Nothing Special   »   [go: up one dir, main page]

REF615 5.0 IEC Application Manual - N

Download as pdf or txt
Download as pdf or txt
You are on page 1of 404

Relion® 615 series

Feeder Protection and Control


REF615
Application Manual
Document ID: 1MRS756378
Issued: 2014-01-24
Revision: N
Product version: 5.0

© Copyright 2014 ABB. All rights reserved


Copyright
This document and parts thereof must not be reproduced or copied without written
permission from ABB, and the contents thereof must not be imparted to a third
party, nor used for any unauthorized purpose.

The software or hardware described in this document is furnished under a license


and may be used, copied, or disclosed only in accordance with the terms of such
license.

Trademarks
ABB and Relion are registered trademarks of the ABB Group. All other brand or
product names mentioned in this document may be trademarks or registered
trademarks of their respective holders.

Warranty
Please inquire about the terms of warranty from your nearest ABB representative.

http://www.abb.com/substationautomation
Disclaimer
The data, examples and diagrams in this manual are included solely for the concept
or product description and are not to be deemed as a statement of guaranteed
properties. All persons responsible for applying the equipment addressed in this
manual must satisfy themselves that each intended application is suitable and
acceptable, including that any applicable safety or other operational requirements
are complied with. In particular, any risks in applications where a system failure and/
or product failure would create a risk for harm to property or persons (including but
not limited to personal injuries or death) shall be the sole responsibility of the
person or entity applying the equipment, and those so responsible are hereby
requested to ensure that all measures are taken to exclude or mitigate such risks.

This product has been designed to be connected and communicate data and
information via a network interface which should be connected to a secure
network. It is the sole responsibility of the person or entity responsible for network
administration to ensure a secure connection to the network and to take the
necessary measures (such as, but not limited to, installation of firewalls, application
of authentication measures, encryption of data, installation of anti virus programs,
etc.) to protect the product and the network, its system and interface included,
against any kind of security breaches, unauthorized access, interference, intrusion,
leakage and/or theft of data or information. ABB is not liable for any such damages
and/or losses.

This document has been carefully checked by ABB but deviations cannot be
completely ruled out. In case any errors are detected, the reader is kindly requested
to notify the manufacturer. Other than under explicit contractual commitments, in
no event shall ABB be responsible or liable for any loss or damage resulting from
the use of this manual or the application of the equipment.
Conformity
This product complies with the directive of the Council of the European
Communities on the approximation of the laws of the Member States relating to
electromagnetic compatibility (EMC Directive 2004/108/EC) and concerning
electrical equipment for use within specified voltage limits (Low-voltage directive
2006/95/EC). This conformity is the result of tests conducted by ABB in
accordance with the product standards EN 50263 and EN 60255-26 for the EMC
directive, and with the product standards EN 60255-1 and EN 60255-27 for the low
voltage directive. The product is designed in accordance with the international
standards of the IEC 60255 series.
Table of contents

Table of contents

Section 1 Introduction.......................................................................7
This manual........................................................................................7
Intended audience..............................................................................7
Product documentation.......................................................................8
Product documentation set............................................................8
Document revision history.............................................................8
Related documentation..................................................................9
Symbols and conventions...................................................................9
Symbols.........................................................................................9
Document conventions................................................................10
Functions, codes and symbols....................................................10

Section 2 REF615 overview...........................................................15


Overview...........................................................................................15
Product version history................................................................16
PCM600 and IED connectivity package version..........................17
Operation functionality......................................................................18
Optional functions........................................................................18
Physical hardware............................................................................18
Local HMI.........................................................................................21
Display.........................................................................................22
LEDs............................................................................................23
Keypad........................................................................................23
Web HMI...........................................................................................23
Authorization.....................................................................................24
Audit trail......................................................................................25
Communication.................................................................................27
Self-healing Ethernet ring............................................................28
Ethernet redundancy...................................................................29
Process bus.................................................................................31
Secure communication................................................................33

Section 3 REF615 standard configurations....................................35


Standard configurations....................................................................35
Addition of control functions for primary devices and the
use of binary inputs and outputs..................................................38
Connection diagrams........................................................................39
Standard configuration A..................................................................44
Applications.................................................................................44
Functions.....................................................................................45

REF615 1
Application Manual
Table of contents

Default I/O connections..........................................................46


Default disturbance recorder settings.....................................47
Functional diagrams....................................................................49
Functional diagrams for protection.........................................49
Functional diagrams for disturbance recorder........................60
Functional diagrams for condition monitoring.........................61
Functional diagrams for control and interlocking....................62
Functional diagrams for measurement functions...................64
Functional diagrams for I/O and alarm LEDs.........................65
Other functions.......................................................................67
Standard configuration B..................................................................67
Applications.................................................................................67
Functions.....................................................................................68
Default I/O connections..........................................................68
Default disturbance recorder settings.....................................70
Functional diagrams....................................................................72
Functional diagrams for protection.........................................72
Functional diagrams for disturbance recorder........................82
Functional diagrams for condition monitoring.........................83
Functional diagrams for control and interlocking....................85
Functional diagrams for measurement functions ..................87
Functional diagrams for I/O and alarm LEDs.........................89
Functional diagrams for other timer logics.............................92
Other functions ......................................................................93
Standard configuration C..................................................................93
Applications.................................................................................93
Functions.....................................................................................94
Default I/O connections..........................................................94
Default disturbance recorder settings.....................................95
Functional diagrams....................................................................97
Functional diagrams for protection.........................................97
Functional diagrams for disturbance recorder......................103
Functional diagrams for condition monitoring.......................104
Functional diagrams for control and interlocking..................105
Functional diagrams for measurement functions ................107
Functional diagrams for I/O and alarm LEDs ......................108
Other functions.....................................................................110
Standard configuration D................................................................110
Applications...............................................................................110
Functions...................................................................................111
Default I/O connections........................................................111
Default disturbance recorder settings...................................113
Functional diagrams..................................................................114

2 REF615
Application Manual
Table of contents

Functional diagrams for protection.......................................115


Functional diagrams for disturbance recorder......................122
Functional diagrams for condition monitoring.......................123
Functional diagrams for control and interlocking..................125
Functional diagrams for measurement functions ................128
Functional diagrams for I/O and alarm LEDs ......................129
Functional diagrams for other timer logics...........................132
Other functions.....................................................................133
Standard configuration E................................................................133
Applications...............................................................................133
Functions...................................................................................134
Default I/O connections........................................................134
Default disturbance recorder settings...................................136
Functional diagrams..................................................................138
Functional diagrams for protection ......................................138
Functional diagrams for disturbance recorder......................149
Functional diagrams for condition monitoring.......................150
Functional diagrams for control and interlocking..................152
Functional diagrams for measurement functions.................155
Functional diagrams for I/O and alarm LEDs ......................157
Functional diagrams for other timer logics...........................160
Other functions.....................................................................161
Standard configuration F................................................................161
Applications...............................................................................161
Functions...................................................................................162
Default I/O connections........................................................162
Default disturbance recorder settings...................................164
Functional diagrams..................................................................166
Functional diagrams for protection ......................................167
Functional diagrams for disturbance recorder......................180
Functional diagrams for condition monitoring.......................181
Functional diagrams for control and interlocking..................184
Functional diagrams for measurement functions ................186
Functional diagrams for I/O and alarm LEDs.......................189
Functional diagrams for other timer logics...........................192
Other functions ....................................................................193
Standard configuration G................................................................193
Applications...............................................................................193
Functions...................................................................................194
Default I/O connections .......................................................194
Default disturbance recorder settings...................................196
Sensor settings.....................................................................198
Functional diagrams..................................................................200

REF615 3
Application Manual
Table of contents

Functional diagrams for protection ......................................200


Functional diagrams for disturbance recorder......................212
Functional diagrams for condition monitoring.......................213
Functional diagrams for control and interlocking..................215
Functional diagrams for measurement functions ................218
Functional diagrams for I/O and alarm LEDs ......................220
Functional diagrams for other timer logics...........................223
Other functions ....................................................................224
Standard configuration H................................................................224
Applications...............................................................................224
Functions...................................................................................225
Default I/O connections........................................................225
Default disturbance recorder settings...................................227
Functional diagrams..................................................................229
Functional diagrams for protection ......................................230
Functional diagrams for disturbance recorder......................241
Functional diagrams for condition monitoring.......................242
Functional diagrams for control and interlocking .................245
Functional diagrams for measurement functions ................248
Functional diagrams for I/O and alarm LEDs ......................250
Functional diagrams for other timer logics...........................253
Other functions ....................................................................254
Standard configuration J.................................................................254
Applications...............................................................................254
Functions...................................................................................255
Default I/O connections........................................................255
Default disturbance recorder settings...................................257
Functional diagrams..................................................................260
Functional diagrams for protection ......................................260
Functional diagrams for disturbance recorder......................274
Functional diagrams for condition monitoring.......................275
Functional diagrams for control and interlocking..................277
Functional diagrams for measurement functions ................280
Functional diagrams for I/O and alarm LEDs ......................283
Functional diagrams for other timer logics...........................287
Other functions ....................................................................288
Standard configuration K................................................................288
Applications...............................................................................288
Functions...................................................................................289
Default IO connections.........................................................289
Default disturbance recorder settings...................................291
Functional diagrams..................................................................293
Functional diagrams for protection.......................................294

4 REF615
Application Manual
Table of contents

Functional diagrams for disturbance recorder......................306


Functional diagrams for condition monitoring.......................307
Functional diagrams for control and interlocking..................309
Functional diagrams for measurement functions ................313
Functional diagrams for I/O and alarm LEDs ......................316
Functional diagrams for other timer logics...........................319
Other functions ....................................................................320
Standard configuration L................................................................320
Applications...............................................................................320
Functions...................................................................................321
Default I/O connections........................................................321
Default disturbance recorder settings...................................323
Sensor settings.....................................................................325
Functional diagrams..................................................................327
Functional diagrams for protection ......................................328
Functional diagrams for disturbance recorder......................341
Functional diagrams for condition monitoring.......................342
Functional diagrams for control and interlocking..................344
Functional diagrams for measurement functions ................347
Functional diagrams for I/O and alarm LEDs ......................350
Functional diagrams for other timer logics...........................353
Other functions ....................................................................354
Standard configuration N................................................................354
Applications...............................................................................354
Functions...................................................................................355
Default I/O connections........................................................355
Default disturbance recorder settings...................................357
Functional diagrams..................................................................358
Functional diagrams for protection.......................................359
Functional diagrams for disturbance recorder......................366
Functional diagrams for condition monitoring.......................367
Functional diagrams for control and interlocking..................369
Functional diagrams for measurement functions ................371
Functional diagrams for I/O and alarm LEDs ......................374
Functional diagrams for other timer logics...........................377
Other functions.....................................................................378

Section 4 Requirements for measurement transformers..............379


Current transformers......................................................................379
Current transformer requirements for non-directional
overcurrent protection................................................................379
Current transformer accuracy class and accuracy limit
factor....................................................................................379
Non-directional overcurrent protection.................................380

REF615 5
Application Manual
Table of contents

Example for non-directional overcurrent protection..............381

Section 5 IED physical connections.............................................383


Inputs..............................................................................................383
Energizing inputs.......................................................................383
Phase currents.....................................................................383
Residual current...................................................................383
Phase voltages.....................................................................384
Residual voltage...................................................................384
Sensor inputs.......................................................................384
Auxiliary supply voltage input....................................................384
Binary inputs..............................................................................385
Optional light sensor inputs.......................................................387
RTD/mA inputs..........................................................................388
Outputs...........................................................................................389
Outputs for tripping and controlling............................................389
Outputs for signalling.................................................................389
IRF.............................................................................................391

Section 6 Glossary.......................................................................393

6 REF615
Application Manual
1MRS756378 N Section 1
Introduction

Section 1 Introduction

1.1 This manual

The application manual contains application descriptions and setting guidelines


sorted per function. The manual can be used to find out when and for what purpose
a typical protection function can be used. The manual can also be used when
calculating settings.

1.2 Intended audience

This manual addresses the protection and control engineer responsible for
planning, pre-engineering and engineering.

The protection and control engineer must be experienced in electrical power


engineering and have knowledge of related technology, such as protection schemes
and principles.

REF615 7
Application Manual
Section 1 1MRS756378 N
Introduction

1.3 Product documentation

1.3.1 Product documentation set

deinstallation & disposal


Decommissioning,
Commissioning

Maintenance
Engineering
Planning &

Installation

Operation
Quick start guide purchase
Quick installation guide
Brochure
Product guide
Operation manual
Installation manual
Connection diagram
Engineering manual
Technical manual
Application manual c
Communication protocol manual c
IEC 61850 Engineering guide
Point list manual

GUID-12DC16B2-2DC1-48DF-8734-0C8B7116124C V1 EN

Figure 1: The intended use of documents during the product life cycle

Product series- and product-specific manuals can be downloaded


from the ABB Website http://www.abb.com/relion.

1.3.2 Document revision history


Document revision/date Product version History
A/2007-12-20 1.0 First release
B/2008-02-08 1.0 Content updated
C/2008-07-02 1.1 Content updated to correspond to the
product version
D/2009-03-04 2.0 Content updated to correspond to the
product version
E/2009-07-03 2.0 Content updated
F/2010-06-11 3.0 Content updated to correspond to the
product version
G/2010-06-29 3.0 Terminology updated
H/2010-09-24 3.0 Content updated
Table continues on next page

8 REF615
Application Manual
1MRS756378 N Section 1
Introduction

Document revision/date Product version History


K/2012-05-11 4.0 Content updated to correspond to the
product version
L/2013-02-21 4.0 FP1 Content updated to correspond to the
product version
M/2013-12-20 5.0 Content updated to correspond to the
product version
N/2014-01-24 5.0 Content updated

Download the latest documents from the ABB Website


http://www.abb.com/substationautomation.

1.3.3 Related documentation


Name of the document Document ID
Modbus Communication Protocol Manual 1MRS756468
DNP3 Communication Protocol Manual 1MRS756709
IEC 60870-5-103 Communication Protocol Manual 1MRS756710
IEC 61850 Engineering Guide 1MRS756475
Engineering Manual 1MRS757121
Installation Manual 1MRS756375
Operation Manual 1MRS756708
Technical Manual 1MRS756887

1.4 Symbols and conventions

1.4.1 Symbols

The electrical warning icon indicates the presence of a hazard


which could result in electrical shock.

The warning icon indicates the presence of a hazard which could


result in personal injury.

The caution icon indicates important information or warning related


to the concept discussed in the text. It might indicate the presence
of a hazard which could result in corruption of software or damage
to equipment or property.

REF615 9
Application Manual
Section 1 1MRS756378 N
Introduction

The information icon alerts the reader of important facts and


conditions.

The tip icon indicates advice on, for example, how to design your
project or how to use a certain function.

Although warning hazards are related to personal injury, it is necessary to


understand that under certain operational conditions, operation of damaged
equipment may result in degraded process performance leading to personal injury
or death. Therefore, comply fully with all warning and caution notices.

1.4.2 Document conventions


A particular convention may not be used in this manual.

• Abbreviations and acronyms are spelled out in the glossary. The glossary also
contains definitions of important terms.
• Push button navigation in the LHMI menu structure is presented by using the
push button icons.
To navigate between the options, use and .
• Menu paths are presented in bold.
Select Main menu/Settings.
• LHMI messages are shown in Courier font.
To save the changes in non-volatile memory, select Yes and press .
• Parameter names are shown in italics.
The function can be enabled and disabled with the Operation setting.
• Parameter values are indicated with quotation marks.
The corresponding parameter values are "On" and "Off".
• IED input/output messages and monitored data names are shown in Courier font.
When the function starts, the START output is set to TRUE.
• This document assumes that the parameter setting visibility is "Advanced".

1.4.3 Functions, codes and symbols


Table 1: Functions included in the IED
Function IEC 61850 IEC 60617 IEC-ANSI
Protection
Three-phase non-directional overcurrent PHLPTOC1 3I> (1) 51P-1 (1)
protection, low stage
PHLPTOC2 3I> (2) 51P-1 (2)
Three-phase non-directional overcurrent PHHPTOC1 3I>> (1) 51P-2 (1)
protection, high stage
PHHPTOC2 3I>> (2) 51P-2 (2)
Three-phase non-directional overcurrent
PHIPTOC1 3I>>> (1) 50P/51P (1)
protection, instantaneous stage
Table continues on next page

10 REF615
Application Manual
1MRS756378 N Section 1
Introduction

Function IEC 61850 IEC 60617 IEC-ANSI


Three-phase directional overcurrent protection, DPHLPDOC1 3I> -> (1) 67-1 (1)
low stage
DPHLPDOC2 3I> -> (2) 67-1 (2)
Three-phase directional overcurrent protection,
DPHHPDOC1 3I>> -> (1) 67-2 (1)
high stage
Non-directional earth-fault protection, low stage EFLPTOC1 Io> (1) 51N-1 (1)
EFLPTOC2 Io> (2) 51N-1 (2)
Non-directional earth-fault protection, high stage EFHPTOC1 Io>> (1) 51N-2 (1)
Non-directional earth-fault protection,
EFIPTOC1 Io>>> (1) 50N/51N (1)
instantaneous stage
Directional earth-fault protection, low stage DEFLPDEF1 Io> -> (1) 67N-1 (1)
DEFLPDEF2 Io> -> (2) 67N-1 (2)
Directional earth-fault protection, high stage DEFHPDEF1 Io>> -> (1) 67N-2 (1)

Admittance based earth-fault protection1) EFPADM1 Yo> -> (1) 21YN (1)
EFPADM2 Yo> -> (2) 21YN (2)
EFPADM3 Yo> -> (3) 21YN (3)

Wattmetric based earth-fault protection1) WPWDE1 Po> -> (1) 32N (1)
WPWDE2 Po> -> (2) 32N (2)
WPWDE3 Po> -> (3) 32N (3)
Transient / intermittent earth-fault protection INTRPTEF1 Io> -> IEF (1) 67NIEF (1)

Harmonics based earth-fault protection1) HAEFPTOC1 Io>HA (1) 51NHA (1)

Non-directional (cross-country) earth-fault


EFHPTOC1 Io>> (1) 51N-2 (1)
protection, using calculated Io
Negative-sequence overcurrent protection NSPTOC1 I2> (1) 46 (1)
NSPTOC2 I2> (2) 46 (2)
Phase discontinuity protection PDNSPTOC1 I2/I1> (1) 46PD (1)
Residual overvoltage protection ROVPTOV1 Uo> (1) 59G (1)
ROVPTOV2 Uo> (2) 59G (2)
ROVPTOV3 Uo> (3) 59G (3)
Three-phase undervoltage protection PHPTUV1 3U< (1) 27 (1)
PHPTUV2 3U< (2) 27 (2)
PHPTUV3 3U< (3) 27 (3)
Three-phase overvoltage protection PHPTOV1 3U> (1) 59 (1)
PHPTOV2 3U> (2) 59 (2)
PHPTOV3 3U> (3) 59 (3)
Positive-sequence undervoltage protection PSPTUV1 U1< (1) 47U+ (1)
Negative-sequence overvoltage protection NSPTOV1 U2> (1) 47O- (1)
Frequency protection FRPFRQ1 f>/f<,df/dt (1) 81 (1)
FRPFRQ2 f>/f<,df/dt (2) 81 (2)
FRPFRQ3 f>/f<,df/dt (3) 81 (3)
FRPFRQ4 f>/f<,df/dt (4) 81 (4)
Table continues on next page

REF615 11
Application Manual
Section 1 1MRS756378 N
Introduction

Function IEC 61850 IEC 60617 IEC-ANSI


Three-phase thermal protection for feeders,
T1PTTR1 3Ith>F (1) 49F (1)
cables and distribution transformers
High impedance based restricted earth-fault
HREFPDIF1 dIoHi> (1) 87NH (1)
protection
51BF/51NBF
Circuit breaker failure protection CCBRBRF1 3I>/Io>BF (1)
(1)
Three-phase inrush detector INRPHAR1 3I2f> (1) 68 (1)
Master trip TRPPTRC1 Master Trip (1) 94/86 (1)
TRPPTRC2 Master Trip (2) 94/86 (2)
TRPPTRC3 Master Trip (3) 94/86 (3)
TRPPTRC4 Master Trip (4) 94/86 (4)
TRPPTRC5 Master Trip (5) 94/86 (5)
Arc protection ARCSARC1 ARC (1) 50L/50NL (1)
ARCSARC2 ARC (2) 50L/50NL (2)
ARCSARC3 ARC (3) 50L/50NL (3)

Multi-purpose protection2) MAPGAPC1 MAP (1) MAP (1)


MAPGAPC2 MAP (2) MAP (2)
MAPGAPC3 MAP (3) MAP (3)
MAPGAPC4 MAP (4) MAP (4)
MAPGAPC5 MAP (5) MAP (5)
MAPGAPC6 MAP (6) MAP (6)
MAPGAPC7 MAP (7) MAP (7)
MAPGAPC8 MAP (8) MAP (8)
MAPGAPC9 MAP (9) MAP (9)
MAPGAPC10 MAP (10) MAP (10)
MAPGAPC11 MAP (11) MAP (11)
MAPGAPC12 MAP (12) MAP (12)
MAPGAPC13 MAP (13) MAP (13)
MAPGAPC14 MAP (14) MAP (14)
MAPGAPC15 MAP (15) MAP (15)
MAPGAPC16 MAP (16) MAP (16)
MAPGAPC17 MAP (17) MAP (17)
MAPGAPC18 MAP (18) MAP (18)
Fault locator SCEFRFLO1 FLOC (1) 21FL (1)
High impedance fault detection PHIZ1 HIF (1) HIZ (1)
Power quality
Current total demand distortion CMHAI1 PQM3I (1) PQM3I (1)
Voltage total harmonic distortion VMHAI1 PQM3U (1) PQM3V (1)
Voltage variation PHQVVR1 PQMU (1) PQMV (1)
Control
Circuit-breaker control CBXCBR1 I <-> O CB (1) I <-> O CB (1)
Table continues on next page

12 REF615
Application Manual
1MRS756378 N Section 1
Introduction

Function IEC 61850 IEC 60617 IEC-ANSI


Disconnector control I <-> O DCC
DCXSWI1 I <-> O DCC (1)
(1)
I <-> O DCC
DCXSWI2 I <-> O DCC (2)
(2)
Earthing switch control ESXSWI1 I <-> O ESC (1) I <-> O ESC (1)
Disconnector position indication DCSXSWI1 I <-> O DC (1) I <-> O DC (1)
DCSXSWI2 I <-> O DC (2) I <-> O DC (2)
DCSXSWI3 I <-> O DC (3) I <-> O DC (3)
Earthing switch indication ESSXSWI1 I <-> O ES (1) I <-> O ES (1)
ESSXSWI2 I <-> O ES (2) I <-> O ES (2)
Auto-reclosing DARREC1 O -> I (1) 79 (1)
Synchronism and energizing check SECRSYN1 SYNC (1) 25 (1)
Condition monitoring
Circuit-breaker condition monitoring SSCBR1 CBCM (1) CBCM (1)
Trip circuit supervision TCSSCBR1 TCS (1) TCM (1)
TCSSCBR2 TCS (2) TCM (2)
Current circuit supervision CCRDIF1 MCS 3I (1) MCS 3I (1)
Fuse failure supervision SEQRFUF1 FUSEF (1) 60 (1)
Runtime counter for machines and devices MDSOPT1 OPTS (1) OPTM (1)
Measurement
Disturbance recorder RDRE1 DR (1) DFR (1)
LOADPROF LOADPROF
Load profile record LDPMSTA1
(1) (1)
Three-phase current measurement CMMXU1 3I (1) 3I (1)
Sequence current measurement CSMSQI1 I1, I2, I0 (1) I1, I2, I0 (1)
Residual current measurement RESCMMXU1 Io (1) In (1)
RESCMMXU2 Io (2) In (2)
Three-phase voltage measurement VMMXU1 3U (1) 3V (1)
VMMXU2 3U (2) 3V (2)
Residual voltage measurement RESVMMXU1 Uo (1) Vn (1)
Sequence voltage measurement VSMSQI1 U1, U2, U0 (1) V1, V2, V0 (1)
Three-phase power and energy measurement PEMMXU1 P, E (1) P, E (1)
X130 (RTD)
RTD/mA measurement XRGGIO130 X130 (RTD) (1)
(1)
Frequency measurement FMMXU1 f (1) f (1)

IEC 61850-9-2 LE (Voltage sharing)3) SMVSENDER SMVSENDER SMVSENDER

1) One of the following can be ordered as an option: Admittance based E/F, Wattmetric based E/F or
Harmonics based E/F. The option is an addition to the existing E/F of the original configuration. The
optional E/F has also a predefined configuration in the IED. The optional E/F can be set on or off.
2) For example, used for RTD/mA based protection or analog GOOSE
3) Only available with redundant Ethernet communication modules

REF615 13
Application Manual
14
1MRS756378 N Section 2
REF615 overview

Section 2 REF615 overview

2.1 Overview

REF615 is a dedicated feeder IED (intelligent electronic device) designed for the
protection, control, measurement and supervision of utility substations and
industrial power systems including radial, looped and meshed distribution networks
with or without distributed power generation. REF615 is a member of ABB’s
Relion® product family and part of its 615 protection and control product series.
The 615 series IEDs are characterized by their compactness and withdrawable-unit
design.

Re-engineered from the ground up, the 615 series has been designed to unleash the
full potential of the IEC 61850 standard for communication and interoperability
between substation automation devices.

The IED provides main protection for overhead lines and cable feeders in
distribution networks. The IED is also used as back-up protection in applications,
where an independent and redundant protection system is required.

Depending on the chosen standard configuration, the IED is adapted for the
protection of overhead line and cable feeders in isolated neutral, resistance earthed,
compensated and solidly earthed networks. Once the standard configuration IED
has been given the application-specific settings, it can directly be put into service.

The 615 series IEDs support a range of communication protocols including IEC
61850 with GOOSE messaging, IEC 61850-9-2 LE (except in RED615), IEC
60870-5-103, Modbus® and DNP3. Profibus DPV1 communication protocol is
supported by using the protocol converter SPA-ZC 302.

REF615 15
Application Manual
Section 2 1MRS756378 N
REF615 overview

2.1.1 Product version history


Product version Product history
1.0 Product released
1.1 • IRIG-B
• Support for parallel protocols added: IEC 61850 and Modbus
• X130 BIO added: optional for variants B and D
• CB interlocking functionality enhanced
• TCS functionality in HW enhanced
• Non-volatile memory added

2.0 • Support for DNP3 serial or TCP/IP


• Support for IEC 60870-5-103
• Voltage measurement and protection
• Power and energy measurement
• New standard configurations E and F
• Disturbance recorder upload via WHMI
• Fuse failure supervision

3.0 • New configurations G and H


• Additions to configurations A, B, E and F
• Application configurability support
• Analog GOOSE support
• Large display with single line diagram
• Enhanced mechanical design
• Increased maximum amount of events and fault records
• Admittance-based earth-fault protection
• Frequency measurement and protection
• Synchronism and energizing check
• Combi sensor inputs
• Multi-port Ethernet option

Table continues on next page

16 REF615
Application Manual
1MRS756378 N Section 2
REF615 overview

Product version Product history


4.0 • New configuration J
• Additions/changes for configurations A-H
• Dual fibre optic Ethernet communication option (COM0032)
• Generic control point (SPCGGIO) function blocks
• Additional logic blocks
• Button object for SLD
• Controllable disconnector and earth switch objects for SLD
• Wattmetric based E/F
• Harmonics based E/F
• Power Quality functions
• Increased maximum amount of events and fault records

4.0 FP1 • High-availability seamless redundancy (HSR) protocol


• Parallel redundancy protocol (PRP-1)
• Parallel use of IEC 61850 and DNP3 protocols
• Parallel use of IEC 61850 and IEC 60870-5-103 protocols
• Two selectable indication colors for LEDs (red or green)
• Online binary signal monitoring with PCM600

5.0 • New configurations K, L and N


• New layout in Application Configuration tool for all configurations
• Support for IEC 61850-9-2 LE
• IEEE 1588 v2 time synchronization
• Fault locator
• Load profile recorder
• High-speed binary outputs
• Optional RTD inputs
• Profibus adapter support
• Support for multiple SLD pages
• Import/export of settings via WHMI
• Setting usability improvements
• HMI event filtering tool

2.1.2 PCM600 and IED connectivity package version


• Protection and Control IED Manager PCM600 Ver.2.6 or later
• REF615 Connectivity Package Ver.5.0 or later
• Parameter Setting
• Signal Monitoring
• Event Viewer
• Disturbance Handling
• Application Configuration
• Signal Matrix
• Graphical Display Editor
• Communication Management
• IED User Management
• IED Compare
• Firmware Update
• Fault Record tool
• Load Record Profile
• Lifecycle Traceability
• Configuration Wizard

REF615 17
Application Manual
Section 2 1MRS756378 N
REF615 overview

• AR Sequence Visualizer
• Label Printing
• IEC 61850 Configuration

Download connectivity packages from the ABB Website


http://www.abb.com/substationautomation or directly with the
Update Manager in PCM600.

2.2 Operation functionality

2.2.1 Optional functions


• Arc protection
• Autoreclosing
• Modbus TCP/IP or RTU/ASCII
• IEC 60870-5-103
• DNP3 TCP/IP or serial
• Admittance based earth-fault (configurations A, B, E, F, G, J, L and N only)
• Watt-metric based earth-fault (configurations A, B, E, F, G, J, L and N only)
• Harmonics based earth-fault (configurations B, D, F, J, L and N only)
• Power quality functions (configurations J, K, L and N only)
• Fault locator (configurations K, L and N only)
• RTD/mA measurement (configurations B, D, E, F, H, J and N only)
• IEC 61850-9-2 LE (configurations E, F, G, H, J, K, L and N only)
• IEEE 1588 v2 time synchronization

2.3 Physical hardware

The IED consists of two main parts: plug-in unit and case. The content depends on
the ordered functionality.

18 REF615
Application Manual
1MRS756378 N Section 2
REF615 overview

Table 2: Plug-in unit and case


Main unit Slot ID Content options
Plug-in - HMI Small (5 lines, 20 characters)
unit Large (10 lines, 20 characters)
X100 Auxiliary power/BO 48-250 V DC/100-240 V AC; or 24-60 V DC
module 2 normally-open PO contacts
1 change-over SO contacts
1 normally-open SO contact
2 double-pole PO contacts with TCS
1 dedicated internal fault output contact
X110 BIO module Only with configurations B, D, E, F, G, H, J, K, L and N:
8 binary inputs
4 SO contacts
Only with configurations B, D, E, F, G, H, J, K, L and N:
8 binary inputs
3 HSO contacts
X120 AI/BI module Only with configurations A and B:
3 phase current inputs (1/5 A)
1 residual current input (1/5 A or 0.2/1 A)1)
1 residual voltage input (60-120 V)
3 binary inputs
Only with configurations C, D, E, F, H, J and N:
3 phase current inputs (1/5 A)
1 residual current input (1/5 A or 0.2/1 A)1)
4 binary inputs
Only with configuration K:
6 phase current inputs (1/5 A)
1 residual current input (1/5 A)
Case X130 AI/BI module Only with configurations E, F, H, J, K and N:
3 phase voltage inputs (60-120 V)
1 residual voltage input (60-120 V)
4 binary inputs

Additionally with configurations H, J, K and N:


1 reference voltage input for SECRSYN1 (60-120 V)
AI/RTD/mA module Only with configurations E, F, H, J and N:
3 phase voltage inputs (60-120 V)
1 residual voltage input (60-120 V)
1 generic mA input
2 RTD sensor inputs

Additionally with configurations H, J and N:


1 reference voltage input for SECRSYN1 (60-120 V)
Sensor input Only with configurations G and L:
module 3 combi sensor inputs (three-phase current and voltage)
1 residual current input (0.2/1 A)1)
Optional BIO Optional for configurations B and D:
module 6 binary inputs
3 SO contacts
Optional RTD/mA Optional for configurations B and D:
module 2 generic mA inputs
6 RTD sensor inputs
X000 Optional See the technical manual for details about different
communication types of communication modules.
module

1) The 0.2/1 A input is normally used in applications requiring sensitive earth-fault protection and
featuring core-balance current transformers.

REF615 19
Application Manual
Section 2 1MRS756378 N
REF615 overview

Rated values of the current and voltage inputs are basic setting parameters of the
IED. The binary input thresholds are selectable within the range 16…176 V DC by
adjusting the binary input setting parameters.

The connection diagrams of different hardware modules are presented in this manual.

See the installation manual for more information about the case and
the plug-in unit.

Table 3: Input/output overview


Std. Order code digit Analog channels Binary channels
conf. 5-6 7-8 CT VT Combi BI BO RTD mA
sensor
4 1 - 3 4 PO + - -
A AA / AB AA
2 SO
4 1 - 17 4 PO + - -
AE
9 SO
AA / AB 4 1 - 17 4 PO + - -
FA 5 SO +
3 HSO
B
4 1 - 11 4 PO + - -
AC
AA / 6 SO
AB 4 1 - 11 4 PO + - -
FA / FB FG 2 SO +
3 HSO
4 - - 4 4 PO + - -
C AC / AD AB
2 SO
4 - - 18 4 PO + - -
AF
9 SO
AC / AD 4 - - 18 4 PO + - -
FB 5 SO +
3 HSO
D
4 - - 12 4 PO + 6 2
AD
AC / 6 SO
AD 4 - - 12 4 PO + 6 2
FC / FD FE 2 SO +
3 HSO
4 5 - 16 4 PO + - -
AG
6 SO
AE / AF 4 5 - 16 4 PO + - -
E FC 2 SO +
F 3 HSO
H 4 5 - 12 4 PO + 2 1
J AG
6 SO
FE / FF 4 5 - 12 4 PO + 2 1
FC 2 SO +
3 HSO
Table continues on next page

20 REF615
Application Manual
1MRS756378 N Section 2
REF615 overview

Std. Order code digit Analog channels Binary channels


conf. 5-6 7-8 CT VT Combi BI BO RTD mA
sensor
1 - 3 8 4 PO + - -
AH
6 SO
G
DA 1 - 3 8 4 PO + - -
L
FD 2 SO +
3 HSO
7 5 - 12 4 PO + 6 2
AD
6 SO
K BC 7 5 - 12 4 PO + 6 2
FE 2 SO +
3 HSO

2.4 Local HMI

The LHMI is used for setting, monitoring and controlling the IED. The LHMI
comprises the display, buttons, LED indicators and communication port.

REF615

Overcurrent
Dir. earth-fault
Voltage protection
Phase unbalance
Thermal overload
Breaker failure
Disturb. rec. Triggered
CB condition monitoring
Supervision
Arc detected
Autoreclose shot in progr.

A070704 V4 EN

Figure 2: Example of the LHMI

REF615 21
Application Manual
Section 2 1MRS756378 N
REF615 overview

2.4.1 Display
The LHMI includes a graphical display that supports two character sizes. The
character size depends on the selected language. The amount of characters and
rows fitting the view depends on the character size.

Table 4: Small display

Character size1) Rows in the view Characters per row


Small, mono-spaced (6x12 pixels) 5 20
Large, variable width (13x14 pixels) 4 8 or more

1) Depending on the selected language

Table 5: Large display

Character size1) Rows in the view Characters per row


Small, mono-spaced (6x12 pixels) 10 20
Large, variable width (13x14 pixels) 8 8 or more

1) Depending on the selected language

The display view is divided into four basic areas.


1 2

3 4
A070705 V3 EN

Figure 3: Display layout

1 Header
2 Icon
3 Content
4 Scroll bar (displayed when needed)

22 REF615
Application Manual
1MRS756378 N Section 2
REF615 overview

2.4.2 LEDs
The LHMI includes three protection indicators above the display: Ready, Start and
Trip.

There are 11 matrix programmable LEDs on front of the LHMI. The LEDs can be
configured with PCM600 and the operation mode can be selected with the LHMI,
WHMI or PCM600.

2.4.3 Keypad
The LHMI keypad contains push-buttons which are used to navigate in different
views or menus. With the push-buttons you can give open or close commands to
objects in the primary circuit, for example, a circuit breaker, a contactor or a
disconnector. The push-buttons are also used to acknowledge alarms, reset
indications, provide help and switch between local and remote control mode.

A071176 V1 EN

Figure 4: LHMI keypad with object control, navigation and command push-
buttons and RJ-45 communication port

2.5 Web HMI

The WHMI allows secure access to the IED via a Web browser. The supported
Web browser versions are Internet Explorer 8.0, 9.0 and 10.0. When the Secure
Communication parameter in the IED is activated, the Web server is forced to take
a secured (HTTPS) connection to WHMI using TLS encryption.

WHMI is disabled by default.

WHMI offers several functions.

REF615 23
Application Manual
Section 2 1MRS756378 N
REF615 overview

• Programmable LEDs and event lists


• System supervision
• Parameter settings
• Measurement display
• Disturbance records
• Phasor diagram
• Single-line diagram
• Importing/Exporting parameters

The menu tree structure on the WHMI is almost identical to the one on the LHMI.

A070754 V5 EN

Figure 5: Example view of the WHMI

The WHMI can be accessed locally and remotely.

• Locally by connecting the laptop to the IED via the front communication port.
• Remotely over LAN/WAN.

2.6 Authorization

The user categories have been predefined for the LHMI and the WHMI, each with
different rights and default passwords.

24 REF615
Application Manual
1MRS756378 N Section 2
REF615 overview

The default passwords can be changed with Administrator user rights.

User authorization is disabled by default for LHMI but WHMI


always uses authorization.

Table 6: Predefined user categories


Username User rights
VIEWER Read only access
OPERATOR • Selecting remote or local state with (only locally)
• Changing setting groups
• Controlling
• Clearing indications

ENGINEER • Changing settings


• Clearing event list
• Clearing disturbance records
• Changing system settings such as IP address, serial baud rate
or disturbance recorder settings
• Setting the IED to test mode
• Selecting language

ADMINISTRATOR • All listed above


• Changing password
• Factory default activation

For user authorization for PCM600, see PCM600 documentation.

2.6.1 Audit trail


The IED offers a large set of event-logging functions. Normal process-related
events can be viewed by the normal user with Event Viewer in PCM600. Critical
system and IED security-related events are logged to a separate nonvolatile audit
trail for the administrator.

Audit trail is a chronological record of system activities that allows the


reconstruction and examination of the sequence of events and changes in an event.
Past user and process events can be examined and analyzed in a consistent method
with the help of Event List and Event Viewer in PCM600. The IED stores 2048
system events to the nonvolatile audit trail. Additionally, 1024 process events are
stored in a nonvolatile event list. Both the audit trail and event list work according
to the FIFO principle.

User audit trail is defined according to the selected set of requirements from IEEE
1686. The logging is based on predefined usernames or user categories. The user
audit trail events are accessible with IEC 61850-8-1, PCM600, LHMI and WHMI.

REF615 25
Application Manual
Section 2 1MRS756378 N
REF615 overview

Table 7: Audit trail events


Audit trail event Description
Configuration change Configuration files changed
Firmware change
Setting group remote User changed setting group remotely
Setting group local User changed setting group locally
Control remote DPC object control remote
Control local DPC object control local
Test on Test mode on
Test off Test mode off
Setting commit Settings have been changed
Time change Time changed directly by the user. Note that this is not used
when the IED is synchronised properly by the appropriate
protocol (SNTP, IRIG-B, IEEE 1588 v2).
View audit log Administrator accessed audit trail
Login Successful login from IEC 61850-8-1 (MMS), WHMI, FTP or
LHMI.
Logout Successful logout from IEC 61850-8-1 (MMS), WHMI, FTP
or LHMI.
Firmware reset Reset issued by user or tool
Audit overflow Too many audit events in the time period
Attached to retrofit test case Unit has been attached to retrofit case
Removed from retrofit test case Unit has been removed retrofit case
Reset trips Reset latched trips (TRPPTRC*)
Violation remote Unsuccessful login attempt from IEC 61850-8-1 (MMS),
WHMI, FTP or LHMI.
Violation local Unsuccessful login attempt from IEC 61850-8-1 (MMS),
WHMI, FTP or LHMI.

PCM600 Event Viewer can be used to view the audit trail events together with
normal events. Since only the administrator has the right to read audit trail,
authorization must be properly configured in PCM600. The audit trail cannot be
reset but PCM600 Event Viewer can filter data. Some of the audit trail events are
interesting also as normal process events.

To expose the audit trail events also as normal process events,


define the level parameter via Configuration/Authorization/
Authority logging.

26 REF615
Application Manual
1MRS756378 N Section 2
REF615 overview

Table 8: Comparison of authority logging levels


Audit trail event Authority logging level
Configurati Setting Setting Settings All
None on change group group, edit
control
Configuration change ● ● ● ● ●
Firmware change ● ● ● ● ●
Firmware change fail ● ● ● ● ●
Attached to retrofit test ● ● ● ● ●
case
Removed from retrofit ● ● ● ● ●
test case
Reset trips ● ● ●
Setting group remote ● ● ● ●
Setting group local ● ● ● ●
Control remote ● ● ●
Control local ● ● ●
Test on ● ● ●
Test off ● ● ●
Setting commit ● ●
Time change ●
View audit log ●
Login ●
Logout ●
Firmware reset ●
Audit overflow ●

2.7 Communication

The IED supports a range of communication protocols including IEC 61850, IEC
61850-9-2 LE, IEC 60870-5-103, Modbus® and DNP3. Profibus DPV1
communication protocol is supported by using the protocol converter SPA-ZC 302.
Operational information and controls are available through these protocols.
However, some communication functionality, for example, horizontal
communication between the IEDs, is only enabled by the IEC 61850
communication protocol.

The IEC 61850 communication implementation supports all monitoring and


control functions. Additionally, parameter settings, disturbance recordings and
fault records can be accessed using the IEC 61850 protocol. Disturbance recordings
are available to any Ethernet-based application in the standard COMTRADE file
format. The IED can send and receive binary signals from other IEDs (so-called
horizontal communication) using the IEC61850-8-1 GOOSE profile, where the

REF615 27
Application Manual
Section 2 1MRS756378 N
REF615 overview

highest performance class with a total transmission time of 3 ms is supported.


Furthermore, the IED supports sending and receiving of analog values using
GOOSE messaging. The IED meets the GOOSE performance requirements for
tripping applications in distribution substations, as defined by the IEC 61850
standard.

The IED can support five simultaneous clients. If PCM600 reserves one client
connection, only four client connections are left, for example, for IEC 61850 and
Modbus.

All communication connectors, except for the front port connector, are placed on
integrated optional communication modules. The IED can be connected to Ethernet-
based communication systems via the RJ-45 connector (100Base-TX) or the fibre-
optic LC connector (100Base-FX). An optional serial interface is available for
RS-232/RS-485 communication.

2.7.1 Self-healing Ethernet ring


For the correct operation of self-healing loop topology, it is essential that the
external switches in the network support the RSTP protocol and that it is enabled in
the switches. Otherwise, connecting the loop topology can cause problems to the
network. The IED itself does not support link-down detection or RSTP. The ring
recovery process is based on the aging of the MAC addresses, and the link-up/link-
down events can cause temporary breaks in communication. For a better
performance of the self-healing loop, it is recommended that the external switch
furthest from the IED loop is assigned as the root switch (bridge priority = 0) and
the bridge priority increases towards the IED loop. The end links of the IED loop
can be attached to the same external switch or to two adjacent external switches. A
self-healing Ethernet ring requires a communication module with at least two
Ethernet interfaces for all IEDs.

28 REF615
Application Manual
1MRS756378 N Section 2
REF615 overview

Client A Client B

Network A
Network B

Managed Ethernet switch Managed Ethernet switch


with RSTP support with RSTP support

GUID-283597AF-9F38-4FC7-B87A-73BFDA272D0F V3 EN

Figure 6: Self-healing Ethernet ring solution

The Ethernet ring solution supports the connection of up to 30


IEDs. If more than 30 IEDs are to be connected, it is recommended
that the network is split into several rings with no more than 30
IEDs per ring. Each IED has a 50-μs store-and-forward delay, and
to fullfill the performance requirements for fast horizontal
communication, the ring size is limited to 30 IEDs.

2.7.2 Ethernet redundancy


IEC 61850 specifies a network redundancy scheme that improves the system
availability for substation communication. It is based on two complementary
protocols defined in the IEC 62439-3 standard: parallel redundancy protocol PRP-1
and high-availability seamless redundancy HSR protocol. Both protocols rely on
the duplication of all transmitted information via two Ethernet ports for one logical
network connection. Therefore, both are able to overcome the failure of a link or
switch with a zero-switchover time, thus fulfilling the stringent real-time
requirements for the substation automation horizontal communication and time
synchronization.

PRP specifies that each device is connected in parallel to two local area networks.
HSR applies the PRP principle to rings and to the rings of rings to achieve cost-
effective redundancy. Thus, each device incorporates a switch element that
forwards frames from port to port. The HSR/PRP option is available for REF615,
REM615, RET615, REU615 and REV615.

REF615 29
Application Manual
Section 2 1MRS756378 N
REF615 overview

PRP
Each PRP node, called a doubly attached node with PRP (DAN), is attached to two
independent LANs operated in parallel. These parallel networks in PRP are called
LAN A and LAN B. The networks are completely separated to ensure failure
independence, and they can have different topologies. Both networks operate in
parallel, thus providing zero-time recovery and continuous checking of redundancy
to avoid communication failures. Non-PRP nodes, called singly attached nodes
(SANs), are either attached to one network only (and can therefore communicate
only with DANs and SANs attached to the same network), or are attached through
a redundancy box, a device that behaves like a DAN.

COM600
SCADA

Ethernet switch Ethernet switch


IEC 61850 PRP

REF615 REF620 RET620 REM620 REF615


GUID-334D26B1-C3BD-47B6-BD9D-2301190A5E9D V1 EN

Figure 7: PRP solution

In case a laptop or a PC workstation is connected as a non-PRP node to one of the


PRP networks, LAN A or LAN B, it is recommended to use a redundancy box
device or an Ethernet switch with similar functionality between the PRP network
and SAN to remove additional PRP information from the Ethernet frames. In some
cases, default PC workstation adapters are not able to handle the maximum-length
Ethernet frames with the PRP trailer.

There are different alternative ways to connect a laptop or a workstation as SAN to


a PRP network.

• Via an external redundancy box (RedBox) or a switch capable of connecting to


PRP and normal networks
• By connecting the node directly to LAN A or LAN B as SAN
• By connecting the node to the IED interlink port

30 REF615
Application Manual
1MRS756378 N Section 2
REF615 overview

HSR
HSR applies the PRP principle of parallel operation to a single ring, treating the
two directions as two virtual LANs. For each frame sent, a node, DAN, sends two
frames, one over each port. Both frames circulate in opposite directions over the
ring and each node forwards the frames it receives, from one port to the other.
When the originating node receives a frame sent to itself, it discards that to avoid
loops; therefore, no ring protocol is needed. Individually attached nodes, SANs,
such as laptops and printers, must be attached through a “redundancy box” that acts
as a ring element. For example, a 615 or 620 series IED with HSR support can be
used as a redundancy box.

GUID-207430A7-3AEC-42B2-BC4D-3083B3225990 V1 EN

Figure 8: HSR solution

2.7.3 Process bus


Process bus IEC 61850-9-2 defines the transmission of Sampled Measured Values
within the substation automation system. International Users Group created a
guideline IEC 61850-9-2 LE that defines an application profile of IEC 61850-9-2
to facilitate implementation and enable interoperability. Process bus is used for
distributing process data from the primary circuit to all process bus compatible
IEDs in the local network in a real-time manner. The data can then be processed by
any IED to perform different protection, automation and control functions.

UniGear Digital switchgear concept relies on the process bus together with current
and voltage sensors. The process bus enables several advantages for the UniGear
Digital like simplicity with reduced wiring, flexibility with data availability to all
IEDs, improved diagnostics and longer maintenance cycles.

REF615 31
Application Manual
Section 2 1MRS756378 N
REF615 overview

With process bus the galvanic interpanel wiring for sharing busbar voltage value
can be replaced with Ethernet communication. Transmitting measurement samples
over process bus brings also higher error detection because the signal transmission
is automatically supervised. Additional contribution to the higher availability is the
possibility to use redundant Ethernet network for transmitting SMV signals.

GUID-2371EFA7-4369-4F1A-A23F-CF0CE2D474D3 V1 EN

Figure 9: Process bus application

The 615 series supports IEC 61850 process bus with sampled values of analog
phase voltages. The measured values are transferred as sampled values using the
IEC 61850-9-2 LE protocol which uses the same physical Ethernet network as the
IEC 61850-8-1 station bus. The intended application for sampled values is sharing
the measured phase voltages from one 615 series IED to other IEDs with phase
voltage based functions and 9-2 support.

The 615 series IEDs with process bus based applications use IEEE 1588 v2
Precision Time Protocol (PTP) according to IEEE C37.238-2011 Power Profile for
high accuracy time synchronization. With IEEE 1588 v2, the cabling infrastructure
requirement is reduced by allowing time synchronization information to be
transported over the same Ethernet network as the data communications.

32 REF615
Application Manual
1MRS756378 N Section 2
REF615 overview

GUID-7C56BC1F-F1B2-4E74-AB8E-05001A88D53D V2 EN

Figure 10: Example network topology with process bus, redundancy and IEEE
1588 v2 time synchronization

The process bus option is available for REF615, REM615, RET615, REU615 and
REV615. See the IEC 61850 engineering guide for detailed system requirements
and configuration details.

2.7.4 Secure communication


The IED supports secure communication for WHMI and file transfer protocol. If
the Secure Communication parameter is activated, protocols require TLS based
encryption method from the client. In this case WHMI must be connected from a
Web browser using the HTTPS protocol and in case of file transfer the client must
use FTPS.

REF615 33
Application Manual
34
1MRS756378 N Section 3
REF615 standard configurations

Section 3 REF615 standard configurations

3.1 Standard configurations

REF615 is available in twelve alternative standard configurations. The standard


signal configuration can be altered by means of the signal matrix or the graphical
application functionality of the Protection and Control IED Manager PCM600.
Further, the application configuration functionality of PCM600 supports the
creation of multi-layer logic functions using various logical elements, including
timers and flip-flops. By combining protection functions with logic function
blocks, the IED configuration can be adapted to user-specific application
requirements.

The IED is delivered from the factory with default connections described in the
functional diagrams for binary inputs, binary outputs, function-to-function
connections and alarm LEDs. The positive measuring direction of directional
protection functions is towards the outgoing feeder.

Table 9: Standard configurations


Description Std. conf.
Non-directional overcurrent and directional earth-fault protection and CB control A
Non-directional overcurrent and directional earth-fault protection, CB condition monitoring, CB
control and with the optional I/O module control of two network objects B
Non-directional overcurrent and non-directional earth-fault protection and CB control C
Non-directional overcurrent and non-directional earth-fault protection, CB condition monitoring, CB
control and with the optional I/O module control of two network objects D
Non-directional overcurrent and directional earth-fault protection with phase-voltage based
measurements, CB condition monitoring and CB control E
Directional overcurrent and directional earth-fault protection with phase-voltage based
measurements, undervoltage and overvoltage protection, CB condition monitoring and CB control F
Directional overcurrent and directional earth-fault protection, phase-voltage based protection and
measurement functions, CB condition monitoring, CB control and sensor inputs for phase currents
and phase voltages G
Non-directional overcurrent and non-directional earth-fault protection, phase-voltage and frequency
based protection and measurement functions, synchro-check , CB condition monitoring and CB control H
Directional overcurrent and directional earth-fault protection, phase-voltage and frequency based
protection and measurement functions, synchro check, CB condition monitoring and CB control J
Directional overcurrent and directional earth-fault protection, high impedance restricted earth-fault
protection, phase voltage and frequency based protection and measurements functions, synchro-
check, CB condition monitoring, CB control and fault locator (optional) K
Directional overcurrent and directional earth-fault protection, phase voltage and frequency based
protection and measurement functions and CB condition monitoring, CB control, sensor inputs for
phase currents and phase voltages and fault locator (optional) L
Directional and non-directional overcurrent and earth-fault protection, phase voltage and frequency
based protection and measurements, synchro-check, CB condition monitoring, CB control and fault
locator (optional) N

REF615 35
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Table 10: Supported functions

Function IEC 61850 A B C D E F G H J K L N


Protection1)
Three-phase non-
directional overcurrent PHLPTOC 1 1 1 1 1 1 1 2
protection, low stage
Three-phase non-
directional overcurrent PHHPTOC 2 2 2 2 2 2 1 1
protection, high stage
Three-phase non-
directional overcurrent
PHIPTOC 1 1 1 1 1 1 1 1 1 1 1 1
protection, instantaneous
stage
Three-phase directional
overcurrent protection, low DPHLPDOC 2 2 2 1 2 2
stage
Three-phase directional
overcurrent protection, high DPHHPDOC 1 1 1 1 1 1
stage
Non-directional earth-fault
EFLPTOC 2 2) 2 2) 2 2) 2 2) 2 2)
protection, low stage
Non-directional earth-fault
EFHPTOC 1 2) 1 2) 1 2) 1 2) 1 2)
protection, high stage
Non-directional earth-fault
protection, instantaneous EFIPTOC 1 2) 1 2) 1 2) 1 2) 1 2)
stage
Directional earth-fault
DEFLPDEF 2 2)3) 2 2)3) 2 2)4) 2 2)4) 2 2)5) 2 2)4) 1 2)4) 2 6)7) 2 2)4)
protection, low stage
Directional earth-fault
DEFHPDEF 1 2)3) 1 2)3) 1 2)4) 1 2)4) 1 2)5) 1 2)4) 1 2)4) 1 2)7) 1 2)4)
protection, high stage
Admittance-based earth- (3) (3) (3) (3) (3) (3) (3) (3)
EFPADM
fault protection 8) 2)3)8) 2)3)8) 2)4)8) 2)4)8) 2)7)8) 2)4)8) 2)7)8) 2)4)8)

Wattmetric-based earth- (3) (3) (3) (3) (3) (3) (3) (3)
WPWDE
fault protection 8) 2)3)8) 2)3)8) 2)4)8) 2)4)8) 2)7)8) 2)4)8) 2)7)8) 2)4)8)

Transient/intermittent earth-
INTRPTEF 1 4)9) 1 4)9) 1 4)9) 1 4)9) 1 4)9) 1 7)9) 1 4)9)
fault protection
Harmonics-based earth- (1) (1) (1) (1) (1) (1)
HAEFPTOC
fault protection 8) 8)9) 8)9) 8)9) 8)9) 8)9) 8)9)

Non-directional (cross-
country) earth-fault
EFHPTOC 1 6) 1 6) 1 6) 1 6) 1 6) 1 6) 1 6)
protection, using calculated
Io
Negative-sequence
NSPTOC 2 2 2 2 2 2 2 2 2 2 2 2
overcurrent protection
Phase discontinuity
PDNSPTOC 1 1 1 1 1 1 1 1 1 1 1
protection
Residual overvoltage
ROVPTOV 3 3) 3 3) 3 4) 3 4) 3 7) 3 4) 34) 2 4) 3 7) 3 4)
protection
Three-phase undervoltage
PHPTUV 3 3 3 3 2 3 3
protection
Three-phase overvoltage
PHPTOV 3 3 3 3 2 3 3
protection
Positive-sequence
PSPTUV 1 1 1 1 1
undervoltage protection
Negative-sequence
NSPTOV 1 1 1 1 1
overvoltage protection
Frequency protection FRPFRQ 3 3 3 4 4
Three-phase thermal
protection for feeders,
T1PTTR 1 1 1 1 1 1 1 1 1 1 1
cables and distribution
transformers

Table continues on next page

36 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

Function IEC 61850 A B C D E F G H J K L N


High impedance-based
restricted earth-fault HREFPDIF 1 10)
protection
Circuit breaker failure
CCBRBRF 1 1 1 1 1 1 1 1 1 1 1 1
protection
Three-phase inrush
INRPHAR 1 1 1 1 1 1 1 1 1 1 1 1
detector
2(5) 2 (5) 2 (5) 2 (5) 2 (5) 2 (5) 2 (5) 2 (5) 2 (5) 2 (5)
Master trip TRPPTRC 2 11) 2 11) 11) 11) 11) 11) 11) 11) 11) 11)

Arc protection ARCSARC (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)
Multi-purpose protection 12) MAPGAPC 18 18 18 18 18 18 18 18 18 18 18 18
Fault locator SCEFRFLO (1) (1) (1)
High impedance fault
PHIZ 1 1 1 1 1 1 1
detection
Power quality
Current total demand
CMHAI (1) 13) (1) 13) (1) 13) (1) 13)
distortion
Voltage total harmonic
VMHAI (1) 13) (1) 13) (1) 13) (1) 13)
distortion
Voltage variation PHQVVR (1) 13) (1) 13) (1) 13) (1) 13)
Control
Circuit-breaker control CBXCBR 1 1 1 1 1 1 1 1 1 1 1 1
Disconnector control DCXSWI 2 2 2 2 2 2 2 2 2 2
Earthing switch control ESXSWI 1 1 1 1 1 1 1 1 1 1
Disconnector position
DCSXSWI 3 3 3 3 3 3 3 3 3 3
indication
Earthing switch indication ESSXSWI 2 2 2 2 2 2 2 2 2 2
Autoreclosing DARREC (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Synchronism and
SECRSYN 1 1 1 1
energizing check
Condition monitoring
Circuit-breaker condition
SSCBR 1 1 1 1 1 1 1 1 1 1
monitoring
Trip circuit supervision TCSSCBR 2 2 2 2 2 2 2 2 2 2 2 2
Current circuit supervision CCRDIF 1 1 1 1 1 1 1 1
Fuse failure supervision SEQRFUF 1 1 1 1 1 1 1 1
Runtime counter for
MDSOPT 1 1 1 1 1 1 1 1 1 1 1 1
machines and devices
Measurement
Disturbance recorder RDRE 1 1 1 1 1 1 1 1 1 1 1 1
Load profile record LDPMSTA 1 1 1 1 1 1 1 1 1 1
Three-phase current
CMMXU 1 1 1 1 1 1 1 1 1 1 1 1
measurement
Sequence current
CSMSQI 1 1 1 1 1 1 1 1 1 1 1 1
measurement
Residual current
RESCMMXU 1 1 1 1 1 1 1 1 1 2 1 1
measurement
Three-phase voltage
VMMXU 1 1 1 2 2 2 1 2
measurement
Residual voltage
RESVMMXU 1 1 1 1 1 1 1 1
measurement
Sequence voltage
VSMSQI 1 1 1 1 1 1 1 1
measurement
Three-phase power and
PEMMXU 1 1 1 1 1 1 1 1
energy measurement
RTD/mA measurement XRGGIO130 (1) (1) (1) (1) (1) (1) (1)

Table continues on next page

REF615 37
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Function IEC 61850 A B C D E F G H J K L N


Frequency measurement FMMXU 1 1 1 1 1 1 1 1
IEC 61850-9-2 LE (Voltage
(1) (1) (1) (1) (1) (1) (1) (1)
sharing) 14)
1, 2, ... = number of included instances
() = optional

1) The instances of a protection function represent the number of identical protection function blocks available in the standard configuration.
2) Io selectable by parameter, “Io measured” as default
3) “Uo measured” is always used.
4) Uo selectable by parameter, "Uo measured" as default
5) Uo calculated and negative sequence voltage selectable by parameter, “Uo calculated” as default
6) Io selectable by parameter, “Io calculated” as default
7) “Uo calculated” is always used.
8) One of the following can be ordered as an option: admittance-based E/F, wattmetric-based E/F or harmonics-based E/F. The option is
an addition to the existing E/F of the original configuration. The optional E/F has also a predefined configuration in the IED. The optional
E/F can be set on or off.
9) “Io measured” is always used.
10) “IoB measured” is always used.
11) Master trip included and connected to the corresponding HSO in the configuration only when the BIO0007 module is used. If the ARC
option is selected additionally, ARCSARC is connected to the corresponding master trip input in the configuration.
12) Multi-purpose protection is used, for example, for RTD/mA-based protection or analog GOOSE.
13) Power quality option includes current total demand distortion, voltage total harmonic distortion and voltage variation.
14) Only available with COM0031-COM0034

3.1.1 Addition of control functions for primary devices and the


use of binary inputs and outputs
If extra control functions intended for controllable primary devices are added to the
configuration, additional binary inputs and/or outputs are needed to complement
the standard configuration.

