchor:

δactual := δ1 = 11.305  mm

3 Summary of Results

Table 1 : Anchor Load & Free End Summary


Nominal Outer End
Design Active Total
Diameter of Anchor Load Expansion at
Sl.No Pressure Length UG Expansion
Pipe UG/AG Point
m bar kN m mm mm

1 355.6 75.0 2213.3 19.8 11.3 11.3

Page 3 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.5
Doc No.: 20" SOUR OIL EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA

Pipe Data

The following data listed pertaining to the line pipe, are required for the calculation of wall thickness.

Minimum Installation Temperature T1 := 8 °C

Maxim um Design Temperature T2 := 65 °C

Maxim um Above Ground Temperat ure T3 := 93 °C

Maxim um Design Pressure P := 43.43bar

Nominal Outer Diam eter of Line Pipe D 0 := 508 mm

Nominal Wall Thickness t := 7.92 mm

Material Specification / Grade Material := "API 5L/X52"


-5 1 (As per ASME B31.4,
Coefficient of Thermal Expansion α := 1.17  10
K Clause 402.2.1)

Modulus of Elasticity of Steel E := 203000MPa (As per ASME B31.4,


Clause 403.2.1-1)
Poisson's Ratio For Steel Pipe ν := 0.3

Allowable end expansion near AG/UG δall := 50mm


transition
Is Anc hor Bloc k Allowed for the project

Soil Data
Type of Soil

Depth of Burial to Top of Pipeline


h := 1m

Soil Cohesive
c := 0kPa

c
c1 := =0
ksf

Coating Material

Friction Factor f = 0.6

Soil's Angle of Internal Friction ϕ := 33deg

-3
Density of Soil ρ := 1785 kg m

Unit Weight of Soil Y := g  ρ

Page 1 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.5
Doc No.: 20" SOUR OIL EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

2 Calculation

2.1 Axial Forces :


Pipeline Cross-sectional area

π 2 2 2
A :=
4
(D 0 ) (
- D0 - 2t )  = 0.012 m
2.1.1 Under Ground Anchor Load ( FUG):

Anchor load is the axial compressive force caused by internal pressure and tem perature difference & is realized only
when the pipeline is restrained as incase of pipeline in buried condition.

  P D 0 
FUG := A  E α ( T3 - T1) + ( 0.5 - ν)    = 2.859  106 N
  2  t 
2.1.2 Frictional Resistance Force of Soil ( f spfr ):

The m ovem ent of buried pipeline due to tem perature is resisted by the soil resistance force in the axial direction,

The Soil Cover above Center of Pipeline (equal to depth of pipe centerline)

 D0 
H p :=   + h = 1.254 m
 2 
Soil Adhesion Factor

αs := 0.608 - 0.123 c1 -  0.274  +  0.695  = 1.029


  c 1 2 + 1    c 1 3 + 1 
   
Coefficient of Soil Pressure at Rest

K := 1 - sin( ϕ) = 0.455

Interface Angle Between Pipeline and Soil


θ := f  ϕ = 19.8 deg

Frictional Resistance Force at Pipe-Soil Interface per unit Length of Pipeline


( 1 + K)  1
f spfr := π D 0  αs c + π D 0  H p  Y  
3
  tan( θ ) = 9.178  10 m  N
 2 

2.2 Under Ground Pipeline End Expansion:

2.2.1 Length of Pipeline:

Length of pipeline (between UG/AG transition and pig trap) L1 := 21.7m

2.2.2 End Expansion at UG/AG transition (due to thermal expansion):

End Expansion of the Pipeline at UG/AG transition in axial direction is given below:

FUG L1
δ1 := = 12.279  mm
2.A  E
Page 2 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.5
Doc No.: 20" SOUR OIL EXPORT PIPELINE
17051820-0000-A0-060-CAL-0001

2.3 Total Expansion of the pipeline at the Pig Trap:

b) With actual anchor:

δactual := δ1 = 12.279  mm

3 Summary of Results

Table 1 : Anchor Load & Free End Summary


Nominal Outer End
Design Active Total
Diameter of Anchor Load Expansion at
Sl.No Pressure Length UG Expansion
Pipe UG/AG Point
m bar kN m mm mm

1 508.0 43.4 2858.6 21.7 12.3 12.3

Page 3 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.6
Doc No.: 6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001

1 INPUT DATA

Pipe Data

The following data listed pertaining to the line pipe, are required for the calculation of wall thickness.

