Nothing Special   »   [go: up one dir, main page]

Dynamics Answers 2009-11-2

Download as pdf or txt
Download as pdf or txt
You are on page 1of 29
At a glance
Powered by AI
The document provides solutions to selected even-numbered problems from the textbook 'Engineering Mechanics: Dynamics 1e Gray, Costanzo, Plesha'. It covers topics from kinematics, kinetics of particles and rigid bodies in plane motion.

Topics covered include kinematics of particles, kinetics of particles and rigid bodies, planar kinematic motion, and vibrations.

Moments of inertia are described using units of kg-m^2 in the SI system and slug-ft^2 in the U.S. Customary system.

Engineering Mechanics: Dynamics 1e

Gray, Costanzo, Plesha

Answers to Selected Even-Numbered Problems


We are in the process of adding content (e.g., FBDs) to this document. The answers reported here, along with those
in the solutions manual, are being accuracy checked by several professors. This document, as well as the solutions
manual, will be updated and completed by September 2009.
Please note that answers are not provided for the following type of even-numbered problems:
 Concept Problems.
 Computer Problems.
 Design Problems.
For Concept and Computer problems, please consult the solutions manual.

Chapter 1
1.2

.rC =D /` D 3:88 ft

1.4

rEB=A
rEB=A

rE

D .4:00 {O 1:00 |O/ ft


D .3:31 uOp 2:46 uO q / ft

D rE

B=A xy system

B=A pq system

D 4:12 ft

1.6

The angle  is dimensionless (or nondimensional) Observe that since angles can be expressed in a variety of units,
such as radian or degree, this problem illustrates the idea that some nondimensional quantities still require proper
use of units.

1.8

Ixx D Iyy D I D M L2
Units of Ixx , Iyy , and I in the SI system: kgm2 ;
Units of Ixx , Iyy , and I in the U.S. Customary system: slugft2 D lbs2 ft.

1.10

Concept problem.

Chapter 2
2.2

2.4
2.6
2.8

vE.15 s/ D .72:1 {O C 6:24 |O/ ft=s


aE .15 s/ D . 15:8 {O 1:39 |O/ ft=s2
.15 s/ D 4:95
.15 s/ D 180
Concept problem.

y.x/ D 2:00 C 3:00x C 2:00x 2 m
Concept problem.

2.10

Er .t1 ; t2 / D .0:899 {O C 41:3 |O/ ft


vEavg .t1 ; t2 / D .0:450 {O C 20:7 |O/ ft=s

2.12

v.t/ D r.t/
P D .4:08e 13:6t / {O C . 0:720 1:28e 13:6t / |O m=s
a.t/ D v.t/
P D . 55:5e 13:6t / {O C .17:4e 13:6t / |O m=s2
The impact angle  is the slope of the stones trajectory at the time that the stone enters the water. Then, recalling
that the velocity is always tangent to the trajectory, we have  D 26:1

y.x/ D 5:25 C 3:25x C 1:00x 2 m
xmax D 3:00 m and xmin D 1:00 m

2.14

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e


2.16

vE D .29:3 ft=s/1 C cos.25:5 rad=s/t {O .29:3 ft=s/1 C sin.25:5 rad=s/t |O


p
v D .29:3 ft=s/ 2 C 2 cos.25:5 rad=s/t


aE D 748 ft=s2 sin.25:5 rad=s/t {O
748 ft=s2 cos.25:5 rad=s/t |O

2.18

Computer problem.

2.20

Computer problem.

2.22

Gray, Costanzo, Plesha

.E
vP =O /1 D .1 C cos t/ {O1 C .4 2t/ |O1 m=s

.E
vP =O /2 D .1 C cos t/ cos  2.t 2/ sin  {O2
.E
aP =O /1 D . sin t {O1

2.t

2 |O1 / m=s2

.E
aP =O /2 D . cos  sin t 2 sin / {O2 C .sin  sin t
jE
vP =O .t D 2 s/j1 D 0:584 m=s
jE
vP =O .t D 2 s/j2 D 0:584 m=s
2.24


2/ cos  C .1 C cos t/ sin  |O2 m=s

2 cos / |O2 m=s2

vEP =B D . 6:14 {OB C 23:7 |OB / ft=s


vP =A D 24:5 ft=s
vP =B D 24:5 ft=s
aEP =A D .1:78 {OA C 5:96 |OA / ft=s2
aP =A D 6:22 ft=s2
aP =B D 6:22 ft=s2

2.26

vEA D . 20:0 {O 12:8 |O/ ft=s


 p
p 
2 {O C 3 2 |O ft=s2 D . 1:41 {O C 4:24 |O/ ft=s2
aEA D

2.28

Computer problem.

2.30

Computer problem.

2.32

xR D

8a3 v02
4a2 C y 2

yR D
2.34
2.36

2

4a2 v02 y
4a2 C y 2

2

Computer problem.
 p

v0
vE D p
3a {O C b |O
3a2 C b 2
5
s D 7:85 s
2

2.38

tbraking D

2.40

tjajmax D 3:93 s and tjajmax D 11:8 s


samax D 12:8 m and samax D 129 m

2.42

v0 D 10:1 m=s

2.44

2.46

2.48

2.50

where jajmax D 3:60 m=s2


a0 
sin 2!t C cos !v.t/ D 7:00 sin t C 1:50 cos.0:500t/
!
x.t/ D 7:001:00 1:50 cos t C 3:00 sin.0:500t/ m
r
mg
vterm D
D 5:00 m=s
Cd


Cd t
mg
v.t/ D
1 e m
Cd
mg
vterm D
Cd
x.t/
P
D


1:50 m=s

vf D 3:56 m=s

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e


2.52

Computer problem.
v D 10:1 ft=s

2.54

s D 186 ft
t D 3:90 s
r
2g
P
./ D P02 C
cos 
L

2.56
2.58
2.60
2.62

2.66

k 2
x
m

x0 /

x02

txmax D 0:243 s
"

r0

(a) t D p
sin
2G .mA C mB /
(b) t D 106 h
t D 106 h
v
tstop D 0 D 2:88 s
gk
.vT /20 aT

2.68

k D

2.70

t D 8:63 s
yP D 77:7 m=s

2.72

v D v0 C ac .t
s D s0 C v0 .t

2.74

cos 0

.P0 /min D 4:93 rad=s


s


kL0
xP D v02 C 2 g C
.x
m

3=2

2.64

Gray, Costanzo, Plesha

g .vT /20


2daT

r
r0

r
r0


1

r
r0


2

 D 0:301

t0 /
t0 / C 21 ac .t

ap
hvp2
s D
C
2 r 3
r

s rDr D 1:44 rad=s2

and

t 0 /2

s rDr D 3:63 rad=s2


2

2.76

 D tan

2.78

vEgun D .14:7 ft=s/ {O

2.80

y D h C tan .x

2.82

The golfers chip shot is successful.

2.84

v0 D 52:8 ft=s

2.86

The two firing ranges are


30:4    56:8 and 69:4    74:5
The sizes of these ranges are 1 D 26:4 and 2 D 5:09
The angle subtended by the target as seen from an observer at point O is D 21:3
Unlike Example 2.11, the difference between the angle subtended by the target and 1 or 2 is significant. In
addition, we see that the value of 1 is much closer to than 2 .

2.88

dAB D 82:0 m

2.90

v0 D 62:5 ft=s

2.92

Computer problem.
d D 4:70 m

w/

g
2v02 cos2

.x

w/2

and D 20:6

vEinitial D v0 cos {O C v0 sin |O D .6:02 {O C 7:67 |O/ m=s


where v0 is the initial speed of the tiger and is the angle formed with the horizontal by the initial velocity of
the tiger.

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e


r
2.94

v0 D

gR
cos 
p
2
sin cos.

