Dynamics 1e Answers
Dynamics 1e Answers
Dynamics 1e Answers
Concept Problems.
Computer Problems.
Design Problems.
For Concept and Computer problems, please consult the solutions manual.
Chapter 1
1.2 .rB=A /` D 3:88 ft
1.6 The angle is dimensionless (or nondimensional) Observe that since angles can be expressed in a variety of units,
such as radian or degree, this problem illustrates the idea that some nondimensional quantities still require proper use
of units.
Chapter 2
2.2 vE.15 s/ D .72:1 {O C 6:24 |O/ ft=s
aE .15 s/ D . 15:8 {O 1:39 |O/ ft=s2
.15 s/ D 4:95ı
.15 s/ D 180ı
8a3 v02
2.32 xR D 2
4a2 C y 2
4a2 v02 y
yR D 2
4a2 C y 2
2.54 s D 186 ft
t D 3:90 s
r
P / D ˙ P 2 C 2g cos
2.56 . 0 cos 0
L
2.58 .P0 /min D ˙4:93 rad=s
s
2 kL0 k 2
x02
2.60 xP D ˙ v0 C 2 g C .x x0 / x
m m
3=2
" s #
r0
r r r
r
1
2.64 (a) t D p sin 1
2G .mA C mB / r0 r0 r0 2
(b) (i) t D 380;000 s ; (ii) t D 383;000 s
v0
2.66 tstop D D 2:88 s
gk
.vT /20 aT
2.68 k D D 0:301
g .vT /20
2daT
2.70 t D 8:63 s
yP D 77:7 m=s
2.72 v D v0 C ac .t t0 /
s D s0 C v0 .t t0 / C 21 ac .t t 0 /2
ap hvp2
2.74 ˛s D C
ˇ r 2 r 3
˛s rDr D 1:44 rad=s2 ˛s ˇrDr D 3:63 rad=s2
ˇ
ˇ and
1 2
1 w h
2.76 D tan
d
2.86 The two firing ranges are 30:4ı 56:8ı and 69:4ı 74:5ı :
The sizes of these intervals are, respectively, 1 D 26:4ı and 2 D 5:09ı
The angle subtended by the target as seen from an observer at point O is ˇ D 21:3ı
Unlike Example 2.11, the difference between the angle subtended by the target and 1 or 2 is significant. In
addition, we see that the value of 1 is much closer to ˇ than 2 .
2.96 max D D 45ı
4
v02
RD D 447 ft
g
2v sin max
tD 0 D 5:27 s
g
h i
2.98 y D 59:9103 ln 1 2:8410 4
x C 17:7x m
2.104 (a) aE bE D 1 6 C 2 3 C 3 0 D 0
(b) aE aE bE D 84 {O 42 |O C 0 kO
(c)
v0 O
2.110 !E D kD .65:7 rad=s/ kO
R
2.112 jE
v j D 65;600 ft=s
Referring to the diagram below,
let denote the angle formed by the velocity vector and the x axis such that tan D vy =vx . Then,
D 70:0ı
v0
2.114 rP D v0 cos. C / and P D sin. C /
r
2.116 vEB D .4:00 uO r C 0:800 uO / ft=s
aEB D . 0:320 uO r C 3:20 uO / ft=s2
v0
2.118 rP D 0 and P D D 1:50 rad=s
d
v02
rR D D 9:00 ft=s2 and R D 0 rad=s2
d
aEA ˇrD0 D . 112 {O C 5:00 |O/ m=s2 :
ˇ
2.120
2.122 2! rP C !r
P D0
v02
2.142 D D 282 ft
g
2.144 Letting min and tf t0 denote the tightest radius of curvature and the time needed to perform the turn, respectively,
then min D 565 ft and tf t0 D 4:74 s:
2.148 s D 304 ft
2.154 rP D 684 ft=s; P D 0:0116 rad=s; rR D 4:94 ft=s2 ; and R D 0:000 428 rad=s2
2.156 P
r.0/ P
D 438 ft=s and .0/ D 34710 6 rad=s
2
R
r.0/ D 14:9 ft=s R
and .0/ D 10:610 6 rad=s2
2.172 P D 0
2
R!AB