If the number of inputs and/or outputs in a standard configuration is not sufficient,


it is possible either to modify the chosen IED standard configuration in order to
release some binary inputs or binary outputs which have originally been configured
for other purposes, or to integrate an external input/output module, for example
RIO600, to the IED.

The external I/O module’s binary inputs and outputs can be used for the less time-
critical binary signals of the application. The integration enables releasing some
initially reserved binary inputs and outputs of the IED’s standard configuration.

The suitability of the IED’s binary outputs which have been selected for primary
device control should be carefully verified, for example make and carry and
breaking capacity. If the requirements for the primary device control circuit are not
met, using external auxiliary relays should be considered.

38 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

3.2 Connection diagrams

A071288 V6 EN

Figure 11: Connection diagram for the A and B configurations [1]

[1] Additional BIO-module (X110 in the diagram) is included in the IED variant B

REF615 39
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

A071290 V5 EN

Figure 12: Connection diagram for the C and D configurations [2]

[2] Additional BIO-module (X110 in the diagram) is included in the IED variant D

40 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

GUID-F7601942-ACF2-47E2-8F21-CD9C1D2BC1F0 V4 EN

Figure 13: Connection diagram for the E and F configurations

REF615 41
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

L1

L2

L3

REF615
X130 X100
Positive +
Current 1
1 0,2/1A
U aux
Direction 2 Io 2
N -
3
X131 IRF
4
4 5
IL1
5
7 PO1
U1
8
6
X132 7

4 PO2
IL2
5
8
7 9
U2
8 10
X133 SO1
11
4 12
IL3
5 13
7 SO2
U3
8 14
16
PO3
17
P1 S1 15
19
S2
TCS1 18
P2
20
X110 22
PO4
1
BI 1 2) 21
2
23
3 TCS2 24
BI 2
4

5 X110
BI 3
6 2) 14
SO1
BI 4 16
7 15
17
8
BI 5 SO2
9
19
18
BI 6 20
10
SO3
11 22
BI 7
12 21
23
BI 8 SO4
13 24

X13
1)
Light sensor input 1

X14
1)
Light sensor input 2
1) Optional
X15 2) BIO0005 Module (8BI+4BO)
1)
Light sensor input 3 Alternative Module BIO0007 (8BI+3HSO)

GUID-B70F0C14-52B2-4213-8781-5A7CA1E40451 V2 EN

Figure 14: Connection diagram for the G and L configurations

42 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

GUID-E8E2F79F-3DD8-46BD-8DE7-87A30133A7AE V1 EN

Figure 15: Connection diagram for the H, J and N configurations

REF615 43
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

L1
L2
L3
A

n
N REF615
X130 X100
1 + 1
a BI 1 U aux
2
-
2
da dn
3 3
BI 2
4 IRF
4
5
BI 3 5
6
PO1
7
BI 4
8 6
60 - 7
9 210V
U12B (for SECRSYN1)
10 N PO2
60 -
11 210V
U1 8
12 N 9
60 -
13 210V
10
U2 SO1
14 N
60 -
15 210V
11
U3 12
16 N 13
60 -
17 210V SO2
Uo
18 N
14
16
PO3
X120
Positive 17
Current 1 1/5A 2) 15
not in use
Direction 19
2 N TCS1 18
3 1/5A
not in use 20
4 N 22
P1 5 1/5A PO4
S1 IoB (for HREFPDIF1)
6 N 21
P2
S2
7 1/5A 23
IL1 TCS2 24
8 N
9 1/5A
IL2
10 N X110
11 1/5A
14
IL3 3)
12 N SO1
13 1/5A
16
Io 15
14 N
17
P1 S1
SO2
X110 19
P2 S2
18
1 20
BI 1 3)
2 SO3
22
3 21
BI 2
4 23
SO4
5
BI 3 24
P1 S1 6

P2 S2 BI 4
7
8
BI 5
9

BI 6
10

11
BI 7
12

BI 8
13

X13
1)
Light sensor input 1

X14
1) 1) Optional
Light sensor input 2 2) The IED features an automatic short-circuit
mechanism in the CT connector when plug-in
X15 unit is detached
1) 3) BIO0005 Module (8BI+4BO)
Light sensor input 3
Alternative Module BIO0007 (8BI+3HSO)

GUID-4288C45E-C7C8-4FB9-8821-85C58BB25D32 V1 EN

Figure 16: Connection diagram for the K configuration

3.3 Standard configuration A

3.3.1 Applications
The standard configuration for non-directional overcurrent and directional earth-
fault protection is mainly intended for cable and overhead-line feeder applications
in isolated and resonant-earthed distribution networks. The configuration also

44 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

includes additional options for selecting earth-fault protection based on admittance


or wattmetric-based principles.

The IED with a standard configuration is delivered from the factory with default
settings and parameters. The end user flexibility for incoming, outgoing and
internal signal designation within the IED enables this configuration to be further
adapted to different primary circuit layouts and the related functionality needs by
modifying the internal functionality using PCM600.

3.3.2 Functions
Uo

REF615 FEEDER PROTECTION AND CONTROL IED STANDARD


CONFIGURATION
A

PROTECTION LOCAL HMI ALSO AVAILABLE


Configuration A

- Disturbance and fault recorders


System
HMI
Time
Authorization

2× - Event log and recorded data


Master Trip I
- IED self-supervision
ESC Clear

Lockout relay A
O
- Local/Remote push button on LHMI
R
L

94/86
U12 0. 0 kV
P 0.00 kW
Q 0.00 kVAr

IL2 0 A
- User management
- Web HMI
I ESC Clear


AND
I2> I2/I1> 3Ith>F 3I>>> O R

46 46PD 49F 50P/51P


L
OR

3× 3×
ARC 3I>/Io>BF
50L/50NL CONDITION MONITORING COMMUNICATION
51BF/51NBF
AND SUPERVISION
Protocols:
2× 2× IEC 61850-8-1 1 0 1 0 0 0 1 1 0 0 1 1 0 0
3I> 3I>> 3I2f> OPTS TCS Modbus® 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 1 0 0 1 1 1 0 1 1 0 1 0
51P-1 51P-2 68 OPTM TCM IEC 60870-5-103 1 0 1 1 0 1 1 0 1 1 0 1 0 0
DNP3 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0
1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
Interfaces: 1 1 0 0 1 1 1 0 1 1 0 1 0
Io 1
Ethernet: TX (RJ45), FX (LC)
0 1 1 0 1 1 0 1 1 0 1 0 0

Serial: Serial glass fiber (ST),


RS-485, RS-232/485
Io>>
D-sub 9, IRIG-B
51N-2
Redundant protocols:
HSR
PRP
RSTP
Io

Io>→ Io>>→ Io>IEF→
CONTROL AND INDICATION 1) MEASUREMENT
67N-1 67N-2 67NIEF

Uo - I, Io, Uo
Object Ctrl 2) Ind 3)
3× 3× - Limit value supervision
Yo>→ Po>→ CB 1 - - Symmetrical components
21YN 32N
DC - -
OR Analog interface types 1)
ES - -
1)
Check availability of binary inputs/outputs
Current transformer 4
from technical documentation Voltage transformer 1
2)
Control and indication function for
primary object 1)
Conventional transformer inputs
3)
Status indication function for
primary object

3× 18×
Uo> MAP O→I
59G MAP 79

REMARKS
Optional 3× No. of Calculated OR Alternative
function instances value function to be
Io/Uo defined when
ordering

GUID-030C217F-7B91-4739-9DAE-90D1E053EB53 V1 EN

Figure 17: Functionality overview for standard configuration A

REF615 FEEDER PROTECTION AND CONTROL IED STANDARD


CONFIGURATION

PROTECTION LOCAL HMI


Configuration A
System
HMI
Time
Authorization

REF615 I ESC Clear 45


Application Manual
A
O R
L
U12 0. 0 kV
P 0.00 kW
Q 0.00 kVAr

IL2 0 A

I ESC Clear

AND
O R
L
OR

CONDITION MONITORING COMMUNICATION


AND SUPERVISION
Section 3 1MRS756378 N
REF615 standard configurations

3.3.2.1 Default I/O connections

Connector pins for each input and output are presented in the IED physical
connections section.

Table 11: Default connections for binary inputs


Binary input Description
X120-BI1 Blocking of overcurrent instantaneous stage
X120-BI2 Circuit breaker closed position indication
X120-BI3 Circuit breaker open position indication

Table 12: Default connections for binary outputs


Binary output Description
X100-PO1 Close circuit breaker
X100-PO2 Circuit breaker failure protection trip to upstream breaker
X100-PO3 Open circuit breaker/trip coil 1
X100-PO4 Open circuit breaker/trip coil 2
X100-SO1 General start indication
X100-SO2 General operate indication

Table 13: Default connections for LEDs


LED Description
1 Non-directional overcurrent operate
2 Directional or intermittent earth-fault operate
3 Double (cross country) earth-fault or residual overvoltage operate
4 Negative sequence overcurrent or phase discontinuity operate
5 Thermal overload alarm
6 Breaker failure operate
7 Disturbance recorder triggered
8 -
9 Trip circuit supervision alarm
10 Arc protection operate
11 Autoreclose in progress

46 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

3.3.2.2 Default disturbance recorder settings


Table 14: Default disturbance recorder analog channels
Channel Description
1 IL1
2 IL2
3 IL3
4 Io
5 Uo
6 -
7 -
8 -
9 -
10 -
11 -
12 -

Table 15: Default disturbance recorder binary channels


Channel ID text Level trigger mode
1 PHLPTOC1 - start Positive or Rising
2 PHHPTOC1 - start Positive or Rising
3 PHHPTOC2 - start Positive or Rising
4 PHIPTOC1 - start Positive or Rising
5 NSPTOC1 - start Positive or Rising
6 NSPTOC2 - start Positive or Rising
7 DEFLPDEF1 - start Positive or Rising
EFPADM1 - start
WPWDE1 - start
8 DEFLPDEF2 - start Positive or Rising
EFPADM2 - start
WPWDE2 - start
9 DEFLPDEF3 - start Positive or Rising
EFPADM3 - start
WPWDE3 - start
10 INTRPTEF1 - start Positive or Rising
11 EFHPTOC1 - start Positive or Rising
12 PDNSPTOC1 - start Positive or Rising
13 T1PTTR1 - start Positive or Rising
14 ROVPTOV1 - start Positive or Rising
15 ROVPTOV2 - start Positive or Rising
Table continues on next page

REF615 47
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Channel ID text Level trigger mode


16 ROVPTOV3 - start Positive or Rising
17 CCBRBRF1 - trret Level trigger off
18 CCBRBRF1 - trbu Level trigger off
19 PHIPTOC1 - operate Level trigger off
PHHPTOC1 - operate
PHHPTOC2 - operate
PHLPTOC1 - operate
20 NSPTOC1 - operate Level trigger off
NSPTOC2 - operate
21 DEFHPDEF1 - operate Level trigger off
DEFLPDEF1 - operate
DEFLPDEF2 - operate
EFPADM1 - operate
EFPADM2 - operate
EFPADM3 - operate
WPWDE1- operate
WPWDE2 - operate
WPWDE3 - operate
22 INTRPTEF1 - operate Level trigger off
23 EFHPTOC1 - operate Level trigger off
24 PDNSPTOC1 - operate Level trigger off
25 INRPHAR1 - blk2h Level trigger off
26 T1PTTR1 - operate Level trigger off
27 ROVPTOV1 - operate Level trigger off
ROVPTOV2 - operate
ROVPTOV3 - operate
28 ARCSARC1 - ARC flt det Level trigger off
ARCSARC2 - ARC flt det
ARCSARC3 - ARC flt det
29 ARCSARC1 - operate Positive or Rising
30 ARCSARC2 - operate Positive or Rising
31 ARCSARC3 - operate Positive or Rising
32 DARREC1 - inpro Level trigger off
33 DARREC1 - close CB Level trigger off
34 DARREC1 - unsuc recl Level trigger off
35 X120BI1 - ext OC blocking Level trigger off
36 X120BI2 - CB closed Level trigger off
37 X120BI3 - CB opened Level trigger off

48 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

3.3.3 Functional diagrams


The functional diagrams describe the default input, output, alarm LED and function-
to-function connections. The default connections can be viewed and changed with
PCM600 according to the application requirements.

The analog channels have fixed connections to the different function blocks inside
the IED’s standard configuration. However, the 12 analog channels available for
the disturbance recorder function are freely selectable as a part of the disturbance
recorder’s parameter settings.

The phase currents to the IED are fed from a current transformer. The residual
current to the IED is fed from either residually connected CTs, an external core
balance CT, neutral CT or internally calculated.

The residual voltage to the IED is fed from either the residually connected VTs or
an open delta connected VT.

The IED offers six different settings groups which can be set based on individual
needs. Each group can be activated or deactivated using the setting group settings
available in the IED.

Depending on the communication protocol the required function block needs to be


initiated in the configuration. The Application Configuration tool also includes
fixed Boolean signals TRUE and FALSE which can be used according to the
application needs.

3.3.3.1 Functional diagrams for protection

The functional diagram describe the IEDs protection functionality in detail and
according to the factory set default connections.

Four overcurrent stages are offered for overcurrent and short-circuit protection.
The non-directional instantaneous stage PHIPTOC1 can be blocked by energizing
the binary input X120:BI1.

REF615 49
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

PHIPTOC1
X120_BI1_EXT_OC_BLOCKING BLOCK OPERATE PHIPTOC1_OPERATE
ENA_MULT START PHIPTOC1_START

PHHPTOC1
BLOCK OPERATE PHHPTOC1_OPERATE
ENA_MULT START PHHPTOC1_START

PHHPTOC2
BLOCK OPERATE PHHPTOC2_OPERATE
ENA_MULT START PHHPTOC2_START

PHLPTOC1
BLOCK OPERATE PHLPTOC1_OPERATE
ENA_MULT START PHLPTOC1_START

OR6
PHIPTOC1_OPERATE B1 O PHxPTOC_OPERATE
PHHPTOC1_OPERATE B2
PHHPTOC2_OPERATE B3
PHLPTOC1_OPERATE B4
B5
B6

GUID-55B40D0D-C4B2-4997-B3D0-934CCCFF1FB7 V1 EN

Figure 18: Overcurrent protection functions

The inrush detection block's (INRPHAR1) output INRPHAR1_BLK2H enables


either blocking the function or multiplying the active settings for any of the
available overcurrent or earth-fault function blocks.

INRPHAR1
BLOCK BLK2H INRPHAR1_BLK2H

GUID-3C6557BC-1843-4A95-9562-799D95B9CD3A V1 EN

Figure 19: Inrush detector function

Two negative sequence overcurrent stages NSPTOC1 and NSPTOC2 are provided
for phase unbalance protection. These functions are used to protect the feeder
against phase unbalance.

50 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

NSPTOC1
BLOCK OPERATE NSPTOC1_OPERATE
ENA_MULT START NSPTOC1_START

NSPTOC2
BLOCK OPERATE NSPTOC2_OPERATE
ENA_MULT START NSPTOC2_START

OR
NSPTOC1_OPERATE B1 O NSPTOC_OPERATE
NSPTOC2_OPERATE B2

GUID-276B1260-5C99-44E4-97BA-AFBB50464E46 V1 EN

Figure 20: Negative sequence overcurrent protection function

Three stages are provided for directional earth-fault protection. According to the
IED's order code, the directional earth-fault protection method is based on
conventional directional earth-fault DEFxPDEF only or alternatively together with
admittance criteria EFPADM or wattmetric earth-fault protection WPWDE. In
addition, there is a dedicated protection stage INTRPTEF either for transient-based
earth-fault protection or for cable intermittent earth-fault protection in compensated
networks.

DEFLPDEF1
BLOCK OPERATE DEFLPDEF1_OPERATE
ENA_MULT START DEFLPDEF1_START
RCA_CTL

DEFLPDEF2
BLOCK OPERATE DEFLPDEF2_OPERATE
ENA_MULT START DEFLPDEF2_START
RCA_CTL

DEFHPDEF1
BLOCK OPERATE DEFHPDEF1_OPERATE
ENA_MULT START DEFHPDEF1_START
RCA_CTL

OR6
DEFLPDEF1_OPERATE B1 O DEF_OPERATE
DEFLPDEF2_OPERATE B2
DEFHPDEF1_OPERATE B3
B4
B5
B6

GUID-3499F814-CAB8-4310-9428-D3B72A9BEAF3 V1 EN

Figure 21: Directional earth-fault protection functions

REF615 51
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

INTRPTEF1
BLOCK OPERATE INTRPTEF1_OPERATE
START INTRPTEF1_START
BLK_EF

GUID-99B9BCD7-90A1-4259-A475-8DFCA244F32C V1 EN

Figure 22: Transient or intermittent earth-fault protection functions

WPWDE1
BLOCK OPERATE WPWDE1_OPERATE
RCA_CTL START WPWDE1_START

WPWDE2
BLOCK OPERATE WPWDE2_OPERATE
RCA_CTL START WPWDE2_START

WPWDE3
BLOCK OPERATE WPWDE3_OPERATE
RCA_CTL START WPWDE3_START

OR6
WPWDE1_OPERATE B1 O WPWDE_OPERATE
WPWDE2_OPERATE B2
WPWDE3_OPERATE B3
B4
B5
B6

GUID-2EE794AD-2D14-49C7-AD33-89F75627AEA1 V1 EN

Figure 23: Wattmetric protection function

52 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

EFPADM1
BLOCK OPERATE EFPADM1_OPERATE
RELEASE START EFPADM1_START

EFPADM2
BLOCK OPERATE EFPADM2_OPERATE
RELEASE START EFPADM2_START

EFPADM3
BLOCK OPERATE EFPADM3_OPERATE
RELEASE START EFPADM3_START

OR6
EFPADM1_OPERATE B1 O EFPADM_OPERATE
EFPADM2_OPERATE B2
EFPADM3_OPERATE B3
B4
B5
B6

GUID-AE7BA7DD-60E7-4D48-8F98-2605BEB424FA V1 EN

Figure 24: Admittance based earth-fault protection function

A dedicated non-directional earth-fault protection block EFHPTOC1 protects


against double earth-fault situations in isolated or compensated networks. This
protection function uses the calculated residual current originating from the phase
currents.

EFHPTOC1
BLOCK OPERATE EFHPTOC1_OPERATE
ENA_MULT START EFHPTOC1_START

GUID-1B0EE37E-F8D6-45E3-9648-7495EF4360D3 V1 EN

Figure 25: Non-directional earth-fault protection

The phase discontinuity protection PDNSPTOC1 protects for interruptions in the


normal three-phase load supply, for example, in downed conductor situations.

PDNSPTOC1
BLOCK OPERATE PDNSPTOC1_OPERATE
START PDNSPTOC1_START

GUID-9EC84EEF-5799-4170-8826-85082502D144 V1 EN

Figure 26: Phase discontinuity protection

The thermal overload protection T1PTTR1 detects overloads under varying load
conditions.

REF615 53
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

T1PTTR1
BLK_OPR OPERATE T1PTTR1_OPERATE
ENA_MULT START T1PTTR1_START
TEMP_AMB ALARM T1PTTR1_ALARM
BLK_CLOSE

GUID-4DD81601-4C74-4305-A280-EB0DD2A7D958 V1 EN

Figure 27: Thermal overcurrent protection function

The breaker failure protection CCBRBRF1 is initiated via the START input by
number of different protection functions available in the IED. The breaker failure
protection function offers different operating modes associated with the circuit
breaker position and the measured phase and residual currents.

The breaker failure protection function has two operating outputs: TRRET and
TRBU. The TRRET operate output is used for retripping its own breaker through
TRPPTRC2_TRIP. The TRBU output is used to give a backup trip to the breaker
feeding upstream. For this purpose, the TRBU operate output signal is connected to
the binary output X100:PO2.
CCBRBRF1
OR6 OR6
BLOCK CB_FAULT_AL
PHIPTOC1_OPERATE B1 O B1 O START TRBU CCBRBRF1_TRBU
PHHPTOC1_OPERATE B2 B2 POSCLOSE TRRET CCBRBRF1_TRRET
PHHPTOC2_OPERATE B3 B3 CB_FAULT
B4 B4
B5 B5
B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF2_OPERATE B2
B3
B4
B5
B6

X120_BI2_CB_CLOSED
GUID-434D2001-0D44-45D6-863F-DD1663FCE6C0 V1 EN

Figure 28: Circuit breaker failure protection function

Three arc protection ARCSARC1...3 stages are included as an optional function.


The arc protection offers individual function blocks for three arc sensors that can
be connected to the IED. Each arc protection function block has two different
operation modes, that is, with or without the phase and residual current check.

The operate signals from ARCSARC1...3 are connected to both trip logic
TRPPTRC1 and TRPPTRC2.

54 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

ARCSARC1
BLOCK OPERATE ARCSARC1_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC1_ARC_FLT_DET
OPR_MODE

ARCSARC2
BLOCK OPERATE ARCSARC2_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC2_ARC_FLT_DET
OPR_MODE

ARCSARC3
BLOCK OPERATE ARCSARC3_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC3_ARC_FLT_DET
OPR_MODE

OR6
ARCSARC1_OPERATE B1 O ARCSARC_OPERATE
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-7D19A436-343A-4D66-8797-546433CBF256 V1 EN

Figure 29: Arc protection

The optional autorecloser function is configured to be initiated by operate signals


from a number of protection stages through the INIT_1...5 inputs. It is possible
to create individual autoreclose sequences for each input.

The autorecloser function can be inhibited with the INHIBIT_RECL input. By


default, few selected protection function operations are connected to this input. A
control command to the circuit breaker, either local or remote, also blocks the
autorecloser function via the CBXCBR1_SELECTED signal.

The circuit breaker availability for the autorecloser sequence is expressed with the
CB_READY input in DARREC1. This signal is not connected in the configuration.
The open command from the autorecloser is connected directly to binary output
X100:PO3, whereas the close command is connected directly to binary output
X100:PO1.

Set the parameters for DARREC1 properly.

Check the initialization signals of DARREC1.

REF615 55
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

DARREC1
PHIPTOC1_OPERATE INIT_1 OPEN_CB DARREC1_OPEN_CB
OR6 PHHPTOC2_OPERATE INIT_2 CLOSE_CB DARREC1_CLOSE_CB
PHHPTOC1_OPERATE INIT_3 CMD_WAIT
DEFLPDEF2_OPERATE B1 O INIT_4 INPRO DARREC1_INPRO
EFPADM2_OPERATE B2 INIT_5 LOCKED
B3 INIT_6 PROT_CRD
B4 DEL_INIT_2 UNSUC_RECL DARREC1_UNSUC_RECL
B5 DEL_INIT_3 AR_ON
B6 DEL_INIT_4 READY
BLK_RECL_T ACTIVE
BLK_RCLM_T
BLK_THERM
X120_BI3_CB_OPENED CB_POS
CB_READY
OR6 INC_SHOTP
INHIBIT_RECL
DEFHPDEF1_OPERATE B1 O RECL_ON
EFPADM3_OPERATE B2 SYNC
B3
B4
B5
B6

OR6
PDNSPTOC1_OPERATE B1 O
NSPTOC1_OPERATE B2
NSPTOC2_OPERATE B3
CBXCBR1_SELECTED B4
INTRPTEF1_OPERATE B5 OR
B6
B1 O
B2

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-4F81507A-B5DF-4FCD-A5F4-B51E9E683345 V1 EN

Figure 30: Autorecloser function

The residual overvoltage protection ROVPTOV1 provides earth-fault protection by


detecting an abnormal level of residual voltage. This can be used, for example, as a
nonselective backup protection for the selective directional earth-fault functionality.

56 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

ROVPTOV1
BLOCK OPERATE ROVPTOV1_OPERATE
START ROVPTOV1_START

ROVPTOV2
BLOCK OPERATE ROVPTOV2_OPERATE
START ROVPTOV2_START

ROVPTOV3
BLOCK OPERATE ROVPTOV3_OPERATE
START ROVPTOV3_START

OR6
ROVPTOV1_OPERATE B1 O ROVPTOV_OPERATE
ROVPTOV2_OPERATE B2
ROVPTOV3_OPERATE B3
B4
B5
B6

GUID-57D2326C-BF0D-4A76-B414-828A0FAFE035 V1 EN

Figure 31: Residual voltage protection function

General start and operate from all the functions are connected to pulse timer
TPGAPC1 for setting the minimum pulse length for the outputs. The output from
TPGAPC1 is connected to binary outputs.

REF615 57
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

OR6
PHLPTOC1_START B1 O
PHHPTOC1_START B2
PHHPTOC2_START B3
PHIPTOC1_START B4
NSPTOC1_START B5
NSPTOC2_START B6

OR6
OR6
B1 O
DEFLPDEF1_START B1 O B2
DEFLPDEF2_START B2 B3
DEFHPDEF1_START B3 B4
B4 B5 TPGAPC1
B5 B6
B6 IN1 OUT1 GENERAL_START_PULSE
IN2 OUT2 GENERAL_OPERATE_PULSE

OR6 OR6
INTRPTEF1_START B1 O B1 O
EFHPTOC1_START B2 B2
PDNSPTOC1_START B3 B3
ROVPTOV1_START B4 B4
ROVPTOV2_START B5 B5
ROVPTOV3_START B6 B6

OR6
PHLPTOC1_OPERATE B1 O
PHHPTOC1_OPERATE B2
PHHPTOC2_OPERATE B3
PHIPTOC1_OPERATE B4
NSPTOC1_OPERATE B5
NSPTOC2_OPERATE B6

OR6
DEFLPDEF1_OPERATE B1 O
DEFLPDEF2_OPERATE B2
DEFHPDEF1_OPERATE B3
B4
B5
B6

OR6
INTRPTEF1_OPERATE B1 O
EFHPTOC1_OPERATE B2
PDNSPTOC1_OPERATE B3
ROVPTOV1_OPERATE B4
ROVPTOV2_OPERATE B5
ROVPTOV3_OPERATE B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-5473CE1D-D794-485C-B2E2-D4F702603427 V1 EN

Figure 32: General start and operate signals

The operate signals from the protection functions are connected to the two trip
logics TRPPTRC1 and TRPPTRC2. The output of these trip logic functions are
available at binary outputs X100:PO3 and X100:PO4. Both the trip logic functions
are provided with lockout and latching function, event generation and the trip
signal duration setting. If the lockout operation mode is selected, binary input has
been assigned to RST_LKOUT input of both the trip logic to enable external reset
with a push button.

Three other trip logics TRPPTRC3...4 are also available if the IED is ordered with
high speed binary outputs options.

58 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

TRPPTRC1
OR6 OR6
BLOCK TRIP TRPPTRC1_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
PHLPTOC1_OPERATE B2 B2 RST_LKOUT
PHHPTOC1_OPERATE B3 B3
PHHPTOC2_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF1_OPERATE B2
DEFLPDEF2_OPERATE B3
EFPADM1_OPERATE B4
EFPADM2_OPERATE B5
EFPADM3_OPERATE B6

OR6
INTRPTEF1_OPERATE B1 O
EFHPTOC1_OPERATE B2
PDNSPTOC1_OPERATE B3
ROVPTOV1_OPERATE B4
ROVPTOV2_OPERATE B5
ROVPTOV3_OPERATE B6

OR6
WPWDE1_OPERATE B1 O
WPWDE2_OPERATE B2
WPWDE3_OPERATE B3
ARCSARC1_OPERATE B4
ARCSARC2_OPERATE B5
ARCSARC3_OPERATE B6

GUID-74DA3CAA-F877-4C2E-9390-F444EA6B5F6C V1 EN

Figure 33: Trip logic TRPPTRC1

REF615 59
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

TRPPTRC2
OR6 OR6
BLOCK TRIP TRPPTRC2_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
PHLPTOC1_OPERATE B2 B2 RST_LKOUT
PHHPTOC1_OPERATE B3 B3
PHHPTOC2_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF1_OPERATE B2
DEFLPDEF2_OPERATE B3
EFPADM1_OPERATE B4
EFPADM2_OPERATE B5
EFPADM3_OPERATE B6

OR6
INTRPTEF1_OPERATE B1 O
EFHPTOC1_OPERATE B2
PDNSPTOC1_OPERATE B3
ROVPTOV1_OPERATE B4
ROVPTOV2_OPERATE B5
ROVPTOV3_OPERATE B6

OR6
B1 O
CCBRBRF1_TRRET B2
WPWDE1_OPERATE B3
WPWDE2_OPERATE B4
WPWDE3_OPERATE B5
B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-AF276C39-F671-459C-9472-7243985B578A V1 EN

Figure 34: Trip logic TRPPTRC2

3.3.3.2 Functional diagrams for disturbance recorder

The START and OPERATE outputs from the protection stages are routed to trigger
the disturbance recorder or, alternatively, only to be recorded by the disturbance
recorder depending on the parameter settings. Additionally, the selected signals
from different functions and the few binary inputs are also connected to the
disturbance recorder.

60 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

OR6
RDRE1
DEFLPDEF1_START B1 O
WPWDE1_START B2 PHLPTOC1_START C1 TRIGGERED DISTURB_RECORD_TRIGGERED
EFPADM1_START B3 PHHPTOC1_START C2
B4 PHHPTOC2_START C3
B5 PHIPTOC1_START C4
B6 NSPTOC1_START C5
NSPTOC2_START C6
C7
C8
C9
OR6 INTRPTEF1_START C10
EFHPTOC1_START C11
DEFLPDEF2_START B1 O PDNSPTOC1_START C12
WPWDE2_START B2 T1PTTR1_START C13
EFPADM2_START B3 OR6 ROVPTOV1_START C14
B4 ROVPTOV2_START C15
B5 PHIPTOC1_OPERATE B1 O ROVPTOV3_START C16
B6 PHHPTOC1_OPERATE B2 CCBRBRF1_TRRET C17
PHHPTOC2_OPERATE B3 CCBRBRF1_TRBU C18
PHLPTOC1_OPERATE B4 C19
B5 C20
B6 C21
OR6 INTRPTEF1_OPERATE C22
EFHPTOC1_OPERATE C23
DEFHPDEF1_START B1 O PDNSPTOC1_OPERATE C24
WPWDE3_START B2 INRPHAR1_BLK2H C25
EFPADM3_START B3 OR T1PTTR1_OPERATE C26
B4 C27
B5 NSPTOC1_OPERATE B1 O C28
B6 NSPTOC2_OPERATE B2 ARCSARC1_OPERATE C29
ARCSARC2_OPERATE C30
ARCSARC3_OPERATE C31
DARREC1_INPRO C32
DARREC1_CLOSE_CB C33
OR6 OR DARREC1_UNSUC_RECL C34
X120_BI1_EXT_OC_BLOCKING C35
WPWDE1_OPERATE B1 O B1 O X120_BI2_CB_CLOSED C36
WPWDE2_OPERATE B2 B2 X120_BI3_CB_OPENED C37
WPWDE3_OPERATE B3 C38
DEFLPDEF1_OPERATE B4 C39
DEFLPDEF2_OPERATE B5 C40
DEFHPDEF1_OPERATE B6 C41
OR6 C42
C43
ROVPTOV1_OPERATE B1 O C44
ROVPTOV2_OPERATE B2 C45
OR6 ROVPTOV3_OPERATE B3 C46
B4 C47
EFPADM1_OPERATE B1 O B5 C48
EFPADM2_OPERATE B2 B6 C49
EFPADM3_OPERATE B3 C50
B4 C51
B5 C52
B6 C53
OR6 C54
C55
ARCSARC1_ARC_FLT_DET B1 O C56
ARCSARC2_ARC_FLT_DET B2 C57
ARCSARC3_ARC_FLT_DET B3 C58
B4 C59
B5 C60
B6 C61
C62
C63
C64

GUID-00B89248-0B1C-4F2C-AC6B-8680D0CBB382 V1 EN

Figure 35: Disturbance recorder

3.3.3.3 Functional diagrams for condition monitoring

Two separate trip circuit supervision functions are included: TCSSCBR1 for power
output X100:PO3 and TCSSCBR2 for power output X100:PO4. Both the functions
are blocked by the Master Trip TRPPTRC1 and TRPPTRC2 and the circuit breaker
open signal.

It is assumed that there is no external resistor in the circuit breaker


tripping coil circuit connected in parallel with the circuit breaker
normally open auxiliary contact.

REF615 61
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

TCSSCBR1
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR1_ALARM

TCSSCBR2
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR2_ALARM

OR
TCSSCBR1_ALARM B1 O TCSSCBR_ALARM
TCSSCBR2_ALARM B2

GUID-F6281256-8B8D-41D9-AD19-014D604AFCEC V1 EN

Figure 36: Trip circuit supervision function

OR6
TRPPTRC1_TRIP B1 O TCSSCBR_BLOCKING
TRPPTRC2_TRIP B2
X120_BI3_CB_OPENED B3
B4
B5
B6

GUID-F0B3AFC4-7D62-49A3-BF0D-AD03041EA78D V1 EN

Figure 37: Logic for blocking of trip circuit supervision

3.3.3.4 Functional diagrams for control and interlocking

The circuit breaker closing is enabled when the ENA_CLOSE input is activated.
The input can be activated using the configuration logic, which is based on the
status of the trip logics. However, other signals can be connected based on the
application needs.

The ITL_BYPASS input can be used, for example, to always enable the closing of
the circuit breaker when the circuit breaker truck is in the test position.
ITL_BYPASS overrides, for example, active interlocking conditions when the
circuit breaker truck is closed in service position.

CBXCBR1
X120_BI3_CB_OPENED POSOPEN SELECTED CBXCBR1_SELECTED
X120_BI2_CB_CLOSED POSCLOSE EXE_OP CBXCBR1_EXE_OP
TRUE ENA_OPEN EXE_CL CBXCBR1_EXE_CL
CBXCBR1_ENA_CLOSE ENA_CLOSE OPENPOS
FALSE BLK_OPEN CLOSEPOS
BLK_CLOSE OKPOS
CBXBCR1_AU_OPEN AU_OPEN OPEN_ENAD
CBXCBR1_AU_CLOSE AU_CLOSE CLOSE_ENAD
ITL_BYPASS

GUID-FD60A0AB-713C-461F-BB52-7195A5AD23DA V1 EN

Figure 38: Circuit breaker control logic: Circuit breaker 1

62 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

OR
CBXCBR1_EXE_CL B1 O CB_CLOSE_COMMAND
DARREC1_CLOSE_CB B2

GUID-186FE757-E2ED-483B-A0F9-7CF97278BC0C V1 EN

Figure 39: Circuit breaker control logic: Signals for the closing coil of circuit
breaker 1

OR6
TRPPTRC1_TRIP B1 O CB_OPEN_COMMAND
CBXCBR1_EXE_OP B2
DARREC1_OPEN_CB B3
B4
B5
B6

GUID-F8B92F5F-5A07-491D-8376-9167A9D69DC1 V1 EN

Figure 40: Circuit breaker control logic: Signals for the opening coil of circuit
breaker 1

NOT
TRPPTRC1_TRIP IN OUT
AND
B1 O CBXCBR1_ENA_CLOSE
B2
NOT
TRPPTRC2_TRIP IN OUT

GUID-5BAFB13B-C726-4F27-B8BE-7A6145CDB1A5 V1 EN

Figure 41: Circuit breaker close enable logic

The configuration includes the logic for generating circuit breaker external closing
and opening command with the IED in local or remote mode.

Check the logic for the external circuit breaker closing command
and modify it according to the application.

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXCBR1_AU_CLOSE
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-8657C398-3CE6-4770-A3B3-240AFA9FD791 V1 EN

Figure 42: External closing command for circuit breaker

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXBCR1_AU_OPEN
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-F1457C35-6938-41D7-A3FA-71EECB4E7064 V1 EN

Figure 43: External opening command for circuit breaker

REF615 63
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

3.3.3.5 Functional diagrams for measurement functions

The phase current inputs to the IED are measured by the three-phase current
measurement function CMMXU1. The current input is connected to the X120 card
in the back panel. Similarly, the sequence current measurement CSMSQI1
measures the sequence current and the residual current measurement
RESCMMXU1 measures the residual current.

The residual voltage input is connected to the X120 card in the back panel and is
measured by the residual voltage measurement RESVMMXU1.

The measurements can be seen from the LHMI and they are available under the
measurement option in the menu selection. Based on the settings, function blocks
can generate low alarm or warning and high alarm or warning signals for the
measured current values.

CMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-C4DBF3EA-C264-4F60-941B-FAFDADD11315 V1 EN

Figure 44: Current measurement: Three phase current measurement

CSMSQI1

GUID-57A365D0-D629-4DDC-9268-D5D427C6F5A8 V1 EN

Figure 45: Current measurement: Sequence current measurements

RESCMMXU1
BLOCK HIGH_ALARM
HIGH_WARN

GUID-D962598F-BE1F-42E2-AE3D-A20F1F87B01B V1 EN

Figure 46: Current measurement: Residual current measurements

RESVMMXU1
BLOCK HIGH_ALARM
HIGH_WARN

GUID-F5BC01C6-A8C3-4AA7-A54F-C68DDE881775 V1 EN

Figure 47: Voltage measurement: Residual voltage measurements

FLTMSTA1
BLOCK
CB_CLRD

GUID-14B7A3F2-9DF7-45AE-A63B-298C6F26C616 V1 EN

Figure 48: Other measurement: Data monitoring

64 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

3.3.3.6 Functional diagrams for I/O and alarm LEDs

X120_BI1_EXT_OC_BLOCKING
X120 (AIM).X120-Input 1

X120_BI2_CB_CLOSED
X120 (AIM).X120-Input 2

X120_BI3_CB_OPENED
X120 (AIM).X120-Input 3
GUID-1CC3270B-3A49-43C1-8C2F-0DFAF37FAD58 V1 EN

Figure 49: Default binary inputs - X120

CB_CLOSE_COMMAND
X100 (PSM).X100-PO1

CCBRBRF1_TRBU
X100 (PSM).X100-PO2

GENERAL_START_PULSE
X100 (PSM).X100-SO1

GENERAL_OPERATE_PULSE
X100 (PSM).X100-SO2

CB_OPEN_COMMAND
X100 (PSM).X100-PO3

TRPPTRC2_TRIP
X100 (PSM).X100-PO4
GUID-B78100E6-F29B-4F6D-9035-56BA646E64FC V1 EN

Figure 50: Default binary outputs - X100

REF615 65
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

LED1
OK
PHxPTOC_OPERATE ALARM
RESET

LED2
OR6
OK
DEF_OPERATE B1 O ALARM
EFPADM_OPERATE B2 RESET
WPWDE_OPERATE B3
INTRPTEF1_OPERATE B4
B5
B6

LED3
OR
OK
EFHPTOC1_OPERATE B1 O ALARM
ROVPTOV_OPERATE B2 RESET

LED4
OR
OK
NSPTOC_OPERATE B1 O ALARM
PDNSPTOC1_OPERATE B2 RESET

LED5
OK
T1PTTR1_ALARM ALARM
RESET

GUID-E32FB298-A762-4D91-9134-2AD11BA1B12F V1 EN

66 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

LED6
OK
CCBRBRF1_TRBU ALARM
RESET

LED7
OK
DISTURB_RECORD_TRIGGERED ALARM
RESET

LED9
OK
TCSSCBR_ALARM ALARM
RESET

LED10
OK
ARCSARC_OPERATE ALARM
RESET

LED11
OK
DARREC1_INPRO ALARM
RESET

GUID-781E66E9-CE48-4DA6-8159-86BED9295D7C V1 EN

Figure 51: Default LED connection

3.3.3.7 Other functions

The configuration includes few instances of multi-purpose protection function


MAPGAPC, runtime counter MDSOPT and different types of timer functions.
These functions are not included in application configuration but they can be added
based on the system requirements.

3.4 Standard configuration B

3.4.1 Applications
The standard configuration for non-directional overcurrent and directional earth-
fault protection is mainly intended for cable and overhead-line feeder applications
in isolated and resonant-earthed distribution networks. The configuration also
includes additional options for selecting earth-fault protection based on admittance,
wattmetric or harmonic-based principles.

The IED with a standard configuration is delivered from the factory with default
settings and parameters. The end user flexibility for incoming, outgoing and
internal signal designation within the IED enables this configuration to be further

REF615 67
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

adapted to different primary circuit layouts and the related functionality needs by
modifying the internal functionality using PCM600.

3.4.2 Functions
Uo

REF615 FEEDER PROTECTION AND CONTROL IED STANDARD


CONFIGURATION
B

PROTECTION LOCAL HMI ALSO AVAILABLE


Configuration A

- Disturbance and fault recorders


System
HMI
Time
Authorization

5× - Event log and recorded data


Master Trip I
- High-Speed Output module (optional)
ESC Clear

Lockout relay A
O
- IED self-supervision
R
L

94/86
U12 0. 0 kV
P 0.00 kW
Q 0.00 kVAr

IL2 0 A
- Local/Remote push button on LHMI
- User management
I ESC Clear
- Web HMI

AND
I2> I2/I1> 3Ith>F 3I>>> O R

46 46PD 49F 50P/51P


L
OR
3I
3× 3×
ARC 3I>/Io>BF
50L/50NL CONDITION MONITORING COMMUNICATION
51BF/51NBF
AND SUPERVISION
Protocols:
1 1 0 0 1 1 0 0 2× 2× IEC 61850-8-1 1 0 1 0 0 0 1 1 0 0 1 1 0 0
1 0 1 1 1 0 0 1 0 3I> 3I>> 3I2f> CBCM OPTS TCS Modbus® 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 0 0
51P-1 51P-2 68 CBCM OPTM TCM IEC 60870-5-103 1 0 1 1 0 1 1 0 1 1 0 1 0 0
1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 DNP3 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1
1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 0 1 1 0 1 0 Interfaces: 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 0 0 Io 1
Ethernet: TX (RJ45), FX (LC)
0 1 1 0 1 1 0 1 1 0 1 0 0

Serial: Serial glass fiber (ST),


RS-485, RS-232/485
Io>>
D-sub 9, IRIG-B
51N-2
Redundant protocols:
HSR
PRP
RSTP
Io

Io>→ Io>>→ Io>IEF→ PHIZ
CONTROL AND INDICATION 1) MEASUREMENT
67N-1 67N-2 67NIEF HIZ

Uo Object Ctrl 2)
Ind 3) - I, Io, Uo
3× 3× - Limit value supervision
Yo>→ Po>→ Io>HA CB 1 - - Load profile record
21YN 32N 51NHA - RTD/mA measurement (optional)
DC 2 3
OR OR - Symmetrical components
ES 1 2
1)
Check availability of binary inputs/outputs
from technical documentation Analog interface types 1)
2)
Control and indication function for
primary object Current transformer 4
3)
Status indication function for
primary object Voltage transformer 1
1)
Conventional transformer inputs
3× 18×
Uo> MAP O→I
59G MAP 79

6xRTD REMARKS
2xmA
Optional 3× No. of Calculated OR Alternative
function instances value function to be
Io/Uo defined when
ordering

GUID-5E9640AA-129C-42CB-9E29-5480A9656B10 V1 EN

Figure 52: Functionality overview for standard configuration B

REF615 FEEDER PROTECTION AND CONTROL IED STANDARD

3.4.2.1 Default I/O connections


CONFIGURATION

PROTECTION LOCAL HMI

Connector pins for each input and output are presented in the IED physical
Configuration A
System
HMI
Time
Authorization

connections section.
I ESC Clear

A
O R
L
U12 0. 0 kV
P 0.00 kW
Q 0.00 kVAr

IL2 0 A

I ESC Clear

AND
O R
L
OR

CONDITION MONITORING COMMUNICATION

68 AND SUPERVISION
Protocols: REF615
1
1
1
0
0
1
0
1
1
1
1
0
0
0
0
1 0
IEC 61850-8-1
Modbus® Application
1 0 1 1 0Manual
1 0 1 0 0 0 1 1 0 0 1 1 0 0
0 1 0 1 1 1 0 0 1 0
1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 0 0
IEC 60870-5-103 1 0 1 1 0 1 1 0 1 1 0 1 0 0
1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 DNP3 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1
1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 0 1 1 0 1 0 Interfaces: 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0
Ethernet: TX (RJ45), FX (LC)
Serial: Serial glass fiber (ST),
RS-485, RS-232/485
D-sub 9, IRIG-B
Redundant protocols:
HSR
PRP
1MRS756378 N Section 3
REF615 standard configurations

Table 16: Default connections for binary inputs


Binary input Description
X110-BI2 Directional earth-fault protection's basic angle control
X110-BI3 Circuit breaker low gas pressure indication
X110-BI4 Circuit breaker spring charged indication
X110-BI5 Circuit breaker truck in (service position) indication
X110-BI6 Circuit breaker truck out (test position) indication
X110-BI7 Earthing switch closed indication
X110-BI8 Earthing switch open indication
X120-BI1 Blocking of overcurrent instantaneous stage
X120-BI2 Circuit breaker closed indication
X120-BI3 Circuit breaker open indication

Table 17: Default connections for binary outputs


Binary output Description
X100-PO1 Close circuit breaker
X100-PO2 Circuit breaker failure protection trip to upstream breaker
X100-PO3 Open circuit breaker/trip coil 1
X100-PO4 Open circuit breaker/trip coil 2
X100-SO1 General start indication
X100-SO2 General operate indication
X110-SO1 Upstream overcurrent blocking
X110-SO2 Overcurrent operate alarm
X110-SO3 Earth-fault operate alarm
X110-HSO1 Arc protection instance 1 operate activated
X110-HSO2 Arc protection instance 2 operate activated
X110-HSO3 Arc protection instance 3 operate activated

Table 18: Default connections for LEDs


LED Description
1 Non-directional overcurrent operate
2 Directional/intermittent earth-fault operate
3 Double (cross country) earth-fault or residual overvoltage operate
4 Negative sequence overcurrent or phase discontinuity operate
5 Thermal overload alarm
6 Breaker failure operate
7 Disturbance recorder triggered
8 Circuit breaker condition monitoring alarm
Table continues on next page

REF615 69
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

LED Description
9 Trip circuit supervision alarm
10 Arc protection operate
11 Autoreclose in progress

3.4.2.2 Default disturbance recorder settings


Table 19: Default disturbance recorder analog channels
Channel Description
1 IL1
2 IL2
3 IL3
4 Io
5 Uo
6 -
7 -
8 -
9 -
10 -
11 -
12 -

Table 20: Default disturbance recorder binary channels


Channel ID text Level trigger mode
1 PHLPTOC1 - start Positive or Rising
2 PHHPTOC1 - start Positive or Rising
3 PHHPTOC2 - start Positive or Rising
4 PHIPTOC1 - start Positive or Rising
5 NSPTOC1 - start Positive or Rising
6 NSPTOC2 - start Positive or Rising
7 DEFLPDEF1 - start Positive or Rising
EFPADM1 - start
WPWDE1 - start
8 DEFLPDEF2 - start Positive or Rising
EFPADM2 - start
WPWDE2 - start
9 DEFLPDEF3 - start Positive or Rising
EFPADM3 - start
WPWDE3 - start
Table continues on next page

70 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

Channel ID text Level trigger mode


10 INTRPTEF1 - start Positive or Rising
11 EFHPTOC1 - start Positive or Rising
12 PDNSPTOC1 - start Positive or Rising
13 T1PTTR1 - start Positive or Rising
14 ROVPTOV1 - start Positive or Rising
15 ROVPTOV2 - start Positive or Rising
16 ROVPTOV3 - start Positive or Rising
17 CCBRBRF1 - trret Level trigger off
18 CCBRBRF1 - trbu Level trigger off
19 PHIPTOC1 - operate Level trigger off
PHHPTOC1 - operate
PHHPTOC2 - operate
PHLPTOC1 - operate
20 NSPTOC1 - operate Level trigger off
NSPTOC2 - operate
21 DEFHPDEF1 - operate Level trigger off
DEFLPDEF1 - operate
DEFLPDEF2 - operate
EFPADM1 - operate
EFPADM2 - operate
EFPADM3 - operate
WPWDE1 - operate
WPWDE2 - operate
WPWDE3 - operate
22 INTRPTEF1 - operate Level trigger off
23 EFHPTOC1 - operate Level trigger off
24 PDNSPTOC1 - operate Level trigger off
25 INRPHAR1 - blk2h Level trigger off
26 T1PTTR1 - operate Level trigger off
27 ROVPTOV1 - operate Level trigger off
ROVPTOV2 - operate
ROVPTOV3 - operate
28 ARCSARC1 - ARC flt det Level trigger off
ARCSARC2 - ARC flt det
ARCSARC3 - ARC flt det
29 ARCSARC1 - operate Positive or Rising
30 ARCSARC2 - operate Positive or Rising
31 ARCSARC3 - operate Positive or Rising
32 DARREC1 - inpro Level trigger off
Table continues on next page

REF615 71
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Channel ID text Level trigger mode


33 DARREC1 - close CB Level trigger off
34 DARREC1 - unsuc recl Level trigger off
34 X120BI1 - ext OC blocking Level trigger off
35 X120BI2 - CB closed Level trigger off
36 X120BI3 - CB opened Level trigger off

3.4.3 Functional diagrams


The functional diagrams describe the default input, output, alarm LED and function-
to-function connections. The default connections can be viewed and changed with
PCM600 according to the application requirements.

The analog channels have fixed connections to the different function blocks inside
the IED’s standard configuration. However, the 12 analog channels available for
the disturbance recorder function are freely selectable as a part of the disturbance
recorder’s parameter settings.

The phase currents to the IED are fed from a current transformer. The residual
current to the IED is fed from either residually connected CTs, an external core
balance CT, neutral CT or internally calculated.

The residual voltage to the IED is fed from either the residually connected VTs or
an open delta connected VT.

The IED offers six different settings groups which can be set based on individual
needs. Each group can be activated or deactivated using the setting group settings
available in the IED.

Depending on the communication protocol the required function block needs to be


initiated in the configuration. The Application Configuration tool also includes
fixed Boolean signals TRUE and FALSE which can be used according to the
application needs.

3.4.3.1 Functional diagrams for protection

The functional diagrams describe the IEDs protection functionality in detail and
according to the factory set default connections.

Four overcurrent stages are offered for overcurrent and short-circuit protection.
The non-directional instantaneous stage PHIPTOC1 can be blocked by energizing
the binary input X120:BI1.

72 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

PHIPTOC1
X120_BI1_EXT_OC_BLOCKING BLOCK OPERATE PHIPTOC1_OPERATE
ENA_MULT START PHIPTOC1_START

PHHPTOC1
BLOCK OPERATE PHHPTOC1_OPERATE
ENA_MULT START PHHPTOC1_START

PHHPTOC2
BLOCK OPERATE PHHPTOC2_OPERATE
ENA_MULT START PHHPTOC2_START

PHLPTOC1
BLOCK OPERATE PHLPTOC1_OPERATE
ENA_MULT START PHLPTOC1_START

OR6
PHIPTOC1_OPERATE B1 O PHxPTOC_OPERATE
PHHPTOC1_OPERATE B2
PHHPTOC2_OPERATE B3
PHLPTOC1_OPERATE B4
B5
B6

GUID-421CC220-9CDA-4862-A705-52A7C7E39DF0 V1 EN

Figure 53: Overcurrent protection functions

The upstream blocking from the start of the overcurrent second high stage
PHHPTOC2 is connected to the binary output X110:SO1. This output can be used
for sending a blocking signal to the relevant overcurrent protection stage of the
IED at the infeeding bay.

OR6
PHHPTOC2_START B1 O UPSTEAM_OC_BLOCKING
B2
B3
B4
B5
B6

GUID-2A6B241E-751B-4FA1-8D4C-93B5470ADE90 V1 EN

Figure 54: Upstream blocking logic

The inrush detection block's (INRPHAR1) output BLK2H enables either blocking
the function or multiplying the active settings for any of the available overcurrent
or earth-fault function blocks.

REF615 73
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

INRPHAR1
BLOCK BLK2H INRPHAR1_BLK2H

GUID-ED765A4F-9F2B-4546-BE25-269CBABC0F9D V1 EN

Figure 55: Inrush detector function

Two negative sequence overcurrent stages NSPTOC1 and NSPTOC2 are provided
for phase unbalance protection. These functions are used to protect the feeder
against phase unbalance.

NSPTOC1
BLOCK OPERATE NSPTOC1_OPERATE
ENA_MULT START NSPTOC1_START

NSPTOC2
BLOCK OPERATE NSPTOC2_OPERATE
ENA_MULT START NSPTOC2_START

OR
NSPTOC1_OPERATE B1 O NSPTOC_OPERATE
NSPTOC2_OPERATE B2

GUID-825A5CAA-9EEF-433A-9977-D52FF37CBFFC V1 EN

Figure 56: Negative sequence overcurrent protection function

Three stages are provided for directional earth-fault protection. According to the
IED's order code, the directional earth-fault protection method can be based on
conventional directional earth-fault DEFxPDEF only or alternatively together with
admittance criteria EFPADM or wattmetric earth-fault protection WPWDE or
harmonic based earth-fault protection HAEFPTOC1. In addition, there is a
dedicated protection stage INTRPTEF either for transient-based earth-fault
protection or for cable intermittent earth-fault protection in compensated networks.

The binary input X110:BI2 is used for controlling directional earth-fault protection
block's relay characteristic angle (RCA: 0°, -90°) or operation mode (IoSinφ,
IoCosφ) change. The same input is also available for wattmetric protection.

74 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

DEFLPDEF1
BLOCK OPERATE DEFLPDEF1_OPERATE
ENA_MULT START DEFLPDEF1_START
X110_BI2_RCA_CONTROL RCA_CTL

DEFLPDEF2
BLOCK OPERATE DEFLPDEF2_OPERATE
ENA_MULT START DEFLPDEF2_START
X110_BI2_RCA_CONTROL RCA_CTL

DEFHPDEF1
BLOCK OPERATE DEFHPDEF1_OPERATE
ENA_MULT START DEFHPDEF1_START
X110_BI2_RCA_CONTROL RCA_CTL

OR6
DEFLPDEF1_OPERATE B1 O DEFxPDEF_OPERATE
DEFLPDEF2_OPERATE B2
DEFHPDEF1_OPERATE B3
B4
B5
B6

GUID-27CCBD30-6092-47C7-B753-18A7413E4B77 V1 EN

Figure 57: Directional earth-fault protection functions

INTRPTEF1
BLOCK OPERATE INTRPTEF1_OPERATE
START INTRPTEF1_START
BLK_EF

GUID-8D6E91C3-C468-487F-8CBA-C02AABCB7B1F V1 EN

Figure 58: Transient or intermittent earth-fault protection functions

REF615 75
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

WPWDE1
BLOCK OPERATE WPWDE1_OPERATE
RCA_CTL START WPWDE1_START

WPWDE2
BLOCK OPERATE WPWDE2_OPERATE
RCA_CTL START WPWDE2_START

WPWDE3
BLOCK OPERATE WPWDE3_OPERATE
RCA_CTL START WPWDE3_START

OR6
WPWDE1_OPERATE B1 O WPWDE_OPERATE
WPWDE2_OPERATE B2
WPWDE3_OPERATE B3
B4
B5
B6

GUID-A26E1E55-4059-462C-942F-F508E4653100 V1 EN

Figure 59: Wattmetric protection function

EFPADM1
BLOCK OPERATE EFPADM1_OPERATE
RELEASE START EFPADM1_START

EFPADM2
BLOCK OPERATE EFPADM2_OPERATE
RELEASE START EFPADM2_START

EFPADM3
BLOCK OPERATE EFPADM3_OPERATE
RELEASE START EFPADM3_START

OR6
EFPADM1_OPERATE B1 O EFPADM_OPERATE
EFPADM2_OPERATE B2
EFPADM3_OPERATE B3
B4
B5
B6

GUID-47970D0E-B770-43BE-8848-2B156E31D274 V1 EN

Figure 60: Admittance based earth-fault protection function

76 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

A dedicated non-directional earth-fault protection block EFHPTOC protects from


double earth-fault situations in isolated or compensated networks. The protection
function uses the calculated residual current originating from the phase currents.

EFHPTOC1
BLOCK OPERATE EFHPTOC1_OPERATE
ENA_MULT START EFHPTOC1_START

GUID-F3F7FE78-72D3-4491-AF23-BA53F8ED35D7 V1 EN

Figure 61: Non-directional earth-fault protection

The phase discontinuity protection PDNSPTOC1 protects from interruptions in the


normal three-phase load supply, for example, in downed conductor situations.

PDNSPTOC1
BLOCK OPERATE PDNSPTOC1_OPERATE
START PDNSPTOC1_START

GUID-1B82152F-2E3C-4894-8E9C-8148BE01D12C V1 EN

Figure 62: Phase discontinuity protection

The thermal overload protection T1PTTR1 detects overloads under varying load
conditions.

T1PTTR1
BLK_OPR OPERATE T1PTTR1_OPERATE
ENA_MULT START T1PTTR1_START
TEMP_AMB ALARM T1PTTR1_ALARM
BLK_CLOSE

GUID-EBDA9A91-9075-4D0F-8B3F-E3035732C9B1 V1 EN

Figure 63: Thermal overcurrent protection function

The breaker failure protection CCBRBRF1 is initiated via the START input by
number of different protection functions available in the IED. The breaker failure
protection function offers different operating modes associated with the circuit
breaker position and the measured phase and residual currents.

The breaker failure protection function has two operating outputs: TRRET and
TRBU. The TRRET operate output is used for retripping its own breaker through
TRPPTRC2_TRIP. The output TRBU gives a backup trip to the breaker feeding
upstream. For this purpose, the TRBU operate output signal is connected to the
binary output X100:PO2.
CCBRBRF1
OR6 OR6
BLOCK CB_FAULT_AL
PHIPTOC1_OPERATE B1 O B1 O START TRBU CCBRBRF1_TRBU
PHHPTOC1_OPERATE B2 B2 POSCLOSE TRRET CCBRBRF1_TRRET
PHHPTOC2_OPERATE B3 B3 CB_FAULT
ARCSARC1_OPERATE B4 B4
ARCSARC2_OPERATE B5 B5
ARCSARC3_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF2_OPERATE B2
WPWDE2_OPERATE B3
WPWDE3_OPERATE B4
EFPADM2_OPERATE B5
EFPADM3_OPERATE B6

X120_BI2_CB_CLOSED
GUID-3CC55117-F6EF-4ABF-BF0E-FFC78F84833A V1 EN

Figure 64: Circuit breaker failure protection function

REF615 77
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Three arc protection ARCSARC1...3 stages are included as an optional function.


The arc protection offers individual function blocks for three arc sensors that can
be connected to the IED. Each arc protection function block has two different
operation modes, that is, with or without the phase and residual current check.

The operate signals from ARCSARC1...3 are connected to both trip logic
TRPPTRC1 and TRPPTRC2. If the IED has been ordered with high speed binary
outputs, the individual operate signals from ARCSARC1..3 are connected to
dedicated trip logic TRPPTRC3...5. The outputs of TRPPTRC3...5 are available at
high speed outputs X110:HSO1, X110:HSO2, and X110:HSO3 respectively.