Minimum Installation Temperature T1 := 8 °C

Maxim um Design Temperature T2 := 50 °C

Maxim um Above Ground Temperat ure T3 := 93 °C

Maxim um Design Pressure P := 37.9bar

Nominal Outer Diam eter of Line Pipe D 0 := 168.3 mm

Nominal Wall Thickness t := 7.11 mm

Material Specification / Grade Material := "API 5L/X52"


-5 1 (As per ASME B31.8,
Coefficient of Thermal Expansion α := 1.17  10
K Clause 832.2)

Modulus of Elasticity of Steel E := 203000MPa (As per ASME B31.8,


Clause 832.5-1)
Poisson's Ratio For Steel Pipe ν := 0.3 (As per ASME B31.8,
Clause 402.2.3)
Allowable end expansion near AG/UG δall := 50mm
transition
Is Anc hor Bloc k Allowed for the project

Soil Data
Type of Soil

Depth of Burial to Top of Pipeline


h := 1m

Soil Cohesive
c := 0kPa

c
c1 := =0
ksf

Coating Material

Friction Factor f = 0.6

Soil's Angle of Internal Friction ϕ := 33deg

-3
Density of Soil ρ := 1785 kg m

Unit Weight of Soil Y := g  ρ

Page 1 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.6
Doc No.: 6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001

2 Calculation

2.1 Axial Forces :


Pipeline Cross-sectional area

π 2 2 -3 2
A :=
4
(D 0 ) (
- D0 - 2t )  = 3.6  10 m

2.1.1 Under Ground Anchor Load ( FUG):

Anchor load is the axial compressive force caused by internal pressure and tem perature difference & is realized only
when the pipeline is restrained as incase of pipeline in buried condition.

  P D 0 
FUG := A  E α ( T3 - T1) + ( 0.5 - ν)    = 7.592  105 N
  2  t 
2.1.2 Frictional Resistance Force of Soil ( f spfr ):

The m ovem ent of buried pipeline due to tem perature is resisted by the soil resistance force in the axial direction,

The Soil Cover above Center of Pipeline (equal to depth of pipe centerline)

 D0 
H p :=   + h = 1.084 m
 2 
Soil Adhesion Factor

αs := 0.608 - 0.123 c1 -  0.274  +  0.695  = 1.029


  c 1 2 + 1    c 1 3 + 1 
   
Coefficient of Soil Pressure at Rest

K := 1 - sin( ϕ) = 0.455

Interface Angle Between Pipeline and Soil


θ := f  ϕ = 19.8 deg

Frictional Resistance Force at Pipe-Soil Interface per unit Length of Pipeline


( 1 + K)  1
f spfr := π D 0  αs c + π D 0  H p  Y  
3
  tan( θ ) = 2.629  10 m  N
 2 

2.2 Under Ground Pipeline End Expansion:

2.2.1 Length of Pipeline:

Length of pipeline (between UG/AG transition and pig trap) L1 := 17.5m

2.2.2 End Expansion at UG/AG transition (due to thermal expansion):

End Expansion of the Pipeline at UG/AG transition in axial direction is given below:

FUG L1
δ1 := = 9.089 mm
2.A  E
Page 2 of 3
JOB No: JI-2035 ANCHOR LOAD & FREE END EXPANSION CALCULATION
Client: KOC APPENDIX J.6
Doc No.: 6" FUEL GAS IMPORT PIPELINE
17051820-0000-A0-060-CAL-0001

2.3 Total Expansion of the pipeline at the Pig Trap:

b) With actual anchor:

δactual := δ1 = 9.089 mm

3 Summary of Results

Table 1 : Anchor Load & Free End Summary


Nominal Outer End
Design Active Total
Diameter of Anchor Load Expansion at
Sl.No Pressure Length UG Expansion
Pipe UG/AG Point
m bar kN m mm mm

1 168.3 37.9 759.2 17.5 9.1 9.1

Page 3 of 3
GC-32, NEW GATHERING CENTRE FOR SEK
Document Title:
PIPELINE MECHANICAL CALCULATION REPORT
Document Number: Rev.
Contract No.: Project No.: Job No.: Date:
17051820-0000-A0-060-CAL-0001 1
17051820 EF/1931 JI-2035 17-02-19

APPENDIX-K PIPELINE BUOYANCY CALCULATION

APPENDIX K.1 10 “LP Gathering Header Trunkline

APPENDIX K.2 10 “HP Gathering Header Trunkline

APPENDIX K.3 6” Sour Liquid Return Pipeline

APPENDIX K.4 6” Sour Condensate Export Pipeline

APPENDIX K.5 14” Sour Gas Export Pipeline

APPENDIX K.6 20” Sour Oil Export Pipeline

APPENDIX K.7 6” Fuel Gas Import Pipeline


Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet:

Nominal Outer Diameter of Pipe D := 273mm

Nominal Pipe Wall Thickness t := 9.27mm

Corrosion Allowance A := 3.2mm

FBE Thickness t1 := 0.25mm

Adhesive Thickness t2 := 0.25mm


High Density Polyethyelene t3 := 2.5mm
(HDPE) Thickness

kg
Density of Buoyant Fluid ρbf := 1025
3
m
kg
Density Pipe Steel ρs := 7850
3
m
kg
Density of FBE ρfbe := 1550 
3
m
kg
Density of Adhesive ρad := 930
3
m
kg
Density of HDPE ρpe := 955
3
m
kg
Density of Soil ρso := 1785
3
m
kg
Content Density max ρcont := 63.80
3
m
Backfill dry soil density kg
ρbc := 1785
(compacted) 3
m
Backfill dry soil density kg
ρbuc := 1550
(uncompacted) 3
m
Depth of Burial H := 1.2m