2.96

max D


D 45
4

2.98

v02
D 447 ft
g
2v sin max
tD 0
D 5:27 s
g
h

y D 59:9103 ln 1 2:8410

Gray, Costanzo, Plesha

/

RD


i
x C 17:7x m

2.100

Computer problem.
tI D 6:19 s
xI D 268 m

2.102

y D v0 sin

2.104

(a) aE  bE D 1  6 C 2  3 C 3  0 D 0

 

(b) aE  aE  bE D 84 {O 42 |O C 0 kO

x cos y sin
v0 cos. C /

1
2 g cos

x cos y sin
v0 cos. C /

2

(c)
2.106




(a) !E 1 D 105 kO rad=s; !E 2 D 105 {O rad=s and !E 3 D 105 |O rad=s



100 
(b) !E ` D p
{O C |O C kO rad=s ) 60:5 {O C |O C kO rad=s
3 3

2.108
vEA D 5 kO  2 {O D 10 |O m=s;


vEC D 5 kO  2 {O C 2 kO D 10 |O m=s;
v0 O
kD
R



vEB D 5 kO  2 {O C 1 kO D 10 |O m=s;


vE D 5 kO  2 {O C 3 kO D 10 |O m=s
D

.65:7 rad=s/ kO

2.110

!E D

2.112

jE
v j D 65;600 ft=s
Referring to the below,

let  denote the angle formed by the velocity vector and the x axis such that tan  D vy =vx . Then,
 D 70:0
P D

2.114

rP D v0 cos. C /

2.116

vEB D .4:00 uO r C 0:800 uO  / ft=s


aE D . 0:320 uO r C 3:20 uO  / ft=s

2.118

rP D 0
rR D

v02
d

and

P D

D 9:00 ft=s2

and

v0
D
d
and

2.120

aE D . 112 {O C 5 |O/ m=s2

2.122

2! rP C !r
P D0

2.124

aE D . 262 uO C

v0
sin. C /
r

1:50 rad=s
R D 0 rad=s2

200 uO B / ft=s

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e


2.126

Concept problem.

2.128

Concept problem.

2.130

Concept problem.

2.132

Concept problem.

Gray, Costanzo, Plesha

.0:292/s uO n g ft=s2

2.134

aE .s/ D f 19:0 uO t C 69:9

2.136
2.138

Concept problem.

aE D .33:710 3 cos / m=s2

2.140

v0 D 19:2 ft=s

2.142

D

2.144

min D

2.146

vP D

2.148

s D 304 ft

v02
D 282 ft
g

v02
D 565 ft
2g
v02
 D 4:74 s
tf D
2g vf C v0
13:8 ft=s2

2.150

Concept problem.

2.152

Concept problem.

2.154

rP D 466 mph
P D 41:6 rad=h
rR D 12;100 mi=h2
R D 5550 rad=h2

2.156

P
r.0/
P
D 438 ft=s and .0/
D 34710 6 rad=s
2
R
r.0/
R
D 14:9 ft=s
and .0/
D 10:610 6 rad=s2

2.158

rP D 0:265 ft=s
q
P 2 D 5490 ft=s
vE D rP 2 C .L/
v
!2
u

2
2
u
2
P
aE D t vs
L
C 2vs P D 1:00106 ft=s2
2L

2.160

2.162

vE D . 1:3 uO r C 0:22 r uO  / m=s


. 0:0484 r uO r 0:572 uO  / m=s2

2.164

PA D
PH D

vA L

D
.d=2/2 C L2
s
2 C v2
1 vA
B
L

1
RA D 2
r
R D
2.166
2.168

2
vA

"

2
vA

D
2

2 L
vB

2d
2
vB

2dL


D

1:1610

rad=s

4:29 rad=s
#
2 dL
vA
D
r2

1:6810

rad=s2

0:0755 rad=s2

rR D 5:78 ft=s2 and R D 1:42 rad=s2




h 

i
aEP D
r 3r P R 3rP P 2 uO r C r  P 3 C 3rR P C 3rP R uO 

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e


2.170

.h C  sin /2 C .d C  cos /2


v0 .h cos  d sin /
rP D q
.d C  cos /2 C .h C  sin /2

rD

rR D
R D
2.172

Gray, Costanzo, Plesha

v0 . C d cos  C h sin /
:
d 2 C h2 C 2 C 2d cos  C 2h sin 

v02 . C d cos  C h sin / d 2 C d cos  C h2 C h sin 
3=2
 d 2 C 2d cos  C h2 C 2 C 2h sin 

v02 d 2 C h2 2 .d sin  h cos /
2
 d 2 C 2d cos  C h2 C 2 C 2h sin 
and

P D

P D 0
R D p

2
R!AB

h2

R2

15:8 rad=s2

2.174

vE D .37:710 3 uO r C 0:534 uO  / m=s


aE D . 1680 uO r C 237 uO  / m=s2

2.176

vEfollower D .1:76 m=s/ |O


aEfollower D .137g/ |O

2.178

v D 0:119 ft=s
jE
aj D 0:0864 ft=s2

2.180

Concept problem.

2.182

Concept problem.
 rEB=A
vEA 
jErB=A j

2.184

ROS D vEB

2.186

vEC =A D .6:86 {O C 30:3 |O/ m=s


aEC =A D .1:38 {O C 1:00 |O/ m=s2

2.188

Computer problem.
For vB=W D 10 s, the boat reaches A in 6:86 s
When vB=W D 7 s, the boat does not reach A

2.190
2.192

vrain D 16:4 ft=s




aEB D L1 R cos  L1 P 2 sin  C L2 R cos  L2 P 2 sin  {O


C L1 P 2 cos  C L1 R sin  C L2 P 2 cos  C L2 R sin  |O

2.194

 D  C sin

2.196

 D 14:9

2.198

vpmax D vs C

2.200

vEB D

3:09 ft=s

aEB D

0:319 ft=s2

`
2

.vA `

vB d / cos 
vP =A d

D 63:6 :

g
D 331 ft=s D 225 mph
2h

2.202

vEB D . 2:00 m=s/ |O

2.204

aEB D . 11:1 m=s2 / {O


s
d
tD
D 0:164 s
2a0

@

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e


2.206
2.208

2.210
2.212

2.214

26d
D 0:937 ft=s2
3t 2
p
v0 w 2 C h 2
vEA D
{O D . 3:08 ft=s/ {O
p
2
2
wC
 w pC h

h

i
p
v02 w
h2 C w 2
a0 h2 C w w C h2 C w 2
{O D . 0:893 ft=s2 / {O
aEA D
2

p
w C h2 C w 2
a0 D

Concept problem.


0:292 cos 
|O
vEC D . 6:61 ft=s/ sin  1 C p
2
0:195
0:0851
sin




0:292 cos 
aEC D 1:28104 ft=s2 cos  1 C p
0:195 0:0851 sin2 


2
0:292 sin 
0:0248 cos  sin 
|O
C sin 
p
.0:195 0:0851 sin2 /3=2
0:195 0:0851 sin2 
q
r D .d C  cos /2 C .h C  sin /2
P D

v0 . C d cos  C h sin /
.d C  cos /2 C .h C  sin /2

2.216

Concept problem.

2.218

Concept problem.