78 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

ARCSARC1
BLOCK OPERATE ARCSARC1_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC1_ARC_FLT_DET
OPR_MODE

ARCSARC2
BLOCK OPERATE ARCSARC2_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC2_ARC_FLT_DET
OPR_MODE

ARCSARC3
BLOCK OPERATE ARCSARC3_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC3_ARC_FLT_DET
OPR_MODE

OR6
ARCSARC1_OPERATE B1 O ARCSARC_OPERATE
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-D5676839-45F1-40BB-A553-E3C4A0A1E1A0 V1 EN

TRPPTRC3
BLOCK TRIP TRPPTRC3_TRIP
ARCSARC1_OPERATE OPERATE CL_LKOUT
RST_LKOUT

TRPPTRC4
BLOCK TRIP TRPPTRC4_TRIP
ARCSARC2_OPERATE OPERATE CL_LKOUT
RST_LKOUT

TRPPTRC5
BLOCK TRIP TRPPTRC5_TRIP
ARCSARC3_OPERATE OPERATE CL_LKOUT
RST_LKOUT

GUID-706BD2A2-4F97-4CFD-B3D7-CAE40BFBB820 V1 EN

Figure 65: Arc protection with dedicated HSO

The optional autorecloser function is configured to be initiated by operate signals


from a number of protection stages through the INIT_1...5 inputs. It is possible
to create individual autoreclose sequences for each input.

The autorecloser function can be inhibited with the INHIBIT_RECL input. By


default, few selected protection function operations are connected to this input. A
control command to the circuit breaker, either local or remote, also blocks the
autorecloser function via the CBXCBR-SELECTED signal.

REF615 79
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

The circuit breaker availability for the autorecloser sequence is expressed with the
CB_READY input in DARREC1. The signal, and other required signals, are
connected to the CB spring charged binary inputs in this configuration. The open
command from the autorecloser is connected directly to the binary output
X100:PO3, whereas the close command is connected directly to the binary output
X100:PO1.
DARREC1
PHIPTOC1_OPERATE INIT_1 OPEN_CB DARREC1_OPEN_CB
OR6 PHHPTOC2_OPERATE INIT_2 CLOSE_CB DARREC1_CLOSE_CB
PHHPTOC1_OPERATE INIT_3 CMD_WAIT
DEFLPDEF2_OPERATE B1 O INIT_4 INPRO DARREC1_INPRO
EFPADM2_OPERATE B2 INIT_5 LOCKED
WPWDE2_OPERATE B3 INIT_6 PROT_CRD
B4 DEL_INIT_2 UNSUC_RECL DARREC1_UNSUC_RECL
B5 DEL_INIT_3 AR_ON
B6 DEL_INIT_4 READY
BLK_RECL_T ACTIVE
BLK_RCLM_T
BLK_THERM
X120_BI3_CB_OPENED CB_POS
OR6 X110_BI4_CB_SPRING_CHARGED CB_READY
INC_SHOTP
DEFHPDEF1_OPERATE B1 O INHIBIT_RECL
EFPADM3_OPERATE B2 RECL_ON
WPWDE3_OPERATE B3 SYNC
B4
B5
B6

OR6
PDNSPTOC1_OPERATE B1 O
NSPTOC1_OPERATE B2
NSPTOC2_OPERATE B3
CBXCBR1_SELECTED B4
INTRPTEF1_OPERATE B5 OR
X110_BI3_GAS_PRESSURE_ALARM B6
B1 O
B2

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-14FC7626-21FE-4F3C-8DCA-36561847D355 V1 EN

Figure 66: Autorecloser function

The residual overvoltage protection ROVPTOV provides earth-fault protection by


detecting an abnormal level of residual voltage. This can be used, for example, as a
nonselective backup protection for the selective directional earth-fault functionality.

80 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

ROVPTOV1
BLOCK OPERATE ROVPTOV1_OPERATE
START ROVPTOV1_START

ROVPTOV2
BLOCK OPERATE ROVPTOV2_OPERATE
START ROVPTOV2_START

ROVPTOV3
BLOCK OPERATE ROVPTOV3_OPERATE
START ROVPTOV3_START

OR6
ROVPTOV1_OPERATE B1 O ROVPTOV_OPERATE
ROVPTOV2_OPERATE B2
ROVPTOV3_OPERATE B3
B4
B5
B6

GUID-23A63895-A476-4096-BD6D-D0CE711EEC5D V1 EN

Figure 67: Residual voltage protection function

General start and operate from all the functions are connected to pulse timer
TPGAPC for setting the minimum pulse length for the outputs. The output from
TPGAPC is connected to binary outputs.
OR6 OR6 TPGAPC1
PHLPTOC1_START B1 O B1 O IN1 OUT1 GENERAL_START_PULSE
PHHPTOC1_START B2 B2 IN2 OUT2 GENERAL_OPERATE_PULSE
PHHPTOC2_START B3 B3
PHIPTOC1_START B4 B4
NSPTOC1_START B5 B5
NSPTOC2_START B6 B6

OR6
OR6 OR6
DEFLPDEF1_START B1 O
DEFLPDEF2_START B2 PHLPTOC1_OPERATE B1 O B1 O
DEFHPDEF1_START B3 PHHPTOC1_OPERATE B2 B2
EFPADM1_START B4 PHHPTOC2_OPERATE B3 B3
EFPADM2_START B5 PHIPTOC1_OPERATE B4 B4
EFPADM3_START B6 NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
OR6
INTRPTEF1_START B1 O
EFHPTOC1_START B2 DEFLPDEF1_OPERATE B1 O
PDNSPTOC1_START B3 DEFLPDEF2_OPERATE B2
ROVPTOV1_START B4 DEFHPDEF1_OPERATE B3
ROVPTOV2_START B5 EFPADM1_OPERATE B4
ROVPTOV3_START B6 EFPADM2_OPERATE B5
EFPADM3_OPERATE B6

OR6
OR6
WPWDE1_START B1 O
WPWDE2_START B2 INTRPTEF1_OPERATE B1 O
WPWDE3_START B3 EFHPTOC1_OPERATE B2
B4 PDNSPTOC1_OPERATE B3
B5 ROVPTOV1_OPERATE B4
B6 ROVPTOV2_OPERATE B5
ROVPTOV3_OPERATE B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
WPWDE1_OPERATE B4
WPWDE2_OPERATE B5
WPWDE3_OPERATE B6

GUID-13C6E104-D2D6-49B6-A86D-16208A842F59 V2 EN

Figure 68: General start and operate signals

The operate signals from the protection functions are connected to the two trip
logics TRPPTRC1 and TRPPTRC2. The output of these trip logic functions is
available at binary output X100:PO3 and X100:PO4. The trip logic functions are
provided with a lockout and latching function, event generation and the trip signal
duration setting. If the lockout operation mode is selected, the binary input has

REF615 81
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

been assigned to RST_LKOUT input of both the trip logic to enable external reset
with a push button. Three other trip logics TRPPTRC3...4 are also available if the
IED is ordered with high speed binary outputs options.
TRPPTRC1
OR6 OR6
BLOCK TRIP TRPPTRC1_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
PHLPTOC1_OPERATE B2 B2 RST_LKOUT
PHHPTOC1_OPERATE B3 B3
PHHPTOC2_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF1_OPERATE B2
DEFLPDEF2_OPERATE B3
EFPADM1_OPERATE B4
EFPADM2_OPERATE B5
EFPADM3_OPERATE B6

OR6
INTRPTEF1_OPERATE B1 O
EFHPTOC1_OPERATE B2
PDNSPTOC1_OPERATE B3
ROVPTOV1_OPERATE B4
ROVPTOV2_OPERATE B5
ROVPTOV3_OPERATE B6

OR6
WPWDE1_OPERATE B1 O
WPWDE2_OPERATE B2
WPWDE3_OPERATE B3
ARCSARC1_OPERATE B4
ARCSARC2_OPERATE B5
ARCSARC3_OPERATE B6

GUID-AF22589C-B208-45F8-ADB9-D925C183367A V1 EN

Figure 69: Trip logic TRPPTRC1

TRPPTRC2
OR6 OR6
BLOCK TRIP TRPPTRC2_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
PHLPTOC1_OPERATE B2 B2 RST_LKOUT
PHHPTOC1_OPERATE B3 B3
PHHPTOC2_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF1_OPERATE B2
DEFLPDEF2_OPERATE B3
EFPADM1_OPERATE B4
EFPADM2_OPERATE B5
EFPADM3_OPERATE B6

OR6
INTRPTEF1_OPERATE B1 O
EFHPTOC1_OPERATE B2
PDNSPTOC1_OPERATE B3
ROVPTOV1_OPERATE B4
ROVPTOV2_OPERATE B5
ROVPTOV3_OPERATE B6

OR6
B1 O
CCBRBRF1_TRRET B2
WPWDE1_OPERATE B3
WPWDE2_OPERATE B4
WPWDE3_OPERATE B5
B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-1D960595-DAB7-44B3-8D6A-36CB54AAFCB6 V1 EN

Figure 70: Trip logic TRPPTRC2

3.4.3.2 Functional diagrams for disturbance recorder

The START and OPERATE outputs from the protection stages are routed to trigger
the disturbance recorder or, alternatively, only to be recorded by the disturbance

82 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

recorder depending on the parameter settings. Additionally, the selected signals


from different functions and few binary inputs are also connected.
OR6
DEFLPDEF1_START B1 O RDRE1
WPWDE1_START B2
EFPADM1_START B3 PHLPTOC1_START C1 TRIGGERED DISTURB_RECORD_TRIGGERED
B4 PHHPTOC1_START C2
B5 PHHPTOC2_START C3
B6 PHIPTOC1_START C4
NSPTOC1_START C5
NSPTOC2_START C6
C7
C8
OR6 C9
INTRPTEF1_START C10
DEFLPDEF2_START B1 O EFHPTOC1_START C11
WPWDE2_START B2 PDNSPTOC1_START C12
EFPADM2_START B3 OR6 T1PTTR1_START C13
B4 ROVPTOV1_START C14
B5 PHIPTOC1_OPERATE B1 O ROVPTOV2_START C15
B6 PHHPTOC1_OPERATE B2 ROVPTOV3_START C16
PHHPTOC2_OPERATE B3 CCBRBRF1_TRRET C17
PHLPTOC1_OPERATE B4 CCBRBRF1_TRBU C18
B5 C19
B6 C20
OR6 C21
INTRPTEF1_OPERATE C22
DEFHPDEF1_START B1 O EFHPTOC1_OPERATE C23
WPWDE3_START B2 PDNSPTOC1_OPERATE C24
EFPADM3_START B3 OR INRPHAR1_BLK2H C25
B4 T1PTTR1_OPERATE C26
B5 NSPTOC1_OPERATE B1 O C27
B6 NSPTOC2_OPERATE B2 C28
ARCSARC1_OPERATE C29
ARCSARC2_OPERATE C30
ARCSARC3_OPERATE C31
DARREC1_INPRO C32
OR6 OR DARREC1_CLOSE_CB C33
DARREC1_UNSUC_RECL C34
WPWDE1_OPERATE B1 O B1 O X120_BI1_EXT_OC_BLOCKING C35
WPWDE2_OPERATE B2 B2 X120_BI2_CB_CLOSED C36
WPWDE3_OPERATE B3 X120_BI3_CB_OPENED C37
DEFLPDEF1_OPERATE B4 C38
DEFLPDEF2_OPERATE B5 C39
DEFHPDEF1_OPERATE B6 C40
OR6 C41
C42
ROVPTOV1_OPERATE B1 O C43
ROVPTOV2_OPERATE B2 C44
OR6 ROVPTOV3_OPERATE B3 C45
B4 C46
EFPADM1_OPERATE B1 O B5 C47
EFPADM2_OPERATE B2 B6 C48
EFPADM3_OPERATE B3 C49
B4 C50
B5 C51
B6 C52
OR6 C53
C54
ARCSARC1_ARC_FLT_DET B1 O C55
ARCSARC2_ARC_FLT_DET B2 C56
ARCSARC3_ARC_FLT_DET B3 C57
B4 C58
B5 C59
B6 C60
C61
C62
C63
C64

GUID-9490DCA4-54F2-4490-990B-F9CB5419CACD V2 EN

Figure 71: Disturbance recorder

3.4.3.3 Functional diagrams for condition monitoring

The circuit breaker condition monitoring function SSCBR1 supervises the switch
status based on the connected binary input information and the measured current
levels. SSCBR1 introduces various supervision methods.

Set the parameters for SSCBR1 properly.

SSCBR1
BLOCK TRV_T_OP_ALM SSCBR1_TRV_T_OP_ALM
X120_BI3_CB_OPENED POSOPEN TRV_T_CL_ALM SSCBR1_TRV_T_CL_ALM
X120_BI2_CB_CLOSED POSCLOSE SPR_CHR_ALM SSCBR1_SPR_CHR_ALM
CB_OPEN_COMMAND OPEN_CB_EXE OPR_ALM SSCBR1_OPR_ALM
CB_CLOSE_COMMAND CLOSE_CB_EXE OPR_LO SSCBR1_OPR_LO
X110_BI3_GAS_PRESSURE_ALARM PRES_ALM_IN IPOW_ALM SSCBR1_IPOW_ALM
PRES_LO_IN IPOW_LO SSCBR1_IPOW_LO
CB_SPRING_DISCHARGED SPR_CHR_ST CB_LIFE_ALM SSCBR1_CB_LIFE_ALM
X110_BI4_CB_SPRING_CHARGED SPR_CHR MON_ALM SSCBR1_MON_ALM
RST_IPOW PRES_ALM SSCBR1_PRES_ALM
RST_CB_WEAR PRES_LO SSCBR1_PRES_LO
RST_TRV_T OPENPOS
RST_SPR_T INVALIDPOS
CLOSEPOS

GUID-D287CC35-A7E0-4780-BA09-377C8406B828 V1 EN

Figure 72: Circuit breaker condition monitoring function

REF615 83
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

OR6
SSCBR1_TRV_T_OP_ALM B1 O
SSCBR1_TRV_T_CL_ALM B2
SSCBR1_SPR_CHR_ALM B3
SSCBR1_OPR_ALM B4
SSCBR1_OPR_LO B5 OR
SSCBR1_IPOW_ALM B6
B1 O SSCBR1_ALARMS
B2

OR6
SSCBR1_IPOW_LO B1 O
SSCBR1_CB_LIFE_ALM B2
SSCBR1_MON_ALM B3
SSCBR1_PRES_ALM B4
SSCBR1_PRES_LO B5
B6

GUID-ED84A0BD-A150-4BBA-8A82-8AC4B3CAE673 V1 EN

Figure 73: Logic for circuit breaker monitoring alarm

NOT
X110_BI4_CB_SPRING_CHARGED IN OUT CB_SPRING_DISCHARGED

GUID-7B9FF17E-827E-40A4-B1D2-F13E236D0381 V1 EN

Figure 74: Logic for start of circuit breaker spring charging

Two separate trip circuit supervision functions are included, TCSSCBR1 for power
output X100:PO3 and TCSSCBR2 for power output X100:PO4. Both the functions
are blocked by the Master Trip TRPPTRC1 and TRPPTRC2 and the circuit breaker
open signal.

It is assumed that there is no external resistor in the circuit breaker


tripping coil circuit connected in parallel with the circuit breaker
normally open auxiliary contact.

84 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

TCSSCBR1
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR1_ALARM

TCSSCBR2
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR2_ALARM

OR
TCSSCBR1_ALARM B1 O TCSSCBR_ALARM
TCSSCBR2_ALARM B2

GUID-0B65C9FD-DEB8-4895-82A8-725A1A3E7896 V1 EN

Figure 75: Trip circuit supervision function

OR6
TRPPTRC1_TRIP B1 O TCSSCBR_BLOCKING
TRPPTRC2_TRIP B2
X120_BI3_CB_OPENED B3
B4
B5
B6

GUID-22D4A3A4-01E4-4EDD-A9A9-FB31F956B9A2 V1 EN

Figure 76: Logic for blocking of trip circuit supervision function

3.4.3.4 Functional diagrams for control and interlocking

Two types of disconnector and earthing switch function blocks are available.
DCSXSWI1...3 and ESSXSWI1...2 are status only type, and DCXSWI1...2 and
ESXSWI1 are controllable type. By default, the status only blocks are connected in
standard configuration. The disconnector (CB truck) and line side earthing switch
status information are connected to DCSXSWI1 and ESSXSI1 respectively.

DCSXSWI1
X110_BI6_CB_TRUCK_IN_TEST POSOPEN OPENPOS
X110_BI5_CB_TRUCK_IN_SERVICE POSCLOSE CLOSEPOS
OKPOS DCSXSWI1_OKPOS

GUID-04F8826B-9EF7-4249-8BD9-9FA85114918C V1 EN

Figure 77: Disconnector control logic

ESSXSWI1
X110_BI8_ES1_OPENED POSOPEN OPENPOS ESSXSWI1_OPENPOS
X110_BI7_ES1_CLOSED POSCLOSE CLOSEPOS
OKPOS

GUID-201FDE00-C859-42C2-B27A-15555AF717DB V1 EN

Figure 78: Earthing switch control logic

The circuit breaker closing is enabled when the ENA_CLOSE input is activated.
The input can be activated by the configuration logic, which is a combination of

REF615 85
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

the disconnector or breaker truck and earth-switch position status, status of the trip
logics, gas pressure alarm and circuit-breaker spring charging status.

The OKPOS output from DCSXSWI defines whether the disconnector or breaker
truck is either open (in test position) or close (in service position). This output,
together with the open earth-switch and non-active trip signals, activates the close-
enable signal to the circuit breaker control function block. The open operation for
circuit breaker is always enabled.

The ITL_BYPASS input can be used, for example, to always enable the closing of
the circuit breaker when the circuit breaker truck is in the test position.
ITL_BYPASS overrides, for example, active interlocking conditions when the
circuit breaker truck is closed in service position.

CBXCBR1
X120_BI3_CB_OPENED POSOPEN SELECTED CBXCBR1_SELECTED
X120_BI2_CB_CLOSED POSCLOSE EXE_OP CBXCBR1_EXE_OP
TRUE ENA_OPEN EXE_CL CBXCBR1_EXE_CL
CBXCBR1_ENA_CLOSE ENA_CLOSE OPENPOS
FALSE BLK_OPEN CLOSEPOS
BLK_CLOSE OKPOS
CBXBCR1_AU_OPEN AU_OPEN OPEN_ENAD
CBXCBR1_AU_CLOSE AU_CLOSE CLOSE_ENAD
ITL_BYPASS

GUID-54C9EDF5-8EE3-4C65-85A8-D098A2EC7326 V1 EN

Figure 79: Circuit breaker control logic: Circuit breaker 1

Connect the additional signals required for the application for


closing and opening of circuit breaker.

OR
CBXCBR1_EXE_CL B1 O CB_CLOSE_COMMAND
DARREC1_CLOSE_CB B2

GUID-CBE9421A-1896-448B-903A-86C63FAC47E9 V1 EN

Figure 80: Circuit breaker control logic: Signals for closing coil of circuit breaker

OR6
CBXCBR1_EXE_OP B1 O CB_OPEN_COMMAND
TRPPTRC1_TRIP B2
DARREC1_OPEN_CB B3
B4
B5
B6

GUID-E3C59277-527E-48D1-9815-0E1416827C6F V1 EN

Figure 81: Circuit breaker control logic: Signals for opening coil of circuit breaker

86 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

NOT AND6
TRPPTRC1_TRIP IN OUT B1 O CBXCBR1_ENA_CLOSE
B2
B3
B4
NOT B5
B6
TRPPTRC2_TRIP IN OUT

NOT
X110_BI3_GAS_PRESSURE_ALARM IN OUT

DCSXSWI1_OKPOS
ESSXSWI1_OPENPOS
X110_BI4_CB_SPRING_CHARGED
GUID-3C981DB3-EFC0-490C-AE96-2C5B16CC7E00 V1 EN

Figure 82: Circuit breaker close enable logic

The configuration includes logic for generating circuit breaker external closing and
opening command with the IED in local or remote mode.

Check the logic for the external circuit breaker closing command
and modify it according to the application.

Connect additional signals for opening and closing of circuit


breaker in local or remote mode, if applicable for the configuration.

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXBCR1_AU_OPEN
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-73713DC3-F7C8-4821-AF9D-2A7568AFE963 V1 EN

Figure 83: External opening command for circuit breaker

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXCBR1_AU_CLOSE
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-5BED9700-F389-4A3E-AE41-6854954D5819 V1 EN

Figure 84: External closing command for circuit breaker

3.4.3.5 Functional diagrams for measurement functions

The phase current inputs to the IED are measured by the three-phase current
measurement function CMMXU1. The current input is connected to the X120 card
in the back panel. Similarly, the sequence measurement function CSMSQI1
measures the sequence current and the residual current measurement
RESCMMXU1 measures the residual current.

REF615 87
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

The residual voltage input is connected to the X120 card in the back panel and is
measured by the residual voltage measurement RESVMMXU1. The measurements
can be seen from the LHMI and they are available under the measurement option in
the menu selection. Based on the settings, function blocks can generate low alarm
or warning and high alarm or warning signals for the measured current values.

The load profile function LDPMSTA1 is included in the measurements sheet.


LDPMSTA1 gives the ability to observe the loading history of the corresponding
feeder.

CMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-CE8A28FF-D46E-4C19-9ED9-B9EF3AF4D941 V1 EN

Figure 85: Current measurement: Three phase current measurement

CSMSQI1

GUID-55E03474-FC5C-4A69-8018-2E80D64228FE V1 EN

Figure 86: Current measurement: Sequence current measurements

RESCMMXU1
BLOCK HIGH_ALARM
HIGH_WARN

GUID-D547C128-B4B7-42B0-AA05-2565E19D2EFD V1 EN

Figure 87: Current measurement: Residual current measurements

RESVMMXU1
BLOCK HIGH_ALARM
HIGH_WARN

GUID-C392DC8A-6AD6-4335-87C5-CD2F97C69988 V1 EN

Figure 88: Voltage measurement: Residual voltage measurements

FLTMSTA1
BLOCK
CB_CLRD

GUID-32299E4B-6A50-4AD3-AB96-7D15F87A31F1 V1 EN

Figure 89: Other measurement: Data monitoring

LDPMSTA1
RSTMEM MEM_WARN
MEM_ALARM

GUID-B8E2FD33-E4FE-4511-ACCC-1F4848493010 V1 EN

Figure 90: Other measurement: Load profile record

88 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

3.4.3.6 Functional diagrams for I/O and alarm LEDs

X110 (BIO).X110-Input 2 OR
B1 O X110_BI2_RCA_CONTROL
B2
X110 (BIO-H).X110-Input 2

X110 (BIO).X110-Input 3 OR
B1 O X110_BI3_GAS_PRESSURE_ALARM
B2
X110 (BIO-H).X110-Input 3

X110 (BIO).X110-Input 4 OR
B1 O X110_BI4_CB_SPRING_CHARGED
B2
X110 (BIO-H).X110-Input 4

X110 (BIO).X110-Input 5 OR
B1 O X110_BI5_CB_TRUCK_IN_SERVICE
B2
X110 (BIO-H).X110-Input 5

X110 (BIO).X110-Input 6 OR
B1 O X110_BI6_CB_TRUCK_IN_TEST
B2
X110 (BIO-H).X110-Input 6

X110 (BIO).X110-Input 7 OR
B1 O X110_BI7_ES1_CLOSED
B2
X110 (BIO-H).X110-Input 7

X110 (BIO).X110-Input 8 OR
B1 O X110_BI8_ES1_OPENED
B2
X110 (BIO-H).X110-Input 8
GUID-C68E8E24-23B4-414D-8D6A-57C0D7A11076 V2 EN

Figure 91: Binary inputs - X110 terminal block

X120_BI1_EXT_OC_BLOCKING
X120 (AIM).X120-Input 1

X120_BI2_CB_CLOSED
X120 (AIM).X120-Input 2

X120_BI3_CB_OPENED
X120 (AIM).X120-Input 3
GUID-6AC6985E-3FD7-4283-9184-BD35FED04EC7 V1 EN

Figure 92: Binary inputs - X120 terminal block

REF615 89
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

UPSTEAM_OC_BLOCKING
X110 (BIO).X110-SO1

TRPPTRC3_TRIP
X110 (BIO-H).X110-HSO1

OC_OPERATE_PULSE
X110 (BIO).X110-SO2

TRPPTRC4_TRIP
X110 (BIO-H).X110-HSO2

EF_OPERATE_PULSE
X110 (BIO).X110-SO3

TRPPTRC5_TRIP
X110 (BIO-H).X110-HSO3
GUID-3A0C4EDB-878A-4282-86B2-894775BBEEE5 V2 EN

Figure 93: Default binary outputs - X110

CB_CLOSE_COMMAND
X100 (PSM).X100-PO1

CCBRBRF1_TRBU
X100 (PSM).X100-PO2

GENERAL_START_PULSE
X100 (PSM).X100-SO1

GENERAL_OPERATE_PULSE
X100 (PSM).X100-SO2

CB_OPEN_COMMAND
X100 (PSM).X100-PO3

TRPPTRC2_TRIP
X100 (PSM).X100-PO4
GUID-C51C47D5-DD89-4F9E-8B91-9A8794033464 V1 EN

Figure 94: Default binary outputs - X100

90 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

LED1
OK
PHxPTOC_OPERATE ALARM
RESET

LED2
OR6
OK
DEF_OPERATE B1 O ALARM
EFPADM_OPERATE B2 RESET
WPWDE_OPERATE B3
INTRPTEF1_OPERATE B4
B5
B6

LED3
OR
OK
EFHPTOC1_OPERATE B1 O ALARM
ROVPTOV_OPERATE B2 RESET

LED4
OR
OK
NSPTOC_OPERATE B1 O ALARM
PDNSPTOC1_OPERATE B2 RESET

LED5
OK
T1PTTR1_ALARM ALARM
RESET

GUID-CD2C4F23-C15B-4A9A-8DB8-A7B862A221D7 V1 EN

REF615 91
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

LED6
OK
CCBRBRF1_TRBU ALARM
RESET

LED7
OK
DISTURB_RECORD_TRIGGERED ALARM
RESET

LED8
OK
SSCBR1_ALARMS ALARM
RESET

LED9
OK
TCSSCBR_ALARM ALARM
RESET

LED10
OK
ARCSARC_OPERATE ALARM
RESET

LED11
OK
DARREC1_INPRO ALARM
RESET

GUID-5545434B-1C8A-45A3-992C-567617DAE58A V1 EN

Figure 95: Default LED connection

3.4.3.7 Functional diagrams for other timer logics

The configuration also includes the overcurrent operate and earth-fault operate
logic. The operate logics are connected to the pulse timer TPGAPC2 for setting the
minimum pulse length for the outputs. The output from TPGAPC2 is connected to
binary outputs.
TPGAPC2
PHxPTOC_OPERATE IN1 OUT1 OC_OPERATE_PULSE
IN2 OUT2 EF_OPERATE_PULSE

OR6
DEFxPDEF_OPERATE B1 O
EFPADM_OPERATE B2
INTRPTEF1_OPERATE B3
EFHPTOC1_OPERATE B4
ROVPTOV_OPERATE B5
WPWDE_OPERATE B6

GUID-A32D6C19-6658-4040-9976-BB21D936A346 V1 EN

Figure 96: Timer logic for overcurrent and earth-fault operate pulse

92 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

3.4.3.8 Other functions

The configuration includes few instances of multi-purpose protection function


MAPGAPC, high impedance fault detection function PHIZ, runtime counter
MDSOPT and different types of timers and control functions. These functions are
not included in application configuration but they can be added based on the
system requirements.

3.5 Standard configuration C

3.5.1 Applications
The standard configuration for non-directional overcurrent and non-directional earth-
fault protection is mainly intended for cable and overhead-line feeder applications
in directly or resistance-earthed distribution networks.

The IED with a standard configuration is delivered from the factory with default
settings and parameters. The end user flexibility for incoming, outgoing and
internal signal designation within the IED enables this configuration to be further
adapted to different primary circuit layouts and the related functionality needs by
modifying the internal functionality using PCM600.

REF615 93
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

3.5.2 Functions

REF615 FEEDER PROTECTION AND CONTROL IED STANDARD


CONFIGURATION
C

PROTECTION LOCAL HMI ALSO AVAILABLE


Configuration A

- Disturbance and fault recorders


System
HMI
Time
Authorization

2× - Event log and recorded data


Master Trip I
- IED self-supervision
ESC Clear

Lockout relay A
O
- Local/Remote push button on LHMI
R
L

94/86
U12 0. 0 kV
P 0.00 kW
Q 0.00 kVAr

IL2 0 A
- User management
- Web HMI
I ESC Clear


AND
I2> I2/I1> 3Ith>F 3I>>> O R

46 46PD 49F 50P/51P


L
OR
3I
3× 3×
ARC 3I>/Io>BF
50L/50NL CONDITION MONITORING COMMUNICATION
51BF/51NBF
AND SUPERVISION
Protocols:
1 1 0 0 1 1 0 0 2× 2× IEC 61850-8-1 1 0 1 0 0 0 1 1 0 0 1 1 0 0
1 0 1 1 1 0 0 1 0 3I> 3I>> 3I2f> OPTS TCS Modbus® 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 0 0
51P-1 51P-2 68 OPTM TCM IEC 60870-5-103 1 0 1 1 0 1 1 0 1 1 0 1 0 0
1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 DNP3 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1
1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 0 1 1 0 1 0 Interfaces: 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0
Ethernet: TX (RJ45), FX (LC)
Serial: Serial glass fiber (ST),
RS-485, RS-232/485
2× D-sub 9, IRIG-B
Io>>> Io> Io>> Redundant protocols:
50N/51N 51N-1 51N-2 HSR
PRP
RSTP
Io

CONTROL AND INDICATION 1) MEASUREMENT

18× - I, Io
MAP Object Ctrl 2)
Ind 3)
- Limit value supervision
MAP CB 1 - - Symmetrical components
DC - -
Analog interface types 1)
ES - -
1)
Check availability of binary inputs/outputs
Current transformer 4
from technical documentation Voltage transformer -
2)
Control and indication function for
primary object 1)
Conventional transformer inputs
3)
Status indication function for
primary object

O→I
79

REMARKS
Optional 3× No. of Calculated OR Alternative
function instances value function to be
Io/Uo defined when
ordering

GUID-5404DAD5-4FE4-4E91-8A18-31CC0812A09C V1 EN

Figure 97: Functionality overview for standard configuration C

REF615 FEEDER PROTECTION AND CONTROL IED STANDARD

3.5.2.1 Default I/O connections


CONFIGURATION

PROTECTION LOCAL HMI

Connector pins for each input and output are presented in the IED physical
Configuration A
System
HMI
Time
Authorization

connections section.
I ESC Clear

A
O R
L
U12 0. 0 kV
P 0.00 kW
Q 0.00 kVAr

IL2 0 A

I ESC Clear

AND
O R
L
OR

CONDITION MONITORING COMMUNICATION


AND SUPERVISION
Protocols:
1 1 0 0 1 1 0 0 IEC 61850-8-1 1 0 1 0 0 0 1 1 0 0 1 1 0 0
1 0 1 1 1 0 0 1 0 Modbus® 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 0 0
IEC 60870-5-103 1 0 1 1 0 1 1 0 1 1 0 1 0 0
1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 DNP3 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1
1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 0 1 1 0 1 0 Interfaces: 1 1 0 0 1 1 1 0 1 1 0 1 0

94 REF615
1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0
Ethernet: TX (RJ45), FX (LC)
Serial: Serial glass fiber (ST),
Application Manual
RS-485, RS-232/485
D-sub 9, IRIG-B
Redundant protocols:
HSR
PRP
RSTP

CONTROL AND INDICATION 1) MEASUREMENT

Object Ctrl 2) Ind 3)


1MRS756378 N Section 3
REF615 standard configurations

Table 21: Default connections for binary inputs


Binary input Description
X120-BI1 Blocking of overcurrent instantaneous stage
X120-BI2 Circuit breaker closed indication
X120-BI3 Circuit breaker open indication
X120-BI4 Reset of master trip lockout

Table 22: Default connections for binary outputs


Binary output Description
X100-PO1 Close circuit breaker
X100-PO2 Circuit breaker failure protection trip to upstream breaker
X100-PO3 Open circuit breaker/trip coil 1
X100-PO4 Open circuit breaker/trip coil 2
X100-SO1 General start indication
X100-SO2 General operate indication

Table 23: Default connections for LEDs


LED Description
1 Non-directional overcurrent operate
2 Non-directional earth-fault operate
3 Sensitive earth-fault operate
4 Negative sequence overcurrent or phase discontinuity operate
5 Thermal overload alarm
6 Breaker failure operate
7 Disturbance recorder triggered
8 -
9 Trip circuit supervision alarm
10 Arc protection operate
11 Autoreclose in progress

3.5.2.2 Default disturbance recorder settings


Table 24: Default disturbance recorder analog channels
Channel Description
1 IL1
2 IL2
3 IL3
4 Io
Table continues on next page

REF615 95
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Channel Description
5 -
6 -
7 -
8 -
9 -
10 -
11 -
12 -

Table 25: Default disturbance recorder binary channels


Channel ID text Level trigger mode
1 PHLPTOC1 - start Positive or Rising
2 PHHPTOC1 - start Positive or Rising
3 PHHPTOC2 - start Positive or Rising
4 PHIPTOC1 - start Positive or Rising
5 NSPTOC1 - start Positive or Rising
6 NSPTOC2 - start Positive or Rising
7 EFLPTOC1 - start Positive or Rising
8 EFHPTOC1 - start Positive or Rising
9 EFIPTOC1 - start Positive or Rising
10 EFLPTOC2 - start Positive or Rising
11 - -
12 PDNSPTOC1 - start Positive or Rising
13 T1PTTR1 - start Positive or Rising
14 CCBRBRF1 - trret Level trigger off
15 CCBRBRF1 - trbu Level trigger off
16 PHIPTOC1 - operate Level trigger off
PHHPTOC1 - operate
PHHPTOC2 - operate
PHLPTOC1 - operate
17 NSPTOC1 - operate Level trigger off
NSPTOC2 - operate
18 EFLPTOC1 - operate Level trigger off
EFHPTOC1 - operate
EFIPTOC1 - operate
19 - Level trigger off
20 EFLPTOC2 - operate Level trigger off
21 PDNSPTOC1 - operate Level trigger off
Table continues on next page

96 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

Channel ID text Level trigger mode


22 INRPHAR1 - blk2h Level trigger off
23 T1PTTR1 - operate Level trigger off
24 ARCSARC1 - ARC flt det Level trigger off
ARCSARC2 - ARC flt det
ARCSARC3 - ARC flt det
25 ARCSARC1 - operate Positive or Rising
26 ARCSARC2 - operate Positive or Rising
27 ARCSARC3 - operate Positive or Rising
28 DARREC1 - inpro Level trigger off
29 DARREC1 - close CB Level trigger off
30 DARREC1 - unsuc recl Level trigger off
31 X120BI1 - ext OC blocking Level trigger off
32 X120BI2 - CB closed Level trigger off
33 X120BI3 - CB opened Level trigger off

3.5.3 Functional diagrams


The functional diagrams describe the default input, output, alarm LED and function-
to-function connections. The default connections can be viewed and changed with
PCM600 according to the application requirements.

The analog channels have fixed connections to the different function blocks inside
the IED’s standard configuration. However, the 12 analog channels available for
the disturbance recorder function are freely selectable as a part of the disturbance
recorder’s parameter settings.

The phase currents to the IED are fed from a current transformer. The residual
current to the IED is fed from either residually connected CTs, an external core
balance CT, neutral CT or internally calculated.

The IED offers six different settings groups which can be set based on individual
needs. Each group can be activated or deactivated using the setting group settings
available in the IED.

Depending on the communication protocol the required function block needs to be


initiated in the configuration. The Application Configuration tool also includes
fixed Boolean signals TRUE and FALSE which can be used according to the
application needs.

3.5.3.1 Functional diagrams for protection

The functional diagrams describe the IEDs protection functionality in detail and
according to the factory set default connections.

REF615 97
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Four non-directional overcurrent stages are offered for overcurrent and short-
circuit protection. The non-directional instantaneous stage PHIPTOC1 can be
blocked by energizing the binary input X120:BI1.

PHIPTOC1
X120_BI1_EXT_OC_BLOCKING BLOCK OPERATE PHIPTOC1_OPERATE
ENA_MULT START PHIPTOC1_START

PHHPTOC1
BLOCK OPERATE PHHPTOC1_OPERATE
ENA_MULT START PHHPTOC1_START

PHHPTOC2
BLOCK OPERATE PHHPTOC2_OPERATE
ENA_MULT START PHHPTOC2_START

PHLPTOC1
BLOCK OPERATE PHLPTOC1_OPERATE
ENA_MULT START PHLPTOC1_START

OR6
PHIPTOC1_OPERATE B1 O PHxPTOC_OPERATE
PHHPTOC1_OPERATE B2
PHHPTOC2_OPERATE B3
PHLPTOC1_OPERATE B4
B5
B6

GUID-FED7D122-DE13-4004-8273-906D289F7EBA V1 EN

Figure 98: Overcurrent protection functions

The inrush detection block's (INRPHAR1) output BLK2H enables either blocking
the function or multiplying the active settings for any of the available overcurrent
or earth-fault function blocks.

INRPHAR1
BLOCK BLK2H INRPHAR1_BLK2H

GUID-D54BF44E-9EBD-4C83-ABDD-49BB5BB6373E V1 EN

Figure 99: Inrush detector function

Two negative sequence overcurrent stages NSPTOC1 and NSPTOC2 are provided
for phase unbalance protection. These functions are used to protect the feeder
against phase unbalance.

98 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

NSPTOC1
BLOCK OPERATE NSPTOC1_OPERATE
ENA_MULT START NSPTOC1_START

NSPTOC2
BLOCK OPERATE NSPTOC2_OPERATE
ENA_MULT START NSPTOC2_START

OR
NSPTOC1_OPERATE B1 O NSPTOC_OPERATE
NSPTOC2_OPERATE B2

GUID-A0E1F246-E42C-4732-B0DE-BDC3F4A16CDC V1 EN

Figure 100: Negative sequence overcurrent protection function

Four stages are provided for non-directional earth-fault protection. One stage is
dedicated to sensitive earth-fault protection EFLPTOC2.

EFIPTOC1
BLOCK OPERATE EFIPTOC1_OPERATE
ENA_MULT START EFIPTOC1_START

EFHPTOC1
BLOCK OPERATE EFHPTOC1_OPERATE
ENA_MULT START EFHPTOC1_START

EFLPTOC1
BLOCK OPERATE EFLPTOC1_OPERATE
ENA_MULT START EFLPTOC1_START

OR6
EFHPTOC1_OPERATE B1 O EFxPTOC_OPERATE
EFLPTOC1_OPERATE B2
EFIPTOC1_OPERATE B3
B4
B5
B6

GUID-2540474C-37D6-4706-A740-2D0334DA26C2 V1 EN

Figure 101: Earth-fault protection functions

EFLPTOC2
BLOCK OPERATE EFLPTOC2_OPERATE
ENA_MULT START EFLPTOC2_START

GUID-D4A930C6-E4C8-41DA-BF3D-07E908AC1FCD V1 EN

Figure 102: Sensitive earth-fault protection function

REF615 99
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

The phase discontinuity protection PDNSPTOC1 protects from interruptions in the


normal three-phase load supply, for example, in downed conductor situations.

PDNSPTOC1
BLOCK OPERATE PDNSPTOC1_OPERATE
START PDNSPTOC1_START

GUID-72DBEEFC-1AD7-4930-A949-A340CF2767AA V1 EN

Figure 103: Phase discontinuity protection

The thermal overload protection T1PTTR1 detects overloads under varying load
conditions.

T1PTTR1
BLK_OPR OPERATE T1PTTR1_OPERATE
ENA_MULT START T1PTTR1_START
TEMP_AMB ALARM T1PTTR1_ALARM
BLK_CLOSE

GUID-59CDFFD0-91B8-4746-B478-32FC628A357D V1 EN

Figure 104: Thermal overcurrent protection function

The breaker failure protection CCBRBRF1 is initiated via the START input by
number of different protection functions available in the IED. The breaker failure
protection function offers different operating modes associated with the circuit
breaker position and the measured phase and residual currents.

The breaker failure protection function has two operating outputs: TRRET and
TRBU. The TRRET operate output is used for retripping its own breaker through
TRPPTRC2_TRIP. The TRBU output is used to give a backup trip to the breaker
feeding upstream. For this purpose, the TRBU operate output signal is connected to
the binary output X100:PO2.
CCBRBRF1
OR6 OR6
BLOCK CB_FAULT_AL
PHIPTOC1_OPERATE B1 O B1 O START TRBU CCBRBRF1_TRBU
PHHPTOC1_OPERATE B2 B2 POSCLOSE TRRET CCBRBRF1_TRRET
PHHPTOC2_OPERATE B3 B3 CB_FAULT
EFLPTOC1_OPERATE B4 B4
EFHPTOC1_OPERATE B5 B5
EFIPTOC1_OPERATE B6 B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

X120_BI2_CB_CLOSED
GUID-6AB0BAF9-2B09-46D6-94DB-EBF6EF3F113A V1 EN

Figure 105: Circuit breaker failure protection function

Three arc protection ARCSARC1...3 stages are included as an optional function.


The arc protection offers individual function blocks for three arc sensors that can
be connected to the IED. Each arc protection function block has two different
operation modes, that is, with or without the phase and residual current check.

The operate signals from ARCSARC1...3 are connected to both trip logic
TRPPTRC1 and TRPPTRC2.

100 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

ARCSARC1
BLOCK OPERATE ARCSARC1_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC1_ARC_FLT_DET
OPR_MODE

ARCSARC2
BLOCK OPERATE ARCSARC2_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC2_ARC_FLT_DET
OPR_MODE

ARCSARC3
BLOCK OPERATE ARCSARC3_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC3_ARC_FLT_DET
OPR_MODE

OR6
ARCSARC1_OPERATE B1 O ARCSARC_OPERATE
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-2E27AA26-07BE-410A-9BB4-FDF62B54D644 V1 EN

Figure 106: Arc protection

The optional autorecloser function is configured to be initiated by operate signals


from a number of protection stages through the INIT_1...5 inputs. It is possible
to create individual autoreclose sequences for each input.

The autorecloser function can be inhibited with the INHIBIT_RECL input. By


default, few selected protection function operations are connected to this input. A
control command to the circuit breaker, either local or remote, also blocks the
autorecloser function via the CBXCBR1-SELECTED signal.

The circuit breaker availability for the autorecloser sequence is expressed with the
CB_READY input in DARREC1. This signal is not connected in the configuration.
The open command from the autorecloser is directly connected to binary output
X100:PO3, whereas close command is connected directly to binary output X100:PO1.

Set the parameters for DARREC1 properly.

Check the initialization signals of the DARREC1.

REF615 101
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

DARREC1
PHIPTOC1_OPERATE INIT_1 OPEN_CB DARREC1_OPEN_CB
PHHPTOC2_OPERATE INIT_2 CLOSE_CB DARREC1_CLOSE_CB
PHHPTOC1_OPERATE INIT_3 CMD_WAIT
EFLPTOC1_OPERATE INIT_4 INPRO DARREC1_INPRO
EFHPTOC1_OPERATE INIT_5 LOCKED
INIT_6 PROT_CRD
DEL_INIT_2 UNSUC_RECL DARREC1_UNSUC_RECL
DEL_INIT_3 AR_ON
DEL_INIT_4 READY
BLK_RECL_T ACTIVE
BLK_RCLM_T
BLK_THERM
X120_BI3_CB_OPENED CB_POS
CB_READY
INC_SHOTP
INHIBIT_RECL
OR6 RECL_ON
SYNC
PDNSPTOC1_OPERATE B1 O
NSPTOC1_OPERATE B2
NSPTOC2_OPERATE B3
CBXCBR1_SELECTED B4
B5 OR
B6
B1 O
B2

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-4DA43380-6D91-47AE-BB5C-56BCE03BEA4B V1 EN

Figure 107: Autorecloser

General start and operate from all the functions are connected to pulse timer
TPGAPC for setting the minimum pulse length for the outputs. The output from
TPGAPC is connected to the binary outputs.
OR6
PHLPTOC1_START B1 O
PHHPTOC1_START B2
PHHPTOC2_START B3
PHIPTOC1_START B4
NSPTOC1_START B5
NSPTOC2_START B6

OR6
OR6
B1 O
EFLPTOC1_START B1 O B2
EFLPTOC2_START B2 B3
EFIPTOC1_START B3 B4
EFHPTOC1_START B4 B5 TPGAPC1
PDNSPTOC1_START B5 B6
B6 IN1 OUT1 GENERAL_START
IN2 OUT2 GENERAL_OPERATE

OR6 OR6
PHLPTOC1_OPERATE B1 O B1 O
PHHPTOC1_OPERATE B2 B2
PHHPTOC2_OPERATE B3 B3
PHIPTOC1_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
EFIPTOC1_OPERATE B1 O
EFHPTOC1_OPERATE B2
PDNSPTOC1_OPERATE B3
EFLPTOC1_OPERATE B4
EFLPTOC2_OPERATE B5
B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-ED986761-5FC9-4F1B-8D27-8B3AF824133F V1 EN

Figure 108: General start and operate signals

The operate signals from the protection functions are connected to the two trip
logics TRPPTRC1 and TRPPTRC2. The output of these trip logic functions is
available at binary output X100:PO3 and X100:PO4. The trip logic functions are
provided with lockout and latching function, event generation and the trip signal
duration setting. If the lockout operation mode is selected, the binary input
X120:BI4 has been assigned to RST_LKOUT input of both the trip logic to enable
external reset with a push button.

102 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

TRPPTRC1
OR6 OR6
BLOCK TRIP TRPPTRC1_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
PHLPTOC1_OPERATE B2 B2 RST_LKOUT
PHHPTOC1_OPERATE B3 B3
PHHPTOC2_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
EFLPTOC1_OPERATE B1 O
EFHPTOC1_OPERATE B2
EFIPTOC1_OPERATE B3
EFLPTOC2_OPERATE B4
PDNSPTOC1_OPERATE B5
B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

X120_BI4_RST_LOCKOUT
GUID-EF986953-A224-44E3-974B-6AD5E269FB2B V1 EN

Figure 109: Trip logic TRPPTRC1

TRPPTRC2
OR6 OR6
BLOCK TRIP TRPPTRC2_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
PHLPTOC1_OPERATE B2 B2 RST_LKOUT
PHHPTOC1_OPERATE B3 B3
PHHPTOC2_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
EFHPTOC1_OPERATE B1 O
PDNSPTOC1_OPERATE B2
EFLPTOC1_OPERATE B3
EFLPTOC2_OPERATE B4
EFIPTOC1_OPERATE B5
CCBRBRF1_TRRET B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

X120_BI4_RST_LOCKOUT
GUID-0E184AB6-326B-4311-8022-CE8733342975 V1 EN

Figure 110: Trip logic TRPPTRC2

3.5.3.2 Functional diagrams for disturbance recorder

The START and the OPERATE outputs from the protection stages are routed to
trigger the disturbance recorder or, alternatively, only to be recorded by the
disturbance recorder depending on the parameter settings. Additionally, the
selected signals from different functions and few binary inputs are also connected
to the disturbance recorder.

REF615 103
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

RDRE1
PHLPTOC1_START C1 TRIGGERED DISTURB_RECORD_TRIGGERED
PHHPTOC1_START C2
PHHPTOC2_START C3
PHIPTOC1_START C4
NSPTOC1_START C5
NSPTOC2_START C6
EFLPTOC1_START C7
EFHPTOC1_START C8
EFIPTOC1_START C9
EFLPTOC2_START C10
C11
PDNSPTOC1_START C12
T1PTTR1_START C13
OR6 CCBRBRF1_TRRET C14
CCBRBRF1_TRBU C15
PHIPTOC1_OPERATE B1 O C16
PHHPTOC1_OPERATE B2 C17
PHHPTOC2_OPERATE B3 C18
PHLPTOC1_OPERATE B4 C19
B5 EFLPTOC2_OPERATE C20
B6 PDNSPTOC1_OPERATE C21
INRPHAR1_BLK2H C22
T1PTTR1_OPERATE C23
C24
ARCSARC1_OPERATE C25
OR ARCSARC2_OPERATE C26
ARCSARC3_OPERATE C27
NSPTOC1_OPERATE B1 O DARREC1_INPRO C28
NSPTOC2_OPERATE B2 DARREC1_CLOSE_CB C29
DARREC1_UNSUC_RECL C30
X120_BI1_EXT_OC_BLOCKING C31
X120_BI2_CB_CLOSED C32
X120_BI3_CB_OPENED C33
OR6 C34
C35
EFLPTOC1_OPERATE B1 O C36
EFHPTOC1_OPERATE B2 C37
EFIPTOC1_OPERATE B3 C38
B4 C39
B5 C40
B6 C41
C42
C43
C44
C45
OR6 C46
C47
ARCSARC1_ARC_FLT_DET B1 O C48
ARCSARC2_ARC_FLT_DET B2 C49
ARCSARC3_ARC_FLT_DET B3 C50
B4 C51
B5 C52
B6 C53
C54
C55
C56
C57
C58
C59
C60
C61
C62
C63
C64

GUID-8F5ACED1-E0E7-46A6-A35B-FCA6B69D5722 V2 EN

Figure 111: Disturbance recorder

3.5.3.3 Functional diagrams for condition monitoring

Two separate trip circuit supervision functions are included: TCSSCBR1 for power
output X100:PO3 and TCSSCBR2 for power output X100:PO4. Both functions are
blocked by the Master Trip TRPPTRC1 and TRPPTRC2 and the circuit breaker
open signal.

It is assumed that there is no external resistor in the circuit breaker


tripping coil circuit connected in parallel with the circuit breaker
normally open auxiliary contact.

Set the parameters for TCSSCBR1 properly.

104 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

TCSSCBR1
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR1_ALARM

TCSSCBR2
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR2_ALARM

OR
TCSSCBR1_ALARM B1 O TCSSCBR_ALARM
TCSSCBR2_ALARM B2

GUID-74BD5A42-E773-4714-9EDF-97F22B96687A V1 EN

Figure 112: Trip circuit supervision function

OR6
TRPPTRC1_TRIP B1 O TCSSCBR_BLOCKING
TRPPTRC2_TRIP B2
X120_BI3_CB_OPENED B3
B4
B5
B6

GUID-1D7B03CB-17B8-4B99-AAE9-9825BC9B0322 V1 EN

Figure 113: Logic for trip circuit supervision function

3.5.3.4 Functional diagrams for control and interlocking

The circuit breaker closing is enabled when the ENA_CLOSE input is activated.
The input can be activated using the configuration logic, which is based on the
status of the trip logics. However, other signals can be connected based on the
application needs.

The ITL_BYPASS input can be used, for example, to always enable the closing of
the circuit breaker when the circuit breaker truck is in the test position.
ITL_BYPASS overrides, for example, active interlocking conditions when the
circuit breaker truck is closed in service position.

Any additional signals required by the application can be connected


for opening and closing of circuit breaker.

REF615 105
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

CBXCBR1
X120_BI3_CB_OPENED POSOPEN SELECTED CBXCBR1_SELECTED
X120_BI2_CB_CLOSED POSCLOSE EXE_OP CBXCBR1_EXE_OP
TRUE ENA_OPEN EXE_CL CBXCBR1_EXE_CL
CBXCBR1_ENA_CLOSE ENA_CLOSE OPENPOS
FALSE BLK_OPEN CLOSEPOS
BLK_CLOSE OKPOS
CBXBCR1_AU_OPEN AU_OPEN OPEN_ENAD
CBXCBR1_AU_CLOSE AU_CLOSE CLOSE_ENAD
ITL_BYPASS

GUID-8C73B177-754E-4AD7-9897-C78E6D2C02ED V1 EN

Figure 114: Circuit breaker control logic: Circuit breaker 1

OR
CBXCBR1_EXE_CL B1 O CB_CLOSE_COMMAND
DARREC1_CLOSE_CB B2

GUID-8409FB29-60F4-418E-9E13-DE218B4FB87B V1 EN

Figure 115: Circuit breaker control logic: Signal for closing of circuit breaker 1

OR6
CBXCBR1_EXE_OP B1 O CB_OPEN_COMMAND
TRPPTRC1_TRIP B2
DARREC1_OPEN_CB B3
B4
B5
B6

GUID-DEB21767-B0D9-4A3B-8601-8C108AE0B706 V1 EN

Figure 116: Circuit breaker control logic: Signal for opening of circuit breaker 1

NOT
TRPPTRC1_TRIP IN OUT
AND
B1 O CBXCBR1_ENA_CLOSE
B2
NOT
TRPPTRC2_TRIP IN OUT

GUID-860F40F5-18B2-48E3-B38F-7225A5F04449 V1 EN

Figure 117: Circuit breaker close enable logic

The configuration includes logic for generating circuit breaker external closing and
opening command with the IED in local or remote mode.

Check the logic for the external circuit breaker closing command
and modify it according to the application.

Connect any additional signal applicable for the configuration for


closing and opening of circuit breaker in local or remote mode.

106 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXCBR1_AU_CLOSE
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-D25A5AD0-E5BF-476A-B844-9701D5EC44E7 V1 EN

Figure 118: External closing command for circuit breaker

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXBCR1_AU_OPEN
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-DEFD10CB-6772-4DE5-952C-887F4E0CCFF2 V1 EN

Figure 119: External opening command for circuit breaker

3.5.3.5 Functional diagrams for measurement functions

The phase current inputs to the IED are measured by the three-phase current
measurement function CMMXU1. The current input is connected to the X120 card
in the back panel. Similarly, the sequence current measurement CSMSQI1
measures the sequence current and the residual current measurement
RESCMMXU1 measures the residual current.

The measurements can be seen from the LHMI and they are available under the
measurement option in the menu selection. Based on the settings, function blocks
can generate low alarm or warning and high alarm or warning signals for the
measured current values.

CMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-91927236-4B19-4AF3-B708-E09EC75FC246 V1 EN

Figure 120: Current measurement: Three phase current measurement

RESCMMXU1
BLOCK HIGH_ALARM
HIGH_WARN

GUID-5A0C20F8-9B68-4104-9A45-0AE14A961904 V1 EN

Figure 121: Current measurement: Residual current measurement

CSMSQI1

GUID-1B8391C6-5AF9-4CC5-A784-6E73487045F3 V1 EN

Figure 122: Current measurement: Sequence current measurement

REF615 107
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

FLTMSTA1
BLOCK
CB_CLRD

GUID-F70A913A-4B5D-45D2-B12F-981D54DCA89E V1 EN

Figure 123: Other measurements: Data monitoring

3.5.3.6 Functional diagrams for I/O and alarm LEDs

X120_BI1_EXT_OC_BLOCKING
X120 (AIM).X120-Input 1

X120_BI2_CB_CLOSED
X120 (AIM).X120-Input 2

X120_BI3_CB_OPENED
X120 (AIM).X120-Input 3

X120_BI4_RST_LOCKOUT
X120 (AIM).X120-Input 4
GUID-33C33CE1-9EB3-437B-BA4B-AE67E2820C55 V1 EN

Figure 124: Default binary inputs X120

CB_CLOSE_COMMAND
X100 (PSM).X100-PO1

CCBRBRF1_TRBU
X100 (PSM).X100-PO2

GENERAL_START
X100 (PSM).X100-SO1

GENERAL_OPERATE
X100 (PSM).X100-SO2

CB_OPEN_COMMAND
X100 (PSM).X100-PO3

TRPPTRC2_TRIP
X100 (PSM).X100-PO4
GUID-CF4349F6-CCF5-4A1E-A1BE-BCC323C21F34 V1 EN

Figure 125: Default binary outputs X100

108 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

LED1
OK
PHxPTOC_OPERATE ALARM
RESET

LED2
OK
EFxPTOC_OPERATE ALARM
RESET

LED3
OK
EFLPTOC2_OPERATE ALARM
RESET

LED4
OR
OK
NSPTOC_OPERATE B1 O ALARM
PDNSPTOC1_OPERATE B2 RESET

LED5
OK
T1PTTR1_ALARM ALARM
RESET

GUID-39C29981-E86D-4570-B841-CF19A89767CF V1 EN

REF615 109
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

LED6
OK
CCBRBRF1_TRBU ALARM
RESET

LED7
OK
DISTURB_RECORD_TRIGGERED ALARM
RESET

LED9
OK
TCSSCBR_ALARM ALARM
RESET

LED10
OK
ARCSARC_OPERATE ALARM
RESET

LED11
OK
DARREC1_INPRO ALARM
RESET

GUID-A2456AB1-DB3F-4717-B4E8-7BFCBF271D1F V1 EN

Figure 126: Default LED connection

3.5.3.7 Other functions

The configuration includes few instances of multi-purpose protection function


MAPGAPC, runtime counter MDSOPT and different types of timer functions.
These functions are not included in application configuration but they can be added
based on the system requirements.

3.6 Standard configuration D

3.6.1 Applications
The standard configuration for non-directional overcurrent and non-directional earth-
fault protection is mainly intended for cable and overhead-line feeder applications
in directly or resistance earthed distribution networks.

The IED with a standard configuration is delivered from the factory with default
settings and parameters. The end user flexibility for incoming, outgoing and

110 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

internal signal designation within the IED enables this configuration to be further
adapted to different primary circuit layouts and the related functionality needs by
modifying the internal functionality using PCM600.