R D p D 15:8 rad=s2
h2 R2
2.174 vE D .37:710 3 uO r C 0:534 uO / m=s
aE D . 1680 uO r C 237 uO / m=s2
rEB=A
2.184 ROS D vEB vEA
jErB=A j
2.196 D 14:9ı
r
` g
2.198 vpmax D vs C D 331 ft=s D 225 mph
2 2h
0:292 cos
2.212 vEC D . 61:1 ft=s/ sin 1 C p |O
0:195 0:0851 sin2
0:292 cos
aEC D 1:28104 ft=s2 cos 1 C p
0:195 0:0851 sin2
0:0248 cos2 sin
0:292 sin
C sin |O
.0:195 0:0851 sin2 /3=2
p
0:195 0:0851 sin2
q
2.214 r D .d C cos /2 C .h C sin /2
v0 . C d cos C h sin / v0 .h cos d sin /
P D and rP D p
.d C cos /2 C .h C sin /2 .d C cos /2 C .h C sin /2
2.220 Referring to the figure below and keeping in mind that the coordinate system is defined in such a way that the triad
.uO R ; uO ; uO ´ / is right-handed
we have
vEC D . 6:5 uO r C 5:52 uO C 5:3 uO ´ / ft=s
aEC D . 0:662 uO r 1:56 uO / ft=s2
K
2.222 vE D Ṕ tan ˇ uO R C uO C Ṕ uO ´
´ tan ˇ
K2
aE D Ŕ tan ˇ uO R C Ŕ uO ´
´ tan3 ˇ
3
2.224
P R sin C 2rP P sin C 2r P P cos /
r .r r P sin .r R C 2rP P r P 2 sin cos / D 0
r P sin .rR r P 2 r P 2 sin2 / P R sin C 2rP P sin C 2r P P cos / D 0
r.r
P R C 2rP P
r.r r P 2 sin cos / P rR
r . r P 2 r P 2 sin2 / D 0
2.226 rP D 0
P D 0
v0
P D D 0:0177 rad=s
r sin
v2
rR D 0 D 11:3 ft=s2
r
v02 cos
R D 2 D 78:110 6 rad=s2
r sin
R D 0
2.244 D 240 ft
2.246 f D 629 m
tf D 5:24 s
ˇ
2.248 rP ˇ D180ı D 0
P ˇ D180ı D 2:94 rad=s
ˇ
Chapter 3
3.2 Concept problem.
3.16 The reading of the scale corresponds to the value of the spring force supporting the platform. Denoting this force by
Fs , the maximum reading of the scale is .Fs /max D 2mg:
3.20 Letting d and ts denote the stopping distance and time, respectively,
d D 418 ft and ts D 7:59 s:
If an entire train weighing 30 106 lb was skidding to a stop, instead of a locomotive, we would have the same
stopping distance because the weight does not appear in our solution.
3.26 Denoting by ımax the maximum displacement of the vase relative to the packaging and viewing this quantity as being
positive, ımax D 0:167 m.
Denoting the maximum elastic force by .Fs /max and the overall maximum force by Fmax D .Fs /max mg, .Fs /max D
586 N and Fmax D 557 N.
3.30 The origin of the x axis is placed where the railcar first comes into contact with the bumper. Therefore, the com-
pression of the bumper required to stop the railcar coincides with xstop , the stopping position of the railcar, and
xstop D 0:160 m:
3.44 D 1:40104 ft
3.46 Letting aE and FL denote the acceleration of the airplane and the lift force acting on the airplane, respectively, we
have jE
aj D 3:62 g and jFL j D 43;100 N
3.48
!
k ru
xR C x 1 p D 0;
m x2 C y2
!
k ru
yR C y 1 p D0
m x2 C y2
3.50
k
rR r P 2 C .r ru / g cos D 0;