2.220

Gray, Costanzo, Plesha

and

v0 .h cos  d sin /
rP D p
.d C  cos /2 C .h C  sin /2

Referring to the figure below and keeping in mind that the coordinate system is defined in such a way that the
triad .uO R ; uO  ; uO / is right-handed

we have
vEC D . 6:5 uO r C 5:52 uO  C 5:3 uO / ft=s
aEC D . 0:662 uO r
2.222

1:56 uO  / ft=s2

K
vE D P tan uO R C
uO C P uO
tan 


K2
aE D R tan
uO R C R uO
3
tan3

2.224
P R sin  C 2rP P sin  C 2r P P cos /
r .r
r P sin .rR r P 2 r P 2 sin2 /
r.r
P R C 2rP P

r P sin .r R C 2rP P r P 2 sin  cos / D 0


r.r
P R sin  C 2rP P sin  C 2r P P cos / D 0

r P 2 sin  cos /

P rR
r .

r P 2

r P 2 sin2 / D 0

2.226 rP D 0
P D 0

v0
D 0:0177 rad=s
r sin 
v2
rR D 0 D 11:3 ft=s2
r

P D

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e


v02 cos 
D 78:110
r 2 sin 
R D 0

R D

2.228
2.230
2.232
2.234

2.238

rad=s2

Computer problem.
xland D 3:35 m;

yland D 1:42 m;

1:26 |O2 / m=s2

Computer problem.
h D 29:410 6 m


mg
s.t/ D 2 Cd t C m e
Cd

Cd
m

2.244

 D 240 ft

2.246

f D 629 m
tf D 5:24 s

rP  D180 D 0

P  D180 D 2:94 rad=s

rR  D180 D 40:8 m=s2 and

P D30 D 0:0539 rad=s

R D30 D 0:243 rad=s2

2.250


1

r

k
cos
t
m

2.242

2.248

land D 0:

vEP =B .10:2 {O2 C 10:3 |O2 / m=s



gm
x D L0 C
1
k
p
v0  gR

2.240

and

Concept problem.

aEP =B D .7:82 {O2


2.236

Gray, Costanzo, Plesha

R  D180 D 0

2.252

jE
aj D 2L! 2 0 D 1:24 ft=s2

2.254

a t D 3:33 ft=s2

2.256

jE
aA j D 2:58 m=s2
s
2  2


d
d! 2
aE D
C
C a02 D 173;000 ft=s2
2
2
q

1 P4
4 2
aE
D
L
! 2 P 2 1 D 2:53 m=s2
2  C ! 1


2.258
2.260

min

Chapter 3
3.2

Concept problem.

3.4

ay D

3.6

xR C

3.8

ay D

3.10

dD

g .2P W /
W

EA
xD0
mL
Cd 2
v
m

v02
2k g

g
L D 50:8 ft

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e


3.12

3.14

3.16
3.18
3.20

3.22

Gray, Costanzo, Plesha



Cd t
mg
D 0:701 m=s
1 e m
Cd
9
8
>

2
=
<
2
v0 .` h/
m
T D
D 251 lb
gC h
i
3=2 >
2
;
:
2 xA2 C .` h/2
yP D

.Fs /max D 2mg


Concept problem.
v v0
D 7:59 s
k g
s
W
xstop D v0
D 0:737 ft
gk
tD

3.24

k D 50;800 lb=ft

3.26

D 0:167 m
max 
Fsp
D kmax D 586 N
max

3.28

3.30

Computer problem.
max D 0:568 ft; when t D 0:177 s
s
2
4 2mvi
xstop D
D 0:160 m

3.32

k D 5:93 lb=ft

3.34

k D 9:03 kN=m
v "
u

u k x2
0
v.0/ D 2t
C L0 L
m 2

3.36

3.38

Concept problem.

3.40

Concept problem.

3.42

Concept problem.

3.44

3.46

D

x02

C L2

#

W v2
D 1:40104 ft
g .N W /

v2
D 35:51 m=s2 D 3:62 g

mv 2
D 43;100 N
FL D mg C

an D

3.48
k
xR C x 1
m
k
yR C y 1
m

ru
p

D 0;

x2 C y2
ru

x2 C y2

!
D0

3.50
rR

r P 2 C

k
.r ru / g cos  D 0;
m
r R C 2rP P C g sin  D 0

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e

3.52

3.54

3.56

Gray, Costanzo, Plesha




m
m2 g
tan 0 e Cd x=m 1
e Cd x=m
2
2
2
Cd
2v0 cos 0 Cd
!
v02
1 2
s D cos
C
D 47:7
3
3gR
yD

vmax D

s
g

2

s C tan 
D 55:36 m=s D 199 km=h
1 s tan 

tan  s
D 35:33 m=s D 127 km=h
1 C s tan 
127 km=h  v  199 km=h
p

vmin D

g

3.58

(a) aE D .319103 uO r C 603 uO  / m=s2


(b) P D mar C mg sin  D 5:90106 N
(c) R D ma C mg cos  D 11:3103 N

3.60

! D 9:94 rad=s

3.62
3.64

3.66

Concept problem.
RR C 2RP P D 0
R C cot2 / RP 2 D g cot 
R.1
 
2
B D sin 1
D 41:8
3

3.68
me
D 0;
r2
r R C 2rP P D 0

r P 2 C G

rR

3.70

3.72

3.74

kD

.dmax =2
L0 /
 
2
s D cos 1
D 132
3

.dmax

L0 /2

D 4:74 lb=ft

P2 2
rL
R 2
P 2 C R L R C p gR
R

D0
.L2 R2 /
.L2 R2 /2
L2 R 2
RR C 2RP P D 0

3.76
3.78

3v0 m
2

Computer problem.
rP D 0:471 m=s

3.80

Computer problem.

3.82

Concept problem.

3.84

Concept problem.

3.86

Concept problem.
F
C g D 16:1 ft=s2
2mA

3.88

aAy D

3.90

rRA D G
rRB=A

mB
; and rRB D
r2 

mA C mB
D G
r2

mA
r2

3.92

During the 1 s time interval: T D 49:3 lb; after 1 s T D 47:3 lb

3.94

ax D

k1 g D

4:41 m=s2

10

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e


3.96

s D tan  D 0:424

3.98

aEA D 1 g {O D .8:05 {O/ ft=s2

Gray, Costanzo, Plesha

aEB D .145 {O/ ft=s2


s

1

k m C mp

3.100

vmax D mg

3.102

vimpact D 3:69 m=s

3.104

gd

3.106

tcontact D 78:5103 s D 21:8 h

2mB g

j.yB /max j D
k
j.yB /max j D 2 ft
.vB /max D vB .yB /max D 8:58 ft=s

3.108

3.110

4R2

d 2 cos 

g.4R2

d 2 / sin  D 4R3 R

Defining a Cartesian coordinate system with the y axis opposite tothe direction of gravity and with origin at the

2
.mA sin C mB /g D 1:84 ft
initial position of B, we have j.yB /max j D
k
.vB /max D vB j.y D 0:9202/ D 4:79 ft=s
B

3.112
3.114

vEA .tf / D

.3:16 {O C 3:13 |O/ m=s

and vEB .tf / D .3:26 {O/ m=s

Computer problem.
9mG g 39P
|O D . 9:46 ft=s/ |O
mB C mC C 25mD C 9mG
3g .mC C 10mD / mG C .4mB 9mC 30mD C 36mG / P
D 1190 lb
T4 D
mB C mC C 25mD C 9mG

3.116

aEG D

3.118

Computer problem.
Cd D 0:0888 lbs=ft
s


3.120

vc D

3.122

ab D g .1 cos / D 1:94 ft=s2


an D g sin  D 11 ft=s2
v2
D 101103 ft D 19:2 mi
D
g sin 

3.124

Defining a Cartesian coordinate system with origin at O, y axis pointing opposite to gravity and x axis pointing




x
x
mg
m2 g
to the right, we have y D
C v0 sin C 2 ln 1
v0 cos 
mv0 cos


3.126

Verification problem

3.128

WA D

3.130

m1 L1 R D m2 g cos  sin

2G .mA C mB /

2
dA C dB

1
r0


D 27610

ft=s

WB .g aB /
D 161 lb
2g C 4aB

L2 R D

g sin 

L1 R cos

h
m2 sin L1 R sin

L1 P 2 cos

L2 P 2

m1 g sin 

L1 P 2 sin

11

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e

Gray, Costanzo, Plesha

Chapter 4
4.2

Concept problem.