3.6.2 Functions

REF615 FEEDER PROTECTION AND CONTROL IED STANDARD


CONFIGURATION
D

PROTECTION LOCAL HMI ALSO AVAILABLE


Configuration A

- Disturbance and fault recorders


System
HMI
Time
Authorization

2× - Event log and recorded data


Master Trip I
- High-Speed Output module (optional)
ESC Clear

Lockout relay A
O
- IED self-supervision
R
L

94/86
U12 0. 0 kV
P 0.00 kW
Q 0.00 kVAr

IL2 0 A
- Local/Remote push button on LHMI
- User management
I ESC Clear
- Web HMI

AND
I2> I2/I1> 3Ith>F 3I>>> O R

46 46PD 49F 50P/51P


L
OR
3I
3× 3×
ARC 3I>/Io>BF
50L/50NL CONDITION MONITORING COMMUNICATION
51BF/51NBF
AND SUPERVISION
Protocols:
2× 2× IEC 61850-8-1 1 0 1 0 0 0 1 1 0 0 1 1 0 0
3I> 3I>> 3I2f> CBCM OPTS TCS Modbus® 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 1 0 0 1 1 1 0 1 1 0 1 0
51P-1 51P-2 68 CBCM OPTM TCM IEC 60870-5-103 1 0 1 1 0 1 1 0 1 1 0 1 0 0
DNP3 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0
1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
Interfaces: 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 1 0 1 1 0 1 0 0
Ethernet: TX (RJ45), FX (LC)
Serial: Serial glass fiber (ST),
RS-485, RS-232/485
D-sub 9, IRIG-B
Redundant protocols:

HSR
Io>>> Io> Io>> Io>HA
PRP
50N/51N 51N-1 51N-2 51NHA
RSTP
Io

CONTROL AND INDICATION 1) MEASUREMENT


18×
- I, Io
MAP Object Ctrl 2)
Ind 3)
- Limit value supervision
MAP
CB 1 - - Load profile record
2 3 - RTD/mA measurement (optional)
DC
- Symmetrical components
ES 1 2
1)
Check availability of binary inputs/outputs
from technical documentation Analog interface types 1)
2)
Control and indication function for
primary object Current transformer 4
3)
Status indication function for
primary object Voltage transformer -
1)
Conventional transformer inputs

O→I
79

REMARKS
Optional 3× No. of Calculated OR Alternative
function instances value function to be
Io/Uo defined when
ordering

GUID-2907E142-1D1E-4109-9603-76FDF7A15F02 V1 EN

Figure 127: Functionality overview for standard configuration D

3.6.2.1 Default I/O


REF615 connections
FEEDER PROTECTION AND CONTROL IED STANDARD
CONFIGURATION

Connector
PROTECTION
pins for each input and output are presented in the IED physical
LOCAL HMI
Configuration
System
A

connections section.
HMI
Time
Authorization

I ESC Clear

A
O R
L
U12 0. 0 kV
P 0.00 kW
Q 0.00 kVAr

IL2 0 A

I ESC Clear

AND
O R
L
OR

REF615 111
Application Manual CONDITION MONITORING COMMUNICATION
AND SUPERVISION
Protocols:
IEC 61850-8-1 1 0 1 0 0 0 1 1 0 0 1 1 0 0
Modbus® 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 1 0 0 1 1 1 0 1 1 0 1 0
IEC 60870-5-103 1 0 1 1 0 1 1 0 1 1 0 1 0 0
DNP3 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0
1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
Interfaces: 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 1 0 1 1 0 1 0 0
Ethernet: TX (RJ45), FX (LC)
Serial: Serial glass fiber (ST),
RS-485, RS-232/485
Section 3 1MRS756378 N
REF615 standard configurations

Table 26: Default connections for binary inputs


Binary input Description
X110-BI2 Autoreclose external start command
X110-BI3 Circuit breaker low gas pressure indication
X110-BI4 Circuit breaker spring charged indication
X110-BI5 Circuit breaker truck in (service position) indication
X110-BI6 Circuit breaker truck out (test position) indication
X110-BI7 Earthing switch closed indication
X110-BI8 Earthing switch open indication
X120-BI1 Blocking of overcurrent instantaneous stage
X120-BI2 Circuit breaker closed indication
X120-BI3 Circuit breaker open indication
X120-BI4 Reset of master trip lockout

Table 27: Default connections for binary outputs


Binary output Description
X100-PO1 Close circuit breaker
X100-PO2 Circuit breaker failure protection trip to upstream breaker
X100-PO3 Open circuit breaker/trip coil 1
X100-PO4 Open circuit breaker/trip coil 2
X100-SO1 General start indication
X100-SO2 General operate indication
X110-SO1 Upstream overcurrent blocking
X110-SO2 Overcurrent operate alarm
X110-SO3 Earth-fault operate alarm
X110-HSO1 Arc protection instance 1 operate activated
X110-HSO2 Arc protection instance 2 operate activated
X110-HSO3 Arc protection instance 3 operate activated

Table 28: Default connections for LEDs


LED Description
1 Non-directional overcurrent operate
2 Non-directional earth-fault operate
3 Sensitive earth-fault operate
4 Negative sequence overcurrent or phase discontinuity operate
5 Thermal overload alarm
6 Breaker failure operate
7 Disturbance recorder triggered
8 Circuit breaker condition monitoring alarm
Table continues on next page

112 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

LED Description
9 Trip circuit supervision alarm
10 Arc protection operate
11 Autoreclose in progress

3.6.2.2 Default disturbance recorder settings


Table 29: Default disturbance recorder analog channels
Channel Description
1 IL1
2 IL2
3 IL3
4 Io
5 -
6 -
7 -
8 -
9 -
10 -
11 -
12 -

Table 30: Default disturbance recorder binary channels


Channel ID text Level trigger mode
1 PHLPTOC1 - start Positive or Rising
2 PHHPTOC1 - start Positive or Rising
3 PHHPTOC2 - start Positive or Rising
4 PHIPTOC1 - start Positive or Rising
5 NSPTOC1 - start Positive or Rising
6 NSPTOC2 - start Positive or Rising
7 EFLPTOC1 - start Positive or Rising
8 EFHPTOC1 - start Positive or Rising
9 EFIPTOC1 - start Positive or Rising
10 EFLPTOC2 - start Positive or Rising
11 - -
12 PDNSPTOC1 - start Positive or Rising
13 T1PTTR1 - start Positive or Rising
14 CCBRBRF1 - trret Level trigger off
15 CCBRBRF1 - trbu Level trigger off
Table continues on next page

REF615 113
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Channel ID text Level trigger mode


16 PHIPTOC1 - operate Level trigger off
PHHPTOC1 - operate
PHHPTOC2 - operate
PHLPTOC1 - operate
17 NSPTOC1 - operate Level trigger off
NSPTOC2 - operate
18 EFLPTOC1 - operate Level trigger off
EFHPTOC1 - operate
EFIPTOC1 - operate
19 X110BI2 - ext start AutoReclose Level trigger off
20 EFLPTOC2 - operate Level trigger off
21 PDNSPTOC1 - operate Level trigger off
22 INRPHAR1 - blk2h Level trigger off
23 T1PTTR1 - operate Level trigger off
24 ARCSARC1 - ARC flt det Level trigger off
ARCSARC2 - ARC flt det
ARCSARC3 - ARC flt det
25 ARCSARC1 - operate Positive or Rising
26 ARCSARC2 - operate Positive or Rising
27 ARCSARC3 - operate Positive or Rising
28 DARREC1 - inpro Level trigger off
29 DARREC1 - close CB Level trigger off
30 DARREC1 - unsuc recl Level trigger off
31 X120BI1 - ext OC blocking Level trigger off
32 X120BI2 - CB closed Level trigger off
33 X120BI3 - CB opened Level trigger off

3.6.3 Functional diagrams


The functional diagrams describe the default input, output, alarm LED and function-
to-function connections. The default connections can be viewed and changed with
PCM600 according to the application requirements.

The analog channels have fixed connections to the different function blocks inside
the IED’s standard configuration. However, the 12 analog channels available for
the disturbance recorder function are freely selectable as a part of the disturbance
recorder’s parameter settings.

The phase currents to the IED are fed from a current transformer. The residual
current to the IED is fed from either residually connected CTs, an external core
balance CT, neutral CT or internally calculated.

114 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

The IED offers six different settings groups which can be set based on individual
needs. Each group can be activated or deactivated using the setting group settings
available in the IED.

Depending on the communication protocol the required function block needs to be


initiated in the configuration. The Application Configuration tool also includes
fixed Boolean signals TRUE and FALSE which can be used according to the
application needs.

3.6.3.1 Functional diagrams for protection

The functional diagrams describe the IED's protection functionality in detail and
according to the factory set default connections.

Four non-directional overcurrent stages are offered for overcurrent and short-
circuit protection. The non-directional instantaneous stage PHIPTOC1 can be
blocked by energizing the binary input X120:BI1.

PHIPTOC1
X120_BI1_EXT_OC_BLOCKING BLOCK OPERATE PHIPTOC1_OPERATE
ENA_MULT START PHIPTOC1_START

PHHPTOC1
BLOCK OPERATE PHHPTOC1_OPERATE
ENA_MULT START PHHPTOC1_START

PHHPTOC2
BLOCK OPERATE PHHPTOC2_OPERATE
ENA_MULT START PHHPTOC2_START

PHLPTOC1
BLOCK OPERATE PHLPTOC1_OPERATE
ENA_MULT START PHLPTOC1_START

OR6
PHIPTOC1_OPERATE B1 O PHxPTOC_OPERATE
PHHPTOC1_OPERATE B2
PHHPTOC2_OPERATE B3
PHLPTOC1_OPERATE B4
B5
B6

GUID-BDBE20E4-EE17-4FB4-B525-7421865C388F V1 EN

Figure 128: Overcurrent protection functions

The upstream blocking from the start of the overcurrent second high stage
PHHPTOC2 is connected to the binary output X110:SO1. This output can be used

REF615 115
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

for sending a blocking signal to the relevant overcurrent protection stage of the
IED at the infeeding bay.

OR6
PHHPTOC2_START B1 O UPSTEAM_OC_BLOCKING
B2
B3
B4
B5
B6

GUID-6B581162-38E0-40FB-95DC-3360616DA749 V1 EN

Figure 129: Upstream blocking logic

The inrush detection block's (INRPHAR1) output BLK2H enables either blocking
the function or multiplying the active settings for any of the available overcurrent
or earth-fault function blocks.

INRPHAR1
BLOCK BLK2H INRPHAR1_BLK2H

GUID-57913FDC-E766-404A-ABA6-90ADB0F7CF74 V1 EN

Figure 130: Inrush detector function

Two negative sequence overcurrent stages NSPTOC1 and NSPTOC2 are provided
for phase unbalance protection. These functions are used to protect the feeder
against phase unbalance.

NSPTOC1
BLOCK OPERATE NSPTOC1_OPERATE
ENA_MULT START NSPTOC1_START

NSPTOC2
BLOCK OPERATE NSPTOC2_OPERATE
ENA_MULT START NSPTOC2_START

OR
NSPTOC1_OPERATE B1 O NSPTOC_OPERATE
NSPTOC2_OPERATE B2

GUID-042DF7F0-BC45-4B9F-8F1B-301314789714 V1 EN

Figure 131: Negative sequence overcurrent protection function

Four stages are provided for non-directional earth-fault protection. EFLPTOC2


stage is dedicated to sensitive earth-fault protection. According to the IED's order
code, the configuration can also include harmonic based earth-fault protection
HAEFPTOC.

116 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

EFIPTOC1
BLOCK OPERATE EFIPTOC1_OPERATE
ENA_MULT START EFIPTOC1_START

EFHPTOC1
BLOCK OPERATE EFHPTOC1_OPERATE
ENA_MULT START EFHPTOC1_START

EFLPTOC1
BLOCK OPERATE EFLPTOC1_OPERATE
ENA_MULT START EFLPTOC1_START

OR6
EFHPTOC1_OPERATE B1 O EFxPTOC_OPERATE
EFLPTOC1_OPERATE B2
EFIPTOC1_OPERATE B3
B4
B5
B6

GUID-4B3BC21D-415D-4301-9B92-887AEA80C49C V1 EN

Figure 132: Earth-fault protection functions

EFLPTOC2
BLOCK OPERATE EFLPTOC2_OPERATE
ENA_MULT START EFLPTOC2_START

GUID-66EBDD29-6D5B-4ACE-9000-3F9976978F27 V1 EN

Figure 133: Sensitive earth-fault protection functions

The phase discontinuity protection PDNSPTOC1 protects from interruptions in the


normal three-phase load supply, for example, in downed conductor situations.

PDNSPTOC1
BLOCK OPERATE PDNSPTOC1_OPERATE
START PDNSPTOC1_START

GUID-E1FF7992-706A-417E-8944-AF34E8E729FB V1 EN

Figure 134: Phase discontinuity protection

The thermal overload protection T1PTTR1 detects overloads under varying load
conditions. The output BLK_CLOSE is used to block the closing operation of
circuit breaker.

T1PTTR1
BLK_OPR OPERATE T1PTTR1_OPERATE
ENA_MULT START T1PTTR1_START
TEMP_AMB ALARM T1PTTR1_ALARM
BLK_CLOSE

GUID-E345F8CC-BD77-4DE5-AEAC-12969F8F4A74 V1 EN

Figure 135: Thermal overcurrent protection function

REF615 117
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

The breaker failure protection CCBRBRF1 is initiated via the START input by
number of different protection functions available in the IED. The breaker failure
protection function offers different operating modes associated with the circuit
breaker position and the measured phase and residual currents.

The breaker failure protection function has two operating outputs: TRRET and
TRBU. The TRRET operate output is used for retripping its own breaker through
TRPPTRC2_TRIP. The TRBU output gives a backup trip to the breaker feeding
upstream. For this purpose, the TRBU operate output signal is connected to the
binary output X100:PO2.
CCBRBRF1
OR6 OR6
BLOCK CB_FAULT_AL
PHIPTOC1_OPERATE B1 O B1 O START TRBU CCBRBRF1_TRBU
PHHPTOC1_OPERATE B2 B2 POSCLOSE TRRET CCBRBRF1_TRRET
PHHPTOC2_OPERATE B3 B3 CB_FAULT
EFLPTOC1_OPERATE B4 B4
EFHPTOC1_OPERATE B5 B5
EFIPTOC1_OPERATE B6 B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

X120_BI2_CB_CLOSED
GUID-E1FC0B19-FE08-4BD1-88F2-5AC7E8249ACF V1 EN

Figure 136: Circuit breaker failure protection function

Three protection S1...3 stages are included as an optional function. The protection
offers individual function blocks for three sensors that can be connected to the IED.
Each protection function block has two different operation modes, that is, with or
without the phase and residual current check.

The operate signals S1...3 are connected to both trip logic TRPPTRC1 and
TRPPTRC2. If the IED has been ordered with high speed binary outputs, the
individual operate signals from S1...3 are connected to dedicated trip logic
TRPPTRC3...5. The output of TRPPTRC3...5 are available at high speed outputs
X110:HSO1, X110:HSO2 and X110:HSO3.

118 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

ARCSARC1
BLOCK OPERATE ARCSARC1_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC1_ARC_FLT_DET
OPR_MODE

ARCSARC2
BLOCK OPERATE ARCSARC2_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC2_ARC_FLT_DET
OPR_MODE

ARCSARC3
BLOCK OPERATE ARCSARC3_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC3_ARC_FLT_DET
OPR_MODE

OR6
ARCSARC1_OPERATE B1 O ARCSARC_OPERATE
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-C29D3E5A-5875-413D-B8D1-09C2FDDEF2D3 V1 EN

Figure 137: Arc protection function

TRPPTRC3
BLOCK TRIP TRPPTRC3_TRIP
ARCSARC1_OPERATE OPERATE CL_LKOUT
X120_BI4_RST_LOCKOUT RST_LKOUT

TRPPTRC4
BLOCK TRIP TRPPTRC4_TRIP
ARCSARC2_OPERATE OPERATE CL_LKOUT
X120_BI4_RST_LOCKOUT RST_LKOUT

TRPPTRC5
BLOCK TRIP TRPPTRC5_TRIP
ARCSARC3_OPERATE OPERATE CL_LKOUT
X120_BI4_RST_LOCKOUT RST_LKOUT

GUID-075DA511-6800-4425-85CE-2B1BD69661FC V1 EN

Figure 138: Arc protection with dedicated HSO

The optional autorecloser function is configured to be initiated by operate signals


from a number of protection stages through the INIT_1...5 inputs. The
INIT_6 input in the autorecloser function block is controlled by a binary input
X110: BI2 enabling the use of the external autorecloser start command. It is
possible to create individual autoreclose sequences for each input.

REF615 119
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

The autorecloser function can be inhibited with the INHIBIT_RECL input. By


default, few selected protection function operations are connected to this input. A
control command to the circuit breaker, either local or remote, also blocks the
autorecloser function via the CBXCBR1-SELECTED signal.

The circuit breaker availability for the autoreclosure sequence is expressed with the
CB_READY input in DARREC1. The signal, and other required signals, are
connected to the CB spring charged binary inputs in this configuration. The open
command from the autorecloser is connected directly to binary output X100:PO3,
whereas the close command is connected directly to binary output X100:PO1.
DARREC1
PHIPTOC1_OPERATE INIT_1 OPEN_CB DARREC1_OPEN_CB
PHHPTOC2_OPERATE INIT_2 CLOSE_CB DARREC1_CLOSE_CB
PHHPTOC1_OPERATE INIT_3 CMD_WAIT
EFLPTOC1_OPERATE INIT_4 INPRO DARREC1_INPRO
EFHPTOC1_OPERATE INIT_5 LOCKED
X110_BI2_EXT_START_AUTORECLOSE INIT_6 PROT_CRD
DEL_INIT_2 UNSUC_RECL DARREC1_UNSUC_RECL
DEL_INIT_3 AR_ON
DEL_INIT_4 READY
BLK_RECL_T ACTIVE
BLK_RCLM_T
BLK_THERM
X120_BI3_CB_OPENED CB_POS
X110_BI4_CB_SPRING_CHARGED CB_READY
INC_SHOTP
INHIBIT_RECL
OR6 RECL_ON
SYNC
PDNSPTOC1_OPERATE B1 O
NSPTOC1_OPERATE B2
NSPTOC2_OPERATE B3
CBXCBR1_SELECTED B4
X110_BI3_GAS_PRESSURE_ALARM B5 OR
B6
B1 O
B2

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-CABAD69F-B126-4C9E-8640-2849EE82A948 V1 EN

Figure 139: Autorecloser function

General start and operate signals from all the functions are connected to pulse timer
TPGAPC1 for setting the minimum pulse length for the outputs. The output from
TPGAPC1 is connected to binary outputs.

120 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

OR6
PHLPTOC1_START B1 O
PHHPTOC1_START B2
PHHPTOC2_START B3
PHIPTOC1_START B4
NSPTOC1_START B5
NSPTOC2_START B6

OR6
OR6
B1 O
EFLPTOC1_START B1 O B2
EFLPTOC2_START B2 B3
EFIPTOC1_START B3 B4
EFHPTOC1_START B4 B5 TPGAPC1
PDNSPTOC1_START B5 B6
B6 IN1 OUT1 GENERAL_START
IN2 OUT2 GENERAL_OPERATE

OR6 OR6
PHLPTOC1_OPERATE B1 O B1 O
PHHPTOC1_OPERATE B2 B2
PHHPTOC2_OPERATE B3 B3
PHIPTOC1_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
EFIPTOC1_OPERATE B1 O
EFHPTOC1_OPERATE B2
PDNSPTOC1_OPERATE B3
EFLPTOC1_OPERATE B4
EFLPTOC2_OPERATE B5
B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-7CC700C6-F5D5-45EF-986A-9F279A0837C7 V1 EN

Figure 140: General start and operate signals

The operate signals from the protection functions are connected to the two trip
logics TRPPTRC1 and TRPPTRC2. The output of these trip logic functions is
available at binary outputs X100:PO3 and X100:PO4. The trip logic functions are
provided with a lockout and latching function, event generation and the trip signal
duration setting. If the lockout operation mode is selected, binary input X120:BI4
has been assigned to RST_LKOUT input of both the trip logic to enable external
reset with a push button.

Other trip logics TRPPTRC3...4 are also available if the IED is ordered with high
speed binary outputs options.

REF615 121
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

TRPPTRC1
OR6 OR6
BLOCK TRIP TRPPTRC1_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
PHLPTOC1_OPERATE B2 B2 RST_LKOUT
PHHPTOC1_OPERATE B3 B3
PHHPTOC2_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
EFLPTOC1_OPERATE B1 O
EFHPTOC1_OPERATE B2
EFIPTOC1_OPERATE B3
EFLPTOC2_OPERATE B4
PDNSPTOC1_OPERATE B5
B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

X120_BI4_RST_LOCKOUT
GUID-F756937A-A012-433D-904D-5D62D7BF8756 V1 EN

Figure 141: Trip logic TRPPTRC1

TRPPTRC2
OR6 OR6
BLOCK TRIP TRPPTRC2_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
PHLPTOC1_OPERATE B2 B2 RST_LKOUT
PHHPTOC1_OPERATE B3 B3
PHHPTOC2_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
EFHPTOC1_OPERATE B1 O
PDNSPTOC1_OPERATE B2
EFLPTOC1_OPERATE B3
EFLPTOC2_OPERATE B4
EFIPTOC1_OPERATE B5
CCBRBRF1_TRRET B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

X120_BI4_RST_LOCKOUT
GUID-ADA381AF-87B3-43A6-8A39-7856F999FD28 V1 EN

Figure 142: Trip logic TRPPTRC2

3.6.3.2 Functional diagrams for disturbance recorder

The START and the OPERATE outputs from the protection stages are routed to
trigger the disturbance recorder or, alternatively, only to be recorded by the
disturbance recorder, depending on the parameter settings. Additionally, the
selected signals from different functions and the few binary inputs are also
connected to the disturbance recorder.

122 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

RDRE1
PHLPTOC1_START C1 TRIGGERED DISTURB_RECORD_TRIGGERED
PHHPTOC1_START C2
PHHPTOC2_START C3
PHIPTOC1_START C4
NSPTOC1_START C5
NSPTOC2_START C6
EFLPTOC1_START C7
EFHPTOC1_START C8
EFIPTOC1_START C9
EFLPTOC2_START C10
C11
OR6 PDNSPTOC1_START C12
T1PTTR1_START C13
PHIPTOC1_OPERATE B1 O CCBRBRF1_TRRET C14
PHHPTOC1_OPERATE B2 CCBRBRF1_TRBU C15
PHHPTOC2_OPERATE B3 C16
PHLPTOC1_OPERATE B4 C17
B5 C18
B6 X110_BI2_EXT_START_AUTORECLOSE C19
EFLPTOC2_OPERATE C20
PDNSPTOC1_OPERATE C21
INRPHAR1_BLK2H C22
T1PTTR1_OPERATE C23
OR C24
ARCSARC1_OPERATE C25
NSPTOC1_OPERATE B1 O ARCSARC2_OPERATE C26
NSPTOC2_OPERATE B2 ARCSARC3_OPERATE C27
DARREC1_INPRO C28
DARREC1_CLOSE_CB C29
DARREC1_UNSUC_RECL C30
X120_BI1_EXT_OC_BLOCKING C31
OR6 X120_BI2_CB_CLOSED C32
X120_BI3_CB_OPENED C33
EFLPTOC1_OPERATE B1 O C34
EFHPTOC1_OPERATE B2 C35
EFIPTOC1_OPERATE B3 C36
B4 C37
B5 C38
B6 C39
C40
C41
C42
C43
OR6 C44
C45
ARCSARC1_ARC_FLT_DET B1 O C46
ARCSARC2_ARC_FLT_DET B2 C47
ARCSARC3_ARC_FLT_DET B3 C48
B4 C49
B5 C50
B6 C51
C52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62
C63
C64

GUID-C5C9CBCF-DB59-465F-8299-08068E37C94F V2 EN

Figure 143: Disturbance recorder

3.6.3.3 Functional diagrams for condition monitoring

The circuit breaker condition monitoring function SSCBR1 supervises the switch
status based on the connected binary input information and the measured current
levels. SSCBR1 introduces various supervision methods.

Set the parameters for SSCBR properly.

REF615 123
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

SSCBR1
BLOCK TRV_T_OP_ALM SSCBR1_TRV_T_OP_ALM
X120_BI3_CB_OPENED POSOPEN TRV_T_CL_ALM SSCBR1_TRV_T_CL_ALM
X120_BI2_CB_CLOSED POSCLOSE SPR_CHR_ALM SSCBR1_SPR_CHR_ALM
CB_OPEN_COMMAND OPEN_CB_EXE OPR_ALM SSCBR1_OPR_ALM
CB_CLOSE_COMMAND CLOSE_CB_EXE OPR_LO SSCBR1_OPR_LO
X110_BI3_GAS_PRESSURE_ALARM PRES_ALM_IN IPOW_ALM SSCBR1_IPOW_ALM
PRES_LO_IN IPOW_LO SSCBR1_IPOW_LO
CB_SPRING_DISCHARGED SPR_CHR_ST CB_LIFE_ALM SSCBR1_CB_LIFE_ALM
X110_BI4_CB_SPRING_CHARGED SPR_CHR MON_ALM SSCBR1_MON_ALM
RST_IPOW PRES_ALM SSCBR1_PRES_ALM
RST_CB_WEAR PRES_LO SSCBR1_PRES_LO
RST_TRV_T OPENPOS
RST_SPR_T INVALIDPOS
CLOSEPOS

GUID-D30D6FF1-20AF-4C73-B207-04C717D3439B V1 EN

Figure 144: Circuit breaker condition monitoring function

OR6
SSCBR1_TRV_T_OP_ALM B1 O
SSCBR1_TRV_T_CL_ALM B2
SSCBR1_SPR_CHR_ALM B3
SSCBR1_OPR_ALM B4
SSCBR1_OPR_LO B5 OR
SSCBR1_IPOW_ALM B6
B1 O SSCBR1_ALARMS
B2

OR6
SSCBR1_IPOW_LO B1 O
SSCBR1_CB_LIFE_ALM B2
SSCBR1_MON_ALM B3
SSCBR1_PRES_ALM B4
SSCBR1_PRES_LO B5
B6

GUID-28045DB5-20C4-46F5-B7FA-9ADA8FEF4098 V1 EN

Figure 145: Logic for circuit breaker monitoring alarm

NOT
X110_BI4_CB_SPRING_CHARGED IN OUT CB_SPRING_DISCHARGED

GUID-BFD7C249-AE73-4D2A-8409-8F34B06473F6 V1 EN

Figure 146: Logic for start of circuit breaker spring charging

Two separate trip circuit supervision functions are included: TCSSCBR1 for power
output X100:PO3 and TCSSCBR2 for power output X100:PO4. Both functions are
blocked by the Master Trip TRPPTRC1 and TRPPTRC2 and the circuit breaker
open signal.

124 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

It is assumed that there is no external resistor in the circuit breaker


tripping coil circuit connected in parallel with the circuit breaker
normally open auxiliary contact.

Set the parameters for TCSSCBR properly.

TCSSCBR1
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR1_ALARM

TCSSCBR2
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR2_ALARM

OR
TCSSCBR1_ALARM B1 O TCSSCBR_ALARM
TCSSCBR2_ALARM B2

GUID-55A8E2D8-21A8-474C-8459-1EDD29484F02 V1 EN

Figure 147: Trip circuit supervision function

OR6
TRPPTRC1_TRIP B1 O TCSSCBR_BLOCKING
TRPPTRC2_TRIP B2
X120_BI3_CB_OPENED B3
B4
B5
B6

GUID-4F651FD8-E80B-4157-925D-B11E192D689E V1 EN

Figure 148: Logic for blocking of trip circuit supervision

3.6.3.4 Functional diagrams for control and interlocking

Two types of disconnector and earthing switch function blocks are available.
DCSXSWI1...3 and ESSXSWI1...2 are status only type and DCXSWI1...2 and
ESXSWI1 are controllable type. By default, the status only blocks are connected in
the standard configuration. The disconnector (CB truck) and line side earthing
switch status information is connected to DCSXSWI1 and ESSXSI1.

DCSXSWI1
X110_BI6_CB_TRUCK_IN_TEST POSOPEN OPENPOS
X110_BI5_CB_TRUCK_IN_SERVICE POSCLOSE CLOSEPOS
OKPOS DCSXSWI1_OKPOS

GUID-EC15B84E-9243-4A6C-92DB-D2E727411896 V1 EN

Figure 149: Disconnector 1

REF615 125
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

ESSXSWI1
X110_BI8_ES1_OPENED POSOPEN OPENPOS ESSXSWI1_OPENPOS
X110_BI7_ES1_CLOSED POSCLOSE CLOSEPOS
OKPOS

GUID-5602152F-6F87-4D49-86AF-E4968E4B88BB V1 EN

Figure 150: Earthing switch 1

The circuit breaker closing is enabled when the ENA_CLOSE input is activated.
The input can be activated by the configuration logic, which is a combination of
the disconnector or breaker truck and earth-switch position status, status of the trip
logics, gas pressure alarm and circuit breaker spring charging status.

The OKPOS output from DCSXSWI defines if the disconnector or breaker truck is
definitely either open (in test position) or close (in service position). This output,
together with the open earth-switch and non-active trip signals, activates the close-
enable signal to the circuit breaker control function block. The open operation for
circuit breaker is always enabled.

The ITL_BYPASS input can be used, for example, to always enable the closing of
the circuit breaker when the circuit breaker truck is in the test position.
ITL_BYPASS overrides, for example, active interlocking conditions when the
circuit breaker truck is closed in service position.

CBXCBR1
X120_BI3_CB_OPENED POSOPEN SELECTED CBXCBR1_SELECTED
X120_BI2_CB_CLOSED POSCLOSE EXE_OP CBXCBR1_EXE_OP
TRUE ENA_OPEN EXE_CL CBXCBR1_EXE_CL
CBXCBR1_ENA_CLOSE ENA_CLOSE OPENPOS
FALSE BLK_OPEN CLOSEPOS
BLK_CLOSE OKPOS
CBXBCR1_AU_OPEN AU_OPEN OPEN_ENAD
CBXCBR1_AU_CLOSE AU_CLOSE CLOSE_ENAD
ITL_BYPASS

GUID-DBBDB84F-27F4-4034-A21B-01CD29A82207 V1 EN

Figure 151: Circuit breaker 1

Connect the additional signals required by the application for


closing and opening of the circuit breaker.

OR
CBXCBR1_EXE_CL B1 O CB_CLOSE_COMMAND
DARREC1_CLOSE_CB B2

GUID-63F53739-3A34-4391-9F0C-0833324FAEA3 V1 EN

Figure 152: Signals for closing coil of circuit breaker 1

126 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

OR6
CBXCBR1_EXE_OP B1 O CB_OPEN_COMMAND
TRPPTRC1_TRIP B2
DARREC1_OPEN_CB B3
B4
B5
B6

GUID-26BE8B84-99DF-44E7-BA2E-09EFC6A4EA76 V1 EN

Figure 153: Signals for opening coil of circuit breaker 1

NOT AND6
TRPPTRC1_TRIP IN OUT B1 O CBXCBR1_ENA_CLOSE
B2
B3
B4
NOT B5
B6
TRPPTRC2_TRIP IN OUT

NOT
X110_BI3_GAS_PRESSURE_ALARM IN OUT

DCSXSWI1_OKPOS
ESSXSWI1_OPENPOS
X110_BI4_CB_SPRING_CHARGED
GUID-BA344D0E-6F99-4CAB-9DBF-7CD674525C88 V1 EN

Figure 154: Circuit breaker 1 close enable logic

The configuration includes logic for generating circuit breaker external closing and
opening command with the IED in local or remote mode.

Check the logic for the external circuit breaker closing command
and modify it according to the application.

Connect additional signals for opening and closing of circuit


breaker in local or remote mode, if it is applicable for the
configuration.

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXCBR1_AU_CLOSE
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-2BAE22BC-81C2-4F1B-AC3F-3F1663381794 V1 EN

Figure 155: External closing command for circuit breaker 1

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXBCR1_AU_OPEN
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-9D61A2BA-90F0-4808-9282-C8DDDED6C80C V1 EN

Figure 156: External opening command for circuit breaker 1

REF615 127
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

3.6.3.5 Functional diagrams for measurement functions

The phase current inputs to the IED are measured by the three-phase current
measurement function CMMXU1. The current input is connected to the X120 card
in the back panel. The sequence current measurement CSMSQI1 measures the
sequence current and the residual current measurement RESCMMXU1 measures
the residual current.

The measurements can be seen in the LHMI and they are available under the
measurement option in the menu selection. Based on the settings, function blocks
can generate low alarm or warning and high alarm or warning signals for the
measured current values.

The load profile function LDPMSTA1 is included in the measurements sheet.


LDPMSTA1 offers the ability to observe the loading history of the corresponding
feeder.

CMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-05BA9BEE-064A-4C7C-B486-F82231CB43CF V1 EN

Figure 157: Current measurement: Three-phase current measurement

CSMSQI1

GUID-7F0D54B4-B973-4A6D-A6F8-AAB376A1351F V1 EN

Figure 158: Current measurement: Sequence current measurement

RESCMMXU1
BLOCK HIGH_ALARM
HIGH_WARN

GUID-DB3CEBE7-820F-4F79-964A-D63B89AD2233 V1 EN

Figure 159: Current measurement: Residual current measurement

FLTMSTA1
BLOCK
CB_CLRD

GUID-ABC2FDF0-5586-4463-B1C1-3C7C8300B65A V1 EN

Figure 160: Other measurement: Data monitoring

LDPMSTA1
RSTMEM MEM_WARN
MEM_ALARM

GUID-16FAB2AA-E0CF-4904-AD60-A9951BBB3CAC V1 EN

Figure 161: Other measurement: Load profile record

128 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

3.6.3.6 Functional diagrams for I/O and alarm LEDs

X110 (BIO).X110-Input 2 OR
B1 O X110_BI2_EXT_START_AUTORECLOSE
B2
X110 (BIO-H).X110-Input 2

X110 (BIO).X110-Input 3 OR
B1 O X110_BI3_GAS_PRESSURE_ALARM
B2
X110 (BIO-H).X110-Input 3

X110 (BIO).X110-Input 4 OR
B1 O X110_BI4_CB_SPRING_CHARGED
B2
X110 (BIO-H).X110-Input 4

X110 (BIO).X110-Input 5 OR
B1 O X110_BI5_CB_TRUCK_IN_SERVICE
B2
X110 (BIO-H).X110-Input 5

X110 (BIO).X110-Input 6 OR
B1 O X110_BI6_CB_TRUCK_IN_TEST
B2
X110 (BIO-H).X110-Input 6

X110 (BIO).X110-Input 7 OR
B1 O X110_BI7_ES1_CLOSED
B2
X110 (BIO-H).X110-Input 7

X110 (BIO).X110-Input 8 OR
B1 O X110_BI8_ES1_OPENED
B2
X110 (BIO-H).X110-Input 8
GUID-CF4CBBC0-9B2F-4974-958C-8BFEC57A6673 V1 EN

Figure 162: Binary inputs - X110 terminal block

X120_BI1_EXT_OC_BLOCKING
X120 (AIM).X120-Input 1

X120_BI2_CB_CLOSED
X120 (AIM).X120-Input 2

X120_BI3_CB_OPENED
X120 (AIM).X120-Input 3

X120_BI4_RST_LOCKOUT
X120 (AIM).X120-Input 4
GUID-F9405F60-4087-4693-82DE-4C02484FEF0A V1 EN

Figure 163: Binary inputs - X120 terminal block

REF615 129
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

UPSTEAM_OC_BLOCKING
X110 (BIO).X110-SO1

TRPPTRC3_TRIP
X110 (BIO-H).X110-HSO1

OC_OPERATE_PULSE
X110 (BIO).X110-SO2

TRPPTRC4_TRIP
X110 (BIO-H).X110-HSO2

EF_OPERATE_PULSE
X110 (BIO).X110-SO3

TRPPTRC5_TRIP
X110 (BIO-H).X110-HSO3
GUID-23F52E72-342A-4629-89CC-FC401CD94B21 V1 EN

Figure 164: Binary outputs - X110 terminal block

CB_CLOSE_COMMAND
X100 (PSM).X100-PO1

CCBRBRF1_TRBU
X100 (PSM).X100-PO2

GENERAL_START_PULSE
X100 (PSM).X100-SO1

GENERAL_OPERATE_PULSE
X100 (PSM).X100-SO2

CB_OPEN_COMMAND
X100 (PSM).X100-PO3

TRPPTRC2_TRIP
X100 (PSM).X100-PO4
GUID-A4CF2AA3-1FCD-44A9-91C4-482C9FBFB588 V1 EN

Figure 165: Binary outputs - X100 terminal block

130 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

LED1
OK
PHxPTOC_OPERATE ALARM
RESET

LED2
OK
EFxPTOC_OPERATE ALARM
RESET

LED3
OK
EFLPTOC2_OPERATE ALARM
RESET

LED4
OR
OK
NSPTOC_OPERATE B1 O ALARM
PDNSPTOC1_OPERATE B2 RESET

LED5
OK
T1PTTR1_ALARM ALARM
RESET

GUID-B26BBB64-D189-4246-A5A7-DB8FC8E86445 V1 EN

REF615 131
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

LED6
OK
CCBRBRF1_TRBU ALARM
RESET

LED7
OK
DISTURB_RECORD_TRIGGERED ALARM
RESET

LED8
OK
SSCBR1_ALARMS ALARM
RESET

LED9
OK
TCSSCBR_ALARM ALARM
RESET

LED10
OK
ARCSARC_OPERATE ALARM
RESET

LED11
OK
DARREC1_INPRO ALARM
RESET

GUID-45BA8CDE-2D5A-4BFC-AEB7-B9D3C1D044F9 V1 EN

Figure 166: Default LED connection

3.6.3.7 Functional diagrams for other timer logics

The configuration also includes overcurrent operate and earth-fault operate logic.
The operate logics are connected to the pulse timer TPGAPC for setting the
minimum pulse length for the outputs. The output from TPGAPC is connected to
the binary outputs.
TPGAPC2
PHxPTOC_OPERATE IN1 OUT1 OC_OPERATE_PULSE
IN2 OUT2 EF_OPERATE_PULSE

OR
EFxPTOC_OPERATE B1 O
EFLPTOC2_OPERATE B2

GUID-F6BA3876-6A37-464E-9FAB-F5DCA0A96FFD V1 EN

Figure 167: Timer logic for overcurrent and earth-fault operate pulse

132 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

3.6.3.8 Other functions

The configuration includes few instances of multi-purpose protection function


MAPGAPC, high impedance fault detection function PHIZ, runtime counter
MDSOPT and different types of timers and control functions. These functions are
not included in application configuration but they can be added based on the
system requirements.

3.7 Standard configuration E

3.7.1 Applications
The standard configuration for non-directional overcurrent and directional earth-
fault protection is mainly intended for cable and overhead-line feeder applications
in isolated and resonant-earthed distribution networks. The configuration also
includes additional options for selecting earth-fault protection based on admittance
or wattmetric-based principles.

The IED with a standard configuration is delivered from the factory with default
settings and parameters. The end user flexibility for incoming, outgoing and
internal signal designation within the IED enables this configuration to be further
adapted to different primary circuit layouts and the related functionality needs by
modifying the internal functionality using PCM600.

REF615 133
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

3.7.2 Functions
UL1UL2UL3
Uo

REF615 FEEDER PROTECTION AND CONTROL IED STANDARD


CONFIGURATION
E

PROTECTION LOCAL HMI ALSO AVAILABLE


Configuration A

- Disturbance and fault recorders


System
HMI
Time
Authorization

5× - Event log and recorded data


Master Trip I
- High-Speed Output module (optional)
ESC Clear

Lockout relay A
O
- IED self-supervision
R
L

94/86
U12 0. 0 kV
P 0.00 kW
Q 0.00 kVAr

IL2 0 A
- Local/Remote push button on LHMI
- User management

UL1UL2UL3
I ESC Clear
- Web HMI

AND
I2> I2/I1> 3Ith>F 3I>>> O R

46 46PD 49F 50P/51P


L
OR
3I
3× 3×
ARC 3I>/Io>BF
50L/50NL CONDITION MONITORING COMMUNICATION
51BF/51NBF
AND SUPERVISION
Protocols:
1 1 0 0 1 1 0 0 2× IEC 61850-8-1 1 0
61850-8-1/-9-2LE 1 0 0 0 1 1 0 0 1 1 0 0
1 0 1 1 1 0 0 1 0 3I> 3I>> 3I2f> FUSEF CBCM MCS 3I Modbus®® 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 0 1 1 0 1 0
51P-1 51P-2 68 3I 60 CBCM MCS 3I 1 1
IEC 60870-5-103 1 0
0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 0
1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 DNP3 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1
1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 0 1 1 0 1 0 Io Interfaces: 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 0 0 Io 1 0 1 1 0 1 1 0 1 1 0 1 0 0
Ethernet: TX (RJ45), FX (LC)
Io
Serial: Serial glass fiber (ST),
RS-485, RS-232/485
2× D-sub 9, IRIG-B
Io>> OPTS TCS Redundant protocols:
51N-2 OPTM TCM HSR
PRP
RSTP
Io

2× CONTROL AND INDICATION 1) MEASUREMENT


Io>→ Io>>→ Io>IEF→ PHIZ
67N-1 67N-2 67NIEF HIZ
Uo Object Ctrl 2)
Ind 3) - I, U, Io, Uo, P, Q, E, pf, f
- Limit value supervision
CB 1 - - Load profile record
3× 3×
Yo>→ Po>→ DC 2 3 - RTD/mA measurement (optional)
21YN 32N - Symmetrical components
ES 1 2
OR
1)
Check availability of binary inputs/outputs Analog interface types 1)

from technical documentation


Current transformer 4
2)
Control and indication function for
primary object Voltage transformer 5
3)
Status indication function for
primary object 1)
Conventional transformer inputs

3× 18×
Uo> MAP O→I
59G MAP 79

2xRTD REMARKS
1xmA
Optional 3× No. of Calculated OR Alternative
function instances value function to be
Io/Uo defined when
ordering

GUID-4512CC4D-BAA4-49CD-BF84-7BA9628DC231 V1 EN

Figure 168: Functionality overview for standard configuration E

3.7.2.1 Default I/O


REF615 connections
FEEDER PROTECTION AND CONTROL IED STANDARD
CONFIGURATION

Connector
PROTECTION
pins for each input and output are presented in the IED physical
LOCAL HMI
Configuration
System
A

connections section.
HMI
Time
Authorization

I ESC Clear

A
O R
L
U12 0. 0 kV
P 0.00 kW
Q 0.00 kVAr

IL2 0 A

I ESC Clear

AND
O R
L
OR

CONDITION MONITORING COMMUNICATION


AND SUPERVISION
Protocols:
1 1 0 0 1 1 0 0 IEC 61850-8-1 1 0 1 0 0 0 1 1 0 0 1 1 0 0
1 0 1 1 1 0 0 1 0 Modbus® 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 0 0
IEC 60870-5-103 1 0 1 1 0 1 1 0 1 1 0 1 0 0
1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 DNP3 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1
1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 0 1 1 0 1 0 134 Interfaces: REF615
1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0
Ethernet: TX (RJ45), FX (LC)
Serial: Application Manual
Serial glass fiber (ST),
RS-485, RS-232/485
D-sub 9, IRIG-B
Redundant protocols:
HSR
PRP
RSTP

CONTROL AND INDICATION 1) MEASUREMENT


1MRS756378 N Section 3
REF615 standard configurations

Table 31: Default connections for binary inputs


Binary input Description
X110-BI1 MCB open
X110-BI2 Directional earth-fault protection's basic angle control
X110-BI3 Circuit breaker low gas pressure alarm
X110-BI4 Circuit breaker spring charged indication
X110-BI5 Circuit breaker truck in (service position) indication
X110-BI6 Circuit breaker truck out (test position) indication
X110-BI7 Earthing switch closed indication
X110-BI8 Earthing switch open indication
X120-BI1 Blocking of overcurrent instantaneous stage
X120-BI2 Circuit breaker closed indication
X120-BI3 Circuit breaker open indication
X120-BI4 Lock-out reset

Table 32: Default connections for binary outputs


Binary output Description
X100-PO1 Close circuit breaker
X100-PO2 Breaker failure backup trip to upstream breaker
X100-SO1 General start indication
X100-SO2 General operate indication
X100-PO3 Open circuit breaker/trip coil 1
X100-PO4 Open circuit breaker/trip coil 2
X110-SO1 Upstream overcurrent blocking
X110-SO2 Overcurrent operate alarm
X110-SO3 Earth-fault operate alarm
X110-HSO1 Arc protection instance 1 operate activated
X110-HSO2 Arc protection instance 2 operate activated
X110-HSO3 Arc protection instance 3 operate activated

Table 33: Default connections for LEDs


LED Description
1 Non-directional overcurrent protection operated
2 Directional earth-fault protection operated
3 Double (cross country) earth-fault or residual overvoltage protection operated
4 Negative sequence overcurrent or phase discontinuity protection operated
5 Thermal overload alarm
6 Circuit breaker failure protection backup protection operated
7 Disturbance recorder triggered
Table continues on next page

REF615 135
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

LED Description
8 Circuit breaker condition monitoring alarm
9 Supervision alarm
10 Arc fault detected
11 Autoreclose in progress

3.7.2.2 Default disturbance recorder settings


Table 34: Default disturbance recorder analog channels
Channel Description
1 IL1
2 IL2
3 IL3
4 Io
5 Uo
6 U1
7 U2
8 U3
9 -
10 -
11 -
12 -

Table 35: Default disturbance recorder binary channels


Channel ID text Level trigger mode
1 PHLPTOC1 - start Positive or Rising
2 PHHPTOC1 - start Positive or Rising
3 PHHPTOC2 - start Positive or Rising
4 PHIPTOC1 - start Positive or Rising
5 NSPTOC1 - start Positive or Rising
6 NSPTOC2 - start Positive or Rising
7 DEFLPDEF1 - start Positive or Rising
EFPADM1 - start
WPWDE1 - start
8 DEFLPDEF2 - start Positive or Rising
EFPADM2 - start
WPWDE2 - start
Table continues on next page

136 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

Channel ID text Level trigger mode


9 DEFLPDEF3 - start Positive or Rising
EFPADM3 - start
WPWDE3 - start
10 INTRPTEF1 - start Positive or Rising
11 EFHPTOC1 - start Positive or Rising
12 PDNSPTOC1 - start Positive or Rising
13 T1PTTR1 - start Positive or Rising
14 ROVPTOV1 - start Positive or Rising
15 ROVPTOV2 - start Positive or Rising
16 ROVPTOV3 - start Positive or Rising
17 CCBRBRF1 - trret Level trigger off
18 CCBRBRF1 - trbu Level trigger off
19 PHIPTOC1 - operate Level trigger off
PHHPTOC1 - operate
PHHPTOC2 - operate
PHLPTOC1 - operate
20 NSPTOC1 - operate Level trigger off
NSPTOC2 - operate
21 DEFHPDEF1 - operate Level trigger off
DEFLPDEF1 - operate
DEFLPDEF2 - operate
EFPADM1 - operate
EFPADM2 - operate
EFPADM3 - operate
WPWDE1 - operate
WPWDE2 - operate
WPWDE3 - operate
22 INTRPTEF1 - operate Level trigger off
23 EFHPTOC1 - operate Level trigger off
24 PDNSPTOC1 - operate Level trigger off
25 INRPHAR1 - blk2h Level trigger off
26 T1PTTR1 - operate Level trigger off
27 ROVPTOV1 - operate Level trigger off
ROVPTOV2 - operate
ROVPTOV3 - operate
28 ARCSARC1 - ARC flt det Level trigger off
ARCSARC2 - ARC flt det
ARCSARC3 - ARC flt det
29 ARCSARC1 - operate Positive or Rising
Table continues on next page

REF615 137
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Channel ID text Level trigger mode


30 ARCSARC2 - operate Positive or Rising
31 ARCSARC3 - operate Positive or Rising
32 DARREC1 - close CB Level trigger off
DARREC1 - unsuc recl
33 DARREC1 - inpro Level trigger off
34 X120BI1 - ext OC blocking Level trigger off
35 X120BI2 - CB closed Level trigger off
36 X120BI3 - CB opened Level trigger off
37 SEQRFUF1 - fusef3ph Level trigger off
38 SEQRFUF1 - fusefu Level trigger off
39 CCRDIF1 - fail Level trigger off

3.7.3 Functional diagrams


The functional diagrams describe the default input, output, alarm LED and function-
to-function connections. The default connections can be viewed and changed with
PCM600 according to the application requirements.

The analog channels have fixed connections to the different function blocks inside
the IED’s standard configuration. However, the 12 analog channels available for
the disturbance recorder function are freely selectable as a part of the disturbance
recorder’s parameter settings.

The phase currents to the IED are fed from a current transformer. The residual
current to the IED is fed from either residually connected CTs, an external core
balance CT, neutral CT or internally calculated.

The phase voltages to the IED are fed from a voltage transformer. The residual
voltage to the IED is fed from either residually connected VTs, an open delta
connected VT or internally calculated.

The IED offers six different settings groups which can be set based on individual
needs. Each group can be activated or deactivated using the setting group settings
available in the IED.

Depending on the communication protocol the required function block needs to be


initiated in the configuration. The Application Configuration tool also includes
fixed Boolean signals TRUE and FALSE which can be used according to the
application needs.

3.7.3.1 Functional diagrams for protection

The functional diagrams describe the IEDs protection functionality in detail and
according to the factory set default connections.

138 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

Four overcurrent stages are offered for overcurrent and short-circuit protection.
The non-directional instantaneous stage PHIPTOC1 can be blocked by energizing
the binary input X120:BI1.

PHIPTOC1
X120_BI1_EXT_OC_BLOCKING BLOCK OPERATE PHIPTOC1_OPERATE
ENA_MULT START PHIPTOC1_START

PHHPTOC1
BLOCK OPERATE PHHPTOC1_OPERATE
ENA_MULT START PHHPTOC1_START

PHHPTOC2
BLOCK OPERATE PHHPTOC2_OPERATE
ENA_MULT START PHHPTOC2_START

PHLPTOC1
BLOCK OPERATE PHLPTOC1_OPERATE
ENA_MULT START PHLPTOC1_START

OR6
PHIPTOC1_OPERATE B1 O PHxPTOC_OPERATE
PHHPTOC1_OPERATE B2
PHHPTOC2_OPERATE B3
PHLPTOC1_OPERATE B4
B5
B6

GUID-3319AA24-88F3-4A6C-B382-D480E4EB991B V1 EN

Figure 169: Overcurrent protection functions

The upstream blocking from the start of the overcurrent second high stage
PHHPTOC2 is connected to the binary output X110:SO1. This output can be used
for sending a blocking signal to the relevant overcurrent protection stage of the
IED at the infeeding bay.

OR6
PHHPTOC2_START B1 O UPSTEAM_OC_BLOCKING
B2
B3
B4
B5
B6

GUID-135C8785-4AA1-4D9B-B100-EB7D2CA57163 V1 EN

Figure 170: Upstream blocking logic

The inrush detection block's (INRPHAR1) output BLK2H enables either blocking
the function or multiplying the active settings for any of the available overcurrent
or earth-fault function blocks.

REF615 139
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

INRPHAR1
BLOCK BLK2H INRPHAR1_BLK2H

GUID-B5386A2A-119F-44AF-AD39-D601263BF734 V1 EN

Figure 171: Inrush detector function

Two negative sequence overcurrent stages NSPTOC1 and NSPTOC2 are provided
for phase unbalance protection. These functions are used to protect the feeder
against phase unbalance. Both negative sequence overcurrent protections are
blocked in case of detection of a failure in secondary circuit of current transformer.

NSPTOC1
CCRDIF1_FAIL BLOCK OPERATE NSPTOC1_OPERATE
ENA_MULT START NSPTOC1_START

NSPTOC2
CCRDIF1_FAIL BLOCK OPERATE NSPTOC2_OPERATE
ENA_MULT START NSPTOC2_START

OR
NSPTOC1_OPERATE B1 O NSPTOC_OPERATE
NSPTOC2_OPERATE B2

GUID-471A4DEC-98C0-4E2B-8A82-CC7D8AA94D1D V1 EN

Figure 172: Negative sequence overcurrent protection function

Three stages are provided for directional earth-fault protection. According to the
IED's order code, the directional earth-fault protection method can be based on
conventional directional earth-fault DEFxPDEF only or alternatively together with
admittance criteria EFPADM or wattmetric earth-fault protection WPWDE. In
addition, there is a dedicated protection stage INTRPTEF either for transient-based
earth-fault protection or for cable intermittent earth-fault protection in compensated
networks.

The binary input X110:BI2 is intended for controlling directional earth-fault


protection blocks' relay characteristic angle (RCA: 0°, -90°) or operation mode
(IoSinφ, IoCosφ) change. The same input is also available for wattmetric protection.

140 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

DEFLPDEF1
BLOCK OPERATE DEFLPDEF1_OPERATE
ENA_MULT START DEFLPDEF1_START
X110_BI2_RCA_CONTROL RCA_CTL

DEFLPDEF2
BLOCK OPERATE DEFLPDEF2_OPERATE
ENA_MULT START DEFLPDEF2_START
X110_BI2_RCA_CONTROL RCA_CTL

DEFHPDEF1
BLOCK OPERATE DEFHPDEF1_OPERATE
ENA_MULT START DEFHPDEF1_START
X110_BI2_RCA_CONTROL RCA_CTL

OR6
DEFLPDEF1_OPERATE B1 O DEFxPDEF_OPERATE
DEFLPDEF2_OPERATE B2
DEFHPDEF1_OPERATE B3
B4
B5
B6

GUID-887F7AE7-59D2-474B-B5B8-4466B6741D35 V1 EN

Figure 173: Directional earth-fault protection function

INTRPTEF1
BLOCK OPERATE INTRPTEF1_OPERATE
START INTRPTEF1_START
BLK_EF

GUID-BD1AFA42-4050-4B0C-823E-EDDEAF7A9A58 V1 EN

Figure 174: Transient or intermittent earth-fault protection function

REF615 141
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

WPWDE1
BLOCK OPERATE WPWDE1_OPERATE
X110_BI2_RCA_CONTROL RCA_CTL START WPWDE1_START

WPWDE2
BLOCK OPERATE WPWDE2_OPERATE
X110_BI2_RCA_CONTROL RCA_CTL START WPWDE2_START

WPWDE3
BLOCK OPERATE WPWDE3_OPERATE
X110_BI2_RCA_CONTROL RCA_CTL START WPWDE3_START

OR6
WPWDE1_OPERATE B1 O WPWDE_OPERATE
WPWDE2_OPERATE B2
WPWDE3_OPERATE B3
B4
B5
B6

GUID-5D56CF4C-0081-4D34-AB17-CD86173B20AA V1 EN

Figure 175: Wattmetric protection function

EFPADM1
BLOCK OPERATE EFPADM1_OPERATE
RELEASE START EFPADM1_START

EFPADM2
BLOCK OPERATE EFPADM2_OPERATE
RELEASE START EFPADM2_START

EFPADM3
BLOCK OPERATE EFPADM3_OPERATE
RELEASE START EFPADM3_START

OR6
EFPADM1_OPERATE B1 O EFPADM_OPERATE
EFPADM2_OPERATE B2
EFPADM3_OPERATE B3
B4
B5
B6

GUID-E530E87B-85F6-421E-BC3F-C750132D3054 V1 EN

Figure 176: Admittance based earth-fault protection function

142 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

A dedicated non-directional earth-fault protection block EFHPTOC protects


against double earth-fault situations in isolated or compensated networks. This
protection function uses the calculated residual current originating from the phase
currents. The function is blocked in case of detection of a failure in secondary
circuit of current transformer.

EFHPTOC1
CCRDIF1_FAIL BLOCK OPERATE EFHPTOC1_OPERATE
ENA_MULT START EFHPTOC1_START

GUID-3ED1B626-C1F0-4001-AB58-546A16B76048 V1 EN

Figure 177: Non-directional earth-fault protection

The phase discontinuity protection PDNSPTOC1 protects for interruptions in the


normal three-phase load supply, for example, in downed conductor situations. The
function is blocked in case of detection of a failure in secondary circuit of voltage
transformer.

PDNSPTOC1
CCRDIF1_FAIL BLOCK OPERATE PDNSPTOC1_OPERATE
START PDNSPTOC1_START

GUID-3C32D680-B07A-4D01-89B0-A0C2CAE89C45 V1 EN

Figure 178: Phase discontinuity protection

The thermal overload protection T1PTTR1 detects overloads under varying load
conditions. The BLK_CLOSE output of the function is used to block the closing
operation of circuit breaker.

T1PTTR1
BLK_OPR OPERATE T1PTTR1_OPERATE
ENA_MULT START T1PTTR1_START
TEMP_AMB ALARM T1PTTR1_ALARM
BLK_CLOSE T1PTTR1_BLK_CLOSE

GUID-0BC59D0E-F0E3-4F46-A4EF-A8D392971CF2 V1 EN

Figure 179: Thermal overcurrent protection function

The breaker failure protection CCBRBRF1 is initiated via the START input by
number of different protection functions available in the IED. The breaker failure
protection function offers different operating modes associated with the circuit
breaker position and the measured phase and residual currents.

The breaker failure protection function has two operating outputs: TRRET and
TRBU. The TRRET operate output is used for retripping its own breaker through
TRPPTRC2_TRIP. The TRBU output gives a backup trip to the breaker feeding
upstream. For this purpose, the TRBU operate output signal is connected to the
binary output X100:PO2.

REF615 143
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

CCBRBRF1
OR6 OR6
BLOCK CB_FAULT_AL
PHIPTOC1_OPERATE B1 O B1 O START TRBU CCBRBRF1_TRBU
PHHPTOC1_OPERATE B2 B2 POSCLOSE TRRET CCBRBRF1_TRRET
PHHPTOC2_OPERATE B3 B3 CB_FAULT
ARCSARC1_OPERATE B4 B4
ARCSARC2_OPERATE B5 B5
ARCSARC3_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF2_OPERATE B2
EFPADM2_OPERATE B3
EFPADM3_OPERATE B4
WPWDE2_OPERATE B5
WPWDE3_OPERATE B6

X120_BI2_CB_CLOSED
GUID-3A9C783D-EBCA-48FB-BA73-AF7F08AA9BDB V1 EN

Figure 180: Circuit breaker failure protection function

Three arc protection ARCSARC1...3 stages are included as an optional function.


The arc protection offers individual function blocks for three arc sensors that can
be connected to the IED. Each arc protection function block has two different
operation modes, that is, with or without the phase and residual current check.

The operate signals from ARCSARC1...3 are connected to both trip logic
TRPPTRC1 and TRPPTRC2. If the IED has been ordered with high speed binary
outputs, the individual operate signals from ARCSARC1...3 are connected to
dedicated trip logic TRPPTRC3...5. The output of TRPPTRC3...5 are available at
high speed outputs X110:HSO1, X110:HSO2 and X110:HSO3.

ARCSARC1
BLOCK OPERATE ARCSARC1_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC1_ARC_FLT_DET
OPR_MODE

ARCSARC2
BLOCK OPERATE ARCSARC2_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC2_ARC_FLT_DET
OPR_MODE

ARCSARC3
BLOCK OPERATE ARCSARC3_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC3_ARC_FLT_DET
OPR_MODE

OR6
ARCSARC1_OPERATE B1 O ARCSARC_OPERATE
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-6CD72294-48D8-4EB9-8498-88DE7B4E5CB3 V1 EN

Figure 181: Arc protection function

144 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

TRPPTRC3
BLOCK TRIP TRPPTRC3_TRIP
ARCSARC1_OPERATE OPERATE CL_LKOUT
X120_BI4_RST_LOCKOUT RST_LKOUT

TRPPTRC4
BLOCK TRIP TRPPTRC4_TRIP
ARCSARC2_OPERATE OPERATE CL_LKOUT
X120_BI4_RST_LOCKOUT RST_LKOUT

TRPPTRC5
BLOCK TRIP TRPPTRC5_TRIP
ARCSARC3_OPERATE OPERATE CL_LKOUT
X120_BI4_RST_LOCKOUT RST_LKOUT

GUID-DE45B80E-CC29-4C50-AC00-861FE4406100 V1 EN

Figure 182: Arc protection with dedicated HSO

The optional autorecloser function is configured to be initiated by operate signals


from a number of protection stages through the INIT_1...5 inputs. It is possible
to create individual autoreclose sequences for each input.

The autorecloser function can be inhibited with the INHIBIT_RECL input. By


default, few selected protection function operations are connected to this input. A
control command to the circuit breaker, either local or remote, also blocks the
autorecloser function via the CBXCBR1-SELECTED signal.

The circuit breaker availability for the autorecloser sequence is expressed with the
CB_READY input in DARREC1. DARREC1. The signal, and other required
signals, are connected to the CB spring charged binary inputs in this configuration.
The open command from the autorecloser is connected directly to binary output
X100:PO3, whereas the close command is connected directly to binary output
X100:PO1.

Set the parameters for DARREC1 properly.

Check this initialization signals of the DARREC1.