m
r R C 2rP P C g sin D 0
m m2 g 2
3.52 yD tan 0 e Cd x=m 1 e Cd x=m 1
Cd 2v02 cos2 0 Cd2
3.54 s D 47:7ı
1 2
3.66 B D sin D 41:8ı
3
me
3.68 rR r P 2 C G D 0 and r R C 2rP P D 0
r2
3.70 k D 94:8 lb=ft
3.72 s D 132ı
L2 RRP 2 p
3.74 L2 RR RP 2 .L2 R2 / C 2 2
C gR L2 R2 D 0
L R
RR C 2RP P D 0
3.110 Defining a Cartesian coordinate system with ˇ the y axis opposite tot
ˇ he direction of gravity and with origin at the
ˇ 2 ˇ
initial position of B, we have j.yB /max j D ˇ
ˇ .mA sin ˛ C mB /g ˇˇ D 1:84 ft
k
.vB /max D vB j.y D 0:9202/ D 4:79 ft=s
B
3.112 vEA D .3:16 {O C 3:13 |O/ m=s and vEB D .3:26 {O/ m=s
9mG g 39P
3.116 aEG D |O D . 9:46 ft=s/ |O
mB C mC C 25mD C 9mG
3g .mC C 10mD / mG C .4mB 9mC 30mD C 36mG / P
T4 D D 1190 lb
mB C mC C 25mD C 9mG
Chapter 4
4.2 Concept problem.
4.12 d D 15:8 m
11
4.14 4:9810 J
m 2
4.32 Favg D mg C .v v22 / D 1:47 kN
2h 1
4.34 D sin 1 23 D 41:8ı
4.36 VB D 14 ˇx 4
d D 0:420 ft
1
4.64 yB D .m sin ˛ C mB /g
k A
.vB /max D vB .yB D 2/ D 9:42 ft=s
dB D 0 ft
4.66 W D 2mg
2
4.68 Part (a): T D 2m.vO C R2 ! 2 / D 580 J
2
1
Part (b): T D 2 .4m/vO C 12 m.4R2 ! 2 / D 2m.vO
2
C R2 ! 2 / D 580 J
4.70 U D 5760 kJ
4.74 P1 D P2 D 7:48 kW
2
1 0:99 mg
4.84 U1-2 D 2m D 0:0361 J
Cd
3
mv 2 2 mgL
4.86 kD 2 C ı2 2 2
D 9030 N=m
ıu2 l2
ıu1 ıl1
3EIcs 2
4.88 V D ı
2L3
s
2gı.mA sin ˛ C mB k mA cos ˛/ kı 2
4.90 .v2 /max D D 9:67 ft=s
mA C mB
The distance between B and the ground is 0 ft
mgvt sin
4.92 Eb D D 5:395103 kJ D 1290 C
Chapter 5
5.2 xe D 28:510 24 m
xe D 4:1510 12 m
xe D 1:4210 6 m
ˇZ ˇ
ˇ t2 ˇ
5.4 FE dt ˇ D mv2 D 2:64 lbs
ˇ ˇ
ˇ
ˇ t1 ˇ
ˇ
ˇE ˇ
ˇ mv2
ˇFavg ˇ D D 2400 lb
t2 t1
(c) Within the accuracy of our calculation (four significant figures), ˛ remains equal to 31ı .
mA r 6
5.32 (a) Amplitude D D 2:1410 m
mA C mB
mA r!
(b) .vB /max D D 0:0135 m=s
mA C mB
5.34 vEA2 D .5500 {O C 9520 |O/ m=s and vEB2 D .5500 {O C 9530 |O/ m=s @ 60ı
C C
5.40 vEA D vEB D . 55:9 ft=s/ {O
mA C mB p
5.42 vB D 2gL.1 cos m / D 210 m=s
mB
mA C mB p
5.44 vB D 2k gd D 199 m=s
mB
5.46 0:817 e 0:882
2 .v /2
mB B
5.48 dD D 2:89 m
2k g.mA C mB /2
q
.mA C mB /mA 2 gk 2 Œ2hk C .m C m /g
A B
5.50 Wmax D mA g C D 819 lb
.mA C mB /k
C C
5.52 vEA D vEB D .8:33 {O C 78:0 |O/ ft=s
C C
5.54 vEA D 77:0 |O ft=s and vEB D .73:3 {O C 85:8 |O/ ft=s
5.56
Given the assumption that the masses are not identical, it is not possible to have a moving ball A
hit a stationary ball B so that A stops right after the impact.
1
5.58 ˇ D tan .cot ˛/
C C
5.64 vEA D . 23:6 {O C 18:5 |O/ m=s and vEB D . 0:717 {O 6:20 |O/ m=s
5.66
s r
2 gh1
dD .1 C e/h1 cos ˛ sin ˛ Œ.e 1/ C .1 C e/ cos 2˛
gh1 2
q
C 2gh2 C 21 gh1 Œ.e 1/ C .1 C e/ cos 2˛2 D 6:24 ft
5.68 d D 3:50 ft
p
5.70 C
vN D 2N 1 2gh
.L sin 0 C d /2
5.78 !D !