4.4

9:02104 ftlb

4.6

U1-2 D

2
1
2 m.v2

4.8

U1-2 D

1
2m

4.10

(a) 283 m
(b) 283 m
(c) 14:8 km

v12 / D 180 kJ

v12 D 4:30105 J


v22

4.12 d D 15:8 m
4.14 4:9810

11

4.16 43:5106 ft  lb
23:3106 ft  lb
50:8103 lb
4.18

Concept problem.

4.20

Computer problem.
5

lb=ft3

4.22

1:2910

4.24

k D 2:74105 N=m
p
v0 D 2gL .1 cos / D 6:40 ft=s

4.26

4.28 k D

mv 2
D 44:8 lb=ft
2

4.30

.U1-2 /Engine D 4:64105 ftlb

4.32

Favg D mg C

4.34

m 2
.v
v22 / D 1:47 kN
2h 1
 
 D sin 1 23 D 41:8

VB D 14 x 4
d D 0:420 ft
s
2

4.38 vE A D vEP

4.36


2GmE


4.40

V D

4.42

1:92 ftlb

4.44

 D cos

4.46

v2 D 24:1 ft=s

4.48

k D 276 lb=ft
r
m
.vy /max D g
k

4.50

4.52

4.54

L0 D

vA2 D

P0 s0 A ln

2
3

s
s0

1
RP

1
RA

D 2:34103 m=s

D 132

2
5R mvB
D 1:06 m
3
4kR
v


u
1
u 2gd m
B
t
3 mA

mA C 9mB

D 1:09 m=s

and vB2

12

v


u
1
u 2gd m
B
t
3 mA
D3
D 3:28 m=s
mA C 9mB
Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e

4.56

2 C k 2
mA vB2

mB D

2g

2
vB2

Gray, Costanzo, Plesha

D 0:685 kg

4.58

4.60

q
2gR dg 1 d 2 = .2R/2


q
d
NA D mg 3
1 d 2 = .2R/2
R
s
2hg mA .1 0:35k / mB
D 3:69 m=s
vA D
mA C mB
v2 D

s
4.62

4.64

vB D

8g

mA `OA mB `OB
.sin 35 C sin 75 / D 26:6 ft=s
mA C 4mB

1
.m sin C mB /g
k A
.vB /max D vB .yB D 2/ D 9:42 ft=s
dB D 0 ft
yB D

4.66

W D 2mg

4.68

2
Part (a): T D 2m.vO
C R2 ! 2 / D 580 J
2
2
1
Part (b): T D 2 .4m/vO
C 12 m.4R2 ! 2 / D 2m.vO
C R2 ! 2 / D 580 J

4.70

U D 5760 kJ

4.72

Concept problem.

4.74

P1 D P2 D 7:48 kW

4.76

v D 54:7 m=s D 197 km=h


CR D 0:0171 L=s D 61:7 L=h:

4.78

Energy Burned D 274 C

4.80

Pi D

4.82

D 1:07109 kg=.m2 s2 /


0:99 mg 2
D 0:0361 J
U1-2 D 12 m
Cd

4.84

4.86

kD

mgv .k cos  C sin  /


D 1:51103 ftlb=s D 2:75 hp


mv 2
2
u2

2
C l2

3
2 mgL
2
2
u1
l1

D 9030 N=m

3EIcs 2

2L3
s
2g.mA sin C mB k mA cos /
.v2 /max D
mA C mB
The distance between B and the ground is 0 ft

4.88 V D

4.90

4.92

Eb D

k 2

D 9:67 ft=s

mgvt sin 
D 5:395103 kJ D 1290 C


Chapter 5
5.2

xe D 28:510
xe D 4:1510
xe D 1:4210

24

m
m
6
m
12

13

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e

5.4

5.6
5.8

5.10
5.12

5.14

Gray, Costanzo, Plesha

t2

E
F dt D mv2 D 2:64 lbs

t1

mv2
E
D 2400 lb
Favg D
t2 t1
Concept problem.
mvx2
D 10:6 s
FT
d D 1280 ft
t2 D

Concept problem.

(a) FEavg D 8080 N

FE
avg
(b) s 
D 0:515
mg
(a) Impulse D .3:17 {O C 1:20 |O/ lbs

(b) FEb avg D .3170 {O C 1200 |O/ lb
(c) Within the accuracy of our calculation (4 significant figures), remains equal to 31 .

5.16

Concept problem.

5.18

Concept problem.

5.20

n D 9:170106 bees
Slowdown D 48:5 ft=s D 33:0 mph

5.22

.xfp /2 D

5.24

vP 4 D 1:86 ft=s

5.26

vEG D . 2580 {O

5.28

dD

5.30

.E
vP /final D .1:52 ft=s/ {O

5.32

(a) Amplitude D

Lfp mp
mp C mfp

mA Lfp
mA C mC

(b) .vB /max

3030 |O/ m=s;


D 4:95 m

mA r
D 2:1410
mA C mB
mA r!
D
D 0:0135 m=s
mA C mB

5.34

vEA2 D .5500 {O C 9520 |O/ m=s

5.36

.vA /max D 25:2 ft=s

5.38

and vEB2 D .5500 {O C 9530 |O/ m=s

and .vB / D 0 for

60

mB ! 1

Computer problem.

5.40

C
C
vEA
D vEB
D . 55:9 ft=s/ {O

5.42

vB D

mA C mB p
2gL.1
mB

5.44

vB D

mA C mB p
2k gd D 199 m=s
mB

5.46

0:817  e  0:882

5.48

dD

2 .v /2
mB
B

2k g.mA C mB /2

cos m / D 210 m=s

D 2:89 m

14

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e

Gray, Costanzo, Plesha

q
2 gk 2 2hk C .m C m /g
.mA C mB /mA
A
B

5.50

Wmax D mA g C

5.52

C
C
D .8:33 {O C 78:0 |O/ ft=s
D vEB
vEA

.mA C mB /k

D 819 lb

rE D .14:5 {O C 136 |O/ ft


5.54

C
D 77:0 |O ft=s
vEA

rEA D 132 |O ft

C
D .73:3 {O C 85:8 |O/ ft=s
and vEB

and rEB D .184 {O C 215 |O/ ft

5.56
Given the assumption that the masses are not identical, it is not possible to have a moving ball A
hit a stationary ball B so that A stops right after the impact.
1

5.58

D tan

5.60

The answer is an explanation.

5.62
5.64

.cot /

Concept problem.
C
vEA
D . 23:6 {O C 18:5 |O/ m=s

C
and vEB
D . 0:717 {O

6:20 |O/ m=s

5.66
s
dD

2
.1 C e/h1 cos sin
gh1

r

gh1
.e
2
C

5.68
5.70
5.72

5.74
5.76
5.78
5.80
5.82

d D 3:50 ft

C
vN
D 2N

1/ C .1 C e/ cos 2
q

2gh2 C 12 gh1 .e


1/ C .1 C e/ cos 22 D 6:24 ft

p
1 2gh


D 593103 kO slugft2 =s


hEO A D 79:9103 kO slugft2 =s
hEO

hEQ D

1:44106 kO slugft2 =s

Concept problem.
!D

.L sin 0 C d /2
!
.L sin  C d /2 0

P
O it is indeed true that M
E O D mP gvP .0/t cos  k,
E O D hEP O .
Since hEO D mP gvP .0/t cos  and M
s
p
2L3
hEO D W
.cos  cos 33 / kO D .3:99 lbfts/ cos  0:839 kO
@ 57
g