Soil Specific Gravity SG := 2.65

Internal Diameter of Pipe D i := D - 2  ( t ) = 254.46 mm

Internal Diameter of Pipe D i1 := D - 2  ( t - A ) = 260.86  mm


with Corrosion
Allowance

Page 1 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

2 CALCULATIONS

2.1 General
Outside diameter of all coating OD := D + 2  t1 + 2  t2 + 2  t3 = 279 mm

FBE weight Wfbe :=  π  ( D + 2.t1)2 - ( D ) 2  ρ  = 0.333 kg


 4  fbe
  m

Adhesive weight Wad :=  π  ( D + 2.t1 + 2  t2) 2 - ( D + 2  t1) 2  ρ  = 0.2 kg


 4  ad
  m

HDPE weight Wpe :=  π  ( OD) 2 - ( OD - 2  t3) 2  ρ  = 2.02 kg


 4  ad
  m

Mass of displaced ground water Wgw :=  π  ( OD) 2 ρ = 62.665 kg


4 bf
  m

2.2 New Condition

πD - D i
2
Cross-sectional Area Steel As :=
 ( )2 = 7.68  10
-3
m
2
4

kg
Weight of Steel Ws := As  ρs = 60.292
m

Total Weight, empty kg


(
Wte := Ws - Wfbe + Wad + Wpe = 57.74
m
)
 π   D 2 ρ  = 54.495 kg
Total Weight, operating Wto := Wte -  4  ( i) cont
   m

Compacted Soil
1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  bc
FOSec := = 6.732
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_1 := "SAFE" if FOSec  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_1 = "SAFE"

Page 2 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

Uncompacted Soil

1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  buc
FOSeu := = 5.967
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_2 := "SAFE" if FOSeu  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_2 = "SAFE"

2.3 Corroded Condition


2 2
πD - D i1 ( ) 
Cross-sectional Area Steel As :=
 -3 2
= 5.09  10 m
4

kg
Weight of Steel Ws1 := As  ρs = 39.958
m

Total Weight, empty kg


(
Wte1 := Ws - Wfbe + Wad + Wpe = 57.74 ) m
 π  2  kg
Total Weight, operating Wto1 := Wte1 -  4   (D i)  ρcont = 54.495 m
  

Compacted Soil
1
Wte + H  D   1 - ρ

Factor of Safety against Flotation,  SG  bc
FOSec1 := = 6.732
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_3 := "SAFE" if FOSec1  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_3 = "SAFE"

Page 3 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.1
17051820-0000-A0-060-CAL-0001 10" LP GATHERING HEADER TRUNKLINE

Uncompacted Soil

1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  buc
FOSeu1 := = 5.967
empty Wgw
SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_4 := "SAFE" if FOSeu1  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_4 = "SAFE"

3 SUMMARY OF RESULTS
TABLE-1: Buoyancy Summary

Nominal Nominal
Factor of Safety
Outer Pipe Wall Factor of
S.No. against Remark
Diameter Thickness Safety Check
Flotation

mm mm
New Pipe-
1 6.73 SAFE
Compacted
New Pipe-
2 5.97 SAFE
Uncompacted
273.0 9.3
Corroded Pipe-
3 6.73 SAFE
Compacted
Corroded Pipe-
4 5.97 SAFE
Uncompacted

Page 4 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet:

Nominal Outer Diameter of Pipe D := 273mm

Nominal Pipe Wall Thickness t := 9.27mm

Corrosion Allowance A := 3.2mm

FBE Thickness t1 := 0.25mm

Adhesive Thickness t2 := 0.25mm


High Density Polyethyelene t3 := 2.5mm
(HDPE) Thickness

kg
Density of Buoyant Fluid ρbf := 1025
3
m
kg
Density Pipe Steel ρs := 7850
3
m
kg
Density of FBE ρfbe := 1550 
3
m
kg
Density of Adhesive ρad := 930
3
m
kg
Density of HDPE ρpe := 955
3
m
kg
Density of Soil ρso := 1785
3
m
kg
Content Density max ρcont := 63.80
3
m
Backfill dry soil density kg
ρbc := 1785
(compacted) 3
m
Backfill dry soil density kg
ρbuc := 1550
(uncompacted) 3
m
Depth of Burial H := 1.2m