REF615 145
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

DARREC1
PHIPTOC1_OPERATE INIT_1 OPEN_CB DARREC1_OPEN_CB
OR6 PHHPTOC2_OPERATE INIT_2 CLOSE_CB DARREC1_CLOSE_CB
PHHPTOC1_OPERATE INIT_3 CMD_WAIT
DEFLPDEF2_OPERATE B1 O INIT_4 INPRO DARREC1_INPRO
EFPADM2_OPERATE B2 INIT_5 LOCKED
WPWDE2_OPERATE B3 INIT_6 PROT_CRD
B4 DEL_INIT_2 UNSUC_RECL DARREC1_UNSUC_RECL
B5 DEL_INIT_3 AR_ON
B6 DEL_INIT_4 READY
BLK_RECL_T ACTIVE
BLK_RCLM_T
BLK_THERM
X120_BI3_CB_OPENED CB_POS
OR6 X110_BI4_CB_SPRING_CHARGED CB_READY
INC_SHOTP
DEFHPDEF1_OPERATE B1 O INHIBIT_RECL
EFPADM3_OPERATE B2 RECL_ON
WPWDE3_OPERATE B3 SYNC
B4
B5
B6

OR6
PDNSPTOC1_OPERATE B1 O
NSPTOC1_OPERATE B2
NSPTOC2_OPERATE B3
CBXCBR1_SELECTED B4
INTRPTEF1_OPERATE B5 OR
X110_BI3_GAS_PRESSURE_ALARM B6
B1 O
B2

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-E7F8FD5B-32F7-45EA-B6AF-9F840A1EA709 V1 EN

Figure 183: Autorecloser function

The residual overvoltage protection ROVPTOV1 provides earth-fault protection by


detecting an abnormal level of residual voltage. This can be used, for example, as a
nonselective backup protection for the selective directional earth-fault functionality.

146 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

ROVPTOV1
BLOCK OPERATE ROVPTOV1_OPERATE
START ROVPTOV1_START

ROVPTOV2
BLOCK OPERATE ROVPTOV2_OPERATE
START ROVPTOV2_START

ROVPTOV3
BLOCK OPERATE ROVPTOV3_OPERATE
START ROVPTOV3_START

OR6
ROVPTOV1_OPERATE B1 O ROVPTOV_OPERATE
ROVPTOV2_OPERATE B2
ROVPTOV3_OPERATE B3
B4
B5
B6

GUID-7D97D55F-A89B-47FB-9B7B-3B041C3F2859 V1 EN

Figure 184: Residual voltage protection function

General start and operate from all the functions are connected to pulse timer
TPGAPC1 for setting the minimum pulse length for the outputs. The output from
TPGAPC1 is connected to binary outputs.
OR6 OR6 TPGAPC1
PHLPTOC1_START B1 O B1 O IN1 OUT1 GENERAL_START_PULSE
PHHPTOC1_START B2 B2 IN2 OUT2 GENERAL_OPERATE_PULSE
PHHPTOC2_START B3 B3
PHIPTOC1_START B4 B4
NSPTOC1_START B5 B5
NSPTOC2_START B6 B6

OR6 OR6 OR6


DEFLPDEF1_START B1 O PHLPTOC1_OPERATE B1 O B1 O
DEFLPDEF2_START B2 PHHPTOC1_OPERATE B2 B2
DEFHPDEF1_START B3 PHHPTOC2_OPERATE B3 B3
B4 PHIPTOC1_OPERATE B4 B4
B5 NSPTOC1_OPERATE B5 B5
B6 NSPTOC2_OPERATE B6 B6

OR6 OR6
INTRPTEF1_START B1 O DEFLPDEF1_OPERATE B1 O
EFHPTOC1_START B2 DEFLPDEF2_OPERATE B2
PDNSPTOC1_START B3 DEFHPDEF1_OPERATE B3
ROVPTOV1_START B4 ARCSARC1_OPERATE B4
ROVPTOV2_START B5 ARCSARC2_OPERATE B5
ROVPTOV3_START B6 ARCSARC3_OPERATE B6

OR6 OR6
EFPADM1_START B1 O INTRPTEF1_OPERATE B1 O
EFPADM2_START B2 EFHPTOC1_OPERATE B2
EFPADM3_START B3 PDNSPTOC1_OPERATE B3
WPWDE1_START B4 ROVPTOV1_OPERATE B4
WPWDE2_START B5 ROVPTOV2_OPERATE B5
WPWDE3_START B6 ROVPTOV3_OPERATE B6

OR6
EFPADM1_OPERATE B1 O
EFPADM2_OPERATE B2
EFPADM3_OPERATE B3
WPWDE1_OPERATE B4
WPWDE2_OPERATE B5
WPWDE3_OPERATE B6

GUID-AF23133F-E581-43F2-BC3E-AE103AE437F7 V1 EN

Figure 185: General start and operate signals

The operate signals from the protection functions are connected to the two trip
logics TRPPTRC1 and TRPPTRC2. The output of these trip logic functions is
available at binary output X100:PO3 and X100:PO4. The trip logic functions are

REF615 147
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

provided with a lockout and latching function, event generation and the trip signal
duration setting. If the lockout operation mode is selected, binary input X120:BI4
has been assigned to RST_LKOUT input of both the trip logic to enable external
reset with a push button.

Three other trip logics TRPPTRC3...4 are also available if the IED is ordered with
high speed binary outputs options.
TRPPTRC1
OR6 OR6
BLOCK TRIP TRPPTRC1_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
PHLPTOC1_OPERATE B2 B2 RST_LKOUT
PHHPTOC1_OPERATE B3 B3
PHHPTOC2_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF1_OPERATE B2
DEFLPDEF2_OPERATE B3
ARCSARC1_OPERATE B4
ARCSARC2_OPERATE B5
ARCSARC3_OPERATE B6

OR6
INTRPTEF1_OPERATE B1 O
EFHPTOC1_OPERATE B2
PDNSPTOC1_OPERATE B3
ROVPTOV1_OPERATE B4
ROVPTOV2_OPERATE B5
ROVPTOV3_OPERATE B6

OR6
EFPADM1_OPERATE B1 O
EFPADM2_OPERATE B2
EFPADM3_OPERATE B3
WPWDE1_OPERATE B4
WPWDE2_OPERATE B5
WPWDE3_OPERATE B6

X120_BI4_RST_LOCKOUT
GUID-9C6E7492-616C-460F-9AAD-B75FFC0F0737 V1 EN

Figure 186: Trip logic TRPPTRC1

148 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

TRPPTRC2
OR6 OR6
BLOCK TRIP TRPPTRC2_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
PHLPTOC1_OPERATE B2 B2 RST_LKOUT
PHHPTOC1_OPERATE B3 B3
PHHPTOC2_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF1_OPERATE B2
DEFLPDEF2_OPERATE B3
ARCSARC1_OPERATE B4
ARCSARC2_OPERATE B5
ARCSARC3_OPERATE B6

OR6
INTRPTEF1_OPERATE B1 O
EFHPTOC1_OPERATE B2
PDNSPTOC1_OPERATE B3
ROVPTOV1_OPERATE B4
ROVPTOV2_OPERATE B5
ROVPTOV3_OPERATE B6

OR6
CCBRBRF1_TRRET B1 O
EFPADM1_OPERATE B2
EFPADM2_OPERATE B3
EFPADM3_OPERATE B4
B5
B6

OR6
WPWDE1_OPERATE B1 O
WPWDE2_OPERATE B2
WPWDE3_OPERATE B3
B4
B5
B6

X120_BI4_RST_LOCKOUT
GUID-4E3A24AF-2263-4DA6-9D9B-2646177DA782 V1 EN

Figure 187: Trip logic TRPPTRC2

3.7.3.2 Functional diagrams for disturbance recorder

The START and the OPERATE outputs from the protection stages are routed to
trigger the disturbance recorder or, alternatively, only to be recorded by the
disturbance recorder depending on the parameter settings. Additionally, the
selected signals from different functions and the few binary inputs are also
connected to the disturbance recorder.

REF615 149
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

RDRE1
PHLPTOC1_START C1 TRIGGERED DISTURB_RECORD_TRIGGERED
PHHPTOC1_START C2
PHHPTOC2_START C3
PHIPTOC1_START C4
NSPTOC1_START C5
OR6 NSPTOC2_START C6
C7
DEFLPDEF1_START B1 O C8
WPWDE1_START B2 C9
EFPADM1_START B3 INTRPTEF1_START C10
B4 OR6 EFHPTOC1_START C11
B5 PDNSPTOC1_START C12
B6 PHIPTOC1_OPERATE B1 O T1PTTR1_START C13
PHHPTOC1_OPERATE B2 ROVPTOV1_START C14
PHHPTOC2_OPERATE B3 ROVPTOV2_START C15
PHLPTOC1_OPERATE B4 ROVPTOV3_START C16
B5 CCBRBRF1_TRRET C17
OR6 B6 CCBRBRF1_TRBU C18
C19
DEFLPDEF2_START B1 O C20
WPWDE2_START B2 C21
EFPADM2_START B3 OR INTRPTEF1_OPERATE C22
B4 EFHPTOC1_OPERATE C23
B5 NSPTOC1_OPERATE B1 O PDNSPTOC1_OPERATE C24
B6 NSPTOC2_OPERATE B2 INRPHAR1_BLK2H C25
T1PTTR1_OPERATE C26
C27
C28
ARCSARC1_OPERATE C29
OR6 OR ARCSARC2_OPERATE C30
ARCSARC3_OPERATE C31
DEFHPDEF1_START B1 O B1 O C32
WPWDE3_START B2 B2 DARREC1_INPRO C33
EFPADM3_START B3 X120_BI1_EXT_OC_BLOCKING C34
B4 X120_BI2_CB_CLOSED C35
B5 X120_BI3_CB_OPENED C36
B6 SEQRFUF1_FUSEF_3PH C37
OR6 SEQRFUF1_FUSEF_U C38
CCRDIF1_FAIL C39
ROVPTOV1_OPERATE B1 O C40
ROVPTOV2_OPERATE B2 C41
OR6 ROVPTOV3_OPERATE B3 C42
B4 C43
WPWDE1_OPERATE B1 O B5 C44
WPWDE2_OPERATE B2 B6 C45
WPWDE3_OPERATE B3 C46
DEFLPDEF1_OPERATE B4 C47
DEFLPDEF2_OPERATE B5 C48
DEFHPDEF1_OPERATE B6 C49
OR6 C50
C51
ARCSARC1_ARC_FLT_DET B1 O C52
ARCSARC2_ARC_FLT_DET B2 C53
OR6 ARCSARC3_ARC_FLT_DET B3 C54
B4 C55
EFPADM1_OPERATE B1 O B5 C56
EFPADM2_OPERATE B2 B6 C57
EFPADM3_OPERATE B3 C58
B4 C59
B5 C60
B6 C61
OR C62
C63
DARREC1_CLOSE_CB B1 O C64
DARREC1_UNSUC_RECL B2

GUID-9B480C8C-BE93-44AF-8875-E05758D8ADEF V2 EN

Figure 188: Disturbance recorder

3.7.3.3 Functional diagrams for condition monitoring

Failures in the current measuring circuits are detected by CCRDIF1. When a


failure is detected, it is used to block current protection functions which measure
the calculated sequence component currents or residual current to avoid
unnecessary operation.

CCRDIF1
BLOCK FAIL CCRDIF1_FAIL
ALARM CCRDIF1_ALARM

GUID-A30F7A43-064F-4FD2-B61A-78C53A6AE05E V1 EN

Figure 189: Current circuit supervision function

The fuse failure supervision function SEQRFUF1 detects failures in the voltage
measurement circuits. Failures, such as an open MCB, raise an alarm.

SEQRFUF1
BLOCK FUSEF_3PH SEQRFUF1_FUSEF_3PH
X120_BI2_CB_CLOSED CB_CLOSED FUSEF_U SEQRFUF1_FUSEF_U
DISCON_OPEN
X110_BI1_MCB_OPENED MINCB_OPEN

GUID-2F8FAD2F-F878-403E-B153-9F9A9FA4BDED V1 EN

Figure 190: Fuse failure supervision function

150 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

The circuit breaker condition monitoring function SSCBR1 supervises the switch
status based on the connected binary input information and the measured current
levels. SSCBR1 introduces various supervision methods.

SSCBR1
BLOCK TRV_T_OP_ALM SSCBR1_TRV_T_OP_ALM
X120_BI3_CB_OPENED POSOPEN TRV_T_CL_ALM SSCBR1_TRV_T_CL_ALM
X120_BI2_CB_CLOSED POSCLOSE SPR_CHR_ALM SSCBR1_SPR_CHR_ALM
CB_OPEN_COMMAND OPEN_CB_EXE OPR_ALM SSCBR1_OPR_ALM
CB_CLOSE_COMMAND CLOSE_CB_EXE OPR_LO SSCBR1_OPR_LO
X110_BI3_GAS_PRESSURE_ALARM PRES_ALM_IN IPOW_ALM SSCBR1_IPOW_ALM
PRES_LO_IN IPOW_LO SSCBR1_IPOW_LO
CB_SPRING_DISCHARGED SPR_CHR_ST CB_LIFE_ALM SSCBR1_CB_LIFE_ALM
X110_BI4_CB_SPRING_CHARGED SPR_CHR MON_ALM SSCBR1_MON_ALM
RST_IPOW PRES_ALM SSCBR1_PRES_ALM
RST_CB_WEAR PRES_LO SSCBR1_PRES_LO
RST_TRV_T OPENPOS
RST_SPR_T INVALIDPOS
CLOSEPOS

GUID-FA39D0B3-73EC-4CE0-924C-C09E47645694 V1 EN

Figure 191: Circuit breaker condition monitoring function

OR6
SSCBR1_TRV_T_OP_ALM B1 O
SSCBR1_TRV_T_CL_ALM B2
SSCBR1_SPR_CHR_ALM B3
SSCBR1_OPR_ALM B4
SSCBR1_OPR_LO B5 OR
SSCBR1_IPOW_ALM B6
B1 O SSCBR1_ALARMS
B2

OR6
SSCBR1_IPOW_LO B1 O
SSCBR1_CB_LIFE_ALM B2
SSCBR1_MON_ALM B3
SSCBR1_PRES_ALM B4
SSCBR1_PRES_LO B5
B6

GUID-A4F15AD3-B2C0-4983-9759-304CFAD5A308 V1 EN

Figure 192: Logic for circuit breaker monitoring alarm

NOT
X110_BI4_CB_SPRING_CHARGED IN OUT CB_SPRING_DISCHARGED

GUID-D5C30CF5-A21D-436A-BFF5-AA48E0BE4256 V1 EN

Figure 193: Logic for start of circuit breaker spring charging

Two separate trip circuit supervision functions are included: TCSSCBR1 for power
output X100:PO3 and TCSSCBR2 for power output X100:PO4. Both functions are
blocked by the Master Trip TRPPTRC1 and TRPPTRC2 and the circuit breaker
open signal.

REF615 151
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

It is assumed that there is no external resistor in the circuit breaker


tripping coil circuit connected in parallel with the circuit breaker
normally open auxiliary contact.

TCSSCBR1
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR1_ALARM

TCSSCBR2
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR2_ALARM

OR
TCSSCBR1_ALARM B1 O TCSSCBR_ALARM
TCSSCBR2_ALARM B2

GUID-58DD6776-004D-4B7C-8F75-A68BBA22EE1D V1 EN

Figure 194: Trip circuit supervision function

OR6
TRPPTRC1_TRIP B1 O TCSSCBR_BLOCKING
TRPPTRC2_TRIP B2
X120_BI3_CB_OPENED B3
B4
B5
B6

GUID-551738DE-408E-4244-861F-335A3D86A8DA V1 EN

Figure 195: Logic for blocking of trip circuit supervision function

3.7.3.4 Functional diagrams for control and interlocking

Two types of disconnector and earthing switch function blocks are available.
DCSXSWI1...3 and ESSXSWI1...2 are status only type, and DCXSWI1...2 and
ESXSWI1 are controllable type. By default, the status only blocks are connected in
standard configuration. The disconnector (CB truck) and line side earthing switch
status information is connected to DCSXSWI1 and ESSXSI1.

DCSXSWI1
X110_BI6_CB_TRUCK_IN_TEST POSOPEN OPENPOS
X110_BI5_CB_TRUCK_IN_SERVICE POSCLOSE CLOSEPOS
OKPOS DCSXSWI1_OKPOS

GUID-7EE30E79-0EE5-4765-A882-92BE768FB3DB V1 EN

Figure 196: Disconnector 1

152 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

ESSXSWI1
X110_BI8_ES1_OPENED POSOPEN OPENPOS ESSXSWI1_OPENPOS
X110_BI7_ES1_CLOSED POSCLOSE CLOSEPOS
OKPOS

GUID-80A3714D-28AB-41ED-909C-8B77D552115A V1 EN

Figure 197: Earthing switch 1

The circuit breaker closing is enabled when the ENA_CLOSE input is activated.
The input can be activated by the configuration logic, which is a combination of
the disconnector or breaker truck and earth-switch position status, status of the trip
logics, gas pressure alarm and circuit-breaker spring charging status.

The OKPOS output from DCSXSWI defines if the disconnector or breaker truck is
definitely either open (in test position) or close (in service position). This output,
together with the open earth-switch and non-active trip signals, activates the close-
enable signal to the circuit breaker control function block. The open operation for
circuit breaker is always enabled.

The ITL_BYPASS input can be used, for example, to always enable the closing of
the circuit breaker when the circuit breaker truck is in the test position.
ITL_BYPASS overrides, for example, active interlocking conditions when the
circuit breaker truck is closed in service position.

CBXCBR1
X120_BI3_CB_OPENED POSOPEN SELECTED CBXCBR1_SELECTED
X120_BI2_CB_CLOSED POSCLOSE EXE_OP CBXCBR1_EXE_OP
TRUE ENA_OPEN EXE_CL CBXCBR1_EXE_CL
CBXCBR1_ENA_CLOSE ENA_CLOSE OPENPOS
FALSE BLK_OPEN CLOSEPOS
CBXCBR1_BLK_CLOSE BLK_CLOSE OKPOS
CBXBCR1_AU_OPEN AU_OPEN OPEN_ENAD
CBXCBR1_AU_CLOSE AU_CLOSE CLOSE_ENAD
ITL_BYPASS

GUID-48200DE5-D086-41E5-A91F-3F4975700417 V1 EN

Figure 198: Circuit breaker control logic: Circuit breaker 1

Connect the additional signals required for the application for


closing and opening of circuit breaker.

OR
CBXCBR1_EXE_CL B1 O CB_CLOSE_COMMAND
DARREC1_CLOSE_CB B2

GUID-D6C245AC-FBC9-4A60-A086-A8F76CCC791E V1 EN

Figure 199: Circuit breaker control logic: Signals for closing coil of circuit
breaker 1

REF615 153
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

OR6
CBXCBR1_EXE_OP B1 O CB_OPEN_COMMAND
TRPPTRC1_TRIP B2
DARREC1_OPEN_CB B3
B4
B5
B6

GUID-ADCCB058-4D03-49FE-B434-C81296BF655D V1 EN

Figure 200: Circuit breaker control logic: Signals for opening coil of circuit
breaker 1

AND6
DCSXSWI1_OKPOS B1 O CBXCBR1_ENA_CLOSE
ESSXSWI1_OPENPOS B2
X110_BI4_CB_SPRING_CHARGED B3
B4
NOT B5
B6
TRPPTRC1_TRIP IN OUT

NOT
TRPPTRC2_TRIP IN OUT

NOT
X110_BI3_GAS_PRESSURE_ALARM IN OUT

GUID-90D8B4C7-0F74-4BD3-9863-6BBD1517457E V1 EN

Figure 201: Circuit breaker close enable logic

Connect the higher-priority conditions which must be set before


enabling the closing of circuit breaker. These conditions cannot be
bypassed using bypass feature of the function.

OR6
T1PTTR1_BLK_CLOSE B1 O CBXCBR1_BLK_CLOSE
B2
B3
B4
B5
B6

GUID-02C2AAA3-BF48-4645-AA7E-F951054AC78A V1 EN

Figure 202: Circuit breaker close blocking logic

The configuration includes the logic for generating circuit breaker external closing
and opening commands with the IED in local or remote mode.

Check the logic for the external circuit breaker closing command
and modify it according to the application.

Connect additional signals for opening and closing of circuit


breaker in local or remote mode, if applicable for the configuration

154 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXCBR1_AU_CLOSE
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-D63AE948-455C-498A-824F-6EF494C57C06 V1 EN

Figure 203: External closing command for circuit breaker 1

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXBCR1_AU_OPEN
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-53BFABFE-E563-4D53-9FE6-891D0865EB54 V1 EN

Figure 204: External opening command for circuit breaker 1

3.7.3.5 Functional diagrams for measurement functions

The phase current inputs to the IED are measured by the three-phase current
measurement function CMMXU1. The current input is connected to the X120 card
in the back panel. The sequence current measurement CSMSQI1 measures the
sequence current and the residual current measurement RESCMMXU1 measures
the residual current.

The three-phase bus side phase voltage inputs to the IED are measured by voltage
measurement function VMMXU1. The voltage input is connected to the X130 card
in the back panel. The sequence voltage measurement VSMSQI1 measures the
sequence voltage and the residual voltage measurement RESVMMXU1 measures
the residual voltage.

The measurements can be seen from the LHMI and they are available under the
measurement option in the menu selection. Based on the settings, function blocks
can generate low alarm or warning and high alarm or warning signals for the
measured current values.

The frequency measurement FMMXU1 of the power system and the three-phase
power measurement PEMMXU1 are available. The load profile function
LDPMSTA1 is included in the measurements sheet. LDPMSTA1 offers the ability
to observe the loading history of the corresponding feeder.

CMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-40AF615B-1FC1-4ACD-9605-8D6DD5DC23C3 V1 EN

Figure 205: Current measurement: Three-phase current measurement

REF615 155
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

CSMSQI1

GUID-6A3F5E6F-1761-48A6-95B3-ED80C4C52230 V1 EN

Figure 206: Current measurement: Sequence current measurement

RESCMMXU1
BLOCK HIGH_ALARM
HIGH_WARN

GUID-069DC247-81C1-42C2-BCDA-B0BF14A689D1 V1 EN

Figure 207: Current measurement: Residual current measurement

VMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-CFCB119A-3804-4ACD-8602-3272972B7A38 V1 EN

Figure 208: Voltage measurement: Three-phase voltage measurement

VSMSQI1

GUID-2C998191-50DF-441F-80A3-88B55A5D5A60 V1 EN

Figure 209: Voltage measurement: Sequence voltage measurement

RESVMMXU1
BLOCK HIGH_ALARM
HIGH_WARN

GUID-8885E482-DAB8-4B05-8B7F-939A6887DE6A V1 EN

Figure 210: Voltage measurement: Residual voltage measurement

FMMXU1

GUID-931EB287-D786-48A3-ABD5-816D18251871 V1 EN

Figure 211: Other measurement: Frequency measurement

PEMMXU1
RSTACM

GUID-BC19323E-D87F-44E4-9931-07947BA99D7B V1 EN

Figure 212: Other measurement: Three-phase power and energy measurement

FLTMSTA1
BLOCK
CB_CLRD

GUID-DECFB7E8-C22C-44CF-9827-96E0D647B727 V1 EN

Figure 213: Other measurement: Data monitoring

156 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

LDPMSTA1
RSTMEM MEM_WARN
MEM_ALARM

GUID-1585F0D5-FC5A-4D1D-BF63-661830AD6291 V1 EN

Figure 214: Other measurement: Load record profile

3.7.3.6 Functional diagrams for I/O and alarm LEDs

X110 (BIO).X110-Input 1 OR
B1 O X110_BI1_MCB_OPENED
B2
X110 (BIO-H).X110-Input 1

X110 (BIO).X110-Input 2 OR
B1 O X110_BI2_RCA_CONTROL
B2
X110 (BIO-H).X110-Input 2

X110 (BIO).X110-Input 3 OR
B1 O X110_BI3_GAS_PRESSURE_ALARM
B2
X110 (BIO-H).X110-Input 3

X110 (BIO).X110-Input 4 OR
B1 O X110_BI4_CB_SPRING_CHARGED
B2
X110 (BIO-H).X110-Input 4

X110 (BIO).X110-Input 5 OR
B1 O X110_BI5_CB_TRUCK_IN_SERVICE
B2
X110 (BIO-H).X110-Input 5

X110 (BIO).X110-Input 6 OR
B1 O X110_BI6_CB_TRUCK_IN_TEST
B2
X110 (BIO-H).X110-Input 6

X110 (BIO).X110-Input 7 OR
B1 O X110_BI7_ES1_CLOSED
B2
X110 (BIO-H).X110-Input 7

X110 (BIO).X110-Input 8 OR
B1 O X110_BI8_ES1_OPENED
B2
X110 (BIO-H).X110-Input 8
GUID-5588E05A-3610-45C9-9CB8-6E63C4CAF64E V1 EN

Figure 215: Binary inputs - X110 terminal block

REF615 157
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

X120_BI1_EXT_OC_BLOCKING
X120 (AIM).X120-Input 1

X120_BI2_CB_CLOSED
X120 (AIM).X120-Input 2

X120_BI3_CB_OPENED
X120 (AIM).X120-Input 3

X120_BI4_RST_LOCKOUT
X120 (AIM).X120-Input 4
GUID-A7C227B5-59D1-4E93-9B61-AAD367D93DC0 V1 EN

Figure 216: Binary inputs - X120 terminal block

UPSTEAM_OC_BLOCKING
X110 (BIO).X110-SO1

TRPPTRC3_TRIP
X110 (BIO-H).X110-HSO1

OC_OPERATE_PULSE
X110 (BIO).X110-SO2

TRPPTRC4_TRIP
X110 (BIO-H).X110-HSO2

EF_OPERATE_PULSE
X110 (BIO).X110-SO3

TRPPTRC5_TRIP
X110 (BIO-H).X110-HSO3
GUID-CBC32DCC-0DC7-4C6A-B3F5-B0CC5FAE5ABA V1 EN

Figure 217: Default binary outputs - X110 terminal block

CB_CLOSE_COMMAND
X100 (PSM).X100-PO1

CCBRBRF1_TRBU
X100 (PSM).X100-PO2

GENERAL_START_PULSE
X100 (PSM).X100-SO1

GENERAL_OPERATE_PULSE
X100 (PSM).X100-SO2

CB_OPEN_COMMAND
X100 (PSM).X100-PO3

TRPPTRC2_TRIP
X100 (PSM).X100-PO4
GUID-9DAF69E3-2710-4480-81ED-C48E03936098 V1 EN

Figure 218: Default binary outputs - X100 terminal block

158 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

LED1
OK
PHxPTOC_OPERATE ALARM
RESET

LED2
OR6
OK
DEFxPDEF_OPERATE B1 O ALARM
EFPADM_OPERATE B2 RESET
WPWDE_OPERATE B3
INTRPTEF1_OPERATE B4
B5
B6

LED3
OR
OK
EFHPTOC1_OPERATE B1 O ALARM
ROVPTOV_OPERATE B2 RESET

LED4
OR
OK
NSPTOC_OPERATE B1 O ALARM
PDNSPTOC1_OPERATE B2 RESET

LED5
OK
T1PTTR1_ALARM ALARM
RESET

GUID-C8CFA43B-974D-4635-BBD3-6EE8F9846A72 V1 EN

REF615 159
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

LED6
OK
CCBRBRF1_TRBU ALARM
RESET

LED7
OK
DISTURB_RECORD_TRIGGERED ALARM
RESET

LED8
OK
SSCBR1_ALARMS ALARM
RESET

LED9
OR6
OK
TCSSCBR_ALARM B1 O ALARM
CCRDIF1_ALARM B2 RESET
SEQRFUF1_FUSEF_3PH B3
SEQRFUF1_FUSEF_U B4
B5
B6

LED10
OK
ARCSARC_OPERATE ALARM
RESET

LED11
OK
DARREC1_INPRO ALARM
RESET

GUID-9C2A6ED2-F200-4F69-8C7A-1FEA8448A058 V1 EN

Figure 219: Default LED connection

3.7.3.7 Functional diagrams for other timer logics

The configuration also includes overcurrent operate and earth-fault operate logic.
The operate logics are connected to the pulse timer TPGAPC for setting the
minimum pulse length for the outputs. The output from TPGAPC is connected to
the binary outputs.
TPGAPC2
PHxPTOC_OPERATE IN1 OUT1 OC_OPERATE_PULSE
IN2 OUT2 EF_OPERATE_PULSE

OR6
DEFxPDEF_OPERATE B1 O
INTRPTEF1_OPERATE B2
EFHPTOC1_OPERATE B3
WPWDE_OPERATE B4
ROVPTOV_OPERATE B5
EFPADM_OPERATE B6

GUID-4EA8A665-E29F-4D10-93D9-DCD0CFDD05EC V1 EN

Figure 220: Timer logic for overcurrent and earth-fault operate pulse

160 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

3.7.3.8 Other functions

The configuration includes few instances of multi-purpose protection function


MAPGAPC, high impedance fault detection function PHIZ, runtime counter
MDSOPT and different types of timers and control functions. These functions are
not included in application configuration but they can be added based on the
system requirements.

3.8 Standard configuration F

3.8.1 Applications

The standard configuration includes directional overcurrent and directional earth-


fault protection with phase voltage based measurement, undervoltage and
overvoltage protection and measurement function. The configuration is mainly
intended for cable and overhead-line feeder applications in directly or resistance
earthed distribution networks. The configuration also includes additional options
for selecting earth-fault protection based on admittance, wattmetric or harmonic-
based principles.

The IED with a standard configuration is delivered from the factory with default
settings and parameters. The end user flexibility for incoming, outgoing and
internal signal designation within the IED enables this configuration to be further
adapted to different primary circuit layouts and the related functionality needs by
modifying the internal functionality using PCM600.

REF615 161
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

3.8.2 Functions
UL1UL2UL3
Uo

REF615 FEEDER PROTECTION AND CONTROL IED STANDARD


CONFIGURATION
F

PROTECTION LOCAL HMI ALSO AVAILABLE


Configuration A

- Disturbance and fault recorders


System
HMI
Time
Authorization

5× - Event log and recorded data


Master Trip I ESC Clear

- High-Speed Output module (optional)


Lockout relay A
O
- IED self-supervision
R
L

94/86
U12 0. 0 kV
P 0.00 kW

- Local/Remote push button on LHMI


Q 0.00 kVAr

IL2 0 A

- User management
I ESC Clear
- Web HMI

AND
I2> I2/I1> 3Ith>F 3I>>> O R

46 46PD 49F 50P/51P


L
OR
3I
3× 3×
ARC 3I>/Io>BF
50L/50NL CONDITION MONITORING COMMUNICATION
51BF/51NBF
AND SUPERVISION
Protocols:
1 1 0 0 1 1 0 0 2× IEC 61850-8-1 1 0
61850-8-1/-9-2LE 1 0 0 0 1 1 0 0 1 1 0 0
1 0 1 1 1 0 0 1 0 3I>→ 3I>>→ 3I2f> 3I FUSEF CBCM Modbus®® 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 0 0
67-1 67-2 68 60 CBCM IEC 60870-5-103 1 0 1 1 0 1 1 0 1 1 0 1 0 0
1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 DNP3 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1
1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 0 1 1 0 1 0 UL1UL2UL3 Interfaces: 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 0 0 Io 1 0 1 1 0 1 1 0 1 1 0 1 0 0
Ethernet: TX (RJ45), FX (LC)
Io Serial: Serial glass fiber (ST),
RS-485, RS-232/485
Io>>
2× D-sub 9, IRIG-B
51N-2
MCS 3I OPTS TCS Redundant protocols:
MCS 3I OPTM TCM HSR
Io PRP
RSTP
Io

Io>→ Io>>→ Io>IEF→ PHIZ
CONTROL AND INDICATION 1) MEASUREMENT
67N-1 67N-2 67NIEF HIZ

Uo - I, U, Io, Uo, P, Q, E, pf, f


Object Ctrl 2)
Ind 3)
3× 3× - Limit value supervision
Yo>→ Po>→ Io>HA CB 1 - - Load profile record
21YN 32N 51NHA - RTD/mA measurement (optional)
DC 2 3
OR OR - Symmetrical components
ES 1 2
1)
Check availability of binary inputs/outputs Analog interface types 1)

from technical documentation Current transformer 4


2)
Control and indication function for

primary object Voltage transformer 5
Uo> 3)
Status indication function for
59G primary object
1)
Conventional transformer inputs

3× 3×
3U< U2> U1< 3U> O→I
UL1UL2UL3 27 47O- 47U+ 59 79

REMARKS
18× Optional 3× No. of Calculated OR Alternative
MAP function instances value function to be
MAP Io/Uo defined when
2xRTD ordering
1xmA

GUID-6130FC3E-1C25-479D-B922-BA263933D048 V1 EN

Figure 221: Functionality overview for standard configuration F

3.8.2.1 Default I/O


REF615 connections
FEEDER PROTECTION AND CONTROL IED STANDARD
CONFIGURATION

Connector
PROTECTION
pins for each input and output are presented in the IED physical
LOCAL HMI
Configuration
System
A

connections section.
HMI
Time
Authorization

I ESC Clear

A
O R
L
U12 0. 0 kV
P 0.00 kW
Q 0.00 kVAr

IL2 0 A

I ESC Clear

AND
O R
L
OR

CONDITION MONITORING COMMUNICATION


AND SUPERVISION
Protocols:
1 1 0 0 1 1 0 0 IEC 61850-8-1 1 0 1 0 0 0 1 1 0 0 1 1 0 0
1 0 1 1 1 0 0 1 0 Modbus® 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 0 0
IEC 60870-5-103 1 0 1 1 0 1 1 0 1 1 0 1 0 0
1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 DNP3 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1
1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 0 1 1 0 1 0 162 Interfaces: REF615
1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0
Ethernet: TX (RJ45), FX (LC)
Serial: Application Manual
Serial glass fiber (ST),
RS-485, RS-232/485
D-sub 9, IRIG-B
Redundant protocols:
HSR
PRP
RSTP

CONTROL AND INDICATION 1) MEASUREMENT


1MRS756378 N Section 3
REF615 standard configurations

Table 36: Default connections for binary inputs


Binary input Description
X110-BI1 MCB open
X110-BI2 Directional earth-fault protection's basic angle control
X110-BI3 Circuit breaker low gas pressure indication
X110-BI4 Circuit breaker spring charged indication
X110-BI5 Circuit breaker truck in (service position) indication
X110-BI6 Circuit breaker truck out (test position) indication
X110-BI7 Earthing switch closed indication
X110-BI8 Earthing switch open indication
X120-BI1 Blocking of overcurrent instantaneous stage
X120-BI2 Circuit breaker closed indication
X120-BI3 Circuit breaker open indication
X120-BI4 Lock-out reset

Table 37: Default connections for binary outputs


Binary output Description
X100-PO1 Close circuit breaker
X100-PO2 Breaker failure backup trip to upstream breaker
X100-SO1 General start indication
X100-SO2 General operate indication
X100-PO3 Open circuit breaker/trip coil 1
X100-PO4 Open circuit breaker/trip coil 2
X110-SO1 Upstream overcurrent blocking
X110-SO2 Overcurrent operate alarm
X110-SO3 Earth-fault operate alarm
X110-SO4 Voltage protection operate alarm
X110-HSO1 Arc protection instance 1 operate activated
X110-HSO2 Arc protection instance 2 operate activated
X110-HSO3 Arc protection instance 3 operate activated

Table 38: Default connections for LEDs


LED Description
1 Overcurrent protection operated
2 Earth-fault protection operated
3 Voltage protection operated
4 Negative sequence overcurrent or phase discontinuity protection operated
5 Thermal overload alarm
6 Circuit breaker failure protection backup protection operated
Table continues on next page

REF615 163
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

LED Description
7 Disturbance recorder triggered
8 Circuit breaker condition monitoring alarm
9 Supervision alarm
10 Arc fault detected
11 Autoreclose in progress

3.8.2.2 Default disturbance recorder settings


Table 39: Default disturbance recorder analog channels
Channel Description
1 IL1
2 IL2
3 IL3
4 Io
5 Uo
6 U1
7 U2
8 U3
9 -
10 -
11 -
12 -

Table 40: Default disturbance recorder binary channels


Channel ID text Level trigger mode
1 DPHLPDOC1 - start Positive or Rising
2 DPHLPDOC2 - start Positive or Rising
3 DPHHPDOC1 - start Positive or Rising
4 PHIPTOC1 - start Positive or Rising
5 NSPTOC1 - start Positive or Rising
6 NSPTOC2 - start Positive or Rising
7 DEFLPDEF1 - start Positive or Rising
EFPADM1 - start
WPWDE1 - start
8 DEFLPDEF2 - start Positive or Rising
EFPADM2 - start
WPWDE2 - start
Table continues on next page

164 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

Channel ID text Level trigger mode


9 DEFLPDEF3 - start Positive or Rising
EFPADM3 - start
WPWDE3 - start
10 INTRPTEF1 - start Positive or Rising
11 EFHPTOC1 - start Positive or Rising
12 PDNSPTOC1 - start Positive or Rising
13 T1PTTR1 - start Positive or Rising
14 PHPTOV1 - start Positive or Rising
15 PHPTOV2 - start Positive or Rising
16 PHPTOV3 - start Positive or Rising
17 PSPTUV1 - trret Positive or Rising
18 NSPTOV1 - trbu Positive or Rising
19 PHPTUV1 - start Positive or Rising
20 PHPTUV2 - start Positive or Rising
21 PHPTUV3 - start Positive or Rising
22 ROVPTOV1 - start Positive or Rising
23 ROVPTOV2 - start Positive or Rising
24 ROVPTOV3 - start Positive or Rising
25 CCBRBRF1 - trret Level trigger off
26 CCBRBRF1 - trbu Level trigger off
27 PHIPTOC1 - operate Level trigger off
DPHHPDOC1 - operate
DPHLPDOC1 - operate
DPHLPDOC2 - operate
28 NSPTOC1 - operate Level trigger off
NSPTOC2 - operate
29 DEFHPDEF1 - operate Level trigger off
DEFLPDEF1 - operate
DEFLPDEF2 - operate
EFPADM1 - operate
EFPADM2 - operate
EFPADM3 - operate
WPWDE1 - operate
WPWDE2 - operate
WPWDE3 - operate
30 INTRPTEF1 - operate Level trigger off
31 EFHPTOC1 - operate Level trigger off
32 PDNSPTOC1 - operate Level trigger off
33 INRPHAR1 - blk2h Level trigger off
Table continues on next page

REF615 165
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Channel ID text Level trigger mode


34 T1PTTR1 - operate Level trigger off
35 PHPTOV1 - operate Level trigger off
PHPTOV2 - operate
PHPTOV3 - operate
36 PHPTUV1 - operate Level trigger off
PHPTUV2 - operate
PHPTUV3 - operate
37 ROVPTOV1 - operate Level trigger off
ROVPTOV2 - operate
ROVPTOV3 - operate
PSPTUV1 - operate
NSPTOV2 - operate
38 SEQRFUF1 - fusef3ph Level trigger off
39 SEQRFUF1 - fusefu Level trigger off
40 CCRDIF1 - fail Level trigger off
41 X120BI1 - ext OC blocking Level trigger off
42 X120BI2 - CB closed Level trigger off
43 X120BI3 - CB opened Level trigger off
44 ARCSARC1 - ARC flt det Level trigger off
ARCSARC2 - ARC flt det
ARCSARC3 - ARC flt det
45 DARREC1 - close CB Level trigger off
DARREC1 - unsuc recl
46 ARCSARC1 - operate Positive or Rising
47 ARCSARC2 - operate Positive or Rising
48 ARCSARC3 - operate Positive or Rising
49 DARREC1 - inpro Level trigger off

3.8.3 Functional diagrams


The functional diagrams describe the default input, output, alarm LED and function-
to-function connections. The default connections can be viewed and changed with
PCM600 according to the application requirements.

The analog channels have fixed connections to the different function blocks inside
the IED’s standard configuration. However, the 12 analog channels available for
the disturbance recorder function are freely selectable as a part of the disturbance
recorder’s parameter settings.

The phase currents to the IED are fed from a current transformer. The residual
current to the IED is fed from either residually connected CTs, an external core
balance CT, neutral CT or internally calculated.

166 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

The phase voltages to the IED are fed from a voltage transformer. The residual
voltage to the IED is fed from either residually connected VTs, an open delta
connected VT or internally calculated.

The IED offers six different settings groups which can be set based on individual
needs. Each group can be activated or deactivated using the setting group settings
available in the IED.

Depending on the communication protocol the required function block needs to be


initiated in the configuration. The Application Configuration tool also includes
fixed Boolean signals TRUE and FALSE which can be used according to the
application needs.

3.8.3.1 Functional diagrams for protection

The functional diagrams describe protection functionality of the IEDs in detail and
according to the factory set default connections.

Four overcurrent stages are offered for overcurrent and short-circuit protection.
Three of them include directional functionality DPHxPDOC. The non-directional
instantaneous stage PHIPTOC1 can be blocked by energizing the binary input
X120: BI1.

PHIPTOC1
X120_BI1_EXT_OC_BLOCKING BLOCK OPERATE PHIPTOC1_OPERATE
ENA_MULT START PHIPTOC1_START

GUID-B10D3E4D-E329-4FBC-9178-166E6E190603 V1 EN

Figure 222: Overcurrent protection function

REF615 167
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

DPHHPDOC1
BLOCK OPERATE DPHHPDOC1_OPERATE
ENA_MULT START DPHHPDOC1_START
NON_DIR

DPHLPDOC1
BLOCK OPERATE DPHLPDOC1_OPERATE
ENA_MULT START DPHLPDOC1_START
NON_DIR

DPHLPDOC2
BLOCK OPERATE DPHLPDOC2_OPERATE
ENA_MULT START DPHLPDOC2_START
NON_DIR

OR6
DPHHPDOC1_OPERATE B1 O DPHxPDOC_OPERATE
DPHLPDOC1_OPERATE B2
DPHLPDOC2_OPERATE B3
B4
B5
B6

GUID-C07091F0-AAEA-403B-A72A-11912CD886C0 V1 EN

Figure 223: Directional overcurrent protection function

The upstream blocking from the start of the directional overcurrent second low
stage DPHLPDOC2 is connected to the binary output X110:SO1. This output can
be used for sending a blocking signal to the relevant overcurrent protection stage of
the IED at the infeeding bay.

OR6
DPHLPDOC2_START B1 O UPSTEAM_OC_BLOCKING
B2
B3
B4
B5
B6

GUID-5EFA1CBD-DC1F-46F0-ABF2-D42054BB7BD7 V1 EN

Figure 224: Upstream blocking logic

The inrush detection block's (INRPHAR1) output BLK2H enables either blocking
the function or multiplying the active settings for any of the available overcurrent
or earth-fault function blocks.

INRPHAR1
BLOCK BLK2H INRPHAR1_BLK2H

GUID-14BD5163-8EB0-4B61-8C4A-0DF50393EBA9 V1 EN

Figure 225: Inrush detector function

Two negative sequence overcurrent stages NSPTOC1 and NSPTOC2 are provided
for phase unbalance protection. These functions are used to protect the feeder

168 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

against phase unbalance. Both the negative sequence overcurrent protections are
blocked in case of detection in failure in secondary circuit of current transformer.

NSPTOC1
CCRDIF1_FAIL BLOCK OPERATE NSPTOC1_OPERATE
ENA_MULT START NSPTOC1_START

NSPTOC2
CCRDIF1_FAIL BLOCK OPERATE NSPTOC2_OPERATE
ENA_MULT START NSPTOC2_START

OR
NSPTOC1_OPERATE B1 O NSPTOC_OPERATE
NSPTOC2_OPERATE B2

GUID-67A842F4-BA87-4B21-A921-35B8447380EE V1 EN

Figure 226: Negative sequence overcurrent protection function

Three stages are provided for directional earth-fault protection. According to the
IED's order code, the directional earth-fault protection method can be based on
conventional directional earth-fault DEFxPDEF only or alternatively together with
admittance criteria EFPADM or wattmetric earth-fault protection WPWDE or
harmonic based earth-fault protection HAEFPTOC. A dedicated protection stage
INTRPTEF is used either for transient-based earth-fault protection or for cable
intermittent earth-fault protection in compensated networks.

The binary input X110:BI2 is intended for controlling directional earth-fault


protection blocks' relay characteristic angle (RCA: 0°, -90°) or operation mode
(IoSinφ, IoCosφ) change. The same input is also available for wattmetric protection.

REF615 169
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

DEFLPDEF1
BLOCK OPERATE DEFLPDEF1_OPERATE
ENA_MULT START DEFLPDEF1_START
X110_BI2_RCA_CONTROL RCA_CTL

DEFLPDEF2
BLOCK OPERATE DEFLPDEF2_OPERATE
ENA_MULT START DEFLPDEF2_START
X110_BI2_RCA_CONTROL RCA_CTL

DEFHPDEF1
BLOCK OPERATE DEFHPDEF1_OPERATE
ENA_MULT START DEFHPDEF1_START
X110_BI2_RCA_CONTROL RCA_CTL

OR6
DEFLPDEF1_OPERATE B1 O DEFxPDEF_OPERATE
DEFLPDEF2_OPERATE B2
DEFHPDEF1_OPERATE B3
B4
B5
B6

GUID-8C13FB21-2ECA-48BC-A73D-CA66853C1E3E V1 EN

Figure 227: Directional earth-fault protection function

INTRPTEF1
BLOCK OPERATE INTRPTEF1_OPERATE
START INTRPTEF1_START
BLK_EF

GUID-D6626AFF-571A-49AC-82A0-10740638CA38 V1 EN

Figure 228: Transient or intermittent earth-fault protection function

170 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

WPWDE1
BLOCK OPERATE WPWDE1_OPERATE
X110_BI2_RCA_CONTROL RCA_CTL START WPWDE1_START

WPWDE2
BLOCK OPERATE WPWDE2_OPERATE
X110_BI2_RCA_CONTROL RCA_CTL START WPWDE2_START

WPWDE3
BLOCK OPERATE WPWDE3_OPERATE
X110_BI2_RCA_CONTROL RCA_CTL START WPWDE3_START

OR6
WPWDE1_OPERATE B1 O WPWDE_OPERATE
WPWDE2_OPERATE B2
WPWDE3_OPERATE B3
B4
B5
B6

GUID-EF2254F3-48A7-47D1-902D-FF03338D0A95 V1 EN

Figure 229: Wattmetric protection function

EFPADM1
BLOCK OPERATE EFPADM1_OPERATE
RELEASE START EFPADM1_START

EFPADM2
BLOCK OPERATE EFPADM2_OPERATE
RELEASE START EFPADM2_START

EFPADM3
BLOCK OPERATE EFPADM3_OPERATE
RELEASE START EFPADM3_START

OR6
EFPADM1_OPERATE B1 O EFPADM_OPERATE
EFPADM2_OPERATE B2
EFPADM3_OPERATE B3
B4
B5
B6

GUID-5DB4A853-DF00-466B-9358-00E320CA00CD V1 EN

Figure 230: Admittance based earth-fault protection function

REF615 171
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

A dedicated non-directional earth-fault protection block EFHPTOC1 protects


against double earth-fault situations in isolated or compensated networks. This
protection function uses the calculated residual current originating from the phase
currents. The function is blocked in case of detection of a failure in secondary
circuit of current transformer.

EFHPTOC1
CCRDIF1_FAIL BLOCK OPERATE EFHPTOC1_OPERATE
ENA_MULT START EFHPTOC1_START

GUID-60E23765-A067-4FEF-961F-64455744F93D V1 EN

Figure 231: Earth-fault protection function

The phase discontinuity protection PDNSPTOC1 protects from interruptions in the


normal three-phase load supply, for example, in downed conductor situations. The
function is blocked in case of detection of a failure in secondary circuit of voltage
transformer.

PDNSPTOC1
CCRDIF1_FAIL BLOCK OPERATE PDNSPTOC1_OPERATE
START PDNSPTOC1_START

GUID-C2943C6D-503D-42E8-B69C-E9D8E7DB69FD V1 EN

Figure 232: Phase discontinuity protection function

The thermal overload protection T1PTTR1 detects overloads under varying load
conditions. The BLK_CLOSE output of the function is used to block the closing
operation of circuit breaker.

T1PTTR1
BLK_OPR OPERATE T1PTTR1_OPERATE
ENA_MULT START T1PTTR1_START
TEMP_AMB ALARM T1PTTR1_ALARM
BLK_CLOSE T1PTTR1_BLK_CLOSE

GUID-D139F760-E980-4005-A357-84775C585A0A V1 EN

Figure 233: Thermal overcurrent protection function

The breaker failure protection CCBRBRF1 is initiated via the START input by a
number of different protection functions available in the IED. The breaker-failure
protection function offers different operating modes associated with the circuit
breaker position and the measured phase and residual currents.

The breaker failure protection function has two operating outputs: TRRET and
TRBU. The TRRET operate output is used for retripping its own breaker through
TRPPTRC2_TRIP. The TRBU output is used to give a backup trip to the breaker
feeding upstream. For this purpose, the TRBU operate output signal is connected to
the binary output X100:PO2.

172 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

CCBRBRF1
OR6 OR6
BLOCK CB_FAULT_AL
PHIPTOC1_OPERATE B1 O B1 O START TRBU CCBRBRF1_TRBU
DPHHPDOC1_OPERATE B2 B2 POSCLOSE TRRET CCBRBRF1_TRRET
DPHLPDOC1_OPERATE B3 B3 CB_FAULT
ARCSARC1_OPERATE B4 B4
ARCSARC2_OPERATE B5 B5
ARCSARC3_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF2_OPERATE B2
WPWDE2_OPERATE B3
WPWDE3_OPERATE B4
EFPADM2_OPERATE B5
EFPADM3_OPERATE B6

X120_BI2_CB_CLOSED
GUID-3E7F088B-7253-451D-949B-28EF578ED260 V1 EN

Figure 234: Circuit breaker failure protection function

Three arc protection stages ARCSARC1...3 are included as an optional function.


The arc protection offers individual function blocks for three arc sensors that can
be connected to the IED. Each arc protection function block has two different
operation modes, that is, with or without the phase and residual current check.

The operate signals from ARCSARC1...3 are connected to both trip logic
TRPPTRC1 and TRPPTRC2. If the IED has been ordered with high speed binary
outputs, the individual operate signals from ARCSARC1...3 are connected to
dedicated trip logic TRPPTRC3...5. The output of TRPPTRC3...5 are available at
high speed outputs X110:HSO1, X110:HSO2 and X110:HSO3.

REF615 173
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

ARCSARC1
BLOCK OPERATE ARCSARC1_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC1_ARC_FLT_DET
OPR_MODE

ARCSARC2
BLOCK OPERATE ARCSARC2_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC2_ARC_FLT_DET
OPR_MODE

ARCSARC3
BLOCK OPERATE ARCSARC3_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC3_ARC_FLT_DET
OPR_MODE

OR6
ARCSARC1_OPERATE B1 O ARCSARC_OPERATE
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-C3947F6D-AECD-4662-ACB3-CA2D5258221B V1 EN

TRPPTRC3
BLOCK TRIP TRPPTRC3_TRIP
ARCSARC1_OPERATE OPERATE CL_LKOUT
X120_BI4_RST_LOCKOUT RST_LKOUT

TRPPTRC4
BLOCK TRIP TRPPTRC4_TRIP
ARCSARC2_OPERATE OPERATE CL_LKOUT
X120_BI4_RST_LOCKOUT RST_LKOUT

TRPPTRC5
BLOCK TRIP TRPPTRC5_TRIP
ARCSARC3_OPERATE OPERATE CL_LKOUT
X120_BI4_RST_LOCKOUT RST_LKOUT

GUID-DD707ABE-A698-47F0-8891-034B35A02E20 V1 EN

Figure 235: Arc protection with dedicated HSO

The optional autorecloser function is configured to be initiated by operate signals


from a number of protection stages through the INIT_1...5 inputs. It is possible
to create individual autoreclose sequences for each input.

The autorecloser function can be inhibited with the INHIBIT_RECL input. By


default, few selected protection function operations are connected to this input. A

174 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

control command to the circuit breaker, either local or remote, also blocks the
autorecloser function via the CBXCBR1-SELECTED signal.

The circuit breaker availability for the autorecloser sequence is expressed with the
CB_READY input in DARREC1. The signal, and other required signals, are
connected to the CB spring charged binary inputs in this configuration. The open
command from the autorecloser is connected directly to binary output X100:PO3,
whereas close command is connected directly to binary output X100:PO1.

Set the parameters for DARREC1 properly.

Check the initialization signals of DARREC1.

DARREC1
PHIPTOC1_OPERATE INIT_1 OPEN_CB DARREC1_OPEN_CB
OR6 DPHHPDOC1_OPERATE INIT_2 CLOSE_CB DARREC1_CLOSE_CB
DPHLPDOC2_OPERATE INIT_3 CMD_WAIT
DEFLPDEF2_OPERATE B1 O INIT_4 INPRO DARREC1_INPRO
EFPADM2_OPERATE B2 INIT_5 LOCKED
WPWDE2_OPERATE B3 INIT_6 PROT_CRD
B4 DEL_INIT_2 UNSUC_RECL DARREC1_UNSUC_RECL
B5 DEL_INIT_3 AR_ON
B6 DEL_INIT_4 READY
BLK_RECL_T ACTIVE
BLK_RCLM_T
BLK_THERM
X120_BI3_CB_OPENED CB_POS
X110_BI4_CB_SPRING_CHARGED CB_READY
OR6 INC_SHOTP
INHIBIT_RECL
DEFHPDEF1_OPERATE B1 O RECL_ON
EFPADM3_OPERATE B2 SYNC
WPWDE3_OPERATE B3
B4
B5
B6

OR6
PDNSPTOC1_OPERATE B1 O
NSPTOC1_OPERATE B2
NSPTOC2_OPERATE B3
CBXCBR1_SELECTED B4
INTRPTEF1_OPERATE B5 OR
X110_BI3_GAS_PRESSURE_ALARM B6
B1 O
B2

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-709680CA-5730-419E-B1AB-9E7C419C3450 V1 EN

Figure 236: Autorecloser function

Three overvoltage and undervoltage protection stages PHxPTOV and PHxPTUV


offer protection against abnormal phase voltage conditions. Positive sequence
undervoltage PSPTUV and negative sequence overvoltage NSPTOV protection
functions enable voltage-based unbalance protection. A failure in the voltage
measuring circuit is detected by the fuse failure function. The activation is
connected to block undervoltage protection functions and voltage based unbalance
protection functions to avoid faulty tripping.

REF615 175
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

PHPTOV1
BLOCK OPERATE PHPTOV1_OPERATE
START PHPTOV1_START

PHPTOV2
BLOCK OPERATE PHPTOV2_OPERATE
START PHPTOV2_START

PHPTOV3
BLOCK OPERATE PHPTOV3_OPERATE
START PHPTOV3_START

OR6
PHPTOV1_OPERATE B1 O PHPTOV_OPERATE
PHPTOV2_OPERATE B2
PHPTOV3_OPERATE B3
B4
B5
B6

GUID-A11EA1D0-3A52-4887-9CC5-3C30268D2988 V1 EN

Figure 237: Overvoltage protection function

PHPTUV1
SEQRFUF1_FUSEF_U BLOCK OPERATE PHPTUV1_OPERATE
START PHPTUV1_START

PHPTUV2
SEQRFUF1_FUSEF_U BLOCK OPERATE PHPTUV2_OPERATE
START PHPTUV2_START

PHPTUV3
SEQRFUF1_FUSEF_U BLOCK OPERATE PHPTUV3_OPERATE
START PHPTUV3_START

OR6
PHPTUV1_OPERATE B1 O PHPTUV_OPERATE
PHPTUV2_OPERATE B2
PHPTUV3_OPERATE B3
B4
B5
B6

GUID-54CEBBC3-C767-4439-8B2E-77B3D78E79AB V1 EN

Figure 238: Undervoltage protection function

176 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

The residual overvoltage protection ROVPTOV provides earth-fault protection by


detecting an abnormal level of residual voltage. It can be used, for example, as a
nonselective backup protection for the selective directional earth-fault functionality.

ROVPTOV1
BLOCK OPERATE ROVPTOV1_OPERATE
START ROVPTOV1_START

ROVPTOV2
BLOCK OPERATE ROVPTOV2_OPERATE
START ROVPTOV2_START

ROVPTOV3
BLOCK OPERATE ROVPTOV3_OPERATE
START ROVPTOV3_START

OR6
ROVPTOV1_OPERATE B1 O ROVPTOV_OPERATE
ROVPTOV2_OPERATE B2
ROVPTOV3_OPERATE B3
B4
B5
B6

GUID-96FB05DC-7A3B-4A22-AA35-1963D950722B V1 EN

Figure 239: Residual voltage protection function

NSPTOV1
SEQRFUF1_FUSEF_U BLOCK OPERATE NSPTOV1_OPERATE
START NSPTOV1_START

GUID-4CDD5E93-A445-40B2-9613-904A3ADFB339 V1 EN

Figure 240: Negative sequence overvoltage protection function

PSPTUV1
SEQRFUF1_FUSEF_U BLOCK OPERATE PSPTUV1_OPERATE
START PSPTUV1_START

GUID-4D2257BB-0968-4E93-9124-BCBBE323AC4B V1 EN

Figure 241: Positive sequence undervoltage protection function

General start and operate from all the functions are connected to pulse timer
TPGAPC1 for setting the minimum pulse length for the outputs. The output from
TPGAPC1 is connected to binary outputs

If a new protection function block to the configuration is added,


check the activation logic and add the connections.

REF615 177
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

OR6 OR6
DPHLPDOC1_START B1 O B1 O
DPHLPDOC2_START B2 B2
DPHHPDOC1_START B3 B3
PHIPTOC1_START B4 B4
NSPTOC1_START B5 B5
NSPTOC2_START B6 B6
TPGAPC1
IN1 OUT1 GENERAL_START_PULSE
IN2 OUT2 GENERAL_OPERATE_PULSE
OR6 OR6 OR6
DEFLPDEF1_START B1 O DPHLPDOC1_OPERATE B1 O B1 O
DEFLPDEF2_START B2 DPHLPDOC2_OPERATE B2 B2
DEFHPDEF1_START B3 DPHHPDOC1_OPERATE B3 B3
INTRPTEF1_START B4 NSPTOC1_OPERATE B4 B4
EFHPTOC1_START B5 NSPTOC2_OPERATE B5 B5
PDNSPTOC1_START B6 PHIPTOC1_OPERATE B6 B6

OR6 OR6
PHPTOV1_START B1 O DEFLPDEF1_OPERATE B1 O
PHPTOV2_START B2 DEFLPDEF2_OPERATE B2
PHPTOV3_START B3 DEFHPDEF1_OPERATE B3
PSPTUV1_START B4 INTRPTEF1_OPERATE B4
NSPTOV1_START B5 EFHPTOC1_OPERATE B5
PHPTUV1_START B6 PDNSPTOC1_OPERATE B6

OR6 OR6
PHPTUV2_START B1 O EFPADM1_OPERATE B1 O
PHPTUV3_START B2 EFPADM2_OPERATE B2
ROVPTOV1_START B3 EFPADM3_OPERATE B3
ROVPTOV2_START B4 ARCSARC1_OPERATE B4
ROVPTOV3_START B5 ARCSARC2_OPERATE B5
B6 ARCSARC3_OPERATE B6

OR6 OR6
EFPADM1_START B1 O PHPTUV1_OPERATE B1 O
EFPADM2_START B2 PHPTUV2_OPERATE B2
EFPADM3_START B3 PHPTUV3_OPERATE B3
WPWDE1_START B4 NSPTOV1_OPERATE B4
WPWDE2_START B5 PSPTUV1_OPERATE B5
WPWDE3_START B6 PHPTOV1_OPERATE B6

OR6
PHPTOV2_OPERATE B1 O
PHPTOV3_OPERATE B2
ROVPTOV1_OPERATE B3
ROVPTOV2_OPERATE B4
ROVPTOV3_OPERATE B5
B6

OR6
WPWDE1_OPERATE B1 O
WPWDE2_OPERATE B2
WPWDE3_OPERATE B3
B4
B5
B6

GUID-2F8D1A94-63C3-49BF-86C7-0D79BAA3B44A V1 EN

Figure 242: General start and operate signals

The operate signals from the protection functions are connected to the two trip
logics TRPPTRC1 and TRPPTRC2. The output of these trip logic functions is
available at binary output X100:PO3 and X100:PO4. The trip logic functions are
provided with a lockout and latching function, event generation and the trip signal
duration setting. If the lockout operation mode is selected, binary input X120:BI4
has been assigned to RST_LKOUT input of both the trip logic to enable external
reset with a push button.