5.84
s
v1 D sin 2

2gL.cos 2
sin2 1

s
v2 D sin 1

5.86

MA D 2m!02 r

q
r2

2gL.cos 2
sin2 1

cos 1 /
sin2 2
cos 1 /
sin2 2

D 6:85 ft=s;
D 2:32 ft=s

r02

15

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e

Gray, Costanzo, Plesha

5.88

Computer problem.
time to reach end of arm D 0:150 s

5.90

!satellite D 0:0612 rad=s

5.92

The ratio of the orbital sectors is equal to 1.


p
b D rP rA
s
gre2 p
v D
. 2 1/ D 3:23103 m=s
rc

5.94
5.96

5.98

.1:631010 m3=2 =s/


vesc D
p
r

vesc Earth D 4:21104 m=s D 151;000 km=h
4 2 a3
D 3:971014 m3 =s2
2

5.100

Gme D

5.102

rg D 1:39108 ft D 26;200 mi; hg D 1:18108 ft D 22;300 mi;


s


2
1
vP D gre2
D 7:71103 m=s D 27;800 km=h
rP
a
s


2
1
vA D gre2
D 7:70103 m=s D 27;700 km=h
rA a
r
e D A 1 D 7:4510 4
as

5.104

 D 2
5.106

5.108
5.110

5.112

a3

gre2

vc D 10;100 ft=s D 6870 mph

D 5470 s D 91:2 min

vA D 4710 ft=s D 3210 mph


vA D 6830 ft=s D 4660 mph
s
ae3
D 10;600 s D 2:95 h
t D
gre2
Concept problem.
(a) vbo D 5530 ft=s D 3770 mph
(b) vLM D 54:0 ft=s D 37:0 mph
(c) t D 3420 s D 0:950 h
(d)  D 180 D 5:30
s
2
rP vP
2GmB
(a) v1 D
rP
2
(b) rP vP
> 2GmB

5.114

Concept problem.

5.116

Concept problem.
2
1
4 pA dA

RD

5.120

vB D 29:2 ft=s


mf
vmax D vo ln 1 C
mb

5.122

5.124

kD


4 Q2 1
g
dA2

5.118

2
d 2 vw
1
4gmax

1
dB2


D 2120 lb

cos.=2/ D 370 lb=ft

16

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e



5.126

v D vo ln

M
M m
P ot

Gray, Costanzo, Plesha


gt

5.128
N D

2
1
4 PA d

4Q2
D 53:4 N;
d 2

4Q2
D 0:354 N;
d 2
4Q2 `
D 0:0707 Nm
M D
d 2


F D  gL C v02 D 1:10 lb
V D

5.130
5.132

Computer problem.

5.134

m
P o D 0:0150 slug=s
vo D 4530 ft=s


mf
vmax D vo ln 1 C
mb

5.136

max power D 0
v0 D

5.138

5.140

1
2 vw

p

m q
FEavg D
2ghf C 2ghi |O D .654 N/ |O
t
q
p
2ghf C 2ghi
C
E
j
F
j
jpE
pE j
avg
D
D
D 111
jt. mg |O/j
mg
gt
C
vEA
D . 13:6 m=s/ {O

TC

T
T
5.142

gtbo D 1320 ft=s

and

C
vEB
D . 21:3 m=s/ {O

100% D 45:3%

C
vEA
D .4:61 {O C 75:3 |O/ ft=s
C
vEA

rEA D dA

C
vA

rEB D dB

C
vEB
C
vB

C
and vEB
D .37:4 {O C 98:8 |O/ft=s

D .7:71 {O C 126 |O/ ft


D .87:6 {O C 231 |O/ ft

5.144

hA D rA re D 7:02106 ft D 1330 mi
 D 6860 s D 1:91 h

5.146

ve D 8770 m=s D 31;600 km=h


vj D 5640 m=s D 20;300 km=h

5.148

 D 8:64107 s D 1000 days


8
q
< 1 K 1 K 2 4v 2 D 0:219 m=s;
0
2q
vw D 2
: 1 K C 1 K 2 4v 2 D 18:3 m=s;
2

5.150

vEA D .0:813 m=s/ {O

and

vEB D .3:25 m=s/ {O

Chapter 6
6.2

!EB D

6.4

!B D

1800 kO rpm

and !E C D 1160 kO rpm

RA
! D 600 rad=s
RB A

17

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e


6.6

Concept problem.

6.8

Concept problem.

6.10

Concept problem.

6.12

.!OA /max D 2:48 rad=s

6.14

j!E ram j D 0

6.16

vEG D . 0:150 uO r 3:38 uO  / m=s


aEG D . 20:4 uO r 3:66 uO  / m=s2

6.18

!E s D

10:0 kO rad=s

Es D

1:33 kO rad=s2

6.20

vEC D . 0:179 {O C 0:492 |O/ m=s


aEC D .2:58 {O C 0:938 |O/ m=s2

6.22

!s D

6.24

!EB D 8:00 kO rad=s;

6.26

!E C D 40:0 kO rad=s

2 rad 1 h
D 72:710
24 h 3600 s

Gray, Costanzo, Plesha

rad=s

EB D 2:00 kO rad=s2 ;

!ED D 1:60 kO rad=s;

ED D 0:400 kO rad=s2

EC D 5:20 kO rad=s2
6.28

Letting !E OB and EOB denote the angular velocity and acceleration of the turbine,
!E OB D 1:60 kO rad=s and EOB D 0:461 kO rad=s2
aEA D . 93:0 {O 110 |O/ m=s2

6.30

Chain ring/sprocket combination: C1/S3


R
52:6 mm
!W D !S D C !C D
68 rpm D 126 rpm
RS
28:3 mm

6.32

vEB D .9:88 {O C 3:66 |O/ m=s

6.34

!EP D 9:60 kO rad=s


vEO D 2:00 {O ft=s

6.36

Concept problem.

6.38

!EP D 1:60 kO rad=s


vEC D 5:33 {O m=s

6.40

1 D 67:7
2 D 231

6.42

!EA D

6.44

!E C D 60:0 kO rad=s

6.46

vEB D 10:6 {O ft=s


vEC D .5:31 {O 4:00 |O/ ft=s

6.48

!EP D 8:80 kO rad=s


rEIC =Q D 0:307 |O rad=s

6.50

vEC D 82:2 |O ft=s

6.52

!E OC D 2:86 kO rad=s
vEP D .0:0286 uO r 0:119 uO  / m=s

7:00 kO rad=s

18

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e


6.54

vEC D 16:3 {O ft=s


the cable is unwinding at 12:2 ft=s

6.56

!E CD D

6.58

!EAB D 5:09 kO rad=s

6.60

!E spool D 3:33 kO rad=s


vEO D 5:00 {O rad=s

6.62

!E gate D

6.64

!EAB D

Gray, Costanzo, Plesha

42:4 kO rad=s

0:0467 kO rad=s

7:21 kO rad=s
D 8:58 kO rad=s

!EBC
6.66

!E R D 35:0 kO rpm
vED D 17:2 |O in.=s

6.68

!EAB D 50:6 kO rad=s


vEB D 1:92 |O m=s
#
"
P
R.H
R cos / sin 
P
|O
vEB D R cos  p
L2 .H R cos /2

6.70
6.72

Computer problem.
5:38 |O/ ft=s2

6.74

aEB D .17:0 {O

6.76

aEC D . 16:8 {O C 87:7 |O/ ft=s2

6.78

aEQ D

6.80

EAB D 48:6 kO rad=s2

6.82

Letting Q denote the point on the ball in contact with the bowl, at the instant shown
aEA D . 1020 uO r C 24:0 uO  / ft=s2 and aEQ D 3480 uO r ft=s2