Soil Specific Gravity SG := 2.65

Internal Diameter of Pipe D i := D - 2  ( t ) = 254.46 mm

Internal Diameter of Pipe D i1 := D - 2  ( t - A ) = 260.86  mm


with Corrosion
Allowance

Page 1 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

2 CALCULATIONS

2.1 General
Outside diameter of all coating OD := D + 2  t1 + 2  t2 + 2  t3 = 279 mm

FBE weight Wfbe :=  π  ( D + 2.t1)2 - ( D ) 2  ρ  = 0.333 kg


 4  fbe
  m

Adhesive weight Wad :=  π  ( D + 2.t1 + 2  t2) 2 - ( D + 2  t1) 2  ρ  = 0.2 kg


 4  ad
  m

HDPE weight Wpe :=  π  ( OD) 2 - ( OD - 2  t3) 2  ρ  = 2.02 kg


 4  ad
  m

Mass of displaced ground water Wgw :=  π  ( OD) 2 ρ = 62.665 kg


4 bf
  m

2.2 New Condition

πD - D i
2
Cross-sectional Area Steel As :=
 ( )2 = 7.68  10
-3
m
2
4

kg
Weight of Steel Ws := As  ρs = 60.292
m

Total Weight, empty kg


(
Wte := Ws - Wfbe + Wad + Wpe = 57.74
m
)
 π   D 2 ρ  = 54.495 kg
Total Weight, operating Wto := Wte -  4  ( i) cont
   m

Compacted Soil
1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  bc
FOSec := = 6.732
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_1 := "SAFE" if FOSec  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_1 = "SAFE"

Page 2 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

Uncompacted Soil

1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  buc
FOSeu := = 5.967
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_2 := "SAFE" if FOSeu  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_2 = "SAFE"

2.3 Corroded Condition


2 2
πD - D i1 ( ) 
Cross-sectional Area Steel As :=
 -3 2
= 5.09  10 m
4

kg
Weight of Steel Ws1 := As  ρs = 39.958
m

Total Weight, empty kg


(
Wte1 := Ws - Wfbe + Wad + Wpe = 57.74 ) m
 π  2  kg
Total Weight, operating Wto1 := Wte1 -  4   (D i)  ρcont = 54.495 m
  

Compacted Soil
1
Wte + H  D   1 - ρ

Factor of Safety against Flotation,  SG  bc
FOSec1 := = 6.732
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_3 := "SAFE" if FOSec1  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_3 = "SAFE"

Page 3 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.2
17051820-0000-A0-060-CAL-0001 10" HP GATHERING HEADER TRUNKLINE

Uncompacted Soil

1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  buc
FOSeu1 := = 5.967
empty Wgw
SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_4 := "SAFE" if FOSeu1  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_4 = "SAFE"

3 SUMMARY OF RESULTS
TABLE-1: Buoyancy Summary

Nominal Nominal
Factor of Safety
Outer Pipe Wall Factor of
S.No. against Remark
Diameter Thickness Safety Check
Flotation

mm mm
New Pipe-
1 6.73 SAFE
Compacted
New Pipe-
2 5.97 SAFE
Uncompacted
273.0 9.3
Corroded Pipe-
3 6.73 SAFE
Compacted
Corroded Pipe-
4 5.97 SAFE
Uncompacted

Page 4 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet:

Nominal Outer Diameter of Pipe D := 168.3mm

Nominal Pipe Wall Thickness t := 7.11mm

Corrosion Allowance A := 3.2mm

FBE Thickness t1 := 0.25mm

Adhesive Thickness t2 := 0.25mm


High Density Polyethyelene t3 := 2.5mm
(HDPE) Thickness

kg
Density of Buoyant Fluid ρbf := 1025
3
m
kg
Density Pipe Steel ρs := 7850
3
m
kg
Density of FBE ρfbe := 1550 
3
m
kg
Density of Adhesive ρad := 930
3
m
kg
Density of HDPE ρpe := 955
3
m
kg
Density of Soil ρso := 1785
3
m
kg
Content Density max ρcont := 63.80
3
m
Backfill dry soil density kg
ρbc := 1785
(compacted) 3
m
Backfill dry soil density kg
ρbuc := 1550
(uncompacted) 3
m
Depth of Burial H := 1.2m

Soil Specific Gravity SG := 2.65

Internal Diameter of Pipe D i := D - 2  ( t ) = 154.08 mm

Internal Diameter of Pipe D i1 := D - 2  ( t - A ) = 160.48  mm


with Corrosion
Allowance

Page 1 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

2 CALCULATIONS

2.1 General
Outside diameter of all coating OD := D + 2  t1 + 2  t2 + 2  t3 = 174.3 mm

FBE weight Wfbe :=  π  ( D + 2.t1)2 - ( D ) 2  ρ  = 0.205 kg


 4  fbe
  m

Adhesive weight Wad :=  π  ( D + 2.t1 + 2  t2) 2 - ( D + 2  t1) 2  ρ  = 0.123 kg


 4  ad
  m

HDPE weight Wpe :=  π  ( OD) 2 - ( OD - 2  t3) 2  ρ  = 1.255 kg


 4  ad
  m

Mass of displaced ground water Wgw :=  π  ( OD) 2 ρ = 24.457 kg


4 bf
  m

2.2 New Condition

πD - D i
2
Cross-sectional Area Steel As :=
 ( )2 -3 2
= 3.6  10 m
4

kg
Weight of Steel Ws := As  ρs = 28.264
m

Total Weight, empty kg


(
Wte := Ws - Wfbe + Wad + Wpe = 26.68
m
)
 π   D 2 ρ  = 25.49 kg
Total Weight, operating Wto := Wte -  4  ( i) cont
   m