Three other trip logics TRPPTRC3...4 are also available if the IED is ordered with
high speed binary outputs options.

178 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

TRPPTRC1
OR6 OR6
BLOCK TRIP TRPPTRC1_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
DPHLPDOC2_OPERATE B2 B2 RST_LKOUT
DPHHPDOC1_OPERATE B3 B3
DPHLPDOC1_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF1_OPERATE B2
DEFLPDEF2_OPERATE B3
EFPADM1_OPERATE B4
EFPADM2_OPERATE B5
EFPADM3_OPERATE B6

OR6
INTRPTEF1_OPERATE B1 O
EFHPTOC1_OPERATE B2
PDNSPTOC1_OPERATE B3
ROVPTOV1_OPERATE B4
ROVPTOV2_OPERATE B5
ROVPTOV3_OPERATE B6

OR6
WPWDE1_OPERATE B1 O
WPWDE2_OPERATE B2
WPWDE3_OPERATE B3
ARCSARC1_OPERATE B4
ARCSARC2_OPERATE B5
ARCSARC3_OPERATE B6

OR6
PHPTOV1_OPERATE B1 O
PHPTOV2_OPERATE B2
PHPTOV3_OPERATE B3
PSPTUV1_OPERATE B4
NSPTOV1_OPERATE B5
PHPTUV1_OPERATE B6

OR6
PHPTUV2_OPERATE B1 O
PHPTUV3_OPERATE B2
B3
B4
B5
B6

X120_BI4_RST_LOCKOUT
GUID-29A42450-D205-4A90-A1AF-825C44CBE68B V1 EN

Figure 243: Trip logic TRPPTRC1

REF615 179
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

TRPPTRC2
OR6 OR6
BLOCK TRIP TRPPTRC2_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
DPHLPDOC2_OPERATE B2 B2 RST_LKOUT
DPHHPDOC1_OPERATE B3 B3
DPHLPDOC1_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF1_OPERATE B2
DEFLPDEF2_OPERATE B3
EFPADM1_OPERATE B4
EFPADM2_OPERATE B5
EFPADM3_OPERATE B6

OR6
INTRPTEF1_OPERATE B1 O
EFHPTOC1_OPERATE B2
PDNSPTOC1_OPERATE B3
ROVPTOV1_OPERATE B4
ROVPTOV2_OPERATE B5
ROVPTOV3_OPERATE B6

OR6
NSPTOV1_OPERATE B1 O
CCBRBRF1_TRRET B2
WPWDE1_OPERATE B3
WPWDE2_OPERATE B4
WPWDE3_OPERATE B5
PSPTUV1_OPERATE B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
PHPTUV1_OPERATE B4
PHPTUV2_OPERATE B5
PHPTUV3_OPERATE B6

OR6
PHPTOV1_OPERATE B1 O
PHPTOV2_OPERATE B2
PHPTOV3_OPERATE B3
B4
B5
B6

X120_BI4_RST_LOCKOUT
GUID-910DA8E9-69B1-433E-8A29-0AA327F579AE V1 EN

Figure 244: Trip logic TRPPTRC2

3.8.3.2 Functional diagrams for disturbance recorder

The START and the OPERATE outputs from the protection stages are routed to
trigger the disturbance recorder or, alternatively, only to be recorded by the
disturbance recorder depending on the parameter settings. Additionally, the
selected signals from different functions and the few binary inputs are also
connected to the disturbance recorder.

The disturbance recorder main application sheet contains the


disturbance recorder function block and the connections to variables.

Once the order of signals connected to binary inputs of RDRE is


changed, make the changes to the parameter setting tool.

180 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

OR6
DEFLPDEF1_START B1 O
EFPADM1_START B2
WPWDE1_START B3
B4 RDRE1
B5
B6 DPHLPDOC1_START C1 TRIGGERED DISTURB_RECORD_TRIGGERED
OR6 DPHLPDOC2_START C2
DPHHPDOC1_START C3
PHIPTOC1_OPERATE B1 O PHIPTOC1_START C4
DPHHPDOC1_OPERATE B2 NSPTOC1_START C5
DPHLPDOC1_OPERATE B3 OR6 NSPTOC2_START C6
DPHLPDOC2_OPERATE B4 C7
B5 DEFLPDEF2_START B1 O C8
B6 EFPADM2_START B2 C9
WPWDE2_START B3 INTRPTEF1_START C10
B4 EFHPTOC1_START C11
B5 PDNSPTOC1_START C12
B6 T1PTTR1_START C13
OR PHPTOV1_START C14
PHPTOV2_START C15
NSPTOC1_OPERATE B1 O PHPTOV3_START C16
NSPTOC2_OPERATE B2 OR6 PSPTUV1_START C17
NSPTOV1_START C18
DEFHPDEF1_START B1 O PHPTUV1_START C19
EFPADM3_START B2 PHPTUV2_START C20
WPWDE3_START B3 PHPTUV3_START C21
B4 ROVPTOV1_START C22
B5 ROVPTOV2_START C23
OR6 B6 ROVPTOV3_START C24
CCBRBRF1_TRRET C25
DEFHPDEF1_OPERATE B1 O CCBRBRF1_TRBU C26
DEFLPDEF1_OPERATE B2 OR C27
DEFLPDEF2_OPERATE B3 C28
EFPADM1_OPERATE B4 B1 O C29
EFPADM2_OPERATE B5 B2 INTRPTEF1_OPERATE C30
EFPADM3_OPERATE B6 OR6 EFHPTOC1_OPERATE C31
PDNSPTOC1_OPERATE C32
PHPTOV1_OPERATE B1 O INRPHAR1_BLK2H C33
PHPTOV2_OPERATE B2 T1PTTR1_OPERATE C34
PHPTOV3_OPERATE B3 C35
OR6 B4 C36
B5 C37
B1 O B6 SEQRFUF1_FUSEF_3PH C38
WPWDE1_OPERATE B2 SEQRFUF1_FUSEF_U C39
WPWDE2_OPERATE B3 CCRDIF1_FAIL C40
WPWDE3_OPERATE B4 X120_BI1_EXT_OC_BLOCKING C41
B5 X120_BI2_CB_CLOSED C42
B6 OR6 X120_BI3_CB_OPENED C43
C44
PHPTUV1_OPERATE B1 O C45
PHPTUV2_OPERATE B2 ARCSARC1_OPERATE C46
PHPTUV3_OPERATE B3 ARCSARC2_OPERATE C47
B4 ARCSARC3_OPERATE C48
B5 DARREC1_INPRO C49
B6 C50
OR6 C51
C52
ROVPTOV1_OPERATE B1 O C53
ROVPTOV2_OPERATE B2 C54
ROVPTOV3_OPERATE B3 C55
PSPTUV1_OPERATE B4 OR6 C56
NSPTOV1_OPERATE B5 C57
B6 ARCSARC1_ARC_FLT_DET B1 O C58
ARCSARC2_ARC_FLT_DET B2 C59
ARCSARC3_ARC_FLT_DET B3 C60
B4 C61
B5 C62
B6 C63
C64
OR
DARREC1_CLOSE_CB B1 O
DARREC1_UNSUC_RECL B2

GUID-EA71AC89-D293-4E85-9B21-3E36DA2EEFEF V2 EN

Figure 245: Disturbance recorder

3.8.3.3 Functional diagrams for condition monitoring

Failures in current measuring circuits are detected by CCRDIF1. When a failure is


detected, it can be used to block the current protection functions that are measuring
the calculated sequence component currents or residual current to avoid
unnecessary operation.

CCRDIF1
BLOCK FAIL CCRDIF1_FAIL
ALARM CCRDIF1_ALARM

GUID-31249D4E-19AA-42E0-AD46-C6720DD67A53 V1 EN

Figure 246: Current circuit supervision function

The fuse failure supervision SEQRFUF1 detects failures in the voltage


measurement circuits. Failures, such as an open MCB, raise an alarm.

SEQRFUF1
BLOCK FUSEF_3PH SEQRFUF1_FUSEF_3PH
X120_BI2_CB_CLOSED CB_CLOSED FUSEF_U SEQRFUF1_FUSEF_U
DISCON_OPEN
X110_BI1_MCB_OPENED MINCB_OPEN

GUID-83FF05A1-16D5-41C2-BCD2-39A0D7033704 V1 EN

Figure 247: Fuse failure supervision function

REF615 181
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

The circuit breaker condition monitoring function SSCBR1 supervises the switch
status based on the connected binary input information and the measured current
levels. SSCBR1 introduces various supervision methods.

Set the parameters for SSCBR1 properly.

SSCBR1
BLOCK TRV_T_OP_ALM SSCBR1_TRV_T_OP_ALM
X120_BI3_CB_OPENED POSOPEN TRV_T_CL_ALM SSCBR1_TRV_T_CL_ALM
X120_BI2_CB_CLOSED POSCLOSE SPR_CHR_ALM SSCBR1_SPR_CHR_ALM
CB_OPEN_COMMAND OPEN_CB_EXE OPR_ALM SSCBR1_OPR_ALM
CB_CLOSE_COMMAND CLOSE_CB_EXE OPR_LO SSCBR1_OPR_LO
X110_BI3_GAS_PRESSURE_ALARM PRES_ALM_IN IPOW_ALM SSCBR1_IPOW_ALM
PRES_LO_IN IPOW_LO SSCBR1_IPOW_LO
CB_SPRING_DISCHARGED SPR_CHR_ST CB_LIFE_ALM SSCBR1_CB_LIFE_ALM
X110_BI4_CB_SPRING_CHARGED SPR_CHR MON_ALM SSCBR1_MON_ALM
RST_IPOW PRES_ALM SSCBR1_PRES_ALM
RST_CB_WEAR PRES_LO SSCBR1_PRES_LO
RST_TRV_T OPENPOS
RST_SPR_T INVALIDPOS
CLOSEPOS

GUID-C4E153AD-BD5F-429A-BE5F-9E16ED24BF87 V1 EN

Figure 248: Circuit breaker condition monitoring function

OR6
SSCBR1_TRV_T_OP_ALM B1 O
SSCBR1_TRV_T_CL_ALM B2
SSCBR1_SPR_CHR_ALM B3
SSCBR1_OPR_ALM B4
SSCBR1_OPR_LO B5 OR
SSCBR1_IPOW_ALM B6
B1 O SSCBR1_ALARMS
B2

OR6
SSCBR1_IPOW_LO B1 O
SSCBR1_CB_LIFE_ALM B2
SSCBR1_MON_ALM B3
SSCBR1_PRES_ALM B4
SSCBR1_PRES_LO B5
B6

GUID-4A44705A-5C89-4D62-98EC-302D5E20BAB9 V1 EN

Figure 249: Logic for circuit breaker monitoring alarm

182 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

NOT
X110_BI4_CB_SPRING_CHARGED IN OUT CB_SPRING_DISCHARGED

GUID-176F56D4-41CA-4646-AAA1-38E65632D403 V1 EN

Figure 250: Logic for start of circuit breaker spring charging

Two separate trip circuit supervision functions are included: TCSSCBR1 for power
output X100:PO3 and TCSSCBR2 for power output X100:PO4. Both functions are
blocked by the Master Trip TRPPTRC1 and TRPPTRC2 and the circuit breaker
open signal.

It is assumed that there is no external resistor in the circuit breaker


tripping coil circuit connected in parallel with the circuit breaker
normally open auxiliary contact.

Set the parameters for TCSSCBR1 properly.

TCSSCBR1
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR1_ALARM

TCSSCBR2
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR2_ALARM

OR
TCSSCBR1_ALARM B1 O TCSSCBR_ALARM
TCSSCBR2_ALARM B2

GUID-EC7D2528-4B38-4896-897A-7ACB910511A7 V1 EN

Figure 251: Trip circuit supervision function

REF615 183
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

OR6
TRPPTRC1_TRIP B1 O TCSSCBR_BLOCKING
TRPPTRC2_TRIP B2
X120_BI3_CB_OPENED B3
B4
B5
B6

GUID-4B5C2A2D-72E3-4848-B40B-DA6D221A4FAC V1 EN

Figure 252: Logic for blocking of trip circuit supervision

3.8.3.4 Functional diagrams for control and interlocking

Two types of disconnector and earthing switch function blocks are available.
DCSXSWI1...3 and ESSXSWI1...2 are status only type, and DCXSWI1...2 and
ESXSWI1 are controllable type. By default, the status only blocks are connected in
standard configuration. The disconnector (CB truck) and line side earthing switch
status information is connected to DCSXSWI1 and ESSXSI1.

DCSXSWI1
X110_BI6_CB_TRUCK_IN_TEST POSOPEN OPENPOS
X110_BI5_CB_TRUCK_IN_SERVICE POSCLOSE CLOSEPOS
OKPOS DCSXSWI1_OKPOS

GUID-AE989126-B372-4516-B186-C213B50D226B V1 EN

Figure 253: Disconnector control logic

ESSXSWI1
X110_BI8_ES1_OPENED POSOPEN OPENPOS ESSXSWI1_OPENPOS
X110_BI7_ES1_CLOSED POSCLOSE CLOSEPOS
OKPOS

GUID-BE90D4B4-0DFC-4164-B9B4-846AC15E7100 V1 EN

Figure 254: Earth-switch control logic

The circuit breaker closing is enabled when the ENA_CLOSE input is activated.
The input can be activated by the configuration logic, which is a combination of
the disconnector or breaker truck and earth-switch position status, status of the trip
logics, gas pressure alarm and the circuit breaker spring charging status.

The OKPOS output from DCSXSWI defines if the disconnector or breaker truck is
definitely either open (in test position) or close (in service position). This output,
together with the open earth-switch and non-active trip signals, activates the close-
enable signal to the circuit breaker control function block. The open operation for
circuit breaker is always enabled.

The ITL_BYPASS input can be used, for example, to always enable the closing of
the circuit breaker when the circuit breaker truck is in the test position.
ITL_BYPASS overrides, for example, active interlocking conditions when the
circuit breaker truck is closed in service position.

Connect the additional signals required for the application for


closing and opening of circuit breaker.

184 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

CBXCBR1
X120_BI3_CB_OPENED POSOPEN SELECTED CBXCBR1_SELECTED
X120_BI2_CB_CLOSED POSCLOSE EXE_OP CBXCBR1_EXE_OP
TRUE ENA_OPEN EXE_CL CBXCBR1_EXE_CL
CBXCBR1_ENA_CLOSE ENA_CLOSE OPENPOS
FALSE BLK_OPEN CLOSEPOS
CBXCBR1_BLK_CLOSE BLK_CLOSE OKPOS
CBXBCR1_AU_OPEN AU_OPEN OPEN_ENAD
CBXCBR1_AU_CLOSE AU_CLOSE CLOSE_ENAD
ITL_BYPASS

GUID-9A8F2948-56E2-432A-BFDC-9DAD36F414DC V1 EN

Figure 255: Circuit breaker 1 control logic

OR
CBXCBR1_EXE_CL B1 O CB_CLOSE_COMMAND
DARREC1_CLOSE_CB B2

GUID-4A45B0DB-3CB8-4190-BA99-EE2BF15C696D V1 EN

Figure 256: Signal for closing coil of circuit breaker 1

OR6
CBXCBR1_EXE_OP B1 O CB_OPEN_COMMAND
TRPPTRC1_TRIP B2
DARREC1_OPEN_CB B3
B4
B5
B6

GUID-5A234526-696C-4CC5-B39C-387D1AF6D3EB V1 EN

Figure 257: Signal for opening coil of circuit breaker 1

AND6
DCSXSWI1_OKPOS B1 O CBXCBR1_ENA_CLOSE
ESSXSWI1_OPENPOS B2
X110_BI4_CB_SPRING_CHARGED B3
B4
NOT B5
B6
TRPPTRC1_TRIP IN OUT

NOT
TRPPTRC2_TRIP IN OUT

NOT
X110_BI3_GAS_PRESSURE_ALARM IN OUT

GUID-ADC3C9F4-02A8-4B00-8577-66728AE4ADDA V1 EN

Figure 258: Circuit breaker 1 close enable logic

Connect the higher-priority conditions before enabling the closing


of circuit breaker. These conditions cannot be bypassed using
bypass feature of the function.

OR6
T1PTTR1_BLK_CLOSE B1 O CBXCBR1_BLK_CLOSE
B2
B3
B4
B5
B6

GUID-C8D94DD3-DB60-4456-B663-A45877AE2D18 V1 EN

Figure 259: Circuit breaker 1 close blocking logic

REF615 185
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

The configuration includes the logic for generating the circuit breaker external
closing and opening command with the IED in local or remote mode.

Check the logic for the external circuit breaker closing command
and modify it according to the application.

Connect additional signals for opening and closing of circuit


breaker in local or remote mode, if applicable for the configuration.

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXCBR1_AU_CLOSE
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-7ACFCF02-3DAC-4D9F-94AA-641453214106 V1 EN

Figure 260: External closing command for circuit breaker 1

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXBCR1_AU_OPEN
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-D12A66F5-D434-4C12-93C8-6C855C32EBC6 V1 EN

Figure 261: External opening command for circuit breaker 1

3.8.3.5 Functional diagrams for measurement functions

The phase current inputs to the IED are measured by the three-phase current
measurement function CMMXU1. The current input is connected to the X120 card
in the back panel. The sequence current measurement CSMSQI1 measures the
sequence current and the residual current measurement RESCMMXU1 measures
the residual current.

The three-phase bus side phase voltage inputs to the IED are measured by voltage
measurement function VMMXU1. The voltage input is connected to the X130 card
in the back panel. The sequence voltage measurement VSMSQI1 measures the
sequence voltage and the residual voltage measurement RESVMMXU1 measures
the residual voltage.

The measurements can be seen in the LHMI and they are available under the
measurement option in the menu selection. Based on the settings, function blocks
can generate low alarm or warning and high alarm or warning signals for the
measured current values.

186 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

The frequency measurement FMMXU1 of the power system and the three-phase
power measurement PEMMXU1 are available. The load profile function
LDPMSTA1 is included in the measurements sheet. LDPMSTA1 offers the ability
to observe the loading history of the corresponding feeder.

CMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-F102851D-B189-4394-9FD3-C3ED4A1343D7 V1 EN

Figure 262: Current measurement: Three-phase current measurement

CSMSQI1

GUID-C9B80BF2-0589-4041-BE46-D7DC69A33AD3 V1 EN

Figure 263: Current measurement: Sequence current measurement

RESCMMXU1
BLOCK HIGH_ALARM
HIGH_WARN

GUID-11B50582-C98D-4B8B-8981-45B34A38CC7D V1 EN

Figure 264: Current measurement: Residual current measurement

VMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-109D5132-705F-4AC5-8D96-F98590676ED1 V1 EN

Figure 265: Voltage measurement: Three-phase voltage current

VSMSQI1

GUID-28AF2B18-9670-40E9-9745-709FBCC09857 V1 EN

Figure 266: Voltage measurement: Sequence voltage measurement

FMMXU1

GUID-4A7D49A1-D995-468B-B054-59640EA6CCF1 V1 EN

Figure 267: Other measurement: Frequency measurement

PEMMXU1
RSTACM

GUID-9D027EF7-0CE3-4E0B-8B57-3A4392363A46 V1 EN

Figure 268: Other measurement: Three-phase power and energy measurement

REF615 187
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

FLTMSTA1
BLOCK
CB_CLRD

GUID-848C6501-5E08-40FD-823D-11DC11FFAC29 V1 EN

Figure 269: Other measurement: Data monitoring

LDPMSTA1
RSTMEM MEM_WARN
MEM_ALARM

GUID-54D8F3DB-4BF4-4C5D-8FD2-D0C99684F934 V1 EN

Figure 270: Other measurement: Load profile record

188 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

3.8.3.6 Functional diagrams for I/O and alarm LEDs

X110 (BIO).X110-Input 1 OR
B1 O X110_BI1_MCB_OPENED
B2
X110 (BIO-H).X110-Input 1

X110 (BIO).X110-Input 2 OR
B1 O X110_BI2_RCA_CONTROL
B2
X110 (BIO-H).X110-Input 2

X110 (BIO).X110-Input 3 OR
B1 O X110_BI3_GAS_PRESSURE_ALARM
B2
X110 (BIO-H).X110-Input 3

X110 (BIO).X110-Input 4 OR
B1 O X110_BI4_CB_SPRING_CHARGED
B2
X110 (BIO-H).X110-Input 4

X110 (BIO).X110-Input 5 OR
B1 O X110_BI5_CB_TRUCK_IN_SERVICE
B2
X110 (BIO-H).X110-Input 5

X110 (BIO).X110-Input 6 OR
B1 O X110_BI6_CB_TRUCK_IN_TEST
B2
X110 (BIO-H).X110-Input 6

X110 (BIO).X110-Input 7 OR
B1 O X110_BI7_ES1_CLOSED
B2
X110 (BIO-H).X110-Input 7

X110 (BIO).X110-Input 8 OR
B1 O X110_BI8_ES1_OPENED
B2
X110 (BIO-H).X110-Input 8
GUID-7DC22F9C-E131-4AC9-A977-BF120C46FA57 V1 EN

Figure 271: Default binary inputs - X110

REF615 189
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

X120_BI1_EXT_OC_BLOCKING
X120 (AIM).X120-Input 1

X120_BI2_CB_CLOSED
X120 (AIM).X120-Input 2

X120_BI3_CB_OPENED
X120 (AIM).X120-Input 3

X120_BI4_RST_LOCKOUT
X120 (AIM).X120-Input 4
GUID-F44B3FFD-F2E1-4535-8500-EC14611C708E V1 EN

Figure 272: Default binary inputs - X120

UPSTEAM_OC_BLOCKING
X110 (BIO).X110-SO1

TRPPTRC3_TRIP
X110 (BIO-H).X110-HSO1

OC_OPERATE_PULSE
X110 (BIO).X110-SO2

TRPPTRC4_TRIP
X110 (BIO-H).X110-HSO2

EF_OPERATE_PULSE
X110 (BIO).X110-SO3

TRPPTRC5_TRIP
X110 (BIO-H).X110-HSO3

VOLTAGE_OPERATE_PULSE
X110 (BIO).X110-SO4
GUID-B782B1DC-8E73-4E90-8158-193EDA3C3853 V1 EN

Figure 273: Default binary outputs - X110

CB_CLOSE_COMMAND
X100 (PSM).X100-PO1

CCBRBRF1_TRBU
X100 (PSM).X100-PO2

GENERAL_START_PULSE
X100 (PSM).X100-SO1

GENERAL_OPERATE_PULSE
X100 (PSM).X100-SO2

CB_OPEN_COMMAND
X100 (PSM).X100-PO3

TRPPTRC2_TRIP
X100 (PSM).X100-PO4
GUID-7C083BF3-FB82-4E48-8A2F-A0BE05427CFA V1 EN

Figure 274: Default binary outputs - X100

190 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

LED1
OR
OK
DEFxPDEF_OPERATE B1 O ALARM
PHIPTOC1_OPERATE B2 RESET

LED2
OR6
OK
ROVPTOV_OPERATE B1 O ALARM
EFPADM_OPERATE B2 RESET
WPWDE_OPERATE B3
DEFxPDEF_OPERATE B4
INTRPTEF1_OPERATE B5
EFHPTOC1_OPERATE B6

LED3
OR6
OK
NSPTOV1_OPERATE B1 O ALARM
PSPTUV1_OPERATE B2 RESET
PHPTOV_OPERATE B3
PHPTUV_OPERATE B4
B5
B6

LED4
OR
OK
NSPTOC_OPERATE B1 O ALARM
PDNSPTOC1_OPERATE B2 RESET

LED5
OK
T1PTTR1_ALARM ALARM
RESET

GUID-B77B4CBB-88A8-4250-AACE-22612AF0DC0F V1 EN

REF615 191
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

LED6
OK
CCBRBRF1_TRBU ALARM
RESET

LED7
OK
DISTURB_RECORD_TRIGGERED ALARM
RESET

LED8
OK
SSCBR1_ALARMS ALARM
RESET

LED9
OR6
OK
TCSSCBR_ALARM B1 O ALARM
SEQRFUF1_FUSEF_3PH B2 RESET
SEQRFUF1_FUSEF_U B3
CCRDIF1_ALARM B4
B5
B6

LED10
OK
ARCSARC_OPERATE ALARM
RESET

LED11
OK
DARREC1_INPRO ALARM
RESET

GUID-CBB0DDAA-908A-4246-89A5-2DC455656D3C V1 EN

Figure 275: Default LED connection

3.8.3.7 Functional diagrams for other timer logics

The configuration also includes overcurrent operate, earth-fault operate and voltage
operate logic. The operate logics are connected to the pulse timer TPGAPC for
setting the minimum pulse length for the outputs. The output from TPGAPC is
connected to the binary outputs.

192 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

OR TPGAPC2
DPHxPDOC_OPERATE B1 O IN1 OUT1 OC_OPERATE_PULSE
PHIPTOC1_OPERATE B2 IN2 OUT2 EF_OPERATE_PULSE

OR6
DEFxPDEF_OPERATE B1 O
INTRPTEF1_OPERATE B2
EFHPTOC1_OPERATE B3
EFPADM_OPERATE B4
ROVPTOV_OPERATE B5
WPWDE_OPERATE B6

GUID-EF44331E-734B-42A8-90D7-66A4DB74D377 V1 EN

Figure 276: Timer logic for overcurrent and earth-fault operate pulse

OR6 TPGAPC3
PSPTUV1_OPERATE B1 O IN1 OUT1 VOLTAGE_OPERATE_PULSE
NSPTOV1_OPERATE B2 IN2 OUT2
PHPTUV_OPERATE B3
PHPTOV_OPERATE B4
B5
B6

GUID-740AB999-1C05-4A9D-A011-724779CB517B V1 EN

Figure 277: Timer logic for voltage operate pulse

3.8.3.8 Other functions

The configuration includes few instances of multi-purpose protection function


MAPGAPC, high impedance fault detection function PHIZ, runtime counter
MDSOPT and different types of timers and control functions. These functions are
not included in application configuration but they can be added based on the
system requirements.

3.9 Standard configuration G

3.9.1 Applications
The standard configuration includes directional overcurrent and directional earth-
fault protection, undervoltage and overvoltage protection, frequency protection and
measurement function. The configuration is mainly intended for cable and overhead-
line feeder applications in direct or resistance-earthed distributed networks. The
configuration also includes additional options for selecting earth-fault protection
based on admittance and wattmetric principles.

The IED with a standard configuration is delivered from the factory with default
settings and parameters. The end user flexibility for incoming, outgoing and
internal signal designation within the IED enables this configuration to be further
adapted to different primary circuit layouts and the related functionality needs by
modifying the internal functionality using PCM600.

REF615 193
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

3.9.2 Functions

REF615 FEEDER PROTECTION AND CONTROL IED STANDARD


CONFIGURATION
G

PROTECTION LOCAL HMI ALSO AVAILABLE


Configuration A

- Disturbance and fault recorders


System
HMI
Time
Authorization

5× - Event log and recorded data


Master Trip I ESC Clear

- High-Speed Output module (optional)


Lockout relay A
O
- IED self-supervision
R
L

94/86
U12 0. 0 kV
P 0.00 kW

- Local/Remote push button on LHMI


Q 0.00 kVAr

IL2 0 A

- User management
I ESC Clear
- Web HMI

AND
I2> I2/I1> 3Ith>F 3I>>> O R

46 46PD 49F 50P/51P


L
OR
3I
3× 3×
ARC 3I>/Io>BF
50L/50NL CONDITION MONITORING COMMUNICATION
51BF/51NBF
AND SUPERVISION
Protocols:
2× IEC 61850-8-1 1 0
61850-8-1/-9-2LE 1 0 0 0 1 1 0 0 1 1 0 0
3I>→ 3I>>→ 3I2f> 3I FUSEF CBCM Modbus®® 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 1 0 0 1 1 1 0 1 1 0 1 0
67-1 67-2 68 60 CBCM IEC 60870-5-103 1 0 1 1 0 1 1 0 1 1 0 1 0 0
DNP3 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1
UL1UL2UL3 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
Interfaces: 1 1 0 0 1 1 1 0 1 1 0 1 0
Io 1 0 1 1 0 1 1 0 1 1 0 1 0 0
Ethernet: TX (RJ45), FX (LC)
UL1UL2UL3

Io Serial: Serial glass fiber (ST),



RS-485, RS-232/485
Io>> MCS 3I OPTS TCS
D-sub 9, IRIG-B
51N-2 MCS 3I OPTM TCM
Redundant protocols:
HSR
PRP
Io RSTP
Io

Io>→ Io>>→ PHIZ
CONTROL AND INDICATION 1) MEASUREMENT
67N-1 67N-2 HIZ
- I, U, Io, Uo, P, Q, E, pf, f
Object Ctrl 2)
Ind 3)
3× 3× - Limit value supervision
Yo>→ Po>→ CB 1 - - Load profile record
21YN 32N - Symmetrical components
DC 2 3
OR
ES 1 2
1)
Check availability of binary inputs/outputs Analog interface types 1)

from technical documentation Current sensor 3


2)
Control and indication function for
3× primary object Voltage sensor 3
Uo> 3)
Status indication function for
59G primary object Current transformer 1
Uo 1)
Combi sensor inputs with conventional
Io input

3× 3×
3U< U2> U1< 3U> O→I
27 47O- 47U+ 59 79

REMARKS
18× Optional 3× No. of Calculated OR Alternative
MAP function instances value function to be
MAP Io/Uo defined when
ordering

GUID-3524788E-FDB0-4425-9949-C5CBD1301E75 V1 EN

Figure 278: Functionality overview for standard configuration G

3.9.2.1 Default I/O connections


REF615 FEEDER PROTECTION AND CONTROL IED STANDARD
CONFIGURATION

Connector
PROTECTION
pins for each input and output are presented in the IED physical
LOCAL HMI
connections section. Configuration
System
HMI
Time
Authorization
A

I ESC Clear

A
O R
L
U12 0. 0 kV
P 0.00 kW
Q 0.00 kVAr

IL2 0 A

I ESC Clear

AND
O R
L
OR

CONDITION MONITORING COMMUNICATION


AND SUPERVISION
Protocols:
IEC 61850-8-1 1 0 1 0 0 0 1 1 0 0 1 1 0 0
Modbus® 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
1 1 0 0 1 1 1 0 1 1 0 1 0
IEC 60870-5-103 1 0 1 1 0 1 1 0 1 1 0 1 0 0
194 DNP3 REF615
1
1
0
0
1
1
0
1
0
0
0
0
1
1
1
0
0
1
0
1
1
1
1
0
0
0
0 1 0 1 0 0 0 1 1
1 0
Interfaces: Application Manual
1
1
1
0
0
1
0
1
1
0
1
1
1
1
0
0
1
1
1
1
0
0
1
1
0
0 0
Ethernet: TX (RJ45), FX (LC)
Serial: Serial glass fiber (ST),
RS-485, RS-232/485
D-sub 9, IRIG-B
Redundant protocols:
HSR
PRP
RSTP

CONTROL AND INDICATION 1) MEASUREMENT


1MRS756378 N Section 3
REF615 standard configurations

Table 41: Default connections for binary inputs


Binary input Description
X110-BI1 Circuit breaker closed indication
X110-BI2 Circuit breaker open indication
X110-BI3 Circuit breaker low gas pressure indication
X110-BI4 Circuit breaker spring charged indication
X110-BI5 Circuit breaker truck in (service position) indication
X110-BI6 Circuit breaker truck out (test position) indication
X110-BI7 Earthing switch closed indication
X110-BI8 Earthing switch open indication

Table 42: Default connections for binary outputs


Binary output Description
X100-PO1 Close circuit breaker
X100-PO2 Breaker failure backup trip to upstream breaker
X100-SO1 General start indication
X100-SO2 General operate indication
X100-PO3 Open circuit breaker/trip coil 1
X100-PO4 Open circuit breaker/trip coil 2
X110-SO1 Upstream overcurrent blocking
X110-SO2 Overcurrent operate alarm
X110-SO3 Earth-fault operate alarm
X110-SO4 Voltage protection operate alarm
X110-HSO1 Arc protection instance 1 operate activated
X110-HSO2 Arc protection instance 2 operate activated
X110-HSO3 Arc protection instance 3 operate activated

Table 43: Default connections for LEDs


LED Description
1 Overcurrent protection operated
2 Earth-fault protection operated
3 Voltage protection operated
4 Negative sequence overcurrent or phase discontinuity protection operated
5 Thermal overload alarm
6 Circuit breaker failure protection backup protection operated
7 Disturbance recorder triggered
8 Circuit breaker condition monitoring alarm
9 Supervision alarm
10 Arc fault detected
11 Autoreclose in progress

REF615 195
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

3.9.2.2 Default disturbance recorder settings


Table 44: Default disturbance recorder analog channels
Channel Description
1 IL1
2 IL2
3 IL3
4 Io
5 U1
6 U2
7 U3
8 -
9 -
10 -
11 -
12 -

Table 45: Default disturbance recorder binary channels


Channel ID text Level trigger mode
1 DPHLPDOC1 - start Positive or Rising
2 DPHLPDOC2 - start Positive or Rising
3 DPHHPDOC1 - start Positive or Rising
4 PHIPTOC1 - start Positive or Rising
5 NSPTOC1 - start Positive or Rising
6 NSPTOC2 - start Positive or Rising
7 DEFLPDEF1 - start Positive or Rising
EFPADM1 - start
WPWDE1 - start
8 DEFLPDEF2 - start Positive or Rising
EFPADM2 - start
WPWDE2 - start
9 DEFLPDEF3 - start Positive or Rising
EFPADM3 - start
WPWDE3 - start
10 EFHPTOC1 - start Positive or Rising
11 PDNSPTOC1 - start Positive or Rising
12 T1PTTR1 - start Positive or Rising
13 PHPTOV1 - start Positive or Rising
14 PHPTOV2 - start Positive or Rising
15 PHPTOV3 - start Positive or Rising
Table continues on next page

196 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

Channel ID text Level trigger mode


16 PSPTUV1 - trret Positive or Rising
17 NSPTOV1 - trbu Positive or Rising
18 PHPTUV1 - start Positive or Rising
19 PHPTUV2 - start Positive or Rising
20 PHPTUV3 - start Positive or Rising
21 ROVPTOV1 - start Positive or Rising
22 ROVPTOV2 - start Positive or Rising
23 ROVPTOV3 - start Positive or Rising
24 CCBRBRF1 - trret Level trigger off
25 CCBRBRF1 - trbu Level trigger off
26 PHIPTOC1 - operate Level trigger off
PHHPTOC1 - operate
DPHLPDOC1 - operate
DPHLPDOC2 - operate
27 NSPTOC1 - operate Level trigger off
NSPTOC2 - operate
28 DEFHPDEF1 - operate Level trigger off
DEFLPDEF1 - operate
DEFLPDEF2 - operate
EFPADM1 - operate
EFPADM2 - operate
EFPADM3 - operate
WPWDE1 - operate
WPWDE2 - operate
WPWDE3 - operate
29 EFHPTOC1 - operate Level trigger off
30 PDNSPTOC1 - operate Level trigger off
31 INRPHAR1 - blk2h Level trigger off
32 T1PTTR1 - operate Level trigger off
33 PHPTOV1 - operate Level trigger off
PHPTOV2 - operate
PHPTOV3 - operate
34 PHPTUV1 - operate Level trigger off
PHPTUV2 - operate
PHPTUV3 - operate
Table continues on next page

REF615 197
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Channel ID text Level trigger mode


35 ROVPTOV1 - operate Level trigger off
ROVPTOV2 - operate
ROVPTOV3 - operate
PSPTUV1 - operate
NSPTOV2 - operate
36 SEQRFUF1 - fusef3ph Level trigger off
37 SEQRFUF1 - fusefu Level trigger off
38 CCRDIF1 - fail Level trigger off
39 X110BI1 - CB closed Level trigger off
40 X110BI2 - CB opened Level trigger off
41 ARCSARC1 - ARC flt det Level trigger off
ARCSARC2 - ARC flt det
ARCSARC3 - ARC flt det
42 ARCSARC1 - operate Level trigger off
43 ARCSARC2 - operate Level trigger off
44 ARCSARC3 - operate Level trigger off
45 DARREC1 - inpro Level trigger off
46 DARREC1 - close CB Positive or Rising
47 DARREC1 - unsuc recl Positive or Rising

3.9.2.3 Sensor settings

This chapter gives short examples on how to define the correct parameters for
sensors. See the technical manual for detailed information about sensor settings.

Sensors have corrections factors, measured and verified by the


sensor manufacturer, to increase the measurement accuracy of
primary values. Correction factors are recommended to be set. Two
types of correction factors are available for voltage and rogowski
sensors. The Amplitude correction factor is named Amplitude corr.
A(B/C) and Angle correction factor is named Angle corr A(B/C).
These correction factors can be found on the Sensor's rating plate. If
the correction factors are not available, contact the sensor
manufacturer for more information.

Rogowski sensor setting example


In this example, an 80 A/0.150 V at 50 Hz sensor is used and the application has a
150 A nominal current (In). As the Rogowski sensor is linear and does not saturate,
the 80 A/0.150 V at 50 Hz sensor also works as a 150 A/0.28125 V at 50 Hz
sensor. When defining another primary value for the sensor, also the nominal

198 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

voltage has to be redefined to maintain the same transformation ratio. However, the
setting in the IED (Rated Secondary Value) is not in V but in mV/Hz, which makes
the same setting value valid for both 50 and 60 Hz nominal frequency.

In
× Kr
I pr
RSV =
fn
GUID-6A480073-5C35-4319-8B38-402608D4C098 V2 EN

RSV Rated Secondary Value in mV/Hz


In Application nominal current

Ipr Sensor-rated primary current

fn Network nominal frequency

Kr Sensor-rated voltage at the rated current in mV

In this example, the value is as calculated using the equation.

150 A
× 150mV
80 A mV
= 5.625
50Hz Hz
GUID-13DE42A0-29C0-4FE0-B00B-1215B37E3B7B V2 EN

With this information, the IED Rogowski sensor settings can be set.

Table 46: Example setting values for rogowski sensor


Setting Value
Primary current 150 A
Rated secondary value 5.625 mV/Hz
Nominal current 150 A

Unless otherwise specified, the Nominal Current setting should


always be the same as the Primary Current setting.

Voltage sensor setting example


The voltage sensor is based on the resistive divider or capacitive divider principle.
Therefore, the voltage is linear throughout the whole measuring range. The output
signal is a voltage, directly proportional to the primary voltage. For the voltage
sensor all parameters are readable directly from its rating plate and conversions are
not needed.

In this example the system phase-to-phase voltage rating is 10 kV. Thus, the
Primary voltage parameter is set to 10 kV. For IEDs with sensor measurement
support the Voltage input type is always set to “CVD sensor” and it cannot be

REF615 199
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

changed. The same applies for the VT connection parameter which is always set to
“WYE” type. The division ratio for ABB voltage sensors is most often 10000:1.
Thus, the Division ratio parameter is usually set to “10000”. The primary voltage is
proportionally divided by this division ratio.

Table 47: Example setting values for voltage sensor


Setting Value
Primary voltage 10 kV
VT connection Wye
Voltage input type 3=CVD sensor
Division ratio 10000

3.9.3 Functional diagrams


The functional diagrams describe the default input, output, alarm LED and function-
to-function connections. The default connections can be viewed and changed with
PCM600 according to the application requirements.

The analog channels have fixed connections to the different function blocks inside
the IED’s standard configuration. However, the 12 analog channels available for
the disturbance recorder function are freely selectable as a part of the disturbance
recorder’s parameter settings.

The phase currents to the IED are fed from Rogowski or Combi sensors. The
residual current to the IED is fed from either residually connected CTs, an external
core balance CT, neutral CT or internally calculated.

The phase voltages to the IED are fed from Combi sensors. The residual voltage is
internally calculated.

The IED offers six different settings groups which can be set based on individual
needs. Each group can be activated or deactivated using the setting group settings
available in the IED.

Depending on the communication protocol the required function block needs to be


initiated in the configuration. The Application Configuration tool also includes
fixed Boolean signals TRUE and FALSE which can be used according to the
application needs.

3.9.3.1 Functional diagrams for protection

The functional diagrams describe the protection functionality of the IEDs in detail
and according to the factory set default connections.

Four overcurrent stages are offered for overcurrent and short-circuit protection.
Three of them include directional functionality DPHxPDOC.

200 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

PHIPTOC1
BLOCK OPERATE PHIPTOC1_OPERATE
ENA_MULT START PHIPTOC1_START

GUID-9E341F53-8AB2-4A2C-B776-B26D19CAB8F9 V1 EN

Figure 279: Overcurrent protection function

DPHHPDOC1
BLOCK OPERATE DPHHPDOC1_OPERATE
ENA_MULT START DPHHPDOC1_START
NON_DIR

DPHLPDOC1
BLOCK OPERATE DPHLPDOC1_OPERATE
ENA_MULT START DPHLPDOC1_START
NON_DIR

DPHLPDOC2
BLOCK OPERATE DPHLPDOC2_OPERATE
ENA_MULT START DPHLPDOC2_START
NON_DIR

OR6
DPHHPDOC1_OPERATE B1 O DPHxPDOC_OPERATE
DPHLPDOC1_OPERATE B2
DPHLPDOC2_OPERATE B3
B4
B5
B6

GUID-C39AC382-EF6F-42D4-9F57-A295796FE592 V1 EN

Figure 280: Directional overcurrent protection function

The upstream blocking from the start of the directional overcurrent second low
stage DPHLPDOC2 is connected to the binary output X110:SO1. This output can
be used for sending a blocking signal to the relevant overcurrent protection stage of
the IED at the infeeding bay.

OR6
DPHLPDOC2_START B1 O UPSTEAM_OC_BLOCKING
B2
B3
B4
B5
B6

GUID-AAA165D7-458D-41C8-9691-E402B65ADC68 V1 EN

Figure 281: Upstream blocking logic

The inrush detection block's (INRPHAR1) output BLK2H enables either blocking
the function or multiplying the active settings for any of the available overcurrent
or earth-fault function blocks.

REF615 201
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

INRPHAR1
BLOCK BLK2H INRPHAR1_BLK2H

GUID-48CCCD5A-6F4F-4FF7-9D75-85E2B0DDD8A9 V1 EN

Figure 282: Inrush detector function

Two negative sequence overcurrent stages NSPTOC1 and NSPTOC2 are provided
for phase unbalance protection. These functions are used to protect the feeder
against phase unbalance. Both negative sequence overcurrent protections are
blocked in case of detection in failure in secondary circuit of sensor.

NSPTOC1
CCRDIF1_FAIL BLOCK OPERATE NSPTOC1_OPERATE
ENA_MULT START NSPTOC1_START

NSPTOC2
CCRDIF1_FAIL BLOCK OPERATE NSPTOC2_OPERATE
ENA_MULT START NSPTOC2_START

OR
NSPTOC1_OPERATE B1 O NSPTOC_OPERATE
NSPTOC2_OPERATE B2

GUID-863218A0-49A4-400F-A05E-8E9954E4B722 V1 EN

Figure 283: Negative sequence overcurrent protection function

Three stages are provided for directional earth-fault protection. According to the
IED's order code, the directional earth-fault protection method can be based on
conventional directional earth-fault DEFxPDEF only or alternatively together with
admittance criteria EFPADM or wattmetric earth-fault protection WPWDE.

202 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

DEFLPDEF1
BLOCK OPERATE DEFLPDEF1_OPERATE
ENA_MULT START DEFLPDEF1_START
RCA_CTL

DEFLPDEF2
BLOCK OPERATE DEFLPDEF2_OPERATE
ENA_MULT START DEFLPDEF2_START
RCA_CTL

DEFHPDEF1
BLOCK OPERATE DEFHPDEF1_OPERATE
ENA_MULT START DEFHPDEF1_START
RCA_CTL

OR6
DEFLPDEF1_OPERATE B1 O DEFxPDEF_OPERATE
DEFLPDEF2_OPERATE B2
DEFHPDEF1_OPERATE B3
B4
B5
B6

GUID-E9F9F318-12D1-498E-AAE8-31E3EF90FA40 V1 EN

Figure 284: Directional earth-fault protection functions

WPWDE1
BLOCK OPERATE WPWDE1_OPERATE
RCA_CTL START WPWDE1_START

WPWDE2
BLOCK OPERATE WPWDE2_OPERATE
RCA_CTL START WPWDE2_START

WPWDE3
BLOCK OPERATE WPWDE3_OPERATE
RCA_CTL START WPWDE3_START

OR6
WPWDE1_OPERATE B1 O WPWDE_OPERATE
WPWDE2_OPERATE B2
WPWDE3_OPERATE B3
B4
B5
B6

GUID-E3BBF010-632D-4742-A8D0-1F46ABE54DA2 V1 EN

Figure 285: Wattmetric protection function

REF615 203
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

EFPADM1
BLOCK OPERATE EFPADM1_OPERATE
RELEASE START EFPADM1_START

EFPADM2
BLOCK OPERATE EFPADM2_OPERATE
RELEASE START EFPADM2_START

EFPADM3
BLOCK OPERATE EFPADM3_OPERATE
RELEASE START EFPADM3_START

OR6
EFPADM1_OPERATE B1 O EFPADM_OPERATE
EFPADM2_OPERATE B2
EFPADM3_OPERATE B3
B4
B5
B6

GUID-80B32305-038A-4261-AF02-E3E0884E5070 V1 EN

Figure 286: Admittance based earth-fault protection function

A dedicated non-directional earth-fault protection block EFHPTOC1 protects


against double earth-fault situations in isolated or compensated networks. This
protection function uses the calculated residual current originating from the phase
currents. Function is blocked in case of detection of a failure in secondary circuit of
sensor.

EFHPTOC1
CCRDIF1_FAIL BLOCK OPERATE EFHPTOC1_OPERATE
ENA_MULT START EFHPTOC1_START

GUID-AD3B6BA3-857E-44BF-9739-2F1D1AADA63B V1 EN

Figure 287: Earth-fault protection function

The phase discontinuity protection PDNSPTOC1 protects for interruptions in the


normal three-phase load supply, for example, in downed conductor situations. The
function is blocked in case of detection of a failure in secondary circuit of sensor.

PDNSPTOC1
CCRDIF1_FAIL BLOCK OPERATE PDNSPTOC1_OPERATE
START PDNSPTOC1_START

GUID-A735E86D-1AB7-44FE-B59D-A83FF8EC8362 V1 EN

Figure 288: Phase discontinuity protection function

The thermal overload protection T1PTTR1 detects overloads under varying load
conditions. The BLK_CLOSE output of the function is used to block the closing
operation of circuit breaker.

204 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

T1PTTR1
BLK_OPR OPERATE T1PTTR1_OPERATE
ENA_MULT START T1PTTR1_START
TEMP_AMB ALARM T1PTTR1_ALARM
BLK_CLOSE T1PTTR1_BLK_CLOSE

GUID-0B72F2EB-41EF-44CD-9DD4-CA416DFBF0CB V1 EN

Figure 289: Thermal overcurrent protection function

The breaker failure protection CCBRBRF1 is initiated via the START input by
number of different protection functions available in the IED. The breaker failure
protection function offers different operating modes associated with the circuit
breaker position and the measured phase and residual currents.

The breaker failure protection function has two operating outputs: TRRET and
TRBU. The TRRET operate output is used for retripping its own breaker through
TRPPTRC2_TRIP. The TRBU output gives a backup trip to the breaker feeding
upstream. For this purpose, the TRBU operate output signal is connected to the
binary output X100:PO2.
CCBRBRF1
OR6 OR6
BLOCK CB_FAULT_AL
PHIPTOC1_OPERATE B1 O B1 O START TRBU CCBRBRF1_TRBU
DPHHPDOC1_OPERATE B2 B2 POSCLOSE TRRET CCBRBRF1_TRRET
DPHLPDOC1_OPERATE B3 B3 CB_FAULT
DPHLPDOC2_OPERATE B4 B4
EFPADM2_OPERATE B5 B5
EFPADM3_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF2_OPERATE B2
WPWDE2_OPERATE B3
WPWDE3_OPERATE B4
ARCSARC1_OPERATE B5
ARCSARC2_OPERATE B6

ARCSARC3_OPERATE

X110_BI1_CB_CLOSED
GUID-89971B6B-6846-4ADA-B9D0-D0130A01832F V1 EN

Figure 290: Circuit breaker failure protection function

Three arc protection ARCSARC1...3 stages are included as an optional function.


The arc protection offers individual function blocks for three arc sensors that can
be connected to the IED. Each arc protection function block has two different
operation modes, that is, with or without the phase and residual current check.

The operate signals from ARCSARC1...3 are connected to both trip logic
TRPPTRC1 and TRPPTRC2. If the IED has been ordered with high speed binary
outputs, the individual operate signals from ARCSARC1...3 are connected to
dedicated trip logic TRPPTRC3...5. The output of TRPPTRC3...5 are available at
high speed outputs X110:HSO1, X110:HSO2 and X110:HSO3.

REF615 205
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

ARCSARC1
BLOCK OPERATE ARCSARC1_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC1_ARC_FLT_DET
OPR_MODE

ARCSARC2
BLOCK OPERATE ARCSARC2_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC2_ARC_FLT_DET
OPR_MODE

ARCSARC3
BLOCK OPERATE ARCSARC3_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC3_ARC_FLT_DET
OPR_MODE

OR6
ARCSARC1_OPERATE B1 O ARCSARC_OPERATE
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-ED05940B-2DF0-461C-A159-6E51FC0256CD V1 EN

TRPPTRC3
BLOCK TRIP TRPPTRC3_TRIP
ARCSARC1_OPERATE OPERATE CL_LKOUT
RST_LKOUT

TRPPTRC4
BLOCK TRIP TRPPTRC4_TRIP
ARCSARC2_OPERATE OPERATE CL_LKOUT
RST_LKOUT

TRPPTRC5
BLOCK TRIP TRPPTRC5_TRIP
ARCSARC3_OPERATE OPERATE CL_LKOUT
RST_LKOUT

GUID-A416CC7A-EB4B-46CE-9700-BFDD3ECC6C40 V1 EN

Figure 291: Arc protection with dedicated HSO

The optional autorecloser function is configured to be initiated by operate signals


from a number of protection stages through the INIT_1...5 inputs. It is possible
to create individual autoreclose sequences for each input.

The autorecloser function can be inhibited with the INHIBIT_RECL input. By


default, few selected protection function operations are connected to this input. A

206 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

control command to the circuit breaker, either local or remote, also blocks the
autorecloser function via the CBXCBR1-SELECTED signal.

The circuit breaker availability for the autorecloser sequence is expressed with the
CB_READY input in DARREC1. The signal, and other required signals, are
connected to the CB spring charged binary inputs in this configuration. The open
command from the autorecloser is connected directly to binary output X100:PO3,
whereas the close command is connected directly to binary output X100:PO1.

Set parameters for the DARREC1 function.

Check the initialization signals of DARREC1.

DARREC1
PHIPTOC1_OPERATE INIT_1 OPEN_CB DARREC1_OPEN_CB
OR6 DPHHPDOC1_OPERATE INIT_2 CLOSE_CB DARREC1_CLOSE_CB
DPHLPDOC2_OPERATE INIT_3 CMD_WAIT
DEFLPDEF2_OPERATE B1 O INIT_4 INPRO DARREC1_INPRO
EFPADM2_OPERATE B2 INIT_5 LOCKED
WPWDE2_OPERATE B3 INIT_6 PROT_CRD
B4 DEL_INIT_2 UNSUC_RECL DARREC1_UNSUC_RECL
B5 DEL_INIT_3 AR_ON
B6 DEL_INIT_4 READY
BLK_RECL_T ACTIVE
BLK_RCLM_T
BLK_THERM
X110_BI2_CB_OPENED CB_POS
X110_BI4_CB_SPRING_CHARGED CB_READY
OR6 INC_SHOTP
INHIBIT_RECL
DEFHPDEF1_OPERATE B1 O RECL_ON
EFPADM3_OPERATE B2 SYNC
WPWDE3_OPERATE B3
B4
B5
B6

OR6
PDNSPTOC1_OPERATE B1 O
NSPTOC1_OPERATE B2
NSPTOC2_OPERATE B3
CBXCBR1_SELECTED B4
X110_BI3_GAS_PRESSURE_ALARM B5 OR
B6
B1 O
B2

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-E611211B-3625-4C2B-A702-A5471ABB3939 V1 EN

Figure 292: Autorecloser function

Three overvoltage and undervoltage protection stages PHxPTOV and PHxPTUV


offer protection against abnormal phase voltage conditions. Positive sequence
undervoltage PSPTUV and negative sequence overvoltage NSPTOV protection
functions enable voltage-based unbalance protection. A failure in the voltage
measuring circuit is detected by the fuse failure function and the activation is
connected to block undervoltage protection functions and voltage based unbalance
protection functions to avoid faulty tripping.

REF615 207
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

PHPTOV1
BLOCK OPERATE PHPTOV1_OPERATE
START PHPTOV1_START

PHPTOV2
BLOCK OPERATE PHPTOV2_OPERATE
START PHPTOV2_START

PHPTOV3
BLOCK OPERATE PHPTOV3_OPERATE
START PHPTOV3_START

OR6
PHPTOV1_OPERATE B1 O PHPTOV_OPERATE
PHPTOV2_OPERATE B2
PHPTOV3_OPERATE B3
B4
B5
B6

GUID-BECFC2B1-EF62-45B3-87E3-0400340A8BB5 V1 EN

Figure 293: Overvoltage protection function

PHPTUV1
SEQRFUF1_FUSEF_U BLOCK OPERATE PHPTUV1_OPERATE
START PHPTUV1_START

PHPTUV2
SEQRFUF1_FUSEF_U BLOCK OPERATE PHPTUV2_OPERATE
START PHPTUV2_START

PHPTUV3
SEQRFUF1_FUSEF_U BLOCK OPERATE PHPTUV3_OPERATE
START PHPTUV3_START

OR6
PHPTUV1_OPERATE B1 O PHPTUV_OPERATE
PHPTUV2_OPERATE B2
PHPTUV3_OPERATE B3
B4
B5
B6

GUID-6E332AB0-7555-45A7-B622-BA1061C18D0B V1 EN

Figure 294: Undervoltage protection function

208 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

The residual overvoltage protection ROVPTOV provides earth-fault protection by


detecting an abnormal level of residual voltage. It can be used, for example, as a
nonselective backup protection for the selective directional earth-fault functionality.

ROVPTOV1
BLOCK OPERATE ROVPTOV1_OPERATE
START ROVPTOV1_START

ROVPTOV2
BLOCK OPERATE ROVPTOV2_OPERATE
START ROVPTOV2_START

ROVPTOV3
BLOCK OPERATE ROVPTOV3_OPERATE
START ROVPTOV3_START

OR6
ROVPTOV1_OPERATE B1 O ROVPTOV_OPERATE
ROVPTOV2_OPERATE B2
ROVPTOV3_OPERATE B3
B4
B5
B6

GUID-95D18A13-DA98-4822-B5DE-4A044A48C940 V1 EN

Figure 295: Residual overvoltage protection function

NSPTOV1
SEQRFUF1_FUSEF_U BLOCK OPERATE NSPTOV1_OPERATE
START NSPTOV1_START

GUID-385727B9-A09E-40C1-A51D-630C0400338D V1 EN

Figure 296: Negative sequence overvoltage protection function

PSPTUV1
SEQRFUF1_FUSEF_U BLOCK OPERATE PSPTUV1_OPERATE
START PSPTUV1_START

GUID-656C28DB-7231-45CD-8864-15F39FF2C6A4 V1 EN

Figure 297: Positive sequence undervoltage protection function

General start and operate signals from all the functions are connected to pulse timer
TPGAPC1 for setting the minimum pulse length for the outputs. The output from
TPGAPC1 is connected to binary outputs.

If a new protection function block to the configuration is added,


check the activation logic and also add the connections.

REF615 209
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

OR6 OR6
DPHLPDOC1_START B1 O B1 O
DPHLPDOC2_START B2 B2
DPHHPDOC1_START B3 B3
PHIPTOC1_START B4 B4
NSPTOC1_START B5 B5
NSPTOC2_START B6 B6
TPGAPC1
IN1 OUT1 GENERAL_START_PULSE
IN2 OUT2 GENERAL_OPERATE_PULSE
OR6 OR6 OR6
DEFLPDEF1_START B1 O DPHLPDOC1_OPERATE B1 O B1 O
DEFLPDEF2_START B2 DPHLPDOC2_OPERATE B2 B2
DEFHPDEF1_START B3 DPHHPDOC1_OPERATE B3 B3
B4 NSPTOC1_OPERATE B4 B4
EFHPTOC1_START B5 NSPTOC2_OPERATE B5 B5
PDNSPTOC1_START B6 PHIPTOC1_OPERATE B6 B6

OR6 OR6
PHPTOV1_START B1 O DEFLPDEF1_OPERATE B1 O
PHPTOV2_START B2 DEFLPDEF2_OPERATE B2
PHPTOV3_START B3 DEFHPDEF1_OPERATE B3
PSPTUV1_START B4 B4
NSPTOV1_START B5 EFHPTOC1_OPERATE B5
PHPTUV1_START B6 PDNSPTOC1_OPERATE B6

OR6 OR6
PHPTUV2_START B1 O EFPADM1_OPERATE B1 O
PHPTUV3_START B2 EFPADM2_OPERATE B2
ROVPTOV1_START B3 EFPADM3_OPERATE B3
ROVPTOV2_START B4 ARCSARC1_OPERATE B4
ROVPTOV3_START B5 ARCSARC2_OPERATE B5
B6 ARCSARC3_OPERATE B6

OR6 OR6
EFPADM1_START B1 O PHPTUV1_OPERATE B1 O
EFPADM2_START B2 PHPTUV2_OPERATE B2
EFPADM3_START B3 PHPTUV3_OPERATE B3
WPWDE1_START B4 NSPTOV1_OPERATE B4
WPWDE2_START B5 PSPTUV1_OPERATE B5
WPWDE3_START B6 PHPTOV1_OPERATE B6

OR6
PHPTOV2_OPERATE B1 O
PHPTOV3_OPERATE B2
ROVPTOV1_OPERATE B3
ROVPTOV2_OPERATE B4
ROVPTOV3_OPERATE B5
B6

OR6
WPWDE1_OPERATE B1 O
WPWDE2_OPERATE B2
WPWDE3_OPERATE B3
B4
B5
B6

GUID-B801C8EA-74F0-432F-A115-E882F4A6D10A V1 EN

Figure 298: General start and operate signals

The operate signals from the protection functions are connected to the two trip
logics TRPPTRC1 and TRPPTRC2. The output of these trip logic functions is
available at binary output X100:PO3 and X100:PO4. The trip logic functions are
provided with a lockout and latching function, event generation and the trip signal
duration setting. If the lockout operation mode is selected, binary input has been
assigned to RST_LKOUT input of both the trip logic to enable external reset with a
push button.