6.84

EAB D 27:1 kO rad=s2


aEB D 267 {O ft=s2

6.86

!EAB D

6.88

EW D 7:97 kO rad=s2

6.90

EBC D 1640 kO rad=s2

6.92

EBC D

6.94

Es D

6.96

Egate D 4:50 kO rad=s2

6.98

EAB D

6.100

Letting Q denote the point of contact between the wheel W and the cylinder S , aEQ D 82:0 uO r ft=s2

6.102

For C accelerating downward and to the right: EAB D

9:16 uO r m=s2

0:458 kO rad=s

and

EBC D 0E

and EAB D

0:258 kO rad=s2

HRP 2 .R2 H 2 / sin  O


k
.H 2 C R2 2HR cos /2
0:400 kO rad=s2

92:1 kO rad=s2

and

and

aEO D 2:00 {O ft=s2

EBC D

191 kO rad=s2

For C accelerating downward and to the left: EAB D


6.104

For  D 10 and  D 56:11 aED D


For  D 10 and  D 303:9 aED D

551 kO rad=s2 and EBC D 320 kO rad=s2


729 kO rad=s2 and EBC D 320 kO rad=s2

.18;300 {O C 34;900 |O/ ft=s2


.18;300 {O C 32;900 |O/ ft=s2

19

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e

Gray, Costanzo, Plesha

6.106

aEC

6.108



R sin 
D RAB cos  1 C p
L2 R2 cos2 
"
2
R.L
R2 / cos2 
R sin2 
2
C R!AB
p
.L2 R2 cos2 /3=2
L2 R2 cos2 

sin 

|O

Computer problem.


D sR s!02 {O C s0 C 2Ps !0 |O

6.110

aEP

6.112

(a) !E CD D

.R= h/!AB
D 3:14 kO rad=s
1 C R= h

(b) ECD D 0E and

and vEbar D

.R= h/d!AB O
I D 0:377 IO m=s
1 C R= h

aEbar D dCD IO D 0E

!AB . C sin / O
k
1 C 2 C 2 sin 
!AB . C sin / O
dI
vEbar D
1 C 2 C 2 sin


2 cos 
1 2 !AB
(b) ECD D
2 kO
1 C 2 C 2 sin 
 2
1 2 !AB
cos 
aEbar D d
2 kO
1 C 2 C 2 sin 

6.114

(a) !E CD D

6.116

(a) vEbar D

6.118

vEP D . 23:6 {OA C 26:1 |OA / ft=s


aEP D . 52:9 {OA 40:3 |OA / ft=s2

6.120

aEC D . 30:0 {O C 51:8 |O/ ft=s2

6.122

vEC D .7:50 {O C 7:51 |O/ ft=s


aEC D .105 {O 161 |O/ ft=s2

6.124

#)

! d IO
1 C AB

(b) vEbar D
! d IO
1 AB
(c) vbar D 2:90 m=s
vbar D 5:39 m=s
(d) vbar D 5:59 m=s
vbar D 50:3 m=s

Concept problem.

6.126

dPAB D 1:12 ft=s


dRAB D 2:01 ft=s2

6.128

!E bar D

6.130

!EA D

6.132

aEE D . 1:50 {O

6.134

dPE C D 0:214 ft=s

6.136

vED D .vC C !OA ` sin / {O C .d!OA `!C cos / |O `!C sin  kO


2
2
2
aED D . d!OA
C 2!OA `!C cos  C `OA sin / {O C .dOA C .!C
C !OA
/` sin  C 2!OA vC / |O
2
O
!C cos  k:

6.138

vEC D .21:5 {O C 7:51 |O/ ft=s


aEC D .107 {O 166 |O/ ft=s2

14:3 kO rad=s
481 kO rad=s
0:320 |O/ ft=s2
and dRE C D

0:0192 ft=s2

20

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e

Gray, Costanzo, Plesha

Chapter 7
and dstop D v02 =.2gk / D 16:8 ft

7.2

tstop D v0 =.k g/ D 1:86 s

7.4

F D 179 N

7.6

 D 18:9

7.8

tmin D v=.aGx / D v=.gs / D 1:12 s

7.10

The FBD for the problem is

and aGx D 4:71 m=s2

F D 577 lb; Nf D 784 lb; Nr D 783 lb; and NB D 2230 lb



HE D Hx {O C Hy |O D .653 {O C 166 |O/ lb and HE D 674 lb
.s /min D 0:736
7.12

m1 D
m1 D

1
4 m;
1
2 m;

m2 D
m2 D

3
4 m;
1
2 m;

xP D

2
3L

.IG /extra D

2
1
6 mL

7.14
Rx D

.0:112 N=s2 /t 2 ;

Ry D 0:0101 N;
M D 3:1110
7.16

Nm

The FBD for the problem is

Or D

7.18
7.20

16:8 lb and O D 5:00 lb


p g
p 
jbar jmax D 3
for d D 61 3
3 L or d D
L

3C

p 
3 L

The FBD for the problem is

OE D Ox {O C Oy |O D . 1320 {O C 48:5 |O/ N


7.22

1
6

and ET-bar D . 6:92 rad=s2 / kO

Concept problem.

21

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e


7.24

.vG /final D
tfinal

Gray, Costanzo, Plesha

2gL.sin  pk cos  C sin / D 18:4 ft=s


2gL.sin  k cos  C sin /
D 1:08 s
D .vG /final =aGx D
g.sin  k cos /

7.26

tr D 2:41 s

and d D 50:7 ft

7.28

aGx D k g

7.30

The FBD for the problem is

and b D

TCD D 101 N:

and

grk
2
kG

aEG D aGx {O C aGy |O D . 6:45 m=s2 / |O

7.32

The solution of this problem under the stated assumptions leads to conclusion that the crate starts rotating counterclockwise. Since this fact runs contrary to the fact that the force system applied to the crate can only induce
a clockwise rotation of the crate, then we conclude that the solution obtained under the assumptions given in the
problem is not physically admssible.

7.34

separation D

7.36

The FBD for the problem is


D 60:0
3

Under the assumption that the contact between the sphere and the semicylinder is frictionless, the solution in terms
of contact force N , second time derivative of the angle , and angular acceleration of the sphere is as follows:
g sin 
N D mg cos  m.R C /P 2 ; R D
; and s D 0:
RC
Comparing these equations to Eqs. (5) and (6) in Example 3.6 on p. 216 for a particle, we can see that the sphere in
question behaves like a particle of mass m sliding over a semicylinder of radius R C  and therefore if we shrink
the sphere to a particle by letting  ! 0, we will recover exactly the same solution obtained for a particle.
7.38

(a) F D

IG vf
r 2 tf

(b) .tf /new D


7.40

AB D

D 12:1 lb
mc r 2 tf
2IG C r 2 mc

D 6:85 s

3mAB g cos 
L.2mAB C 9mB

sin2 /

aEB D

3mAB g sin  cos 


2mAB C 9mB

22

sin2 

{O;

w D

3mAB g sin  cos 


R.2mAB C 9mB sin2 /

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e


7.42

Gray, Costanzo, Plesha

3.2mA C mAB /g cos 

AB D

L.6mA cos2  C 2mAB C 9mB sin2 /


3.2mA C mAB /g sin  cos 
{O;
aEB D
6mA cos2  C 2mAB C 9mB sin2 
3.2mA C mAB /g sin  cos 
w D
R.6mA cos2  C 2mAB C 9mB sin2 /

7.44

IG D mR2

7.46

ac D 1:35 m=s2 ;

7.48

xR D

7.50

(a)

T D 3130 N;