Compacted Soil
1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  bc
FOSec := = 10.269
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_1 := "SAFE" if FOSec  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_1 = "SAFE"

Page 2 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

Uncompacted Soil

1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  buc
FOSeu := = 9.06
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_2 := "SAFE" if FOSeu  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_2 = "SAFE"

2.3 Corroded Condition


2 2
πD - D i1 ( ) 
Cross-sectional Area Steel As :=
 = 2.019  10
-3 2
m
4

kg
Weight of Steel Ws1 := As  ρs = 15.852
m

Total Weight, empty kg


(
Wte1 := Ws - Wfbe + Wad + Wpe = 26.68 ) m
 π  2  kg
Total Weight, operating Wto1 := Wte1 -  4   (D i)  ρcont = 25.49 m
  

Compacted Soil
1
Wte + H  D   1 - ρ

Factor of Safety against Flotation,  SG  bc
FOSec1 := = 10.269
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_3 := "SAFE" if FOSec1  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_3 = "SAFE"

Page 3 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.3
17051820-0000-A0-060-CAL-0001 6" SOUR LIQUID RETURN PIPELINE

Uncompacted Soil

1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  buc
FOSeu1 := = 9.06
empty Wgw
SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_4 := "SAFE" if FOSeu1  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_4 = "SAFE"

3 SUMMARY OF RESULTS
TABLE-1: Buoyancy Summary

Nominal Nominal
Factor of Safety
Outer Pipe Wall Factor of
S.No. against Remark
Diameter Thickness Safety Check
Flotation

mm mm
New Pipe-
1 10.27 SAFE
Compacted
New Pipe-
2 9.06 SAFE
Uncompacted
168.3 7.11
Corroded Pipe-
3 10.27 SAFE
Compacted
Corroded Pipe-
4 9.06 SAFE
Uncompacted

Page 4 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet:

Nominal Outer Diameter of Pipe D := 168.3mm

Nominal Pipe Wall Thickness t := 7.11mm

Corrosion Allowance A := 3.2mm

FBE Thickness t1 := 0.25mm

Adhesive Thickness t2 := 0.25mm


High Density Polyethyelene t3 := 2.5mm
(HDPE) Thickness

kg
Density of Buoyant Fluid ρbf := 1025
3
m
kg
Density Pipe Steel ρs := 7850
3
m
kg
Density of FBE ρfbe := 1550 
3
m
kg
Density of Adhesive ρad := 930
3
m
kg
Density of HDPE ρpe := 955
3
m
kg
Density of Soil ρso := 1785
3
m
kg
Content Density max ρcont := 63.80
3
m
Backfill dry soil density kg
ρbc := 1785
(compacted) 3
m
Backfill dry soil density kg
ρbuc := 1550
(uncompacted) 3
m
Depth of Burial H := 1.2m

Soil Specific Gravity SG := 2.65

Internal Diameter of Pipe D i := D - 2  ( t ) = 154.08 mm

Internal Diameter of Pipe D i1 := D - 2  ( t - A ) = 160.48  mm


with Corrosion
Allowance

Page 1 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

2 CALCULATIONS

2.1 General
Outside diameter of all coating OD := D + 2  t1 + 2  t2 + 2  t3 = 174.3 mm

FBE weight Wfbe :=  π  ( D + 2.t1)2 - ( D ) 2  ρ  = 0.205 kg


 4  fbe
  m

Adhesive weight Wad :=  π  ( D + 2.t1 + 2  t2) 2 - ( D + 2  t1) 2  ρ  = 0.123 kg


 4  ad
  m

HDPE weight Wpe :=  π  ( OD) 2 - ( OD - 2  t3) 2  ρ  = 1.255 kg


 4  ad
  m

Mass of displaced ground water Wgw :=  π  ( OD) 2 ρ = 24.457 kg


4 bf
  m

2.2 New Condition

πD - D i
2
Cross-sectional Area Steel As :=
 ( )2 -3 2
= 3.6  10 m
4

kg
Weight of Steel Ws := As  ρs = 28.264
m

Total Weight, empty kg


(
Wte := Ws - Wfbe + Wad + Wpe = 26.68
m
)
 π   D 2 ρ  = 25.49 kg
Total Weight, operating Wto := Wte -  4  ( i) cont
   m

Compacted Soil
1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  bc
FOSec := = 10.269
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_1 := "SAFE" if FOSec  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_1 = "SAFE"

Page 2 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

Uncompacted Soil

1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  buc
FOSeu := = 9.06
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_2 := "SAFE" if FOSeu  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_2 = "SAFE"