.L sin C d /2 0
P E O D hEP O .
5.80 Since hEO D mP gvP .0/t cos and M O it is indeed true that M
E O D mP gvP .0/t cos k,
s
2L3 p
5.82 E
hO D ˙W .cos cos 33ı / kO D ˙.3:99 lbfts/ cos 0:839 kO @ 57ı
g
5.84
s
2gL.cos 2 cos 1 /
v1 D sin 2 D 6:85 ft=s;
sin2 1 sin2 2
s
2gL.cos 2 cos 1 /
v2 D sin 1 D 2:32 ft=s
sin2 1 sin2 2
q
5.86 MA D 2m!02 r r2 r02
4 2 a3
5.100 Gme D D 3:971014 m3 =s2
2
5.102 rg D 1:39108 ft D 26;200 mi; hg D 1:18108 ft D 22;300 mi; vc D 10;100 ft=s D 6870 mph
s
2 1
5.104 vP D gre2 D 7:71103 m=s D 27;800 km=h
rP a
s
2 1
vA D gre2 D 7:70103 m=s D 27;700 km=h
rA a
r
e D A 1 D 7:4510 4
as
a3
D 2 D 5470 s D 91:2 min
gre2
4
Q2 1
1 2 1
5.118 RD 4 pA dA C D 2120 lb
g dA2 dB2
d 2 vw2
5.124 kD Œ1 cos.=2/ D 370 lb=ft
4gımax
M
5.126 v D vo ln gt
M m P ot
1 4Q2
2 4Q2 4Q2 `
5.128 N D 4 PA d C
D 53:4 N; V D D 0:354 N; M D D 0:0707 Nm
d 2 d 2 d 2
5.130 F D gL C v02 D 1:10 lb
m q
FEavg D
p
5.138 2ghf C 2ghi |O D .654 N/ |O
t q p
jpEC pE j jFEavg j 2ghf C 2ghi
D D D 111
jt . mg |O/j mg gt
C C
5.140 vEA D . 13:6 m=s/ {O and vEB D . 21:3 m=s/ {O
T TC
100% D 45:3%
T
C C
5.142 vEA D .4:61 {O C 75:3 |O/ ft=s and vEB D .37:4 {O C 98:8 |O/ft=s
C
vEA
rEA D dA C
D .7:71 {O C 126 |O/ ft
vA
C
vEB
rEB D dB C
D .87:6 {O C 231 |O/ ft
vB
Chapter 6
6.2 !EB D 1800 kO rpm and !E C D 1160 kO rpm
RA
6.4 !B D ! D 600 rad=s
RB A
6.24 !EB D 8:00 kO rad=s; ˛EB D 2:00 kO rad=s2 ; !ED D 1:60 kO rad=s; ˛ED D 0:400 kO rad=s2
6.28 Letting !E OB and ˛EOB denote the angular velocity and acceleration of the turbine,
!E OB D 1:60 kO rad=s and ˛EOB D 0:461 kO rad=s2
aEA D . 93:0 {O 110 |O/ m=s2
6.40 1 D 67:7ı
2 D 231ı
6.82 Letting Q denote the point on the ball in contact with the bowl, at the instant shown
aEA D . 1020 uO r C 24:0 uO / ft=s2 and aEQ D 3480 uO r ft=s2
6.100 Letting Q denote the point of contact between the wheel W and the cylinder S , aEQ D 82:0 uO r ft=s2
6.102 For C accelerating downward and to the right: ˛EAB D 551 kO rad=s2 and ˛EBC D 320 kO rad=s2
For C accelerating downward and to the left: ˛EAB D 729 kO rad=s2 and ˛EBC D 320 kO rad=s2
6.104 For D 10ı and D 56:11ı aED D .18;300 {O C 34;900 |O/ ft=s2
For D 10ı and D 303:9ı aED D .18;300 {O C 32;900 |O/ ft=s2
( " #)
R.L2 R2 / cos2 R sin2
R sin 2
6.106 aEC D R˛AB cos 1 C p C R!AB p sin |O
L2 R2 cos2 .L2 R2 cos2 /3=2 L2 R2 cos2
6.116 (a) position 1: vEbar D 0:348 IO m=s and position 2: vEbar D 0:646 IO m=s
(b) position 1: vEbar D 0:670 IO m=s and position 2: vEbar D 6:03 IO m=s
Chapter 7
7.2 tstop D v0 =.k g/ D 1:86 s and dstop D v02 =.2gk / D 16:8 ft
7.6 D 18:9ı
7.14
Rx D .0:112 N=s2 /t 2 ;
Ry D 0:0101 N;
5
M´ D 3:1110 Nm
p
7.24 .vG /final D 2gL.sin pk cos C sin / D 18:4 ft=s
2gL.sin k cos C sin /
tfinal D .vG /final =aGx D D 1:08 s
g.sin k cos /
7.26 tr D 2:41 s and d D 50:7 ft
grk
7.28 aGx D k g and ˛b D 2
kG
7.32 The solution of this problem under the stated assumptions leads to conclusion that the crate starts rotating counter-
clockwise. Since this fact runs contrary to the fact that the force system applied to the crate can only induce a clockwise
rotation of the crate, then we conclude that the solution obtained under the assumptions given in the problem is not
physically admssible.