.3g cos  C 2LP 2 / sin 

and

R D

and

1 C 3 sin2 

s D

1:68 rad=s

3.2g C LP 2 cos / sin 


L.1 C 3 sin2 /



1
2hac
Wc 1 C
D 736 lb;
4
g`


2hac
1
D 549 lb;
Nf D Wc 1
4
g`
W a
Fr D c c D 503 lb
2g
Nr D

(b)
Ax D

ac Ww
g

Ay D Wr

Fr D

Nr D

485 lb

689 lb

d
2a I
MA D Fr C c B D 522 ftlb
2
d
7.52

Computer problem.
!
k2
m 1C G
xR C kx D mg sin  C kL0
r2

7.54

AB D

7.56 aAx D

g
2L

cos 
1
3

C cos2 .cos = sin /2 C sin  cos .cos = sin /

60
g
181

b D

and

5
O;
7 g sin  u

7.58

aEG D

7.60

R C

7.62

(a) aEG D .1

D 3:74 rad=s2

45g
181R

b D

5g sin 
;
7

and FEdue to bowl D

mg cos  uO r C 27 mg sin  uO 

5g
sin  D 0
7.R /


(b) aEG D

k /

P
.1
m

PR2

{O;

2/
m.R2 C kG

2k / k g {O;

and

2
k R 2 C k G

P
2  P C mg
R2 C kG
k


k R P
d D 2
.1 k / g
kG m

and .s /min D

7.64
R.2mA R2 C IO /!P s C 2mA `.`P C R!s /2 D 0;
``R C `P2 C `R!P s R2 !s2 D 0
7.66

7.68

and By D 54 mg


P
(b)  D 2 tan 1
; 0 D 0;
mg

(a) Ay D

3
4 mg

TCD D 2060 lb;

and

aEE D

and

1 D 

.5:65 ft=s2 / |O

23

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e


7.70

25:9 |O/ ft=s2

aEE D .13:2 {O
Ax D

Gray, Costanzo, Plesha

3g.mb C mr /.d C h/mb C 2d mr sin  cos  C g.h


2.d C h/.2mb C 3mr /

d /mb mr tan 

D 437 lb;

gmb h C d.mb C mr /mb C 3.mb C 2mr / cos2  C 3ghmb mr sin2 


D 256 lb;
2.d C h/.2mb C 3mr /
3g.mb C mr /.d C h/mb C 2hmr sin  cos  g.h d /mb mr tan 
Cx D
D 629 lb;
2.d C h/.2mb C 3mr /

Ay D

Cy D
7.72
7.74

gmb d C h.mb C mr /mb C 3.mb C 2mr / cos2  C 3gd mb mr sin2 


D 353 lb
2.d C h/.2mb C 3mr /

aEE D .7:00 {O C 7:06 |O/ ft=s2


Ax D 229 lb; Ay D 1330 lb;

Cx D 336 lb;

and

Cy D 1330 lb

Pmax D 1600 lb
1

vc2
gR

7.76

 D tan

7.78

AC D R D 1:46 rad=s2

7.80

Computer problem.
tclosure D 1:29 s
.vE /at closure D 1:87 m=s

and CE D

R D

1:46 rad=s2

7.82
gR sin  g cos  R cos.
R D
2 C 2R sin.
R2 C 2 C kG
F D mg sin  C maGx

D mg sin  m RC sin.
N D mg cos  C maGy

D mg cos  C m  cos.

/P 2
/

 /gR sin  g cos  R cos.  /P 2


2 C2R sin.  /
R2 C2 CkG

 /gR sin  g cos  R cos.  /P 2


2 C2R sin.  /
R2 C2 CkG


/ ;

C P 2 cos.

P 2 sin.


/

7.84
.mAB C mC /xRA C 12 .mAB C 2mC /L cos  R C 21 .2d C h/mC cos  R
1
P 2 1 .2d C h/m sin  P 2 D 0;
C
2 .mAB C 2mC /L sin  
2
2
1
1
1
1
Lm cos  xR C m
C m cos  C . m
C m / sin2 L2 R

12

1
2 .2d

7.86

7.88
7.90

AB

C
2 C
4 AB
1
C 4 .2d C h/LmC .2 sin  sin  C cos  cos /R
C 41 .mAB C 2mC /L2 sin  cos  P 2
C 41 .2d C h/LmC .2 sin  cos  sin  cos /P 2
C 21 .mAB C 2mC /gL sin 
C h/mC cos  xRA C 21 .2d C h/LmC cos. /R
1
C 12
.h2 C w 2 / C 41 .2d C h/2 mC R
1
sin  cos /P 2
2 .2d C h/LmC .sin  cos 
C 21 g.2d C h/mC sin 

D 0;

D 0:

(a) F D 43 mg.3 cos  2/ sin  and N D 14 mg.1 3 cos /2


(b) Given any (finite) value of s , there always is a value of  for which the rod will slip.
!
!
R2
md
R2
Pmax D mc gs 1 C
C 2 ; aC x D g 1 C 2 ; and aGx D s g
mc
kG
kG
P D 7:59 N

and .s /min D 0:0462

24

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e

Gray, Costanzo, Plesha

Chapter 8
8.2

TA D TB D 518 J

8.4

TR1 D 7760 ftlb

8.6

T D 324;000 ftlb

8.8

T D

8.10

T D 28:9 ftlb

8.12

and TR2 D 15;000 ftlb

1
2
I R2 C H 2 .IA C mBC R2 /!AB
D 25:3 J
2H 2 D

Computer problem.

8.14

Lf D 34:1 ft

8.16

Concept problem.
s
.2Md=R/ kd 2
!2 D
2 C R2 /
m.kG
2M
ds D
kR

8.18

8.20
8.22

M D 2:06106 ftlb
p
vperson D vG D 2gH.1 C cos /

v
D 10:8 m=s
person D0

8.24

vO D 10:9 ft=s

8.26

nmin D 26
(a) vperson D 26:5 ft=s

8.28

Ufracture D

8.30

Ufriction D

8.32

kD

8.34

D 1:03 ft

8.36

WP D

8.38

vmax D 6:39 ft=s

8.40

vC D 4:96 m=s

8.42

vS D 7:53 m=s

8.44

vB D 2:21 m=s
In B is moving to the left.

8.46

M D 32:9 Nm
Pmax D 132 W

8.48

.s /max D 0:371 and

8.50

Concept problem.

8.52

hEA

1
2 gLA .mA

C 2mS / C 2mS rS .cos f

cos i / D

318 J

364 ftlb

2 C g.L C d
W vmax
2H /
D 11:3 lb=ft
2g .H d /.H C 20 d /

2
3gH C 6vA2

AB

(a) hEA

2
vA2

3gH

(b) hED

BC

W D 800 lb

and !ED D .44:1 rad=s/ kO

slide D 35:1

1
m R2 !AB kO D .1:72 kgm2 =s/ kO
3 AB
D m ! R2 kO D .7:20 kgm2 =s/ kO

CD

BC AB

1
3 mCD HR!AB

kO D .7:75 kgm2 =s/ kO

25

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e


8.54

8.56

8.58

8.60

hEC

hEO

W
W

D .91:910
D .66910

Gray, Costanzo, Plesha

kgm2 =s/ kO

@

kgm =s/ kO

@

pE D WAB vA D 3:23 lbs


AB
2g cos 
W
LvA O
AB
k D .2:42 ftlbs/ kO
hEG D
12g cos 
W vfinal
{O D .878 lb/ {O
FEavg D
gt
E avg D 2IG vfinal kO D . 10:7 lbft/ kO
M
dt
Concept problem.
v0
2k g

8.62

tr D

8.64

!A end of slip D 61:3 rad=s

8.66

(a) Collar modeled as a particle: vimpact D 0:990 ft=s,


(b) Collar modeled as a rigid body: vimpact D 0:943 ft=s,
"
#
g .1 C w /g
t !0 kO
!.t/
E D
.1 C g w /r

8.68
8.70

vG t D2 s D 21:7 ft=s
.s /min D 0:0588

8.72

Concept problem.

and !B end of slip D

8.74

The system rotates clockwise.


m a e
 D B 0 tf2 ; (clockwise)
2IO

8.76

dD

4r 2 d
.2r b/2

8.78

Concept problem.