2.3 Corroded Condition


2 2
πD - D i1 ( ) 
Cross-sectional Area Steel As :=
 = 2.019  10
-3 2
m
4

kg
Weight of Steel Ws1 := As  ρs = 15.852
m

Total Weight, empty kg


(
Wte1 := Ws - Wfbe + Wad + Wpe = 26.68 ) m
 π  2  kg
Total Weight, operating Wto1 := Wte1 -  4   (D i)  ρcont = 25.49 m
  

Compacted Soil
1
Wte + H  D   1 - ρ

Factor of Safety against Flotation,  SG  bc
FOSec1 := = 10.269
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_3 := "SAFE" if FOSec1  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_3 = "SAFE"

Page 3 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.4
17051820-0000-A0-060-CAL-0001 6" SOUR CONDENSATE EXPORT PIPELINE

Uncompacted Soil

1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  buc
FOSeu1 := = 9.06
empty Wgw
SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_4 := "SAFE" if FOSeu1  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_4 = "SAFE"

3 SUMMARY OF RESULTS
TABLE-1: Buoyancy Summary

Nominal Nominal
Factor of Safety
Outer Pipe Wall Factor of
S.No. against Remark
Diameter Thickness Safety Check
Flotation

mm mm
New Pipe-
1 10.27 SAFE
Compacted
New Pipe-
2 9.06 SAFE
Uncompacted
168.3 7.11
Corroded Pipe-
3 10.27 SAFE
Compacted
Corroded Pipe-
4 9.06 SAFE
Uncompacted

Page 4 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet:

Nominal Outer Diameter of Pipe D := 355.6mm

Nominal Pipe Wall Thickness t := 8.74mm

Corrosion Allowance A := 3.2mm

FBE Thickness t1 := 0.25mm

Adhesive Thickness t2 := 0.25mm


High Density Polyethyelene t3 := 2.5mm
(HDPE) Thickness

kg
Density of Buoyant Fluid ρbf := 1025
3
m
kg
Density Pipe Steel ρs := 7850
3
m
kg
Density of FBE ρfbe := 1550 
3
m
kg
Density of Adhesive ρad := 930
3
m
kg
Density of HDPE ρpe := 955
3
m
kg
Density of Soil ρso := 1785
3
m
kg
Content Density max ρcont := 63.80
3
m
Backfill dry soil density kg
ρbc := 1785
(compacted) 3
m
Backfill dry soil density kg
ρbuc := 1550
(uncompacted) 3
m
Depth of Burial H := 1.2m

Soil Specific Gravity SG := 2.65

Internal Diameter of Pipe D i := D - 2  ( t ) = 338.12 mm

Internal Diameter of Pipe D i1 := D - 2  ( t - A ) = 344.52  mm


with Corrosion
Allowance

Page 1 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

2 CALCULATIONS

2.1 General
Outside diameter of all coating OD := D + 2  t1 + 2  t2 + 2  t3 = 361.6 mm

FBE weight Wfbe :=  π  ( D + 2.t1)2 - ( D ) 2  ρ  = 0.433 kg


 4  fbe
  m

Adhesive weight Wad :=  π  ( D + 2.t1 + 2  t2) 2 - ( D + 2  t1) 2  ρ  = 0.26 kg


 4  ad
  m

HDPE weight Wpe :=  π  ( OD) 2 - ( OD - 2  t3) 2  ρ  = 2.623 kg


 4  ad
  m

Mass of displaced ground water Wgw :=  π  ( OD) 2 ρ = 105.262 kg


4 bf
  m

2.2 New Condition

πD - D i
2
Cross-sectional Area Steel As :=
 ( )2 = 9.524  10
-3
m
2
4

kg
Weight of Steel Ws := As  ρs = 74.763
m

Total Weight, empty kg


(
Wte := Ws - Wfbe + Wad + Wpe = 71.446
m
)
 π   D 2 ρ  = 65.718 kg
Total Weight, operating Wto := Wte -  4  ( i) cont
   m

Compacted Soil
1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  bc
FOSec := = 5.184
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_1 := "SAFE" if FOSec  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_1 = "SAFE"

Page 2 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

Uncompacted Soil

1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  buc
FOSeu := = 4.591
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_2 := "SAFE" if FOSeu  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_2 = "SAFE"

2.3 Corroded Condition


2 2
πD - D i1 ( ) 
Cross-sectional Area Steel As :=
 = 6.093  10
-3 2
m
4

kg
Weight of Steel Ws1 := As  ρs = 47.827
m

Total Weight, empty kg


(
Wte1 := Ws - Wfbe + Wad + Wpe = 71.446 ) m
 π  2  kg
Total Weight, operating Wto1 := Wte1 -  4   (D i)  ρcont = 65.718 m
  

Compacted Soil
1
Wte + H  D   1 - ρ

Factor of Safety against Flotation,  SG  bc
FOSec1 := = 5.184
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_3 := "SAFE" if FOSec1  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_3 = "SAFE"