7.34 separation D D 60:0ı
3
7.36 The FBD for the problem is
Under the assumption that the contact between the sphere and the semicylinder is frictionless, the solution in terms of
contact force N , second time derivative of the angle , and angular acceleration of the sphere is as follows:
g sin
N D mg cos m.R C /P 2 ; R D ; and ˛s D 0:
RC
Comparing these equations to Eqs. (5) and (6) in Example 3.8 on p. 218 for a particle, we can see that the sphere in
question behaves like a particle of mass m sliding over a semicylinder of radius R C and therefore if we “shrink” the
sphere to a particle by letting ! 0, we will recover exactly the same solution obtained for a particle.
IG vf
7.38 (a) F D D 12:1 lb
r 2 tf
mc r 2 tf
(b) .tf /new D D 6:85 s
2IG C r 2 mc
3mAB g cos 3mAB g sin cos 3mAB g sin cos
7.40 ˛AB D ; aEB D {O; ˛w D
L.2mAB C 9mB sin2 / 2mAB C 9mB sin2 R.2mAB C 9mB sin2 /
7.44 IG D mR2
(b)
ac Ww
Ax D Fr D 485 lb
g
Ay D Wr Nr D 689 lb
d 2a I
MA D Fr C c B D 522 ftlb
2 d
g cos
7.54 ˛AB D 1
D 3:74 rad=s2
2L 3 C cos2 .cos = sin /2 C sin cos .cos = sin /
60 45g
7.56 aAx D g and ˛b D
181 181R
5 5g sin
7.58 aEG D O;
7 g sin u ˛b D ; and FEdue to bowl D mg cos uO r C 72 mg sin uO
7
5g
7.60 R C sin D 0
7.R /
2
k R2 C kG
PR2 P
7.62 (a) aEG D .1 k / 2/
{O; and .s /min D 2 P C mg
m.R2 C kG R2 C kG k
P k R P
(b) aEG D .1 2k / k g {O; and ˛d D 2 .1 k / g
m kG m
7.64
3
7.66 (a) Ay D 4 mg and By D 54 mg
P
(b) D 2 tan 1 ; 0 D 0; and 1 D
mg
N D mg cos C maGy
/ŒgR sin g cos R cos. /P 2
D mg cos C m cos. 2 C2R sin. / P 2 sin. /
R2 C2 CkG
7.84
.mAB C mC /xRA C 12 .mAB C 2mC /L cos R C 21 .2d C h/mC cos R
1 P 2 1 .2d C h/m sin P 2 D 0;
2 .mAB C 2mC /L sin 2 C
2
1
2 C
1
Lm cos xR C Œ m
A
1
C m cos C . m
12 AB
1
2 C C m / sin2 L2 R
4 AB C
1
C 4 .2d C h/LmC .2 sin sin C cos cos /R
C 41 .mAB C 2mC /L2 sin cos P 2
C 41 .2d C h/LmC .2 sin cos sin cos /P 2
C 21 .mAB C 2mC /gL sin D 0;
1
2 .2d C h/mC cos xRA C 21 .2d C h/LmC cos. /R
1
CŒ 12 .h2 C w 2 / C 41 .2d C h/2 mC R
1
2 .2d C h/LmC .sin cos sin cos /P 2
C 21 g.2d C h/mC sin D 0:
Chapter 8
8.2 TA D TB D 518 J
8.14 Lf D 34:1 ft
8.26 nmin D 26
(a) vperson D 26:5 ft=s