Three other trip logics TRPPTRC3...4 are also available if the IED is ordered with
high speed binary outputs options.

210 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

TRPPTRC1
OR6 OR6
BLOCK TRIP TRPPTRC1_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
DPHLPDOC2_OPERATE B2 B2 RST_LKOUT
DPHHPDOC1_OPERATE B3 B3
DPHLPDOC1_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF1_OPERATE B2
DEFLPDEF2_OPERATE B3
EFPADM1_OPERATE B4
EFPADM2_OPERATE B5
EFPADM3_OPERATE B6

OR6
B1 O
EFHPTOC1_OPERATE B2
PDNSPTOC1_OPERATE B3
ROVPTOV1_OPERATE B4
ROVPTOV2_OPERATE B5
ROVPTOV3_OPERATE B6

OR6
WPWDE1_OPERATE B1 O
WPWDE2_OPERATE B2
WPWDE3_OPERATE B3
ARCSARC1_OPERATE B4
ARCSARC2_OPERATE B5
ARCSARC3_OPERATE B6

OR6
PHPTOV1_OPERATE B1 O
PHPTOV2_OPERATE B2
PHPTOV3_OPERATE B3
PSPTUV1_OPERATE B4
NSPTOV1_OPERATE B5
PHPTUV1_OPERATE B6

OR6
PHPTUV2_OPERATE B1 O
PHPTUV3_OPERATE B2
B3
B4
B5
B6

GUID-BC0E8E4F-D844-4DF2-96F8-D7FB4AE196EF V1 EN

Figure 299: Trip logic TRPPTRC1

REF615 211
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

TRPPTRC2
OR6 OR6
BLOCK TRIP TRPPTRC2_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
DPHLPDOC2_OPERATE B2 B2 RST_LKOUT
DPHHPDOC1_OPERATE B3 B3
DPHLPDOC1_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF1_OPERATE B2
DEFLPDEF2_OPERATE B3
EFPADM1_OPERATE B4
EFPADM2_OPERATE B5
EFPADM3_OPERATE B6

OR6
B1 O
EFHPTOC1_OPERATE B2
PDNSPTOC1_OPERATE B3
ROVPTOV1_OPERATE B4
ROVPTOV2_OPERATE B5
ROVPTOV3_OPERATE B6

OR6
NSPTOV1_OPERATE B1 O
CCBRBRF1_TRRET B2
WPWDE1_OPERATE B3
WPWDE2_OPERATE B4
WPWDE3_OPERATE B5
PSPTUV1_OPERATE B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
PHPTUV1_OPERATE B4
PHPTUV2_OPERATE B5
PHPTUV3_OPERATE B6

OR6
PHPTOV1_OPERATE B1 O
PHPTOV2_OPERATE B2
PHPTOV3_OPERATE B3
B4
B5
B6

GUID-C616460D-0D6B-426B-8222-C8058AAF8332 V1 EN

Figure 300: Trip logic TRPPTRC2

3.9.3.2 Functional diagrams for disturbance recorder

The START and the OPERATE outputs from the protection stages are routed to
trigger the disturbance recorder or, alternatively, only to be recorded by the
disturbance recorder depending on the parameter settings. Additionally, the
selected signals from different functions and the few binary inputs are also
connected to the disturbance recorder.

The disturbance recorder main application sheet contains the


disturbance recorder function block and the connections to variables.

Once the order of signals connected to binary inputs of RDRE is


changed, make the changes to the parameter setting tool.

212 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

OR6
DEFLPDEF1_START B1 O
EFPADM1_START B2
WPWDE1_START B3
B4
B5
B6 RDRE1
DPHLPDOC1_START C1 TRIGGERED DISTURB_RECORD_TRIGGERED
DPHLPDOC2_START C2
OR6 DPHHPDOC1_START C3
OR6 PHIPTOC1_START C4
PHIPTOC1_OPERATE B1 O NSPTOC1_START C5
DPHHPDOC1_OPERATE B2 DEFLPDEF2_START B1 O NSPTOC2_START C6
DPHLPDOC1_OPERATE B3 EFPADM2_START B2 C7
DPHLPDOC2_OPERATE B4 WPWDE2_START B3 C8
B5 B4 C9
B6 B5 EFHPTOC1_START C10
B6 PDNSPTOC1_START C11
T1PTTR1_START C12
PHPTOV1_START C13
PHPTOV2_START C14
OR OR6 PHPTOV3_START C15
PSPTUV1_START C16
NSPTOC1_OPERATE B1 O DEFHPDEF1_START B1 O NSPTOV1_START C17
NSPTOC2_OPERATE B2 EFPADM3_START B2 PHPTUV1_START C18
WPWDE3_START B3 PHPTUV2_START C19
B4 PHPTUV3_START C20
B5 ROVPTOV1_START C21
B6 ROVPTOV2_START C22
OR6 ROVPTOV3_START C23
CCBRBRF1_TRRET C24
DEFHPDEF1_OPERATE B1 O CCBRBRF1_TRBU C25
DEFLPDEF1_OPERATE B2 OR C26
DEFLPDEF2_OPERATE B3 C27
EFPADM1_OPERATE B4 B1 O C28
EFPADM2_OPERATE B5 B2 EFHPTOC1_OPERATE C29
EFPADM3_OPERATE B6 PDNSPTOC1_OPERATE C30
OR6 INRPHAR1_BLK2H C31
T1PTTR1_OPERATE C32
PHPTOV1_OPERATE B1 O C33
PHPTOV2_OPERATE B2 C34
OR6 PHPTOV3_OPERATE B3 C35
B4 SEQRFUF1_FUSEF_3PH C36
B1 O B5 SEQRFUF1_FUSEF_U C37
WPWDE1_OPERATE B2 B6 CCRDIF1_FAIL C38
WPWDE2_OPERATE B3 X110_BI1_CB_CLOSED C39
WPWDE3_OPERATE B4 X110_BI2_CB_OPENED C40
B5 C41
B6 ARCSARC1_OPERATE C42
OR6 ARCSARC2_OPERATE C43
ARCSARC3_OPERATE C44
PHPTUV1_OPERATE B1 O DARREC1_INPRO C45
PHPTUV2_OPERATE B2 DARREC1_CLOSE_CB C46
PHPTUV3_OPERATE B3 DARREC1_UNSUC_RECL C47
B4 C48
B5 C49
B6 C50
C51
OR6 C52
C53
ROVPTOV1_OPERATE B1 O C54
ROVPTOV2_OPERATE B2 C55
ROVPTOV3_OPERATE B3 OR6 C56
PSPTUV1_OPERATE B4 C57
NSPTOV1_OPERATE B5 ARCSARC1_ARC_FLT_DET B1 O C58
B6 ARCSARC2_ARC_FLT_DET B2 C59
ARCSARC3_ARC_FLT_DET B3 C60
B4 C61
B5 C62
B6 C63
C64

GUID-AD347F5E-3943-4EC9-A1AF-0A771AEEFB1F V2 EN

Figure 301: Disturbance recorder

3.9.3.3 Functional diagrams for condition monitoring

Failures in the current measuring circuits are detected by CCRDIF1. When a


failure is detected, it can be used to block current protection functions that measure
the calculated sequence component currents or residual current to avoid
unnecessary operation.

CCRDIF1
BLOCK FAIL CCRDIF1_FAIL
ALARM CCRDIF1_ALARM

GUID-77C89F9A-924D-4470-AEB0-4CAEDC3E5123 V1 EN

Figure 302: Current circuit supervision function

The fuse failure supervision SEQRFUF1 detects failures in the voltage


measurement circuits.

SEQRFUF1
BLOCK FUSEF_3PH SEQRFUF1_FUSEF_3PH
X110_BI1_CB_CLOSED CB_CLOSED FUSEF_U SEQRFUF1_FUSEF_U
X110_BI6_CB_TRUCK_IN_TEST DISCON_OPEN
MINCB_OPEN

GUID-4678332E-EF5C-40E6-861A-44DD9492DCAD V1 EN

Figure 303: Fuse failure supervision function

REF615 213
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

The circuit breaker condition monitoring function SSCBR1 supervises the switch
status based on the connected binary input information and the measured current
levels. SSCBR1 introduces various supervision methods.

Set the parameters for SSCBR1 properly.

SSCBR1
BLOCK TRV_T_OP_ALM SSCBR1_TRV_T_OP_ALM
X110_BI2_CB_OPENED POSOPEN TRV_T_CL_ALM SSCBR1_TRV_T_CL_ALM
X110_BI1_CB_CLOSED POSCLOSE SPR_CHR_ALM SSCBR1_SPR_CHR_ALM
CB_OPEN_COMMAND OPEN_CB_EXE OPR_ALM SSCBR1_OPR_ALM
CB_CLOSE_COMMAND CLOSE_CB_EXE OPR_LO SSCBR1_OPR_LO
X110_BI3_GAS_PRESSURE_ALARM PRES_ALM_IN IPOW_ALM SSCBR1_IPOW_ALM
PRES_LO_IN IPOW_LO SSCBR1_IPOW_LO
CB_SPRING_DISCHARGED SPR_CHR_ST CB_LIFE_ALM SSCBR1_CB_LIFE_ALM
X110_BI4_CB_SPRING_CHARGED SPR_CHR MON_ALM SSCBR1_MON_ALM
RST_IPOW PRES_ALM SSCBR1_PRES_ALM
RST_CB_WEAR PRES_LO SSCBR1_PRES_LO
RST_TRV_T OPENPOS
RST_SPR_T INVALIDPOS
CLOSEPOS

GUID-1EC6CBD8-1531-47A1-811C-A5BCA7136B96 V1 EN

Figure 304: Circuit breaker conditioning monitoring function

OR6
SSCBR1_TRV_T_OP_ALM B1 O
SSCBR1_TRV_T_CL_ALM B2
SSCBR1_SPR_CHR_ALM B3
SSCBR1_OPR_ALM B4
SSCBR1_OPR_LO B5 OR
SSCBR1_IPOW_ALM B6
B1 O SSCBR1_ALARMS
B2

OR6
SSCBR1_IPOW_LO B1 O
SSCBR1_CB_LIFE_ALM B2
SSCBR1_MON_ALM B3
SSCBR1_PRES_ALM B4
SSCBR1_PRES_LO B5
B6

GUID-E7A9FFF5-42E4-4CE8-A90E-76BCECC137E4 V1 EN

Figure 305: Logic for circuit breaker monitoring alarm

NOT
X110_BI4_CB_SPRING_CHARGED IN OUT CB_SPRING_DISCHARGED

GUID-64DCF106-5116-4603-BF0F-52B9D282F56D V1 EN

Figure 306: Logic for start of circuit breaker spring charging

Two separate trip circuit supervision functions are included: TCSSCBR1 for power
output X100:PO3 and TCSSCBR2 for power output X100:PO4. Both functions are
blocked by the Master Trip TRPPTRC1 and TRPPTRC2 and the circuit breaker
open signal.

214 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

It is assumed that there is no external resistor in the circuit breaker


tripping coil circuit connected in parallel with the circuit breaker
normally open auxiliary contact.

Set the parameters for TCSSCBR1 properly.

TCSSCBR1
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR1_ALARM

TCSSCBR2
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR2_ALARM

OR
TCSSCBR1_ALARM B1 O TCSSCBR_ALARM
TCSSCBR2_ALARM B2

GUID-0CABD7BB-7809-43A2-A4EB-2077524785DD V1 EN

Figure 307: Trip circuit supervision function

OR6
TRPPTRC1_TRIP B1 O TCSSCBR_BLOCKING
TRPPTRC2_TRIP B2
X110_BI2_CB_OPENED B3
B4
B5
B6

GUID-480DFCBE-6A94-46BC-8A90-7A0049C425F1 V1 EN

Figure 308: Logic for blocking of trip circuit supervision

3.9.3.4 Functional diagrams for control and interlocking

Two types of disconnector and earthing switch function blocks are available.
DCSXSWI1...3 and ESSXSWI1...2 are status only type and DCXSWI1...2 and
ESXSWI1 are controllable type. By default, the status only blocks are connected in
a standard configuration. The disconnector (CB truck) and line side earthing switch
status information is connected to DCSXSWI1 and ESSXSI1.

DCSXSWI1
X110_BI6_CB_TRUCK_IN_TEST POSOPEN OPENPOS
X110_BI5_CB_TRUCK_IN_SERVICE POSCLOSE CLOSEPOS
OKPOS DCSXSWI1_OKPOS

GUID-EB7FC96F-DCE0-4F6D-A563-4B782736A68E V1 EN

Figure 309: Disconnector control logic

REF615 215
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

ESSXSWI1
X110_BI8_ES1_OPENED POSOPEN OPENPOS ESSXSWI1_OPENPOS
X110_BI7_ES1_CLOSED POSCLOSE CLOSEPOS
OKPOS

GUID-E6CDEFAC-D921-4392-A83C-D5366B8A41BA V1 EN

Figure 310: Earth switch control logic

The circuit breaker closing is enabled when the ENA_CLOSE input is activated.
The input can be activated using the configuration logic, which is a combination of
the disconnector or breaker truck and the earth-switch position status, status of the
trip logics, gas pressure alarm and circuit breaker spring charging status.

The OKPOS output from DCSXSWI defines whether the disconnector or breaker
truck is definitely either open (in test position) or close (in service position). This
output, together with the open earth-switch and non-active trip signals, activates
the close-enable signal to the circuit breaker control function block. The open
operation for circuit breaker is always enabled.

The ITL_BYPASS input can be used, for example, to always enable the closing of
the circuit breaker when the circuit breaker truck is in the test position.
ITL_BYPASS overrides, for example, active interlocking conditions when the
circuit breaker truck is closed in service position.

Connect the additional signals required for the application for


closing and opening of circuit breaker.

CBXCBR1
X110_BI2_CB_OPENED POSOPEN SELECTED CBXCBR1_SELECTED
X110_BI1_CB_CLOSED POSCLOSE EXE_OP CBXCBR1_EXE_OP
TRUE ENA_OPEN EXE_CL CBXCBR1_EXE_CL
CBXCBR1_ENA_CLOSE ENA_CLOSE OPENPOS
FALSE BLK_OPEN CLOSEPOS
CBXCBR1_BLK_CLOSE BLK_CLOSE OKPOS
CBXBCR1_AU_OPEN AU_OPEN OPEN_ENAD
CBXCBR1_AU_CLOSE AU_CLOSE CLOSE_ENAD
ITL_BYPASS

GUID-A818BB7E-A52B-40EB-B75E-4E5980FE0188 V1 EN

Figure 311: Circuit breaker 1 control logic

OR
CBXCBR1_EXE_CL B1 O CB_CLOSE_COMMAND
DARREC1_CLOSE_CB B2

GUID-AAD5050A-FBE7-490E-91F5-A1B3EC9249D1 V1 EN

Figure 312: Signals for closing coil of circuit breaker 1

216 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

OR6
CBXCBR1_EXE_OP B1 O CB_OPEN_COMMAND
TRPPTRC1_TRIP B2
DARREC1_OPEN_CB B3
B4
B5
B6

GUID-63DB00F4-441B-4B7E-8F02-500921B8C9C6 V1 EN

Figure 313: Signals for opening coil of circuit breaker 1

AND6
DCSXSWI1_OKPOS B1 O CBXCBR1_ENA_CLOSE
ESSXSWI1_OPENPOS B2
X110_BI4_CB_SPRING_CHARGED B3
B4
NOT B5
B6
TRPPTRC1_TRIP IN OUT

NOT
TRPPTRC2_TRIP IN OUT

NOT
X110_BI3_GAS_PRESSURE_ALARM IN OUT

GUID-B74256B7-3CF6-464D-A6BB-90B83D2732E9 V1 EN

Figure 314: Circuit breaker 1 close enable logic

Connect the higher-priority conditions before enabling the closing


of circuit breaker. These conditions cannot be bypassed using
bypass feature of the function.

OR6
T1PTTR1_BLK_CLOSE B1 O CBXCBR1_BLK_CLOSE
B2
B3
B4
B5
B6

GUID-3E75311B-A42A-4A5D-9122-D93FBD773BB3 V1 EN

Figure 315: Circuit breaker 1 close blocking logic

The configuration includes the logic for generating circuit breaker external closing
and opening command with the IED in local or remote mode.

Check the logic for the external circuit breaker closing command
and modify it according to the application.

Connect additional signals for opening and closing of circuit


breaker in local or remote mode, if applicable for the configuration.

REF615 217
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXCBR1_AU_CLOSE
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-41DEF2A2-16E7-4C8C-A8C6-81F1D751EC08 V1 EN

Figure 316: External closing command for circuit breaker 1

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXBCR1_AU_OPEN
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-B21EBD05-83F6-45E0-A956-9FB4BF079A9C V1 EN

Figure 317: External opening command for circuit breaker 1

3.9.3.5 Functional diagrams for measurement functions

The phase current inputs to the IED are measured by the three-phase current
measurement function CMMXU1. The three-phase current input is connected to
the X131, X132 and X133 card in the back panel for three phases. The sequence
current measurement CSMSQI1 measures the sequence current and the residual
current measurement RESCMMXU1 measures the residual current. Residual
current input is connected to the X130 card in the back panel.

The three-phase bus side phase voltage inputs to the IED are measured by voltage
measurement function VMMXU1. The three-phase current input is connected to
the X131, X132 and X133 card in the back panel for three phases. The sequence
voltage measurement VSMSQI1 measures the sequence voltage and the residual
voltage measurement RESVMMXU1 measures the residual voltage.

The measurements can be seen in the LHMI and they are available under the
measurement option in the menu selection. Based on the settings, function blocks
can generate low alarm or warning and high alarm or warning signals for the
measured current values.

The frequency measurement FMMXU1 of the power system and the three-phase
power measurement PEMMXU1 are available. The load profile function
LDPMSTA1 is included in the measurements sheet. LDPMSTA1 offers the ability
to observe the loading history of the corresponding feeder.

CMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-D1FE0E27-0DBA-4BCB-9BAF-B82846224BCD V1 EN

Figure 318: Current measurement: Three-phase current measurement

218 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

CSMSQI1

GUID-03A8D15A-B365-41A6-9888-177A22D366CB V1 EN

Figure 319: Current measurement: Sequence current measurement

RESCMMXU1
BLOCK HIGH_ALARM
HIGH_WARN

GUID-9A19A4D2-2931-4710-8AD2-9CE31907A4AC V1 EN

Figure 320: Current measurement: Residual current measurement

VMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-828D7D6F-D9AE-4BE7-AFAD-305B93CF9086 V1 EN

Figure 321: Voltage measurement: Three-phase voltage measurement

VSMSQI1

GUID-C414A0B3-7EDB-40E9-AF57-8327612D3032 V1 EN

Figure 322: Voltage measurement: Sequence voltage measurement

FMMXU1

GUID-A5958CA9-4CAF-4518-B84C-6F3E5817D46A V1 EN

Figure 323: Other measurement: Frequency measurement

PEMMXU1
RSTACM

GUID-EC25EDC8-164C-498D-A5D0-C60FB8898060 V1 EN

Figure 324: Other measurement: Three-phase power and energy measurement

FLTMSTA1
BLOCK
CB_CLRD

GUID-72ACB664-009C-4165-9C87-8CBC45ABCF9E V1 EN

Figure 325: Other measurement: Data monitoring

LDPMSTA1
RSTMEM MEM_WARN
MEM_ALARM

GUID-95FB00EA-FBA3-4946-9192-1E7C5047D148 V1 EN

Figure 326: Other measurement: Load profile record

REF615 219
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

3.9.3.6 Functional diagrams for I/O and alarm LEDs

X110 (BIO).X110-Input 1 OR
B1 O X110_BI1_CB_CLOSED
B2
X110 (BIO-H).X110-Input 1

X110 (BIO).X110-Input 2 OR
B1 O X110_BI2_CB_OPENED
B2
X110 (BIO-H).X110-Input 2

X110 (BIO).X110-Input 3 OR
B1 O X110_BI3_GAS_PRESSURE_ALARM
B2
X110 (BIO-H).X110-Input 3

X110 (BIO).X110-Input 4 OR
B1 O X110_BI4_CB_SPRING_CHARGED
B2
X110 (BIO-H).X110-Input 4

X110 (BIO).X110-Input 5 OR
B1 O X110_BI5_CB_TRUCK_IN_SERVICE
B2
X110 (BIO-H).X110-Input 5

X110 (BIO).X110-Input 6 OR
B1 O X110_BI6_CB_TRUCK_IN_TEST
B2
X110 (BIO-H).X110-Input 6

X110 (BIO).X110-Input 7 OR
B1 O X110_BI7_ES1_CLOSED
B2
X110 (BIO-H).X110-Input 7

X110 (BIO).X110-Input 8 OR
B1 O X110_BI8_ES1_OPENED
B2
X110 (BIO-H).X110-Input 8
GUID-A2B1E62C-7697-4D30-8D2A-D05174C519CB V1 EN

Figure 327: Default binary inputs - X110

220 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

UPSTEAM_OC_BLOCKING
X110 (BIO).X110-SO1

TRPPTRC3_TRIP
X110 (BIO-H).X110-HSO1

OC_OPERATE_PULSE
X110 (BIO).X110-SO2

TRPPTRC4_TRIP
X110 (BIO-H).X110-HSO2

EF_OPERATE_PULSE
X110 (BIO).X110-SO3

TRPPTRC5_TRIP
X110 (BIO-H).X110-HSO3

VOLTAGE_OPERATE_PULSE
X110 (BIO).X110-SO4
GUID-A5F194C9-0208-467C-A115-6BF12F28FDA5 V1 EN

Figure 328: Default binary output - X110

CB_CLOSE_COMMAND
X100 (PSM).X100-PO1

CCBRBRF1_TRBU
X100 (PSM).X100-PO2

GENERAL_START_PULSE
X100 (PSM).X100-SO1

GENERAL_OPERATE_PULSE
X100 (PSM).X100-SO2

CB_OPEN_COMMAND
X100 (PSM).X100-PO3

TRPPTRC2_TRIP
X100 (PSM).X100-PO4
GUID-6A66701A-488B-4A27-8447-3F325B846D43 V1 EN

Figure 329: Default binary output - X100

REF615 221
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

LED1
OR
OK
DPHxPDOC_OPERATE B1 O ALARM
PHIPTOC1_OPERATE B2 RESET

LED2
OR6
OK
ROVPTOV_OPERATE B1 O ALARM
EFPADM_OPERATE B2 RESET
WPWDE_OPERATE B3
DEFxPDEF_OPERATE B4
EFHPTOC1_OPERATE B5
B6

LED3
OR6
OK
NSPTOV1_OPERATE B1 O ALARM
PSPTUV1_OPERATE B2 RESET
PHPTOV_OPERATE B3
PHPTUV_OPERATE B4
B5
B6

LED4
OR
OK
NSPTOC_OPERATE B1 O ALARM
PDNSPTOC1_OPERATE B2 RESET

LED5
OK
T1PTTR1_ALARM ALARM
RESET

GUID-5B504FC4-612E-4D4C-8762-154A53926CD7 V1 EN

222 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

LED6
OK
CCBRBRF1_TRBU ALARM
RESET

LED7
OK
DISTURB_RECORD_TRIGGERED ALARM
RESET

LED8
OK
SSCBR1_ALARMS ALARM
RESET

LED9
OR6
OK
TCSSCBR_ALARM B1 O ALARM
SEQRFUF1_FUSEF_3PH B2 RESET
SEQRFUF1_FUSEF_U B3
CCRDIF1_ALARM B4
B5
B6

LED10
OK
ARCSARC_OPERATE ALARM
RESET

LED11
OK
DARREC1_INPRO ALARM
RESET

GUID-A62814FF-C1DF-4757-B544-B55351058164 V1 EN

Figure 330: Default LED connection

3.9.3.7 Functional diagrams for other timer logics

The configuration also includes overcurrent operate, earth-fault operate and voltage
operate logic. The operate logics are connected to the pulse timer TPGAPC for
setting the minimum pulse length for the outputs. The output from TPGAPC is
connected to the binary outputs.

REF615 223
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

OR TPGAPC2
DPHxPDOC_OPERATE B1 O IN1 OUT1 OC_OPERATE_PULSE
PHIPTOC1_OPERATE B2 IN2 OUT2 EF_OPERATE_PULSE

OR6
DEFxPDEF_OPERATE B1 O
EFHPTOC1_OPERATE B2
EFPADM_OPERATE B3
ROVPTOV_OPERATE B4
WPWDE_OPERATE B5
B6

GUID-95B55C0E-FA24-4643-81C6-E14BE342C734 V1 EN

Figure 331: Timer logic for overcurrent and earth-fault operate pulse

OR6 TPGAPC3
PSPTUV1_OPERATE B1 O IN1 OUT1 VOLTAGE_OPERATE_PULSE
NSPTOV1_OPERATE B2 IN2 OUT2
PHPTUV_OPERATE B3
PHPTOV_OPERATE B4
B5
B6

GUID-600E062D-9AAB-444B-A7ED-4A8FF894C55A V1 EN

Figure 332: Timer logic for voltage operate pulse

3.9.3.8 Other functions

The configuration includes few instances of multi-purpose protection function


MAPGAPC, high impedance fault detection function PHIZ, runtime counter
MDSOPT and different types of timers and control functions. These functions are
not included in application configuration but they can be added based on the
system requirements.

3.10 Standard configuration H

3.10.1 Applications
The standard configuration for non-directional overcurrent and non-directional earth-
fault protection with phase voltage-based measurements, undervoltage and
overvoltage protection, frequency protection and measurement functions is mainly
intended for cable and overhead-line feeder applications in directly or resistance-
earthed distribution networks.

The IED with a standard configuration is delivered from the factory with default
settings and parameters. The end user flexibility for incoming, outgoing and
internal signal designation within the IED enables this configuration to be further
adapted to different primary circuit layouts and the related functionality needs by
modifying the internal functionality using PCM600.

224 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

3.10.2 Functions
UL1UL2UL3
Uo

REF615 FEEDER PROTECTION AND CONTROL IED STANDARD


CONFIGURATION
H

PROTECTION LOCAL HMI ALSO AVAILABLE


Configuration A

- Disturbance and fault recorders


System
HMI
Time
Authorization

5× - Event log and recorded data


Master Trip I
- High-Speed Output module (optional)
ESC Clear

Lockout relay A
O
- IED self-supervision
R
L

94/86
U12 0. 0 kV
P 0.00 kW
Q 0.00 kVAr

IL2 0 A
- Local/Remote push button on LHMI
- User management
I ESC Clear
- Web HMI

AND
I2> I2/I1> 3I>>> O R
OR 46 46PD 50P/51P
L
OR
3I
3× 3×
ARC 3I>/Io>BF
50L/50NL CONDITION MONITORING COMMUNICATION
51BF/51NBF
3I AND SUPERVISION
Protocols:
0 0 0 1 1 0 0 1 1 0 0 2× IEC 61850-8-1 1 0
61850-8-1/-9-2LE 1 0 0 0 1 1 0 0 1 1 0 0
1 0 0 1 0 1 1 1 0 0 1 0 3I> 3I>> 3I2f> FUSEF CBCM MCS 3I Modbus®® 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 1 0 1 0 0
51P-1 51P-2 68 60 CBCM MCS 3I IEC 60870-5-103 1 0 1 1 0 1 1 0 1 1 0 1 0 0
0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 DNP3 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0
1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
0 1 1 1 0 1 1 0 1 0 Interfaces: 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 1 0 1 0 0 U12 Io Io 1 0 1 1 0 1 1 0 1 1 0 1 0 0
C) Ethernet: TX (RJ45), FX (LC)
(ST), Serial: Serial glass fiber (ST),
2/485 RS-485, RS-232/485
2× 2× D-sub 9, IRIG-B
Io>>> Io> Io>> PHIZ OPTS TCS Redundant protocols:
50N/51N 51N-1 51N-2 HIZ OPTM TCM HSR
PRP
Io RSTP
Io

CONTROL AND INDICATION 1) MEASUREMENT

- I, U, Io, Uo, P, Q, E, pf, f


Object Ctrl 2)
Ind 3)
- Limit value supervision
CB 1 - - Load profile record
2 3 - RTD/mA measurement (optional)
DC
- Symmetrical components
ES 1 2
1)
Check availability of binary inputs/outputs Analog interface types 1)

from technical documentation Current transformer 4


UL1UL2UL3

2)
Control and indication function for
primary object Voltage transformer 5
3)
Status indication function for
primary object
1)
Conventional transformer inputs

UL1UL2UL3 3× 3× 3× 3×
3U< 3U> Uo> f>/f<, SYNC O→I
df/dt
27 59 59G 25 79
81
U12

Uo
REMARKS
18× Optional 3× No. of Calculated OR Alternative
MAP function instances value function to be
MAP Io/Uo defined when
2xRTD ordering
1xmA

GUID-345574F5-1790-43CF-BCD8-FE2C4EFF1CE5 V1 EN

Figure 333: Functionality overview for standard configuration H

3.10.2.1 Default I/O connections


REF615 FEEDER PROTECTION AND CONTROL IED STANDARD
CONFIGURATION

Connector
PROTECTION
pins for each input and output are presented in the IED physical
LOCAL HMI
connections section. Configuration
System
HMI
Time
Authorization
A

I ESC Clear

A
O R
L
U12 0. 0 kV
P 0.00 kW
Q 0.00 kVAr

IL2 0 A

I ESC Clear

AND
O R
OR L
OR

CONDITION MONITORING COMMUNICATION


AND SUPERVISION
Protocols:
0 0 0 1 1 0 0 1 1 0 0 IEC 61850-8-1 1 0 1 0 0 0 1 1 0 0 1 1 0 0
1 0 0 1 0 1 1 1 0 0 1 0 Modbus® 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 1 0 1 0 0
IEC 60870-5-103 1 0 1 1 0 1 1 0 1 1 0 1 0 0
0
1
0
0
0
0
1
1
1
0
0
1
0
1
1
1
1
0
0
0 1 0
REF615
0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 DNP3 1
1
0
0
1
1
0
1
0
0
0
0
1
1
225
1
0
0
1
0
1
1
1
1
0
0
0
0 1 0 1 0 0
1 0
0
1
1
0
1
1
1
1
0
0
1
1
1
1
0
0
1
1
0
0 0 Application Manual Interfaces: 1
1
1
0
0
1
0
1
1
0
1
1
1
1
0
0
1
1
1
1
0
0
1
1
0
0 0
C) Ethernet: TX (RJ45), FX (LC)
(ST), Serial: Serial glass fiber (ST),
2/485 RS-485, RS-232/485
D-sub 9, IRIG-B
Redundant protocols:
HSR
PRP
RSTP

CONTROL AND INDICATION 1) MEASUREMENT


Section 3 1MRS756378 N
REF615 standard configurations

Table 48: Default connections for binary inputs


Binary input Description
X110-BI1 Busbar VT secondary MCB open
X110-BI2 Line VT secondary MCB open
X110-BI3 Circuit breaker low gas pressure indication
X110-BI4 Circuit breaker spring charged indication
X110-BI5 Circuit breaker truck in (service position) indication
X110-BI6 Circuit breaker truck out (test position) indication
X110-BI7 Earthing switch closed indication
X110-BI8 Earthing switch open indication
X120-BI1 Blocking of overcurrent instantaneous stage
X120-BI2 Circuit breaker closed indication
X120-BI3 Circuit breaker open indication
X120-BI4 Lock-out reset

Table 49: Default connections for binary outputs


Binary output Description
X100-PO1 Close circuit breaker
X100-PO2 Breaker failure backup trip to upstream breaker
X100-SO1 General start indication
X100-SO2 General operate indication
X100-PO3 Open circuit breaker/trip coil 1
X100-PO4 Open circuit breaker/trip coil 2
X110-SO1 Upstream overcurrent blocking
X110-SO2 Overcurrent operate alarm
X110-SO3 Earth-fault operate alarm
X110-SO4 Voltage protection operate alarm
X110-HSO1 Arc protection instance 1 operate activated
X110-HSO2 Arc protection instance 2 operate activated
X110-HSO3 Arc protection instance 3 operate activated

Table 50: Default connections for LEDs


LED Description
1 Overcurrent protection operated
2 Earth-fault protection operated
3 Combined protection operated indication
4 Synchronism or energizing check OK
5 Frequency protection
6 Circuit breaker failure protection backup protection operated
Table continues on next page

226 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

LED Description
7 Disturbance recorder triggered
8 Circuit breaker condition monitoring alarm
9 Supervision alarm
10 Arc fault detected
11 Autoreclose in progress

3.10.2.2 Default disturbance recorder settings

Table 51: Default disturbance recorder analog channels


Channel Description
1 IL1
2 IL2
3 IL3
4 Io
5 Uo
6 U1
7 U2
8 U3
9 U1B
10 -
11 -
12 -

Table 52: Default disturbance recorder binary channels


Channel ID text Level trigger mode
1 PHLPTOC1 - start Positive or Rising
2 PHHPTOC1 - start Positive or Rising
3 PHHPTOC2 - start Positive or Rising
4 PHIPTOC1 - start Positive or Rising
5 NSPTOC1 - start Positive or Rising
6 NSPTOC2 - start Positive or Rising
7 EFLPTOC1 - start Positive or Rising
8 EFLPTOC2 - start Positive or Rising
9 EFHPTOC1 - start Positive or Rising
10 EFIPTOC1 - start Positive or Rising
11 PDNSPTOC1 - start Positive or Rising
12 PHPTOV1 - start Positive or Rising
13 PHPTOV2 - start Positive or Rising
Table continues on next page

REF615 227
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Channel ID text Level trigger mode


14 PHPTOV3 - start Positive or Rising
15 PHPTUV1 - start Positive or Rising
16 PHPTUV2 - start Positive or Rising
17 PHPTUV3 - start Positive or Rising
18 ROVPTOV1 - start Positive or Rising
19 ROVPTOV2 - start Positive or Rising
20 ROVPTOV3 - start Positive or Rising
21 FRPFRQ1 - start Positive or Rising
22 FRPFRQ2 - start Positive or Rising
23 FRPFRQ3 - start Positive or Rising
24 CCBRBRF1 - trret Level trigger off
25 CCBRBRF1 - trbu Level trigger off
26 PHIPTOC1 - operate Level trigger off
PHHPTOC1 - operate
PHHPTOC2 - operate
PHLPTOC1 - operate
27 NSPTOC1 - operate Level trigger off
NSPTOC2 - operate
28 EFLPTOC1 - operate Level trigger off
EFLPTOC2 - operate
EFHPTOC1 - operate
EFIPTOC1 - operate
29 EFHPTOC1 - operate Level trigger off
30 PDNSPTOC1 - operate Level trigger off
31 INRPHAR1 - blk2h Level trigger off
32 PHPTOV1 - operate Level trigger off
PHPTOV2 - operate
PHPTOV3 - operate
33 PHPTUV1 - operate Level trigger off
PHPTUV2 - operate
PHPTUV3 - operate
34 ROVPTOV1 - operate Level trigger off
ROVPTOV2 - operate
ROVPTOV3 - operate
35 FRPFRQ1 - operate Level trigger off
FRPFRQ2 - operate
FRPFRQ3 - operate
36 SEQRFUF1 - fusef3ph Level trigger off
37 SEQRFUF1 - fusefu Level trigger off
Table continues on next page

228 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

Channel ID text Level trigger mode


38 CCRDIF1 - fail Level trigger off
39 X120BI1 - ext OC blocking Level trigger off
40 X120BI2 - CB closed Level trigger off
41 X120BI3 - CB opened Level trigger off
42 SECRSYN1 - sync inpro Level trigger off
43 SECRSYN1 - sync ok Level trigger off
44 SECRSYN1 - cl fail al Level trigger off
45 SECRSYN1 - cmd fail al Level trigger off
46 ARCSARC1 - ARC flt det Level trigger off
ARCSARC2 - ARC flt det
ARCSARC3 - ARC flt det
47 ARCSARC1 - operate Positive or Rising
48 ARCSARC2 - operate Positive or Rising
49 ARCSARC3 - operate Positive or Rising
50 DARREC1 - inpro Level trigger off
51 DARREC1 - close CB Level trigger off
52 DARREC1 - unsuc recl Level trigger off

3.10.3 Functional diagrams


The functional diagrams describe the default input, output, alarm LED and function-
to-function connections. The default connections can be viewed and changed with
PCM600 according to the application requirements.

The analog channels have fixed connections to the different function blocks inside
the IED’s standard configuration. However, the 12 analog channels available for
the disturbance recorder function are freely selectable as a part of the disturbance
recorder’s parameter settings.

The phase currents to the IED are fed from a current transformer. The residual
current to the IED is fed from either residually connected CTs, an external core
balance CT, neutral CT or internally calculated.

The phase voltages to the IED are fed from a voltage transformer. The residual
voltage to the IED is fed from either residually connected VTs, an open delta
connected VT or internally calculated.

The IED offers six different settings groups which can be set based on individual
needs. Each group can be activated or deactivated using the setting group settings
available in the IED.

Depending on the communication protocol the required function block needs to be


initiated in the configuration. The Application Configuration tool also includes

REF615 229
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

fixed Boolean signals TRUE and FALSE which can be used according to the
application needs.

3.10.3.1 Functional diagrams for protection

The functional diagrams describe the IEDs protection functionality in detail and
according to the factory set default connections.

Four non-directional overcurrent stages are offered for overcurrent and short-
circuit protection. The non-directional instantaneous stage PHIPTOC1 can be
blocked by energizing the binary input X120:BI1.

PHIPTOC1
X120_BI1_EXT_OC_BLOCKING BLOCK OPERATE PHIPTOC1_OPERATE
ENA_MULT START PHIPTOC1_START

PHHPTOC1
BLOCK OPERATE PHHPTOC1_OPERATE
ENA_MULT START PHHPTOC1_START

PHHPTOC2
BLOCK OPERATE PHHPTOC2_OPERATE
ENA_MULT START PHHPTOC2_START

PHLPTOC1
BLOCK OPERATE PHLPTOC1_OPERATE
ENA_MULT START PHLPTOC1_START

OR6
PHIPTOC1_OPERATE B1 O PHxPTOC_OPERATE
PHHPTOC1_OPERATE B2
PHHPTOC2_OPERATE B3
PHLPTOC1_OPERATE B4
B5
B6

GUID-4418FE50-A21E-4DA3-B13C-97D408EB4CFA V1 EN

Figure 334: Overcurrent protection function

The upstream blocking from the start of the overcurrent second high stage
PHHPTOC2 is connected to the binary output X110:SO1. This output can be used
for sending a blocking signal to the relevant overcurrent protection stage of the
IED at the infeeding bay.

230 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

OR6
PHHPTOC2_START B1 O UPSTEAM_OC_BLOCKING
B2
B3
B4
B5
B6

GUID-9B85F4BF-82D4-4867-B89B-1E73F145341C V1 EN

Figure 335: Upstream blocking logic

The inrush detection block's (INRPHAR1) output BLK2H enables either blocking
the function or multiplying the active settings for any of the available overcurrent
or earth-fault function blocks.

INRPHAR1
BLOCK BLK2H INRPHAR1_BLK2H

GUID-984A0C31-460F-48F5-AA9D-FD0F798DB0EE V1 EN

Figure 336: Inrush detector function

Two negative sequence overcurrent stages NSPTOC1 and NSPTOC2 are provided
for phase unbalance protection. These functions are used to protect the feeder
against phase unbalance. Both negative sequence overcurrent protections are
blocked in case of detection of a failure in secondary circuit of current transformer.

NSPTOC1
CCRDIF1_FAIL BLOCK OPERATE NSPTOC1_OPERATE
ENA_MULT START NSPTOC1_START

NSPTOC2
CCRDIF1_FAIL BLOCK OPERATE NSPTOC2_OPERATE
ENA_MULT START NSPTOC2_START

OR
NSPTOC1_OPERATE B1 O NSPTOC_OPERATE
NSPTOC2_OPERATE B2

GUID-7C84F97A-94E1-4D1F-87CD-942C8D9088A1 V1 EN

Figure 337: Negative sequence overcurrent protection function

Four stages are provided for non-directional earth-fault protection. One stage is
dedicated to sensitive earth-fault protection.

REF615 231
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

EFIPTOC1
BLOCK OPERATE EFIPTOC1_OPERATE
ENA_MULT START EFIPTOC1_START

EFHPTOC1
BLOCK OPERATE EFHPTOC1_OPERATE
ENA_MULT START EFHPTOC1_START

EFLPTOC1
BLOCK OPERATE EFLPTOC1_OPERATE
ENA_MULT START EFLPTOC1_START

EFLPTOC2
BLOCK OPERATE EFLPTOC2_OPERATE
ENA_MULT START EFLPTOC2_START

OR6
EFLPTOC1_OPERATE B1 O EFxPTOC_OPERATE
EFHPTOC1_OPERATE B2
EFIPTOC1_OPERATE B3
EFLPTOC2_OPERATE B4
B5
B6

GUID-15DB4C4F-9B2C-483D-A066-6011F8535402 V1 EN

Figure 338: Earth-fault protection function

The phase discontinuity protection PDNSPTOC1 protects for interruptions in the


normal three-phase load supply. For example, in downed conductor situations the
function is blocked in case of detection of a failure in secondary circuit of current
transformer.

PDNSPTOC1
CCRDIF1_FAIL BLOCK OPERATE PDNSPTOC1_OPERATE
START PDNSPTOC1_START

GUID-816DE51C-0F1F-4CD9-AA1B-8D88BB8490D7 V1 EN

Figure 339: Phase discontinuity protection function

The breaker failure protection CCBRBRF1 is initiated via the START input by
number of different protection functions available in the IED. The breaker-failure
protection function offers different operating modes associated with the circuit
breaker position and the measured phase and residual currents.

The breaker failure protection function has two operating outputs: TRRET and
TRBU. The TRRET operate output is used for retripping its own breaker through
TRPPTRC2_TRIP. The TRBU output is used to give a backup trip to the breaker
feeding upstream. For this purpose, the TRBU operate output signal is connected to
the binary output X100:PO2.

232 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

CCBRBRF1
OR6 OR6
BLOCK CB_FAULT_AL
PHIPTOC1_OPERATE B1 O B1 O START TRBU CCBRBRF1_TRBU
PHHPTOC1_OPERATE B2 B2 POSCLOSE TRRET CCBRBRF1_TRRET
PHHPTOC2_OPERATE B3 B3 CB_FAULT
EFLPTOC1_OPERATE B4 B4
EFHPTOC1_OPERATE B5 B5
EFIPTOC1_OPERATE B6 B6

OR6
EFLPTOC2_OPERATE B1 O
ARCSARC1_OPERATE B2
ARCSARC2_OPERATE B3
ARCSARC3_OPERATE B4
B5
B6

X120_BI2_CB_CLOSED
GUID-789C6973-BCEC-4D58-922A-27075ECACFE9 V1 EN

Figure 340: Circuit breaker failure protection function

Three arc protection ARCSARC1...3 stages are included as an optional function.


The arc protection offers individual function blocks for three arc sensors that can
be connected to the IED. Each arc protection function block has two different
operation modes, that is, with or without the phase and residual current check.

The operate signals from ARCSARC1...3 are connected to both trip logic
TRPPTRC1 and TRPPTRC2. If the IED has been ordered with high speed binary
outputs, the individual operate signals from ARCSARC1...3 are connected to
dedicated trip logic TRPPTRC3..5. The output of TRPPTRC3...5 is available at
high speed outputs X110:HSO1, X110:HSO2 and X110:HSO3.

REF615 233
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

ARCSARC1
BLOCK OPERATE ARCSARC1_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC1_ARC_FLT_DET
OPR_MODE

ARCSARC2
BLOCK OPERATE ARCSARC2_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC2_ARC_FLT_DET
OPR_MODE

ARCSARC3
BLOCK OPERATE ARCSARC3_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC3_ARC_FLT_DET
OPR_MODE

OR6
ARCSARC1_OPERATE B1 O ARCSARC_OPERATE
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-6737760B-14D7-469A-99FF-6E2C523B6E44 V1 EN

TRPPTRC3
BLOCK TRIP TRPPTRC3_TRIP
ARCSARC1_OPERATE OPERATE CL_LKOUT
X120_BI4_RST_LOCKOUT RST_LKOUT

TRPPTRC4
BLOCK TRIP TRPPTRC4_TRIP
ARCSARC2_OPERATE OPERATE CL_LKOUT
X120_BI4_RST_LOCKOUT RST_LKOUT

TRPPTRC5
BLOCK TRIP TRPPTRC5_TRIP
ARCSARC3_OPERATE OPERATE CL_LKOUT
X120_BI4_RST_LOCKOUT RST_LKOUT

GUID-F549336F-F636-4F32-8619-BC69E5A53259 V1 EN

Figure 341: Arc protection with dedicated HSO

The optional autorecloser function is configured to be initiated by operate signals


from a number of protection stages through the INIT_1...5 inputs. It is possible
to create individual autoreclose sequences for each input.

The autorecloser function can be inhibited with the INHIBIT_RECL input. By


default, few selected protection function operations are connected to this input. A

234 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

control command to the circuit breaker, either local or remote, also blocks the
autorecloser function via the CBXCBR1-SELECTED signal.

The circuit breaker availability for the autorecloser sequence is expressed using the
CB_READY input in DARREC1. The signal, and other required signals, are
connected to the CB spring charged binary inputs in this configuration. The open
command from the autorecloser is connected directly to binary output X100:PO3,
whereas the close command is connected directly to binary output X100:PO1.

Set the parameters for DARREC1 properly.

Check the initialization signals of DARREC1.

DARREC1
PHIPTOC1_OPERATE INIT_1 OPEN_CB DARREC1_OPEN_CB
PHHPTOC2_OPERATE INIT_2 CLOSE_CB DARREC1_CLOSE_CB
PHHPTOC1_OPERATE INIT_3 CMD_WAIT
EFLPTOC1_OPERATE INIT_4 INPRO DARREC1_INPRO
EFHPTOC1_OPERATE INIT_5 LOCKED
INIT_6 PROT_CRD
DEL_INIT_2 UNSUC_RECL DARREC1_UNSUC_RECL
DEL_INIT_3 AR_ON
DEL_INIT_4 READY
BLK_RECL_T ACTIVE
BLK_RCLM_T
BLK_THERM
X120_BI3_CB_OPENED CB_POS
X110_BI4_CB_SPRING_CHARGED CB_READY
INC_SHOTP
INHIBIT_RECL
OR6 RECL_ON
SECRSYN1_SYNC_OK SYNC
PDNSPTOC1_OPERATE B1 O
NSPTOC1_OPERATE B2
NSPTOC2_OPERATE B3
CBXCBR1_SELECTED B4
B5 OR
B6
B1 O
B2

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
X110_BI3_GAS_PRESSURE_ALARM B4
B5
B6

GUID-8569C1BF-C7CF-4853-901E-9C5871B85919 V1 EN

Figure 342: Autorecloser function

Three overvoltage and undervoltage protection stages PHxPTOV and PHxPTUV


offer protection against abnormal phase voltage conditions. A failure in the voltage
measuring circuit is detected by the fuse failure function and the activation is
connected to block undervoltage protection functions to avoid faulty tripping.

REF615 235
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

PHPTOV1
BLOCK OPERATE PHPTOV1_OPERATE
START PHPTOV1_START

PHPTOV2
BLOCK OPERATE PHPTOV2_OPERATE
START PHPTOV2_START

PHPTOV3
BLOCK OPERATE PHPTOV3_OPERATE
START PHPTOV3_START

OR6
PHPTOV1_OPERATE B1 O PHPTOV_OPERATE
PHPTOV2_OPERATE B2
PHPTOV3_OPERATE B3
B4
B5
B6

GUID-168B0ECA-EC3A-4E24-BB38-040D20F5EEFF V1 EN

Figure 343: Overvoltage protection function

PHPTUV1
SEQRFUF1_FUSEF_U BLOCK OPERATE PHPTUV1_OPERATE
START PHPTUV1_START

PHPTUV2
SEQRFUF1_FUSEF_U BLOCK OPERATE PHPTUV2_OPERATE
START PHPTUV2_START

PHPTUV3
SEQRFUF1_FUSEF_U BLOCK OPERATE PHPTUV3_OPERATE
START PHPTUV3_START

OR6
PHPTUV1_OPERATE B1 O PHPTUV_OPERATE
PHPTUV2_OPERATE B2
PHPTUV3_OPERATE B3
B4
B5
B6

GUID-98D35F8A-6408-467E-88C2-15475BC6574E V1 EN

Figure 344: Undervoltage protection function

236 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

The residual overvoltage protection ROVPTOV provides earth fault protection by


detecting an abnormal level of residual voltage. It can be used, for example, as a
nonselective backup protection for the earth-fault functionality.

ROVPTOV1
BLOCK OPERATE ROVPTOV1_OPERATE
START ROVPTOV1_START

ROVPTOV2
BLOCK OPERATE ROVPTOV2_OPERATE
START ROVPTOV2_START

ROVPTOV3
BLOCK OPERATE ROVPTOV3_OPERATE
START ROVPTOV3_START

OR6
ROVPTOV1_OPERATE B1 O ROVPTOV_OPERATE
ROVPTOV2_OPERATE B2
ROVPTOV3_OPERATE B3
B4
B5
B6

GUID-521EA0D0-2332-4E90-A1FE-C405463CDBCF V1 EN

Figure 345: Residual overvoltage protection function

The selectable underfrequency or overfrequency protection FRPFRQ prevents


damage to network components under unwanted frequency conditions. The
function also contains a selectable rate of change of the frequency (gradient)
protection to detect an increase or decrease in the fast power system frequency at
an early stage. This can be used as an early indication of a disturbance in the system.

REF615 237
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

FRPFRQ1
BLOCK OPERATE FRPFRQ1_OPERATE
OPR_OFRQ
OPR_UFRQ
OPR_FRG
START FRPFRQ1_START
ST_OFRQ
ST_UFRQ
ST_FRG

FRPFRQ2
BLOCK OPERATE FRPFRQ2_OPERATE
OPR_OFRQ
OPR_UFRQ
OPR_FRG
START FRPFRQ2_START
ST_OFRQ
ST_UFRQ
ST_FRG

FRPFRQ3
BLOCK OPERATE FRPFRQ3_OPERATE
OPR_OFRQ
OPR_UFRQ
OPR_FRG
START FRPFRQ3_START
ST_OFRQ
ST_UFRQ
ST_FRG

OR6
FRPFRQ1_OPERATE B1 O FREQUENCY_OPERATE
FRPFRQ2_OPERATE B2
FRPFRQ3_OPERATE B3
B4
B5
B6

GUID-9C73EAD7-5797-4E5A-BDBB-D3734BF1D8DB V1 EN

Figure 346: Frequency protection function

General start and operate signals from all the functions are connected to pulse timer
TPGAPC1 for setting the minimum pulse length for the outputs. The output from
TPGAPC1 is connected to binary outputs.

238 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

OR6 OR6
PHLPTOC1_START B1 O B1 O
PHHPTOC1_START B2 B2
PHHPTOC2_START B3 B3
PHIPTOC1_START B4 B4
NSPTOC1_START B5 B5
NSPTOC2_START B6 B6
TPGAPC1
IN1 OUT1 GENERAL_START_PULSE
IN2 OUT2 GENERAL_OPERATE_PULSE
OR6
EFLPTOC1_START B1 O
EFLPTOC2_START B2
EFHPTOC1_START B3
EFIPTOC1_START B4 OR6 OR6
PDNSPTOC1_START B5
B6 PHLPTOC1_OPERATE B1 O B1 O
PHHPTOC1_OPERATE B2 B2
PHHPTOC2_OPERATE B3 B3
PHIPTOC1_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6
OR6
PHPTOV1_START B1 O
PHPTOV2_START B2
PHPTOV3_START B3 OR6
PHPTUV1_START B4
PHPTUV2_START B5 PHPTOV1_OPERATE B1 O
PHPTUV3_START B6 PHPTOV2_OPERATE B2
PHPTOV3_OPERATE B3
PHPTUV1_OPERATE B4
PHPTUV2_OPERATE B5
PHPTUV3_OPERATE B6

OR6
ROVPTOV1_START B1 O
ROVPTOV2_START B2
ROVPTOV3_START B3 OR6
FRPFRQ1_START B4
FRPFRQ2_START B5 EFLPTOC1_OPERATE B1 O
FRPFRQ3_START B6 EFLPTOC2_OPERATE B2
EFHPTOC1_OPERATE B3
EFIPTOC1_OPERATE B4
PDNSPTOC1_OPERATE B5
B6

OR6
ROVPTOV1_OPERATE B1 O
ROVPTOV2_OPERATE B2
ROVPTOV3_OPERATE B3
FRPFRQ1_OPERATE B4
FRPFRQ2_OPERATE B5
FRPFRQ3_OPERATE B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-71B45E9A-077E-45BD-8306-8D6DDCCE745A V1 EN

Figure 347: General start and operate signals

The operate signals from the protection functions are connected to the two trip
logics TRPPTRC1 and TRPPTRC2. The output of these trip logic functions is
available at binary output X100:PO3 and X100:PO4. The trip logic functions are
provided with a lockout and latching function, event generation and the trip signal
duration setting. If the lockout operation mode is selected, binary input X120:BI4
has been assigned to RST_LKOUT input of both the trip logic to enable external
reset with a push button.

Three other trip logics TRPPTRC3...4 are also available if the IED is ordered with
high speed binary outputs options.

REF615 239
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

TRPPTRC1
OR6 OR6
BLOCK TRIP TRPPTRC1_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
PHLPTOC1_OPERATE B2 B2 RST_LKOUT
PHHPTOC1_OPERATE B3 B3
PHHPTOC2_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
EFLPTOC1_OPERATE B1 O
EFHPTOC1_OPERATE B2
EFIPTOC1_OPERATE B3
EFLPTOC2_OPERATE B4
PDNSPTOC1_OPERATE B5
B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
ROVPTOV1_OPERATE B4
ROVPTOV2_OPERATE B5
ROVPTOV3_OPERATE B6

OR6
PHPTOV1_OPERATE B1 O
PHPTOV2_OPERATE B2
PHPTOV3_OPERATE B3
PHPTUV1_OPERATE B4
PHPTUV2_OPERATE B5
PHPTUV3_OPERATE B6

OR6
FRPFRQ1_OPERATE B1 O
FRPFRQ2_OPERATE B2
FRPFRQ3_OPERATE B3
B4
B5
B6

X120_BI4_RST_LOCKOUT
GUID-640AC68E-4932-4ACF-9AF1-CC6D640F0F7D V1 EN

Figure 348: Trip logic TRPPTRC1

240 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

TRPPTRC2
OR6 OR6
BLOCK TRIP TRPPTRC2_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
PHLPTOC1_OPERATE B2 B2 RST_LKOUT
PHHPTOC1_OPERATE B3 B3
PHHPTOC2_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
EFLPTOC1_OPERATE B1 O
EFHPTOC1_OPERATE B2
EFIPTOC1_OPERATE B3
EFLPTOC2_OPERATE B4
PDNSPTOC1_OPERATE B5
B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
ROVPTOV1_OPERATE B4
ROVPTOV2_OPERATE B5
ROVPTOV3_OPERATE B6

OR6
PHPTOV1_OPERATE B1 O
PHPTOV2_OPERATE B2
PHPTOV3_OPERATE B3
PHPTUV1_OPERATE B4
PHPTUV2_OPERATE B5
PHPTUV3_OPERATE B6

OR6
FRPFRQ1_OPERATE B1 O
FRPFRQ2_OPERATE B2
FRPFRQ3_OPERATE B3
CCBRBRF1_TRRET B4
B5
B6

X120_BI4_RST_LOCKOUT
GUID-724B2B2B-C697-47F3-84DC-5D244CC8725F V1 EN

Figure 349: Trip logic TRPPTRC1

3.10.3.2 Functional diagrams for disturbance recorder

The START and the OPERATE outputs from the protection stages are routed to
trigger the disturbance recorder or, alternatively, only to be recorded by the
disturbance recorder depending on the parameter settings. Additionally, the
selected signals from different functions and the few binary inputs are also
connected to the disturbance recorder.

REF615 241
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

OR6
PHIPTOC1_OPERATE B1 O
PHHPTOC1_OPERATE B2
PHHPTOC2_OPERATE B3
PHLPTOC1_OPERATE B4 RDRE1
B5
B6 PHLPTOC1_START C1 TRIGGERED DISTURB_RECORD_TRIGGERED
OR PHHPTOC1_START C2
PHHPTOC2_START C3
NSPTOC1_OPERATE B1 O PHIPTOC1_START C4
NSPTOC2_OPERATE B2 NSPTOC1_START C5
NSPTOC2_START C6
OR6 EFLPTOC1_START C7
EFLPTOC2_START C8
EFLPTOC1_OPERATE B1 O EFHPTOC1_START C9
EFLPTOC2_OPERATE B2 EFIPTOC1_START C10
EFHPTOC1_OPERATE B3 PDNSPTOC1_START C11
EFIPTOC1_OPERATE B4 PHPTOV1_START C12
B5 PHPTOV2_START C13
B6 PHPTOV3_START C14
PHPTUV1_START C15
PHPTUV2_START C16
PHPTUV3_START C17
ROVPTOV1_START C18
OR6 ROVPTOV2_START C19
ROVPTOV3_START C20
PHPTOV1_OPERATE B1 O FRPFRQ1_START C21
PHPTOV2_OPERATE B2 FRPFRQ2_START C22
PHPTOV3_OPERATE B3 FRPFRQ3_START C23
B4 CCBRBRF1_TRRET C24
B5 CCBRBRF1_TRBU C25
B6 C26
C27
C28
EFHPTOC1_OPERATE C29
PDNSPTOC1_OPERATE C30
OR6 INRPHAR1_BLK2H C31
C32
PHPTUV1_OPERATE B1 O C33
PHPTUV2_OPERATE B2 C34
PHPTUV3_OPERATE B3 C35
B4 SEQRFUF1_FUSEF_3PH C36
B5 SEQRFUF1_FUSEF_U C37
B6 CCRDIF1_FAIL C38
X120_BI1_EXT_OC_BLOCKING C39
X120_BI2_CB_CLOSED C40
X120_BI3_CB_OPENED C41
SECRSYN1_SYNC_INPRO C42
OR6 SECRSYN1_SYNC_OK C43
SECRSYN1_CL_FAIL_AL C44
ROVPTOV1_OPERATE B1 O SECRSYN1_CMD_FAIL_AL C45
ROVPTOV2_OPERATE B2 C46
ROVPTOV3_OPERATE B3 ARCSARC1_OPERATE C47
B4 ARCSARC2_OPERATE C48
B5 ARCSARC3_OPERATE C49
B6 DARREC1_INPRO C50
DARREC1_CLOSE_CB C51
DARREC1_UNSUC_RECL C52
C53
C54
OR6 C55
C56
FRPFRQ1_OPERATE B1 O C57
FRPFRQ2_OPERATE B2 C58
FRPFRQ3_OPERATE B3 C59
B4 C60
B5 C61
B6 C62
C63
C64

OR6
ARCSARC1_ARC_FLT_DET B1 O
ARCSARC2_ARC_FLT_DET B2
ARCSARC3_ARC_FLT_DET B3
B4
B5
B6

GUID-BBC21615-E283-4B10-9001-967A19C5896F V1 EN

Figure 350: Disturbance recorder

3.10.3.3 Functional diagrams for condition monitoring

Failures in the current measuring circuits are detected by CCRDIF1. When a


failure is detected, it can be used to block the current protection functions that
measure the calculated sequence component currents or residual current to avoid
unnecessary operation.

