Exp 01
Exp 01
Exp 01
(Reference: J. P. Holman. ‘Heat Transfer’. McGraw – Hill. 10th Edition. Table A-9, page 662)
.01× 994.10
Mass flow rate of water, Mw = = 0.343 Kg/s
28.99
Collected mass of condensate = 1.1 Kg
1.1
Mass flow rate of condensate, Mc = = 0.0092 kg/s
120
Rate of heat taken up by water, Qw = MwCpm(T2-T1)
= 0.343 × 4174 × 17
= 24332.30 W
At 5 psig steam pressure,
Qw +Qs
Mean rate of heat flow, Qm =
2
24332.30+20481.82
=
2
= 22407.06 W
83.37−66.37
=
ln ¿ ¿ ¿ ¿
= 74.54 oC
Qm
Experimental overall heat transfer coefficient, UOE =
A o ∆ T lm
22407.06
=
0.231× 74.547
= 1281.679 W.m-2.K-1
Calculation of velocity (v), Reynolds number (Re) and Prandtl Number (Pr)
T s+T m
Tube wall temperature, Tw =
2
108.37+33.5
= 2
= 70.935 oC
Mw
Velocity, v =
ρm A i
0.343
= −4
994.10 ×5.557 ×10
= 0.62 m/s
Di v ρ m
Reynolds Number, Re =
μm
= 22690.29
μ m C pm
Prandtl Number, Pr =
km
0.00072× 4174
= = 4.82
0.624
Calculation of water side heat transfer coefficient (hi) and Nusselt Number (Nu)
For turbulent flow, according to Dittus-Boelter equation,
hi =
1
0.8 3
= 0.023 ×0.624 × 22690.29 × 4.82
0.0266
= 2780.81 Wm-2K-1
hi D i
Nusselt Number, Nu =
km
2780.81× 0.0266
= = 118.68
0.624
Calculation of steam side heat transfer coefficient (h O) and theoretical overall heat transfer
coefficient (UOT)
( )
k 3 ρ2f gλ s 1/ 4
f
D 0 (T s−T w ) μf
Nusselt equation for film type condensation, ho = 0.725
= 0.725 ×
( )
1 /4
0.673 ×971.02 2 × 9.81× 2234.38× 1000
0.0329 × ( 108.37−70.935 ) ×0.000344
= 7946.85 Wm-2K-1
( )
−1
1 D x D
+ o + W o
ho D1 h 1 k M Dlm
Theoretical overall heat transfer coefficient, UOT =
The term for conduction can be neglected, then it can be presented as
1
UOT = 1 Do
+
h o D i hi
1
= 1 0.0329
+
7946.85 0.0266 ×2780.81
= 1734.019 Wm-2K-1
(137 ¿¿ 93¿)
Slope of ‘ln (Nu) vs. ln (Re)’ graph = ln ¿ ¿ = 0.83
ln¿ ¿ ¿ ¿
(3203¿ ¿2190.12¿)
Slope of ‘ln (hi) vs. ln (v)’ graph = ln ¿¿ = 0.74
ln ¿ ¿ ¿ ¿
(231.02¿¿ 86.89 ¿)
ln ¿
Slope of ‘ln (Nu) vs. ln (Re)’ graph = 51927.22 = 0.81
ln
15692.7 ¿
(5407.12¿¿ 2045.49¿)
Slope of ‘ln (hi) vs. ln(v)’ graph = ln ¿ ¿ = 0.91
ln ¿ ¿ ¿ ¿
Graphical Representation
Nusselt number vs Reynolds number for 5 psig
1000
Nusselt number,Nu
10
1000 10000 100000
Reynolds number,Re
10
10000 Reynolds number,Re 100000
100
10
10000 Reynolds number,Re 100000
1000
100
0.1 1
Velocity, v (m/s)
1000
Velocity, v (m/s)
1000
0.1 1 10
Velocity, v (m/s)
0.0012
0.001
Theoretical
0.0008
Linear (Theoretical)
Experimental
1/U (m2K/W)
0.0004
0.0002
0
0 1 2 3 4 5 6
(1/v)0.8 (m/s)0.8
Figure 8 Plot of (1/U) vs. (1/v) 0.8 for 5 psig steam pressure.
Wilson plot,(1/U) vs. (1/v)0.8 for 10 psig
0.0012
0.0008
0.0004
0.0002
0
0 1 2
1/v)0.8 (m/s)0.8
0.001
f(x) = 0.000313766616301996 x + 0.000363593553461963
R² = 0.908564926988083
0.0008
1/U (m2K/W)
0.0002
0
0 1 2 3
1/v)0.8 (m/s)0.8
Table 04 Calculated data for Mean rate of heat, experimental overall heat transfer coefficient, Wall
temperature, velocity and Reynolds number.
Obs. Steam Mean LMTD Experiment Wall Velocity Reynolds
no pressure rate of (OC) al overall temperature, ,v no. Re
(psig) heat, QM heat transfer TW (m/s)
coefficient, (OC)
(W)
UOE
(W/m2.K)
1 5
Table 05 Calculated data for Prandtl no., Water side heat transfer coefficient, Nusselt no., Film
temperature and water density, viscosity, thermal conductivity at film temperature.
Obs. Steam Prandtl Water side Nusselt Film Water Water Thermal
no pressure no. heat transfer no. Temperature, Densit viscosity conductivity
(psig) Pr coefficient, Nu Tf y at Tf, at Tf, μf at Tf, kf
(OC) ρf (Pa.s) (W/m.K)
hi
(kg/m3)
(W/m2.K)
Obs. Steam Steam side heat Theoretical overall Experimental Theoretical (1/v)0.8
no pressure transfer heat transfer 1/U 1/U (m/s)0.8
(psig) coefficient, hO coefficient, UOT (m2.K/W) (m2.K/W)
(W/m2.K) (W/m2.K)