Page 3 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.5
17051820-0000-A0-060-CAL-0001 14" SOUR GAS EXPORT PIPELINE

Uncompacted Soil

1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  buc
FOSeu1 := = 4.591
empty Wgw
SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_4 := "SAFE" if FOSeu1  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_4 = "SAFE"

3 SUMMARY OF RESULTS
TABLE-1: Buoyancy Summary

Nominal Nominal
Factor of Safety
Outer Pipe Wall Factor of
S.No. against Remark
Diameter Thickness Safety Check
Flotation

mm mm
New Pipe-
1 5.18 SAFE
Compacted
New Pipe-
2 4.59 SAFE
Uncompacted
355.6 8.74
Corroded Pipe-
3 5.18 SAFE
Compacted
Corroded Pipe-
4 4.59 SAFE
Uncompacted

Page 4 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet:

Nominal Outer Diameter of Pipe D := 508mm

Nominal Pipe Wall Thickness t := 7.92mm

Corrosion Allowance A := 3.2mm

FBE Thickness t1 := 0.25mm

Adhesive Thickness t2 := 0.25mm


High Density Polyethyelene t3 := 2.5mm
(HDPE) Thickness

kg
Density of Buoyant Fluid ρbf := 1025
3
m
kg
Density Pipe Steel ρs := 7850
3
m
kg
Density of FBE ρfbe := 1550 
3
m
kg
Density of Adhesive ρad := 930
3
m
kg
Density of HDPE ρpe := 955
3
m
kg
Density of Soil ρso := 1785
3
m
kg
Content Density max ρcont := 63.80
3
m
Backfill dry soil density kg
ρbc := 1785
(compacted) 3
m
Backfill dry soil density kg
ρbuc := 1550
(uncompacted) 3
m
Depth of Burial H := 1.2m

Soil Specific Gravity SG := 2.65

Internal Diameter of Pipe D i := D - 2  ( t ) = 492.16 mm

Internal Diameter of Pipe D i1 := D - 2  ( t - A ) = 498.56  mm


with Corrosion
Allowance

Page 1 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE

2 CALCULATIONS

2.1 General
Outside diameter of all coating OD := D + 2  t1 + 2  t2 + 2  t3 = 514 mm

FBE weight Wfbe :=  π  ( D + 2.t1)2 - ( D ) 2  ρ  = 0.619 kg


 4  fbe
  m

Adhesive weight Wad :=  π  ( D + 2.t1 + 2  t2) 2 - ( D + 2  t1) 2  ρ  = 0.372 kg


 4  ad
  m

HDPE weight Wpe :=  π  ( OD) 2 - ( OD - 2  t3) 2  ρ  = 3.736 kg


 4  ad
  m

Mass of displaced ground water Wgw :=  π  ( OD) 2 ρ = 212.687 kg


4 bf
  m

2.2 New Condition

πD - D i
2
Cross-sectional Area Steel As :=
 ( )2 = 0.012 m
2
4

kg
Weight of Steel Ws := As  ρs = 97.675
m

Total Weight, empty kg


(
Wte := Ws - Wfbe + Wad + Wpe = 92.949
m
)
 π   D 2 ρ  = 80.811 kg
Total Weight, operating Wto := Wte -  4  ( i) cont
   m

Compacted Soil
1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  bc
FOSec := = 3.623
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_1 := "SAFE" if FOSec  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_1 = "SAFE"

Page 2 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE

Uncompacted Soil

1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  buc
FOSeu := = 3.203
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_2 := "SAFE" if FOSeu  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_2 = "SAFE"

2.3 Corroded Condition


2 2
πD - D i1 ( ) 
Cross-sectional Area Steel As :=
 = 7.463  10
-3 2
m
4

kg
Weight of Steel Ws1 := As  ρs = 58.583
m

Total Weight, empty kg


(
Wte1 := Ws - Wfbe + Wad + Wpe = 92.949 ) m
 π  2  kg
Total Weight, operating Wto1 := Wte1 -  4   (D i)  ρcont = 80.811 m
  

Compacted Soil
1
Wte + H  D   1 - ρ

Factor of Safety against Flotation,  SG  bc
FOSec1 := = 3.623
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_3 := "SAFE" if FOSec1  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_3 = "SAFE"

Page 3 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.6
17051820-0000-A0-060-CAL-0001 20" SOUR OIL EXPORT PIPELINE

Uncompacted Soil

1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  buc
FOSeu1 := = 3.203
empty Wgw
SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_4 := "SAFE" if FOSeu1  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_4 = "SAFE"

3 SUMMARY OF RESULTS
TABLE-1: Buoyancy Summary

Nominal Nominal
Factor of Safety
Outer Pipe Wall Factor of
S.No. against Remark
Diameter Thickness Safety Check
Flotation

mm mm
New Pipe-
1 3.62 SAFE
Compacted
New Pipe-
2 3.20 SAFE
Uncompacted
508.0 7.92
Corroded Pipe-
3 3.62 SAFE
Compacted
Corroded Pipe-
4 3.20 SAFE
Uncompacted