1
8.28 Ufracture D 2 gŒLA .mA C 2mS / C 2mS rS .cos f cos i / D 318 J
6
hEC kgm2 =s/ kO
8.54 W D .91:910 @
6
hEO kgm =s/ kO
2
W D .66910 @
4r 2 d
8.76 dD
.2r b/2
8.84 d D 2:09 ft
!EB D . 26:6 rad=s/ kO and vbC D 226 ft=s
8.88 C
vEG D . 1:31 m=s/ {O and !EAC D .3:43 rad=s/ kO
s
4g` sin ˇ
8.90 v0 D D 7:48 ft=s
3 cos2 ˇ
8.92 C
!EAB D . 0:851 rad=s/ kO and C
!EBD D .2:55 rad=s/ kO
8.98 d D 1:98 m
C
8.104 vEP D 2v0 {O D .12 ft=s/ {O
Chapter 9
mgL 2
9.2 IO D
4 2
s
7L
9.4 D 2
6g
r
IG
9.6 `D
m
s
Gr 4
9.8 !n D
LR4 t
r
2d m
9.10 D
h k
s
1
.h3 C d 3 / C md 2
9.12 D 2 3
kh2
9.14 Wpayload D 90;700 lb
r
! d g
9.16 f D n D D 0:566 Hz
2 4 m
9.18 (a) myR C ky D 0
(b) mR C k D 0
9.20 mn D 35:6 g
17k
9.22 xR G C x D0
6m G
8k
9.24 xR G C x D0
3m G r
2 3m
D D 2 D 2:22 s
!n 8k
s
2g
9.26 !n D
3.R r/
s
3.R r/
D 2
2g
s
2 L
9.28 D D 2
!n 2g
s
.3 2/R
9.30 D 2
3g
F0 =k
9.32 x.t / D A sin !n t C B cos !n t C cos !0 t
1 .!0 =!n /2
9.34
q
mu D 0:01 kg ) jym j D 2:1910 6 cos.4:37t/ C 1:8910 5 m;
q
mu D 0:1 kg ) jym j D 1:1010 5 cos.4:37t/ C 1:1110 5 m;
q
mu D 1 kg ) jym j D 9:8010 4 cos.4:37t/ C 1:0110 3 m
F0 =keq
!0
y.t/ D sin ! n t C sin ! 0 t ;
1 .!0 =!n /2 !n
s
L0 2k L0
where keq D 2k 1 and !n D 1
L m L
2 1 1
9.46 3 mB C 2 mA xR C 2kx D 2 F0 sin !0 t
F0
xamp D 4
2
4k 3 B C mA !0
m
k1 k2
9.68 mxR C xD0
k1 C k2
9.70 k D 5:91%
9.74
Chapter 10
10.2 vEE D R!arm cos
{O C .d C ` cos
/!arm |O .d C ` cos
/!arm kO
2 h
!arm i
2 2
d 2 C 2d ` cos
C `2 C R2 cos2
kO
aEE D !arm cos
.d C ` cos
/ {O !arm sin
.d C ` cos
/ |O
R
10.4 vEP D 2.d C ` cos
/!arm kO
2 2
aEE D !arm
( cos
.d C ` cos
/ {O !arm sin
.d C ` cos
/ |O )
2 h
!arm 2 i
2 2 2
.d C ` cos
/˛arm C d C 2d ` cos
C ` C R cos
kO
R
10.6 aEA D 231 |O C 108 kO ft=s2
˛EAB D 18:3 {O C 15:1 |O C 34:9 kO rad=s2
10.12 !EAB D !s |O ˇP kO
P {O
˛EAB D ˇ! ˇR kO
s
LR L L L P2
aEG D ˇ sin ˇ C d C cos ˇ !s2 C ˇP 2 cos ˇ {O C ˇ sin ˇ ˇR cos ˇ |O P sin ˇ kO
Lˇ!s
2 2 2 2
10.20 !E bit D !d {O C !a |O C !b kO
˛Ebit D .!P d !a !b / {O C .!P a C !d !b / |O C .!P b !d !a / kO
h i
10.22 aEB D a t C h!P a .` C r t / !a2 C !b2 {O C Œ2.v t C h!a / !b C .` C r t / !P b |O
Œ.2v C h! / ! C .` C r / !P kO
t a a t a