8.80

Concept problem.
2
3`

8.82

dD

8.84

d D 2:09 ft
!EB D . 26:6 rad=s/ kO

8.86
8.88
8.90

40:3 rad=s

and

vbC D 226 ft=s

!E bC D .10:7 rad=s/ kO
C
vEG
D . 1:31 m=s/ {O and !EAC D .3:43 rad=s/ kO
s
4g` sin
v0 D
D 7:48 ft=s
3 cos2

8.92

C
!EAB
D . 0:851 rad=s/ kO

8.94

!EAC D . 0:000 715 rad=s/ kO

8.96

T D 0:0257 ftlb

8.98

d D 1:98 m

C
and !EBD
D .2:55 rad=s/ kO
C
and !EB
D . 0:000 024 1 rad=s/ kO

26

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e


8.100

Concept problem.

8.102

Concept problem.

8.104

C
D 2v0 {O D .12 ft=s/ {O
vEP

8.106

!EAC D .1:03 rad=s/ kO


max D 14:8

Gray, Costanzo, Plesha

Chapter 9
9.2

9.4

mgL 2
4 2
s
7L
 D 2
6g
IO D

r
9.6

`D

9.8

!n D

9.10

9.12
9.14
9.16

IG
m
s

Gr 4
LR4 t
r
2d m
D
h
k
s
1
.h3 C d 3 / C md 2
 D 2 3
kh2
Wpayload D 90;700 lb
r
g
!
d
f D n D
D 0:566 Hz
2
4 m

9.18

(a) myR C ky D 0
(b) mR C k D 0

9.20

mn D 35:6 g

9.22

xR G C

9.24

9.26

9.28

17k
x D0
6m G

8k
x D0
3m G r
2
3m
D 2
D
D 2:22 s
!n
8k
s
2g
!n D
3.R r/
s
3.R r/
 D 2
2g
xR G C

2
D
D 2
!n
s

.3

L
2g
2/R

9.30

 D 2

9.32

x.t / D A sin !n t C B cos !n t C

3g

F0 =k
cos !0 t
.!0 =!n /2

27

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e

Gray, Costanzo, Plesha

9.34
mu D 0:01 kg

mu D 0:1 kg

mu D 1 kg

q
2:1910
q
jym j D 1:1010
q
jym j D 9:8010
jym j D

6 cos.4:37t/ C 1:8910 5 m;
5 cos.4:37t/ C 1:1110 5 m;
4 cos.4:37t/ C 1:0110 3 m

amp D 0:001 76 rad=s


s
3EI
9.38 !n D
D 312 rad=s
.mu C me /d 3 C 43 mw h2 d
!
f D n D 49:7 Hz
2
jp j.mu C me /d
.!p =!n /2
D 0:820
MF D
D
mu R
1 .!p =!n /2
9.36

9.40
9.42
9.44

Concept problem.
x.t / D 0:000 501 sin 10t C 0:100 cos 10t


L0
myR C 2k 1
y D F0 sin !0 t
L


sin 200t m


!0
sin
!
t
C
sin
!
t
;
n
0
1 .!0 =!n /2 !n
s



L0
2k
where keq D 2k 1
and !n D
1
L
m

2
1
1
3 mB C 2 mA xR C 2kx D 2 F0 sin !0 t
F0
xamp D
 2
4
4k
m
3 B C mA !0
y.t/ D

9.46

F0 =keq

2:5110

9.48

Concept problem.

9.50

Concept problem.

9.52

no peak in MF for  

9.54

yR C 2!n yP C !n2 y D

mu "!r2
sin !r t
m

9.56

jym j D 0:002 19 m

9.58


IG R C cro2 P C k1 ro2 C k2 ri2  D 0
h
.t / D 0:0504e 3:80t 0:000386e

L0
L

1=2

496t

rad

9.60 x.t / D e 0:5t .A sin 3:12t C B cos 3:12t/


q

p
L2 C .L C x/2
2L p
9.62 mxR C c xP C 2k

LCx
L2

C .L C x/2

D F0 sin !0 t

mxR C c xP C kx D F0 sin !0 t
DD p

F0 =k
1

.!0 =!n /2 2 C .2!0 =!n /2

r
;

!n D

where

9.64

k > 1:35109 N=m

9.66

(a) mRs C c sP C ks D mA!02 sin !0 t


"
#

mA!02 k m!02
(b) y.t/ D
C A sin !0 t
2
k m!02 C c 2 !02
v
u
u
k 2 C c 2 !02
(c) DT D t
2
k m!02 C c 2 !02

k
m

and

c
D p
2 km

and c D 0
"
k

28

#
mcA!03
cos !0 t
2
m!02 C c 2 !02

Last modified: November 2, 2009

Engineering Mechanics: Dynamics 1e

Gray, Costanzo, Plesha

k1 k2
xD0
k1 C k2

9.68

mxR C

9.70

k D

9.72

.mm C mp /yRm C keq ym D mu "!r2 sin !r t

5:91%

9.74
mu D 0:01 kg W

F t D 14:8mu sin.125:7t C 0:842/ C 17:7mu cos.125:7t C 0:842/ N;

mu D 0:1 kg W

F t D 148mu sin.125:7t C 0:842/ C 177mu cos.125:7t C 0:842/ N;

mu D 1 kg W
9.76 myR C 2k 1

9.78

F t D 1480mu sin.125:7t C 0:842/ C 1770mu cos.125:7t C 0:842/ N


!

L0
p

y 2 C L2

L0
yD0
L


myR C 2k 1

yD0

Chapter 10
10.2

.d C ` cos /!arm kO
i
2 h

!arm
2
!arm
sin .d C ` cos / |O
d 2 C 2d ` cos C `2 C R2 cos2 kO
R

vEE D R!arm cos {O C .d C ` cos /!arm |O


aEE D

2
!arm
cos .d C ` cos / {O

10.4

vEP D 2.d C ` cos /!arm kO


2
2
aEE D !arm
)
( cos .d C ` cos / {O !arm sin .d C ` cos / |O
2 h
 2 i
!arm
2
2
2
.d C ` cos /arm C
d C 2d ` cos C ` C R cos kO
R

10.6



aEA D 231 |O C 108 kO ft=s2


EAB D 18:3 {O C 15:1 |O C 34:9 kO rad=s2

10.8

vEP D
aEP

10.10

R!d cos {O .h!b C R!d sin / |O C R!b cos kO




h

i
D R !d2 sin !P d cos {O R !b2 C !d2 cos C !P d sin |O


C R!P b cos h!b2 2R!b !d sin kO

vEA D

2L!0 cos2 kO

aEA D

2L!02 cos2 {O
!s |O

L!02 cot |O

2L0 cos2 kO

P kO
R kO

10.12

!EAB D

10.14

P {O
EAB D !
s



L
LR
L
L  P2
sin C d C cos !s2 C P 2 cos {O C
sin
aEG D
2
2
2
2

vEA D 1:432 |O 0:6677 kO m=s

10.16


aEA D 103 |O C 47:8 kO m=s2

10.18


!EAB D 0:0161 {O C 2:69 |O C 0:917 kO rad=s

E
D 1:73 {O 4:59 |O C 15:8 kO rad=s2


R cos |O

P sin kO
L!
s

AB

10.20

!E bit D !d {O C !a |O C !b kO

10.22

Ebit D .!P d !a !b / {O C .!P a C !d !b / |O C .!P b !d !a / kO


h

i
aEB D a t C h!P a .` C r t / !a2 C !b2 {O C 2.v t C h!a / !b C .` C r t / !P b |O
.2v C h! / ! C .` C r / !P kO
t

29

Last modified: November 2, 2009

You might also like