Page 4 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

1 INPUT DATA
The following data listed pertaining to the line pipe, are required for the calculation of this spreadsheet:

Nominal Outer Diameter of Pipe D := 168.3mm

Nominal Pipe Wall Thickness t := 7.11mm

Corrosion Allowance A := 3.2mm

FBE Thickness t1 := 0.25mm

Adhesive Thickness t2 := 0.25mm


High Density Polyethyelene t3 := 2.5mm
(HDPE) Thickness

kg
Density of Buoyant Fluid ρbf := 1025
3
m
kg
Density Pipe Steel ρs := 7850
3
m
kg
Density of FBE ρfbe := 1550 
3
m
kg
Density of Adhesive ρad := 930
3
m
kg
Density of HDPE ρpe := 955
3
m
kg
Density of Soil ρso := 1785
3
m
kg
Content Density max ρcont := 63.80
3
m
Backfill dry soil density kg
ρbc := 1785
(compacted) 3
m
Backfill dry soil density kg
ρbuc := 1550
(uncompacted) 3
m
Depth of Burial H := 1.2m

Soil Specific Gravity SG := 2.65

Internal Diameter of Pipe D i := D - 2  ( t ) = 154.08 mm

Internal Diameter of Pipe D i1 := D - 2  ( t - A ) = 160.48  mm


with Corrosion
Allowance

Page 1 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

2 CALCULATIONS

2.1 General
Outside diameter of all coating OD := D + 2  t1 + 2  t2 + 2  t3 = 174.3 mm

FBE weight Wfbe :=  π  ( D + 2.t1)2 - ( D ) 2  ρ  = 0.205 kg


 4  fbe
  m

Adhesive weight Wad :=  π  ( D + 2.t1 + 2  t2) 2 - ( D + 2  t1) 2  ρ  = 0.123 kg


 4  ad
  m

HDPE weight Wpe :=  π  ( OD) 2 - ( OD - 2  t3) 2  ρ  = 1.255 kg


 4  ad
  m

Mass of displaced ground water Wgw :=  π  ( OD) 2 ρ = 24.457 kg


4 bf
  m

2.2 New Condition

πD - D i
2
Cross-sectional Area Steel As :=
 ( )2 -3 2
= 3.6  10 m
4

kg
Weight of Steel Ws := As  ρs = 28.264
m

Total Weight, empty kg


(
Wte := Ws - Wfbe + Wad + Wpe = 26.68
m
)
 π   D 2 ρ  = 25.49 kg
Total Weight, operating Wto := Wte -  4  ( i) cont
   m

Compacted Soil
1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  bc
FOSec := = 10.269
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_1 := "SAFE" if FOSec  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_1 = "SAFE"

Page 2 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

Uncompacted Soil

1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  buc
FOSeu := = 9.06
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_2 := "SAFE" if FOSeu  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_2 = "SAFE"

2.3 Corroded Condition


2 2
πD - D i1 ( ) 
Cross-sectional Area Steel As :=
 = 2.019  10
-3 2
m
4

kg
Weight of Steel Ws1 := As  ρs = 15.852
m

Total Weight, empty kg


(
Wte1 := Ws - Wfbe + Wad + Wpe = 26.68 ) m
 π  2  kg
Total Weight, operating Wto1 := Wte1 -  4   (D i)  ρcont = 25.49 m
  

Compacted Soil
1
Wte + H  D   1 - ρ

Factor of Safety against Flotation,  SG  bc
FOSec1 := = 10.269
empty Wgw

SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_3 := "SAFE" if FOSec1  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_3 = "SAFE"

Page 3 of 4
Client: KOC PIPELINE BUOYANCY CALCULATION
Doc No.: APPENDIX K.7
17051820-0000-A0-060-CAL-0001 6" FUEL GAS IMPORT PIPELINE

Uncompacted Soil

1 
Wte + H  D   1 - ρ
Factor of Safety against Flotation,  SG  buc
FOSeu1 := = 9.06
empty Wgw
SF := 1.5

π
SF  
2
  (OD)  ρbf 
C :=
 4   = 1.5
Wgw

Factor of Safety_Check_4 := "SAFE" if FOSeu1  C As per Chapter 11, AWWA M9


"FAIL" otherwise

Factor of Safety_Check_4 = "SAFE"

3 SUMMARY OF RESULTS
TABLE-1: Buoyancy Summary

Nominal Nominal
Factor of Safety
Outer Pipe Wall Factor of
S.No. against Remark
Diameter Thickness Safety Check
Flotation

mm mm
New Pipe-
1 10.27 SAFE
Compacted
New Pipe-
2 9.06 SAFE
Uncompacted
168.3 7.11
Corroded Pipe-
3 10.27 SAFE
Compacted
Corroded Pipe-
4 9.06 SAFE
Uncompacted

Page 4 of 4

You might also like