CCRDIF1
BLOCK FAIL CCRDIF1_FAIL
ALARM CCRDIF1_ALARM

GUID-5D2B0679-06B9-43AE-86DE-5438AB2D9C17 V1 EN

Figure 351: Current circuit supervision function

The fuse failure supervision SEQRFUF1 detects failures in the voltage


measurement circuits. Failures, such as an open MCB, raise an alarm.

242 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

SEQRFUF1
BLOCK FUSEF_3PH SEQRFUF1_FUSEF_3PH
X120_BI2_CB_CLOSED CB_CLOSED FUSEF_U SEQRFUF1_FUSEF_U
DISCON_OPEN
X110_BI1_BUS_VT_MCB_OPEN MINCB_OPEN

GUID-36463825-15E3-43EB-8747-6B52FEB5CCC9 V1 EN

Figure 352: Fuse failure supervision function

The circuit breaker condition monitoring function SSCBR1 supervises the switch
status based on the connected binary input information and the measured current
levels. SSCBR1 introduces various supervision methods.

Set the parameters for SSCBR1 properly.

SSCBR1
BLOCK TRV_T_OP_ALM SSCBR1_TRV_T_OP_ALM
X120_BI3_CB_OPENED POSOPEN TRV_T_CL_ALM SSCBR1_TRV_T_CL_ALM
X120_BI2_CB_CLOSED POSCLOSE SPR_CHR_ALM SSCBR1_SPR_CHR_ALM
CB_OPEN_COMMAND OPEN_CB_EXE OPR_ALM SSCBR1_OPR_ALM
CB_CLOSE_COMMAND CLOSE_CB_EXE OPR_LO SSCBR1_OPR_LO
X110_BI3_GAS_PRESSURE_ALARM PRES_ALM_IN IPOW_ALM SSCBR1_IPOW_ALM
PRES_LO_IN IPOW_LO SSCBR1_IPOW_LO
CB_SPRING_DISCHARGED SPR_CHR_ST CB_LIFE_ALM SSCBR1_CB_LIFE_ALM
X110_BI4_CB_SPRING_CHARGED SPR_CHR MON_ALM SSCBR1_MON_ALM
RST_IPOW PRES_ALM SSCBR1_PRES_ALM
RST_CB_WEAR PRES_LO SSCBR1_PRES_LO
RST_TRV_T OPENPOS
RST_SPR_T INVALIDPOS
CLOSEPOS

GUID-3E1BA906-5D1B-4FAC-AA2A-F6C70CAE5BEC V1 EN

Figure 353: Circuit breaker conditioning monitoring function

OR6
SSCBR1_TRV_T_OP_ALM B1 O
SSCBR1_TRV_T_CL_ALM B2
SSCBR1_SPR_CHR_ALM B3
SSCBR1_OPR_ALM B4
SSCBR1_OPR_LO B5 OR
SSCBR1_IPOW_ALM B6
B1 O SSCBR1_ALARMS
B2

OR6
SSCBR1_IPOW_LO B1 O
SSCBR1_CB_LIFE_ALM B2
SSCBR1_MON_ALM B3
SSCBR1_PRES_ALM B4
SSCBR1_PRES_LO B5
B6

GUID-CEC2B30C-9E82-4842-902A-7997A31A6E46 V1 EN

Figure 354: Logic for circuit breaker monitoring alarm

REF615 243
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

NOT
X110_BI4_CB_SPRING_CHARGED IN OUT CB_SPRING_DISCHARGED

GUID-2E6D31BF-26F4-47CF-8E05-295BB466E4AD V1 EN

Figure 355: Logic for start of circuit breaker spring charging

Two separate trip circuit supervision functions are included: TCSSCBR1 for power
output X100:PO3 and TCSSCBR2 for power output X100:PO4. Both functions are
blocked by the Master Trip TRPPTRC1 and TRPPTRC2 and the circuit breaker
open signal.

It is assumed that there is no external resistor in the circuit breaker


tripping coil circuit connected in parallel with the circuit breaker
normally open auxiliary contact.

Set the parameters for TCSSCBR1 properly.

TCSSCBR1
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR1_ALARM

TCSSCBR2
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR2_ALARM

OR
TCSSCBR1_ALARM B1 O TCSSCBR_ALARM
TCSSCBR2_ALARM B2

GUID-F5BCA344-DDE2-4504-91E7-B5A0EB19A8A3 V1 EN

Figure 356: Trip circuit supervision function

244 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

OR6
TRPPTRC1_TRIP B1 O TCSSCBR_BLOCKING
TRPPTRC2_TRIP B2
X120_BI3_CB_OPENED B3
B4
B5
B6

GUID-75C22AA4-4F3D-4F1E-9E7F-82C1AB76D23F V1 EN

Figure 357: Logic for blocking of trip circuit supervision

3.10.3.4 Functional diagrams for control and interlocking

The main purpose of the synchronism and energizing check SECRSYN is to


provide control over the closing of the circuit breakers in power networks to
prevent the closing, if the conditions for synchronism are not detected. The
energizing function allows closing, for example, when one side of the breaker is dead.

SECRSYN measures the bus and line voltages and compares them to the set
conditions. When all the measured quantities are within set limits, the output
SYNC_OK is activated for allowing closing or closing the circuit breaker. The
SYNC_OK output signal of SECRSYN is connected to ENA_CLOSE input of
CBXCBR through control logic. The function is block in case of line side or bus
side MCB is open.

SECRSYN1
BLOCK_SECRSYN1 BLOCK SYNC_INPRO SECRSYN1_SYNC_INPRO
CL_COMMAND SYNC_OK SECRSYN1_SYNC_OK
BYPASS CL_FAIL_AL SECRSYN1_CL_FAIL_AL
CMD_FAIL_AL SECRSYN1_CMD_FAIL_AL
LLDB
LLLB
DLLB
DLDB

OR
X110_BI2_LINE_VT_MCB_OPEN B1 O BLOCK_SECRSYN1
X110_BI1_BUS_VT_MCB_OPEN B2

GUID-1054A5E9-E611-4D4B-82B5-5FD0AFE8CF66 V1 EN

Figure 358: Synchrocheck function

Two types of disconnector and earthing switch function blocks are available.
DCSXSWI1...3 and ESSXSWI1...2 are status only type, and DCXSWI1...2 and
ESXSWI1 are controllable type. By default, the status only blocks are connected in
standard configuration. The disconnector (CB truck) and line side earthing switch
status information is connected to DCSXSWI1 and ESSXSI1.

DCSXSWI1
X110_BI6_CB_TRUCK_IN_TEST POSOPEN OPENPOS
X110_BI5_CB_TRUCK_IN_SERVICE POSCLOSE CLOSEPOS
OKPOS DCSXSWI1_OKPOS

GUID-A84A3976-BDA8-4343-96F1-1E436AF74BBE V1 EN

Figure 359: Disconnector control logic

REF615 245
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

ESSXSWI1
X110_BI8_ES1_OPENED POSOPEN OPENPOS ESSXSWI1_OPENPOS
X110_BI7_ES1_CLOSED POSCLOSE CLOSEPOS
OKPOS

GUID-5BC3FC2D-0BBF-40F3-84FD-34804A0A9354 V1 EN

Figure 360: Earth switch control logic

The circuit breaker closing is enabled when the ENA_CLOSE input is activated.
The input can be activated by the configuration logic, which is a combination of
the disconnector or breaker truck and earth-switch position status, status of the trip
logics, gas pressure alarm, circuit-breaker spring charging and synchronizing ok
status.

The OKPOS output from DCSXSWI defines if the disconnector or breaker truck is
definitely either open (in test position) or close (in service position). This, together
with the open earth-switch and non-active trip signals, activates the close-enable
signal to the circuit breaker control function block. The open operation for circuit
breaker is always enabled.

The ITL_BYPASS input can be used, for example, to always enable the closing of
the circuit breaker when the circuit breaker truck is in the test position.
ITL_BYPASS overrides, for example, active interlocking conditions when the
circuit breaker truck is closed in service position.

Connect the additional signals required for the application for


closing and opening of circuit breaker.

CBXCBR1
X120_BI3_CB_OPENED POSOPEN SELECTED CBXCBR1_SELECTED
X120_BI2_CB_CLOSED POSCLOSE EXE_OP CBXCBR1_EXE_OP
TRUE ENA_OPEN EXE_CL CBXCBR1_EXE_CL
CBXCBR1_ENA_CLOSE ENA_CLOSE OPENPOS
FALSE BLK_OPEN CLOSEPOS
BLK_CLOSE OKPOS
CBXBCR1_AU_OPEN AU_OPEN OPEN_ENAD
CBXCBR1_AU_CLOSE AU_CLOSE CLOSE_ENAD
ITL_BYPASS

GUID-FB23770A-8BAD-4112-A6C0-3FC6A147B369 V1 EN

Figure 361: Circuit breaker 1 control logic

OR
CBXCBR1_EXE_CL B1 O CB_CLOSE_COMMAND
DARREC1_CLOSE_CB B2

GUID-93A451B8-88A1-42EF-91AA-36931009E5C6 V1 EN

Figure 362: Signals for closing coil of circuit breaker 1

246 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

OR6
CBXCBR1_EXE_OP B1 O CB_OPEN_COMMAND
TRPPTRC1_TRIP B2
DARREC1_OPEN_CB B3
B4
B5
B6

GUID-A6E3FB5D-548A-4BC0-9CFF-BE0045FF8EC5 V1 EN

Figure 363: Signals for opening coil of circuit breaker 1

AND6
X110_BI4_CB_SPRING_CHARGED B1 O CBXCBR1_ENA_CLOSE
SECRSYN1_SYNC_OK B2
B3
B4
B5
NOT B6

TRPPTRC1_TRIP IN OUT

NOT
X110_BI3_GAS_PRESSURE_ALARM IN OUT

AND
DCSXSWI1_OKPOS B1 O
ESSXSWI1_OPENPOS B2

GUID-65DF4D38-46C0-48E2-B04B-02CB5C300A09 V1 EN

Figure 364: Circuit breaker 1 close enable logic

The configuration includes the logic for generating circuit breaker external closing
and opening command with the IED in local or remote mode.

Check the logic for the external circuit breaker closing command
and modify it according to the application.

Connect additional signals for opening and closing of circuit


breaker in local or remote mode, if applicable for the configuration.

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXCBR1_AU_CLOSE
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-10E8EE71-A656-4915-AE6A-988A14303156 V1 EN

Figure 365: External closing command for circuit breaker 1

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXBCR1_AU_OPEN
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-9F4607E1-4630-4C64-BD19-AA14BF6BFE16 V1 EN

Figure 366: External opening command for circuit breaker 1

REF615 247
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

3.10.3.5 Functional diagrams for measurement functions

The phase current inputs to the IED are measured by the three-phase current
measurement function CMMXU1. The current input is connected to the X120 card
in the back panel. The sequence current measurement CSMSQI1 measures the
sequence current and the residual current measurement RESCMMXU1 measures
the residual current.

The three-phase bus side phase voltage and single phase line side phase voltage
inputs to the IED are measured by voltage measurement function VMMXU1 and
VMMXU2. The voltage input is connected to the X130 card in the back panel. The
sequence voltage measurement VSMSQI1 measures the sequence voltage and the
residual voltage measurement RESVMMXU1 measures the residual voltage.

The measurements can be seen from the LHMI and they are available under the
measurement option in the menu selection. Based on the settings, function blocks
can generate low alarm or warning and high alarm or warning signals for the
measured current values.

The frequency measurement FMMXU1 of the power system and the three-phase
power measurement PEMMXU1 are available. The load profile function
LDPMSTA1 is included in the measurements sheet. LDPMSTA1 offers the ability
to observe the loading history of the corresponding feeder.

CMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-58044A48-84FA-4E5E-9CEF-962184380C35 V1 EN

Figure 367: Current measurement: Three-phase current measurement

CSMSQI1

GUID-6F4AF6B3-2DBD-4BF8-8915-4226EA3FF1F8 V1 EN

Figure 368: Current measurement: Sequence current measurement

RESCMMXU1
BLOCK HIGH_ALARM
HIGH_WARN

GUID-119FD230-A037-434D-8A86-375BE112675E V1 EN

Figure 369: Current measurement: Residual current measurement

VMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-A0A7875D-7234-4435-A673-0878D1176605 V1 EN

Figure 370: Voltage measurement: Three-phase voltage measurement

248 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

VSMSQI1

GUID-AE2F63C6-4370-4D54-881E-0F9B39B3A528 V1 EN

Figure 371: Voltage measurement: Sequence voltage measurement

RESVMMXU1
BLOCK HIGH_ALARM
HIGH_WARN

GUID-816E4CE2-6D0E-4608-B26D-DD624B2534F8 V1 EN

Figure 372: Voltage measurement: Residual voltage measurement

VMMXU2
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-41E615E2-EBA2-4540-8B56-1F686E8AD2A5 V1 EN

Figure 373: Voltage measurement: Three-phase voltage measurement

FMMXU1

GUID-C3BCC8EA-4599-44E6-B243-477458BCFD0A V1 EN

Figure 374: Other measurement: Frequency measurement

PEMMXU1
RSTACM

GUID-FF640519-F00C-4B5E-940A-116E9FDB242B V1 EN

Figure 375: Other measurement: Three phase power and energy measurement

FLTMSTA1
BLOCK
CB_CLRD

GUID-6EC9DC3E-40D6-4CBE-934E-54413CF6CC00 V1 EN

Figure 376: Other measurement: Data monitoring

LDPMSTA1
RSTMEM MEM_WARN
MEM_ALARM

GUID-F73B8068-4E12-4578-B988-C1AC326D5F8F V1 EN

Figure 377: Other measurement: Load profile record

REF615 249
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

3.10.3.6 Functional diagrams for I/O and alarm LEDs

X110 (BIO).X110-Input 1 OR
B1 O X110_BI1_BUS_VT_MCB_OPEN
B2
X110 (BIO-H).X110-Input 1

X110 (BIO).X110-Input 2 OR
B1 O X110_BI2_LINE_VT_MCB_OPEN
B2
X110 (BIO-H).X110-Input 2

X110 (BIO).X110-Input 3 OR
B1 O X110_BI3_GAS_PRESSURE_ALARM
B2
X110 (BIO-H).X110-Input 3

X110 (BIO).X110-Input 4 OR
B1 O X110_BI4_CB_SPRING_CHARGED
B2
X110 (BIO-H).X110-Input 4

X110 (BIO).X110-Input 5 OR
B1 O X110_BI5_CB_TRUCK_IN_SERVICE
B2
X110 (BIO-H).X110-Input 5

X110 (BIO).X110-Input 6 OR
B1 O X110_BI6_CB_TRUCK_IN_TEST
B2
X110 (BIO-H).X110-Input 6

X110 (BIO).X110-Input 7 OR
B1 O X110_BI7_ES1_CLOSED
B2
X110 (BIO-H).X110-Input 7

X110 (BIO).X110-Input 8 OR
B1 O X110_BI8_ES1_OPENED
B2
X110 (BIO-H).X110-Input 8
GUID-02227A18-A1C5-4974-AA2E-7EDE98EE1777 V1 EN

Figure 378: Default binary inputs - X110

250 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

X120_BI1_EXT_OC_BLOCKING
X120 (AIM).X120-Input 1

X120_BI2_CB_CLOSED
X120 (AIM).X120-Input 2

X120_BI3_CB_OPENED
X120 (AIM).X120-Input 3

X120_BI4_RST_LOCKOUT
X120 (AIM).X120-Input 4
GUID-4BAA9A5D-93C8-4DB9-937F-05BE3716E9F2 V1 EN

Figure 379: Default binary inputs - X120

UPSTEAM_OC_BLOCKING
X110 (BIO).X110-SO1

TRPPTRC3_TRIP
X110 (BIO-H).X110-HSO1

OC_OPERATE_PULSE
X110 (BIO).X110-SO2

TRPPTRC4_TRIP
X110 (BIO-H).X110-HSO2

EF_OPERATE_PULSE
X110 (BIO).X110-SO3

TRPPTRC5_TRIP
X110 (BIO-H).X110-HSO3

VOLTAGE_AND_FREQ_OPERATE_PULSE
X110 (BIO).X110-SO4
GUID-971007B0-0D89-4D4A-927A-82E43C25BD24 V1 EN

Figure 380: Default binary outputs - X110

CB_CLOSE_COMMAND
X100 (PSM).X100-PO1

CCBRBRF1_TRBU
X100 (PSM).X100-PO2

GENERAL_START_PULSE
X100 (PSM).X100-SO1

GENERAL_OPERATE_PULSE
X100 (PSM).X100-SO2

CB_OPEN_COMMAND
X100 (PSM).X100-PO3

TRPPTRC2_TRIP
X100 (PSM).X100-PO4
GUID-450761DF-7C25-462C-9057-343E83108300 V1 EN

Figure 381: Default binary outputs - X100

REF615 251
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

LED1
OK
PHxPTOC_OPERATE ALARM
RESET

LED2
OR
OK
EFxPTOC_OPERATE B1 O ALARM
ROVPTOV_OPERATE B2 RESET

LED3
OR6
OK
NSPTOC_OPERATE B1 O ALARM
PDNSPTOC1_OPERATE B2 RESET
PHPTOV_OPERATE B3
PHPTUV_OPERATE B4
B5
B6

LED4
AND
OK
X120_BI3_CB_OPENED B1 O ALARM
SECRSYN1_SYNC_OK B2 RESET

LED5
OK
FREQUENCY_OPERATE ALARM
RESET

GUID-C6926FBC-66DB-4EF0-BFA9-26D9D24FC3DA V1 EN

252 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

LED6
OK
CCBRBRF1_TRBU ALARM
RESET

LED7
OK
DISTURB_RECORD_TRIGGERED ALARM
RESET

LED8
OK
SSCBR1_ALARMS ALARM
RESET

LED9
OR6
OK
TCSSCBR_ALARM B1 O ALARM
SEQRFUF1_FUSEF_3PH B2 RESET
SEQRFUF1_FUSEF_U B3
CCRDIF1_ALARM B4
B5
B6

LED10
OK
ARCSARC_OPERATE ALARM
RESET

LED11
OK
DARREC1_INPRO ALARM
RESET

GUID-80EA7DF8-1DBE-4BFA-9086-E9202A417FB1 V1 EN

Figure 382: Default LED connection

3.10.3.7 Functional diagrams for other timer logics

The configuration also includes overcurrent operate, earth-fault operate and


combined voltage and frequency operate logic. The operate logics are connected to
the pulse timer TPGAPC for setting the minimum pulse length for the outputs. The
output from TPGAPC is connected to the binary outputs.
TPGAPC2
PHxPTOC_OPERATE IN1 OUT1 OC_OPERATE_PULSE
IN2 OUT2 EF_OPERATE_PULSE

OR
EFxPTOC_OPERATE B1 O
ROVPTOV_OPERATE B2

GUID-FCD29EFB-54DE-459E-94FB-F459C6E94443 V1 EN

Figure 383: Timer logic for overcurrent and earth-fault operate pulse

REF615 253
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

OR6 TPGAPC3
PHPTOV_OPERATE B1 O IN1 OUT1 VOLTAGE_AND_FREQ_OPERATE_PULSE
PHPTUV_OPERATE B2 IN2 OUT2
FREQUENCY_OPERATE B3
B4
B5
B6

GUID-A3CADE4F-E483-4565-883D-8F8B63B1968E V1 EN

Figure 384: Timer logic for voltage and frequency operate pulse

3.10.3.8 Other functions

The configuration includes few instances of multi-purpose protection function


MAPGAPC, high impedance fault detection function PHIZ, runtime counter
MDSOPT and different types of timers and control functions. These functions are
not included in application configuration but they can be added based on the
system requirements.

3.11 Standard configuration J

3.11.1 Applications
The standard configuration for directional overcurrent and directional earth-fault
protection with phase voltage-based measurements, undervoltage and overvoltage
protection, frequency protection and measurement functions is mainly intended for
cable and overhead-line feeder applications in isolated or resonant-earthed
distribution networks. The configuration also includes additional options for
selecting earth-fault protection based on admittance, wattmetric or harmonic-based
principles.

The IED with a standard configuration is delivered from the factory with default
settings and parameters. The end user flexibility for incoming, outgoing and
internal signal designation within the IED enables this configuration to be further
adapted to different primary circuit layouts and the related functionality needs by
modifying the internal functionality using PCM600.

254 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

3.11.2 Functions
UL1UL2UL3
Uo

REF615 FEEDER PROTECTION AND CONTROL IED STANDARD


CONFIGURATION
J

PROTECTION LOCAL HMI ALSO AVAILABLE


Configuration A

- Disturbance and fault recorders


System
HMI
Time
Authorization

5× - Event log and recorded data


Master Trip I
- High-Speed Output module (optional)
ESC Clear

Lockout relay A
O
- IED self-supervision
R
L

94/86
U12 0. 0 kV
P 0.00 kW
Q 0.00 kVAr

IL2 0 A
- Local/Remote push button on LHMI
- User management
I ESC Clear
- Web HMI

AND
I2> I2/I1> 3Ith>F 3I>>> O R
OR 46 46PD 49F 50P/51P
L
OR
3I
3× 3×
ARC 3I>/Io>BF
50L/50NL CONDITION MONITORING COMMUNICATION
51BF/51NBF
AND SUPERVISION
Protocols:
0 0 0 1 1 0 0 1 1 0 0 2× IEC 61850-8-1 1 0
61850-8-1/-9-2LE 1 0 0 0 1 1 0 0 1 1 0 0
1 0 0 1 0 1 1 1 0 0 1 0 3I>→ 3I>>→ 3I2f> 3I FUSEF CBCM MCS 3I Modbus®® 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 1 0 1 0 0
67-1 67-2 68 60 CBCM MCS 3I IEC 60870-5-103 1 0 1 1 0 1 1 0 1 1 0 1 0 0
0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 DNP3 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0
1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
0 1 1 1 0 1 1 0 1 0 UL1UL2UL3 Interfaces: 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 1 0 1 0 0 Io Io 1 0 1 1 0 1 1 0 1 1 0 1 0 0
C) U12 Ethernet: TX (RJ45), FX (LC)
(ST), Serial: Serial glass fiber (ST),

2/485 RS-485, RS-232/485
Io>> OPTS TCS
D-sub 9, IRIG-B
51N-2 OPTM TCM
Redundant protocols:
HSR
PRP
Io RSTP
Io

Io>→ Io>>→ Io>IEF→
CONTROL AND INDICATION 1) MEASUREMENT
67N-1 67N-2 67NIEF

Uo - I, U, Io, Uo, P, Q, E, pf, f


Object Ctrl 2)
Ind 3)
3× 3× - Limit value supervision
Yo>→ Po>→ Io>HA CB 1 - - Load profile record
21YN 32N 51NHA - RTD/mA measurement (optional)
DC 2 3
OR OR - Symmetrical components
ES 1 2
1)
Check availability of binary inputs/outputs Analog interface types 1)

from technical documentation Current transformer 4


2)
Control and indication function for
primary object Voltage transformer 5
3× 3×
3)
Status indication function for
primary object
1)
Conventional transformer inputs
3U< U2> U1< 3U>
27 47O- 47U+ 59

3× 3×
Uo> f>/f<, SYNC O→I PQM3I PQM3U PQMU
UL1UL2UL3 59G
df/dt
25 79 PQM3I PQM3V PQMV
81
U12

REMARKS
18× Optional 3× No. of Calculated OR Alternative
MAP function instances value function to be
MAP Io/Uo defined when
2xRTD ordering
1xmA

GUID-8736C89A-53BA-49B3-95A1-3984B605504F V1 EN

Figure 385: Functionality overview for standard configuration J

3.11.2.1 Default I/O connections


REF615 FEEDER PROTECTION AND CONTROL IED STANDARD
CONFIGURATION

Connector
PROTECTION
pins for each input and output are presented in the IED physical
LOCAL HMI
connections section. Configuration
System
HMI
Time
Authorization
A

I ESC Clear

A
O R
L
U12 0. 0 kV
P 0.00 kW
Q 0.00 kVAr

IL2 0 A

I ESC Clear

AND
O R
OR L
OR

CONDITION MONITORING COMMUNICATION


AND SUPERVISION
Protocols:
0 0 0 1 1 0 0 1 1 0 0 IEC 61850-8-1 1 0 1 0 0 0 1 1 0 0 1 1 0 0
1 0 0 1 0 1 1 1 0 0 1 0 Modbus® 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 1 0 1 0 0
IEC 60870-5-103 1 0 1 1 0 1 1 0 1 1 0 1 0 0
0
1
0
0
0
0
1
1
1
0
0
1
0
1
1
1
1
0
0
0 1 0
REF615
0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 DNP3 1
1
0
0
1
1
0
1
0
0
0
0
1
1
255
1
0
0
1
0
1
1
1
1
0
0
0
0 1 0 1 0 0
1 0
0
1
1
0
1
1
1
1
0
0
1
1
1
1
0
0
1
1
0
0 0 Application Manual Interfaces: 1
1
1
0
0
1
0
1
1
0
1
1
1
1
0
0
1
1
1
1
0
0
1
1
0
0 0
C) Ethernet: TX (RJ45), FX (LC)
(ST), Serial: Serial glass fiber (ST),
2/485 RS-485, RS-232/485
D-sub 9, IRIG-B
Redundant protocols:
HSR
PRP
RSTP

CONTROL AND INDICATION 1) MEASUREMENT


Section 3 1MRS756378 N
REF615 standard configurations

Table 53: Default connections for binary inputs


Binary input Description
X110-BI1 Busbar VT secondary MCB open
X110-BI2 Line VT secondary MCB open
X110-BI3 Circuit breaker low gas pressure indication
X110-BI4 Circuit breaker spring charged indication
X110-BI5 Circuit breaker truck in (service position) indication
X110-BI6 Circuit breaker truck out (test position) indication
X110-BI7 Earthing switch closed indication
X110-BI8 Earthing switch open indication
X120-BI1 Blocking of overcurrent instantaneous stage
X120-BI2 Circuit breaker closed indication
X120-BI3 Circuit breaker open indication
X120-BI4 Lock-out reset

Table 54: Default connections for binary outputs


Binary output Description
X100-PO1 Close circuit breaker
X100-PO2 Breaker failure backup trip to upstream breaker
X100-SO1 General start indication
X100-SO2 General operate indication
X100-PO3 Open circuit breaker/trip coil 1
X100-PO4 Open circuit breaker/trip coil 2
X110-SO1 Upstream overcurrent blocking
X110-SO2 Overcurrent operate alarm
X110-SO3 Earth-fault operate alarm
X110-SO4 Voltage protection operate alarm
X110-HSO1 Arc protection instance 1 operate activated
X110-HSO2 Arc protection instance 2 operate activated
X110-HSO3 Arc protection instance 3 operate activated

Table 55: Default connections for LEDs


LED Description
1 Overcurrent protection operate
2 Earth-fault protection operate
3 Combined protection operated indication
4 Synchronism or energizing check OK
5 Thermal overload alarm
6 Circuit breaker failure protection backup protection operated
Table continues on next page

256 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

LED Description
7 Disturbance recorder triggered
8 Circuit breaker condition monitoring
9 Circuit supervision alarm
10 Arc fault detected
11 Autoreclose in progress

3.11.2.2 Default disturbance recorder settings


Table 56: Default disturbance recorder analog channels
Channel Description
1 IL1
2 IL2
3 IL3
4 Io
5 Uo
6 U1
7 U2
8 U3
9 U1B
10 -
11 -
12 -

Table 57: Default disturbance recorder binary channels


Channel ID text Level trigger mode
1 DPHLPDOC1 - start Positive or Rising
2 DPHLPDOC2 - start Positive or Rising
3 DPHHPDOC1 - start Positive or Rising
4 PHIPTOC1 - start Positive or Rising
5 NSPTOC1 - start Positive or Rising
6 NSPTOC2 - start Positive or Rising
7 DEFLPDEF1 - start Positive or Rising
EFPADM1 - start
WPWDE1 - start
8 DEFLPDEF2 - start Positive or Rising
EFPADM2 - start
WPWDE2 - start
Table continues on next page

REF615 257
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Channel ID text Level trigger mode


9 DEFLPDEF3 - start Positive or Rising
EFPADM3 - start
WPWDE3 - start
10 INTRPTEF1 - start Positive or Rising
11 EFHPTOC1 - start Positive or Rising
12 PDNSPTOC1 - start Positive or Rising
13 T1PTTR1 - start Positive or Rising
14 PHPTOV1 - start Positive or Rising
15 PHPTOV2 - start Positive or Rising
16 PHPTOV3 - start Positive or Rising
17 PSPTUV1 - trret Positive or Rising
18 NSPTOV1 - trbu Positive or Rising
19 PHPTUV1 - start Positive or Rising
20 PHPTUV2 - start Positive or Rising
21 PHPTUV3 - start Positive or Rising
22 ROVPTOV1 - start Positive or Rising
23 ROVPTOV2 - start Positive or Rising
24 ROVPTOV3 - start Positive or Rising
25 CCBRBRF1 - trret Level trigger off
26 CCBRBRF1 - trbu Level trigger off
27 PHIPTOC1 - start Level trigger off
DPHHPDOC1 - start
DPHLPDOC1 - start
DPHLPDOC2 - operate
28 NSPTOC1 - start Level trigger off
NSPTOC2 - operate
29 DEFHPDEF1 - start Level trigger off
DEFLPDEF1 - start
DEFLPDEF2 - start
EFPADM1 - start
EFPADM2 - start
EFPADM3 - start
WPWDE1 - start
WPWDE2 - start
WPWDE3 - operate
30 INTRPTEF1 - operate Level trigger off
31 EFHPTOC1 - operate Level trigger off
32 PDNSPTOC1 - operate Level trigger off
33 INRPHAR1 - blk2h Level trigger off
Table continues on next page

258 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

Channel ID text Level trigger mode


34 T1PTTR1 - operate Level trigger off
35 PHPTOV1 - operate Level trigger off
PHPTOV2 - operate
PHPTOV3 - operate
36 PHPTUV1 - operate Level trigger off
PHPTUV2 - operate
PHPTUV3 - operate
37 ROVPTOV1 - operate Level trigger off
ROVPTOV2 - operate
ROVPTOV3 - operate
PSPTUV1 - operate
NSPTOV2 - operate
38 SEQRFUF1 - fusef3ph Level trigger off
39 SEQRFUF1 - fusefu Level trigger off
40 CCRDIF1 - fail Level trigger off
41 X120BI1 - ext OC blocking Level trigger off
42 X120BI2 - CB closed Level trigger off
43 X120BI3 - CB opened Level trigger off
44 ARCSARC1 - ARC flt det Level trigger off
ARCSARC2 - ARC flt det
ARCSARC3 - ARC flt det
45 DARREC1 - close CB Level trigger off
DARREC1 - unsuc recl
46 ARCSARC1 - operate Positive or Rising
47 ARCSARC2 - operate Positive or Rising
48 ARCSARC3 - operate Positive or Rising
49 DARREC1 - inpro Level trigger off
50 FRPFRQ1 - start Positive or Rising
51 FRPFRQ2 - start Positive or Rising
52 FRPFRQ3 - start Positive or Rising
53 FRPFRQ1 - operate Level trigger off
FRPFRQ2 - operate
FRPFRQ3 - operate
54 SECRSYN1 - sync inpro Level trigger off
55 SECRSYN1 - sync ok Level trigger off
56 SECRSYN1 - cl fail al Level trigger off
57 SECRSYN1 - cmd fail al Level trigger off

REF615 259
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

3.11.3 Functional diagrams


The functional diagrams describe the default input, output, alarm LED and function-
to-function connections. The default connections can be viewed and changed with
PCM600 according to the application requirements.

The analog channels have fixed connections to the different function blocks inside
the IED’s standard configuration. However, the 12 analog channels available for
the disturbance recorder function are freely selectable as a part of the disturbance
recorder’s parameter settings.

The phase currents to the IED are fed from a current transformer. The residual
current to the IED is fed from either residually connected CTs, an external core
balance CT, neutral CT or internally calculated.

The phase voltages to the IED are fed from a voltage transformer. The residual
voltage to the IED is fed from either residually connected VTs, an open delta
connected VT or internally calculated.

The IED offers six different settings groups which can be set based on individual
needs. Each group can be activated or deactivated using the setting group settings
available in the IED.

Depending on the communication protocol the required function block needs to be


initiated in the configuration. The Application Configuration tool also includes
fixed Boolean signals TRUE and FALSE which can be used according to the
application needs.

3.11.3.1 Functional diagrams for protection

The functional diagrams describe the IEDs protection functionality in detail and
according to the factory set default connections.

Four overcurrent stages are offered for overcurrent and short-circuit protection.
Three of these include directional functionality DPHxPDOC. The non-directional
instantaneous stage PHIPTOC1 can be blocked by energizing the binary input
X120:BI1.

PHIPTOC1
X120_BI1_EXT_OC_BLOCKING BLOCK OPERATE PHIPTOC1_OPERATE
ENA_MULT START PHIPTOC1_START

GUID-B16AE694-A1BF-450D-AFA8-BE6CDEC14F31 V1 EN

Figure 386: Overcurrent protection function

260 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

DPHHPDOC1
BLOCK OPERATE DPHHPDOC1_OPERATE
ENA_MULT START DPHHPDOC1_START
NON_DIR

DPHLPDOC1
BLOCK OPERATE DPHLPDOC1_OPERATE
ENA_MULT START DPHLPDOC1_START
NON_DIR

DPHLPDOC2
BLOCK OPERATE DPHLPDOC2_OPERATE
ENA_MULT START DPHLPDOC2_START
NON_DIR

OR6
DPHHPDOC1_OPERATE B1 O DPHxPDOC_OPERATE
DPHLPDOC1_OPERATE B2
DPHLPDOC2_OPERATE B3
B4
B5
B6

GUID-D8B8656A-F5D7-4449-94B4-CFE402EDE482 V1 EN

Figure 387: Directional overcurrent protection function

The upstream blocking from the start of the directional overcurrent second low
stage DPHLPDOC2 is connected to the binary output X110:SO1. This output can
be used for sending a blocking signal to the relevant overcurrent protection stage of
the IED at the infeeding bay.

OR6
DPHLPDOC2_START B1 O UPSTEAM_OC_BLOCKING
B2
B3
B4
B5
B6

GUID-E879BBBA-BEA6-4F5B-B22D-D183E8B345AA V1 EN

Figure 388: Upstream blocking logic

The inrush detection block's (INRPHAR1) output BLK2H enables either blocking
the function or multiplying the active settings for any of the available overcurrent
or earth-fault function blocks.

INRPHAR1
BLOCK BLK2H INRPHAR1_BLK2H

GUID-5F2F3BE0-927A-42F0-9413-CDA6C0FEC0F8 V1 EN

Figure 389: Inrush detector function

REF615 261
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Two negative sequence overcurrent stages NSPTOC1 and NSPTOC2 are provided
for phase unbalance protection. These functions are used to protect the feeder
against phase unbalance.

NSPTOC1
BLOCK OPERATE NSPTOC1_OPERATE
ENA_MULT START NSPTOC1_START

NSPTOC2
BLOCK OPERATE NSPTOC2_OPERATE
ENA_MULT START NSPTOC2_START

OR
NSPTOC1_OPERATE B1 O NSPTOC_OPERATE
NSPTOC2_OPERATE B2

GUID-7196E7DF-D646-46E6-926E-736FA68E1350 V1 EN

Figure 390: Negative sequence overcurrent protection function

Three stages are provided for directional earth-fault protection. According to the
IED's order code, the directional earth-fault protection method can be based on
conventional directional earth-fault DEFxPDEF only or alternatively together with
admittance criteria EFPADM, wattmetric earth-fault protection WPWDE or
harmonic based earth-fault protection HAEFPTOC. In addition, there is a dedicated
protection stage INTRPTEF either for transient-based earth-fault protection or for
cable intermittent earth-fault protection in compensated networks.

262 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

DEFLPDEF1
BLOCK OPERATE DEFLPDEF1_OPERATE
ENA_MULT START DEFLPDEF1_START
RCA_CTL

DEFLPDEF2
BLOCK OPERATE DEFLPDEF2_OPERATE
ENA_MULT START DEFLPDEF2_START
RCA_CTL

DEFHPDEF1
BLOCK OPERATE DEFHPDEF1_OPERATE
ENA_MULT START DEFHPDEF1_START
RCA_CTL

OR6
DEFLPDEF1_OPERATE B1 O DEFxPDEF_OPERATE
DEFLPDEF2_OPERATE B2
DEFHPDEF1_OPERATE B3
B4
B5
B6

GUID-935D2178-A838-4D7B-BB64-98F1AEB3150A V1 EN

Figure 391: Directional earth-fault protection function

INTRPTEF1
BLOCK OPERATE INTRPTEF1_OPERATE
START INTRPTEF1_START
BLK_EF

GUID-D4BE5EE6-0CD3-417E-99C6-88CE3B942A73 V1 EN

Figure 392: Transient or intermittent earth-fault protection function

REF615 263
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

WPWDE1
BLOCK OPERATE WPWDE1_OPERATE
RCA_CTL START WPWDE1_START

WPWDE2
BLOCK OPERATE WPWDE2_OPERATE
RCA_CTL START WPWDE2_START

WPWDE3
BLOCK OPERATE WPWDE3_OPERATE
RCA_CTL START WPWDE3_START

OR6
WPWDE1_OPERATE B1 O WPWDE_OPERATE
WPWDE2_OPERATE B2
WPWDE3_OPERATE B3
B4
B5
B6

GUID-088C6730-9479-4A5F-BB6B-4D6C674530DC V1 EN

Figure 393: Wattmetric protection function

EFPADM1
BLOCK OPERATE EFPADM1_OPERATE
RELEASE START EFPADM1_START

EFPADM2
BLOCK OPERATE EFPADM2_OPERATE
RELEASE START EFPADM2_START

EFPADM3
BLOCK OPERATE EFPADM3_OPERATE
RELEASE START EFPADM3_START

OR6
EFPADM1_OPERATE B1 O EFPADM_OPERATE
EFPADM2_OPERATE B2
EFPADM3_OPERATE B3
B4
B5
B6

GUID-02FD43E2-5135-4D7C-BFBB-C12381B6FAA1 V1 EN

Figure 394: Admittance based earth-fault protection function

264 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

A dedicated non-directional earth-fault protection block EFHPTOC1 protects


against double earth-fault situations in isolated or compensated networks. This
protection function uses the calculated residual current originating from the phase
currents.

EFHPTOC1
BLOCK OPERATE EFHPTOC1_OPERATE
ENA_MULT START EFHPTOC1_START

GUID-D03A063B-438B-4282-B6B9-A61C404C25F5 V1 EN

Figure 395: Earth-fault protection function

The phase discontinuity protection PDNSPTOC1 protects for interruptions in the


normal three-phase load supply, for example, in downed conductor situations.

PDNSPTOC1
BLOCK OPERATE PDNSPTOC1_OPERATE
START PDNSPTOC1_START

GUID-7D77A0CB-7E59-4161-9451-F93E1B7D34CF V1 EN

Figure 396: Phase discontinuity protection function

The thermal overload protection T1PTTR1 detects overloads under varying load
conditions. The BLK_CLOSE output of the function is used to block the closing
operation of circuit breaker.

T1PTTR1
BLK_OPR OPERATE T1PTTR1_OPERATE
ENA_MULT START T1PTTR1_START
TEMP_AMB ALARM T1PTTR1_ALARM
BLK_CLOSE T1PTTR1_BLK_CLOSE

GUID-52DD9079-0F13-411A-8C7E-B5A89065765E V1 EN

Figure 397: Thermal overcurrent protection function

The breaker failure protection CCBRBRF1 is initiated via the START input by
number of different protection functions available in the IED. The breaker failure
protection function offers different operating modes associated with the circuit
breaker position and the measured phase and residual currents.

The breaker failure protection function has two operating outputs: TRRET and
TRBU. The TRRET operate output is used for retripping its own breaker through
TRPPTRC2_TRIP. The TRBU output is used to give a backup trip to the breaker
feeding upstream. For this purpose, the TRBU operate output signal is connected to
the binary output X100:PO2.

REF615 265
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

CCBRBRF1
OR6 OR6
BLOCK CB_FAULT_AL
PHIPTOC1_OPERATE B1 O B1 O START TRBU CCBRBRF1_TRBU
DPHHPDOC1_OPERATE B2 B2 POSCLOSE TRRET CCBRBRF1_TRRET
DPHLPDOC1_OPERATE B3 B3 CB_FAULT
ARCSARC1_OPERATE B4 B4
ARCSARC2_OPERATE B5 B5
ARCSARC3_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF2_OPERATE B2
WPWDE2_OPERATE B3
WPWDE3_OPERATE B4
EFPADM2_OPERATE B5
EFPADM3_OPERATE B6

X120_BI2_CB_CLOSED
GUID-8976FE81-F587-449A-95AA-7A7770B939A1 V1 EN

Figure 398: Circuit breaker failure protection function

Three arc protection ARCSARC1...3 stages are included as an optional function.


The arc protection offers individual function blocks for three arc sensors that can
be connected to the IED. Each arc protection function block has two different
operation modes, that is, with or without the phase and residual current check.

The operate signals from ARCSARC1...3 are connected to both trip logic
TRPPTRC1 and TRPPTRC2. If the IED has been ordered with high speed binary
outputs, the individual operate signals from ARCSARC1...3 are connected to the
dedicated trip logic TRPPTRC3..5. The output of TRPPTRC3...5 is available at
high speed outputs X110:HSO1, X110:HSO2 and X110:HSO3.

266 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

ARCSARC1
BLOCK OPERATE ARCSARC1_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC1_ARC_FLT_DET
OPR_MODE

ARCSARC2
BLOCK OPERATE ARCSARC2_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC2_ARC_FLT_DET
OPR_MODE

ARCSARC3
BLOCK OPERATE ARCSARC3_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC3_ARC_FLT_DET
OPR_MODE

OR6
ARCSARC1_OPERATE B1 O ARCSARC_OPERATE
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-F3C5D80F-F26B-4B34-9C26-1F2F3FA0CA36 V1 EN

TRPPTRC3
BLOCK TRIP TRPPTRC3_TRIP
ARCSARC1_OPERATE OPERATE CL_LKOUT
X120_BI4_RST_LOCKOUT RST_LKOUT

TRPPTRC4
BLOCK TRIP TRPPTRC4_TRIP
ARCSARC2_OPERATE OPERATE CL_LKOUT
X120_BI4_RST_LOCKOUT RST_LKOUT

TRPPTRC5
BLOCK TRIP TRPPTRC5_TRIP
ARCSARC3_OPERATE OPERATE CL_LKOUT
X120_BI4_RST_LOCKOUT RST_LKOUT

GUID-B7398C9F-D767-4749-8AC2-149EEE9F478D V1 EN

Figure 399: ARC protection with dedicated HSO

The optional autorecloser function is configured to be initiated by operate signals


from a number of protection stages through the INIT_1...5 inputs. It is possible
to create individual autoreclose sequences for each input.

The autorecloser function can be inhibited with the INHIBIT_RECL input. By


default, few selected protection function operations are connected to this input. A

REF615 267
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

control command to the circuit breaker, either local or remote, also blocks the
autorecloser function via the CBXCBR1-SELECTED signal.

The circuit breaker availability for the autorecloser sequence is expressed with the
CB_READY input in DARREC1. The signal, and other required signals, are
connected to the CB spring charged binary inputs in this configuration. The open
command from the autorecloser is connected directly to binary output X100:PO3,
whereas the close command is connected directly to binary output X100:PO1.

Set the parameters for DARREC1 properly.

Check the initialization signals of DARREC1.

DARREC1
PHIPTOC1_OPERATE INIT_1 OPEN_CB DARREC1_OPEN_CB
OR6 DPHHPDOC1_OPERATE INIT_2 CLOSE_CB DARREC1_CLOSE_CB
DPHLPDOC2_OPERATE INIT_3 CMD_WAIT
DEFLPDEF2_OPERATE B1 O INIT_4 INPRO DARREC1_INPRO
EFPADM2_OPERATE B2 INIT_5 LOCKED
WPWDE2_OPERATE B3 INIT_6 PROT_CRD
B4 DEL_INIT_2 UNSUC_RECL DARREC1_UNSUC_RECL
B5 DEL_INIT_3 AR_ON
B6 DEL_INIT_4 READY
BLK_RECL_T ACTIVE
BLK_RCLM_T
BLK_THERM
X120_BI3_CB_OPENED CB_POS
X110_BI4_CB_SPRING_CHARGED CB_READY
OR6 INC_SHOTP
INHIBIT_RECL
DEFHPDEF1_OPERATE B1 O RECL_ON
EFPADM3_OPERATE B2 SECRSYN1_SYNC_OK SYNC
WPWDE3_OPERATE B3
B4
B5
B6

OR6
PDNSPTOC1_OPERATE B1 O
NSPTOC1_OPERATE B2
NSPTOC2_OPERATE B3
CBXCBR1_SELECTED B4
INTRPTEF1_OPERATE B5 OR
X110_BI3_GAS_PRESSURE_ALARM B6
B1 O
B2

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-78730CDA-0F82-45A0-8789-A140F7490E50 V1 EN

Figure 400: Autorecloser function

Three overvoltage and undervoltage protection stages PHxPTOV and PHxPTUV


offer protection against abnormal phase voltage conditions. Positive sequence
undervoltage PSPTUV and negative sequence overvoltage NSPTOV protection
functions enable voltage-based unbalance protection. A failure in the voltage
measuring circuit is detected by the fuse failure function. The activation is
connected to block undervoltage protection functions and voltage based unbalance
protection functions to avoid faulty tripping.

268 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

PHPTOV1
BLOCK OPERATE PHPTOV1_OPERATE
START PHPTOV1_START

PHPTOV2
BLOCK OPERATE PHPTOV2_OPERATE
START PHPTOV2_START

PHPTOV3
BLOCK OPERATE PHPTOV3_OPERATE
START PHPTOV3_START

OR6
PHPTOV1_OPERATE B1 O PHPTOV_OPERATE
PHPTOV2_OPERATE B2
PHPTOV3_OPERATE B3
B4
B5
B6

GUID-45958B3A-52BD-4FDB-BEBA-97E966DFF9CF V1 EN

Figure 401: Overvoltage protection function

PHPTUV1
SEQRFUF1_FUSEF_U BLOCK OPERATE PHPTUV1_OPERATE
START PHPTUV1_START

PHPTUV2
SEQRFUF1_FUSEF_U BLOCK OPERATE PHPTUV2_OPERATE
START PHPTUV2_START

PHPTUV3
SEQRFUF1_FUSEF_U BLOCK OPERATE PHPTUV3_OPERATE
START PHPTUV3_START

OR6
PHPTUV1_OPERATE B1 O PHPTUV_OPERATE
PHPTUV2_OPERATE B2
PHPTUV3_OPERATE B3
B4
B5
B6

GUID-1FD21003-8B8B-4C27-8C36-6E6B7785DCA7 V1 EN

Figure 402: Undervoltage protection function

REF615 269
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

The residual overvoltage protection ROVPTOV provides earth fault protection by


detecting an abnormal level of residual voltage. It can be used, for example, as a
nonselective backup protection for the selective directional earth-fault functionality.

ROVPTOV1
BLOCK OPERATE ROVPTOV1_OPERATE
START ROVPTOV1_START

ROVPTOV2
BLOCK OPERATE ROVPTOV2_OPERATE
START ROVPTOV2_START

ROVPTOV3
BLOCK OPERATE ROVPTOV3_OPERATE
START ROVPTOV3_START

OR6
ROVPTOV1_OPERATE B1 O ROVPTOV_OPERATE
ROVPTOV2_OPERATE B2
ROVPTOV3_OPERATE B3
B4
B5
B6

GUID-C6B6B1B9-0333-4C5E-B5C4-CBEF0393EA5E V1 EN

Figure 403: Residual overvoltage protection function

NSPTOV1
SEQRFUF1_FUSEF_U BLOCK OPERATE NSPTOV1_OPERATE
START NSPTOV1_START

GUID-C1F46B39-F8B7-410A-8EB2-3002D4DC009D V1 EN

Figure 404: Negative sequence overvoltage protection function

PSPTUV1
SEQRFUF1_FUSEF_U BLOCK OPERATE PSPTUV1_OPERATE
START PSPTUV1_START

GUID-8D6416CF-9503-48F1-8B0E-82AFB0C0828B V1 EN

Figure 405: Positive sequence undervoltage protection function

The selectable under-frequency or over-frequency protection FRPFRQ prevents


damage to network components under unwanted frequency conditions. The
function also contains a selectable rate of change of the frequency (gradient)
protection to detect an increase or decrease in the fast power system frequency at
an early stage. This can be used as an early indication of a disturbance in the system.

270 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

FRPFRQ1
BLOCK OPERATE FRPFRQ1_OPERATE
OPR_OFRQ
OPR_UFRQ
OPR_FRG
START FRPFRQ1_START
ST_OFRQ
ST_UFRQ
ST_FRG

FRPFRQ2
BLOCK OPERATE FRPFRQ2_OPERATE
OPR_OFRQ
OPR_UFRQ
OPR_FRG
START FRPFRQ2_START
ST_OFRQ
ST_UFRQ
ST_FRG

FRPFRQ3
BLOCK OPERATE FRPFRQ3_OPERATE
OPR_OFRQ
OPR_UFRQ
OPR_FRG
START FRPFRQ3_START
ST_OFRQ
ST_UFRQ
ST_FRG

OR6
FRPFRQ1_OPERATE B1 O FREQUENCY_OPERATE
FRPFRQ2_OPERATE B2
FRPFRQ3_OPERATE B3
B4
B5
B6

GUID-A37BDC66-1D13-4782-8EDA-B6A0E6BF51AF V1 EN

Figure 406: Frequency protection function

General start and operate signals from all the functions are connected to pulse timer
TPGAPC1 for setting the minimum pulse length for the outputs. The output from
TPGAPC1 is connected to binary outputs.

REF615 271
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

OR6 OR6
DPHLPDOC1_START B1 O B1 O
DPHLPDOC2_START B2 B2
DPHHPDOC1_START B3 B3
PHIPTOC1_START B4 B4
NSPTOC1_START B5 B5
NSPTOC2_START B6 B6
TPGAPC1
IN1 OUT1 GENERAL_START_PULSE
IN2 OUT2 GENERAL_OPERATE_PULSE
OR6 OR6 OR6
DEFLPDEF1_START B1 O DPHLPDOC1_OPERATE B1 O B1 O
DEFLPDEF2_START B2 DPHLPDOC2_OPERATE B2 B2
DEFHPDEF1_START B3 DPHHPDOC1_OPERATE B3 B3
INTRPTEF1_START B4 NSPTOC1_OPERATE B4 B4
EFHPTOC1_START B5 NSPTOC2_OPERATE B5 B5
PDNSPTOC1_START B6 PHIPTOC1_OPERATE B6 B6

OR6 OR6
PHPTOV1_START B1 O DEFLPDEF1_OPERATE B1 O
PHPTOV2_START B2 DEFLPDEF2_OPERATE B2
PHPTOV3_START B3 DEFHPDEF1_OPERATE B3
PSPTUV1_START B4 INTRPTEF1_OPERATE B4
NSPTOV1_START B5 EFHPTOC1_OPERATE B5
PHPTUV1_START B6 PDNSPTOC1_OPERATE B6

OR6 OR6
PHPTUV2_START B1 O EFPADM1_OPERATE B1 O
PHPTUV3_START B2 EFPADM2_OPERATE B2
ROVPTOV1_START B3 EFPADM3_OPERATE B3
ROVPTOV2_START B4 ARCSARC1_OPERATE B4
ROVPTOV3_START B5 ARCSARC2_OPERATE B5
B6 ARCSARC3_OPERATE B6

OR6 OR6
EFPADM1_START B1 O PHPTUV1_OPERATE B1 O
EFPADM2_START B2 PHPTUV2_OPERATE B2
EFPADM3_START B3 PHPTUV3_OPERATE B3
WPWDE1_START B4 NSPTOV1_OPERATE B4
WPWDE2_START B5 PSPTUV1_OPERATE B5
WPWDE3_START B6 PHPTOV1_OPERATE B6

OR6 OR6
FRPFRQ1_START B1 O PHPTOV2_OPERATE B1 O
FRPFRQ2_START B2 PHPTOV3_OPERATE B2
FRPFRQ3_START B3 ROVPTOV1_OPERATE B3
B4 ROVPTOV2_OPERATE B4
B5 ROVPTOV3_OPERATE B5
B6 B6

OR6
WPWDE1_OPERATE B1 O
WPWDE2_OPERATE B2
WPWDE3_OPERATE B3
FRPFRQ1_OPERATE B4
FRPFRQ2_OPERATE B5
FRPFRQ3_OPERATE B6

GUID-4AE89BBA-5712-4794-BD10-F7633357B2DC V1 EN

Figure 407: General start and operate signals

The operate signals from the protection functions are connected to the two trip
logics TRPPTRC1 and TRPPTRC2. The output of these trip logic functions is
available at binary output X100:PO3 and X100:PO4. The trip logic functions are
provided with a lockout and latching function, event generation and the trip signal
duration setting. If the lockout operation mode is selected, binary input X120:BI4
has been assigned to RST_LKOUT input of both the trip logic to enable external
reset with a push button.

Three other trip logics TRPPTRC3...4 are also available if the IED is ordered with
high speed binary outputs options.

272 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

TRPPTRC1
OR6 OR6
BLOCK TRIP TRPPTRC1_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
DPHLPDOC2_OPERATE B2 B2 RST_LKOUT
DPHHPDOC1_OPERATE B3 B3
DPHLPDOC1_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF1_OPERATE B2
DEFLPDEF2_OPERATE B3
EFPADM1_OPERATE B4
EFPADM2_OPERATE B5
EFPADM3_OPERATE B6

OR6
INTRPTEF1_OPERATE B1 O
EFHPTOC1_OPERATE B2
PDNSPTOC1_OPERATE B3
ROVPTOV1_OPERATE B4
ROVPTOV2_OPERATE B5
ROVPTOV3_OPERATE B6

OR6
WPWDE1_OPERATE B1 O
WPWDE2_OPERATE B2
WPWDE3_OPERATE B3
ARCSARC1_OPERATE B4
ARCSARC2_OPERATE B5
ARCSARC3_OPERATE B6

OR6
PHPTOV1_OPERATE B1 O
PHPTOV2_OPERATE B2
PHPTOV3_OPERATE B3
PSPTUV1_OPERATE B4
NSPTOV1_OPERATE B5
PHPTUV1_OPERATE B6

OR6
PHPTUV2_OPERATE B1 O
PHPTUV3_OPERATE B2
FRPFRQ1_OPERATE B3
FRPFRQ2_OPERATE B4
FRPFRQ3_OPERATE B5
B6

X120_BI4_RST_LOCKOUT
GUID-6EC7CE50-1FDF-41DE-9846-42279F6657A4 V1 EN

Figure 408: Trip logic TRPPTRC1

REF615 273
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

TRPPTRC2
OR6 OR6
BLOCK TRIP TRPPTRC2_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
DPHLPDOC2_OPERATE B2 B2 RST_LKOUT
DPHHPDOC1_OPERATE B3 B3
DPHLPDOC1_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF1_OPERATE B2
DEFLPDEF2_OPERATE B3
EFPADM1_OPERATE B4
EFPADM2_OPERATE B5
EFPADM3_OPERATE B6

OR6
INTRPTEF1_OPERATE B1 O
EFHPTOC1_OPERATE B2
PDNSPTOC1_OPERATE B3
ROVPTOV1_OPERATE B4
ROVPTOV2_OPERATE B5
ROVPTOV3_OPERATE B6

OR6
NSPTOV1_OPERATE B1 O
CCBRBRF1_TRRET B2
WPWDE1_OPERATE B3
WPWDE2_OPERATE B4
WPWDE3_OPERATE B5
PSPTUV1_OPERATE B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
PHPTUV1_OPERATE B4
PHPTUV2_OPERATE B5
PHPTUV3_OPERATE B6

OR6
PHPTOV1_OPERATE B1 O
PHPTOV2_OPERATE B2
PHPTOV3_OPERATE B3
FRPFRQ1_OPERATE B4
FRPFRQ2_OPERATE B5
FRPFRQ3_OPERATE B6

X120_BI4_RST_LOCKOUT
GUID-F96CA689-B27A-4743-B3FF-9622054B771F V1 EN

Figure 409: Trip logic TRPPTRC1

3.11.3.2 Functional diagrams for disturbance recorder

The START and the OPERATE outputs from the protection stages are routed to
trigger the disturbance recorder or, alternatively, only to be recorded by the
disturbance recorder depending on the parameter settings. Additionally, the
selected signals from the different functions and the few binary inputs are also
connected to the disturbance recorder.

The disturbance recorder main application sheet contains the


disturbance recorder function block and the connections to variables.

Once the order of signals connected to binary inputs of RDRE is


changed, make the changes to the parameter setting tool.

274 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

OR6
DEFLPDEF1_START B1 O
EFPADM1_START B2
WPWDE1_START B3
B4 RDRE
B5
B6
RDRE1
DPHLPDOC1_START C1 TRIGGERED DISTURB_RECORD_TRIGGERED
OR6 DPHLPDOC2_START C2
DPHHPDOC1_START C3
PHIPTOC1_OPERATE B1 O OR6 PHIPTOC1_START C4
DPHHPDOC1_OPERATE B2 NSPTOC1_START C5
DPHLPDOC1_OPERATE B3 DEFLPDEF2_START B1 O NSPTOC2_START C6
DPHLPDOC2_OPERATE B4 EFPADM2_START B2 C7
B5 WPWDE2_START B3 C8
B6 B4 C9
B5 INTRPTEF1_START C10
B6 EFHPTOC1_START C11
PDNSPTOC1_START C12
T1PTTR1_START C13
OR PHPTOV1_START C14
OR6 PHPTOV2_START C15
NSPTOC1_OPERATE B1 O PHPTOV3_START C16
NSPTOC2_OPERATE B2 DEFHPDEF1_START B1 O PSPTUV1_START C17
EFPADM3_START B2 NSPTOV1_START C18
WPWDE3_START B3 PHPTUV1_START C19
B4 PHPTUV2_START C20
B5 PHPTUV3_START C21
OR6 B6 ROVPTOV1_START C22
ROVPTOV2_START C23
DEFHPDEF1_OPERATE B1 O ROVPTOV3_START C24
DEFLPDEF1_OPERATE B2 CCBRBRF1_TRRET C25
DEFLPDEF2_OPERATE B3 CCBRBRF1_TRBU C26
EFPADM1_OPERATE B4 C27
EFPADM2_OPERATE B5 C28
EFPADM3_OPERATE B6 C29
INTRPTEF1_OPERATE C30
OR6 EFHPTOC1_OPERATE C31
PDNSPTOC1_OPERATE C32
OR PHPTOV1_OPERATE B1 O INRPHAR1_BLK2H C33
OR6 PHPTOV2_OPERATE B2 T1PTTR1_OPERATE C34
B1 O PHPTOV3_OPERATE B3 C35
B1 O B2 B4 C36
WPWDE1_OPERATE B2 B5 C37
WPWDE2_OPERATE B3 B6 SEQRFUF1_FUSEF_3PH C38
WPWDE3_OPERATE B4 SEQRFUF1_FUSEF_U C39
B5 CCRDIF1_FAIL C40
B6 X120_BI1_EXT_OC_BLOCKING C41
X120_BI2_CB_CLOSED C42
OR6 X120_BI3_CB_OPENED C43
C44
PHPTUV1_OPERATE B1 O C45
PHPTUV2_OPERATE B2 ARCSARC1_OPERATE C46
PHPTUV3_OPERATE B3 ARCSARC2_OPERATE C47
B4 ARCSARC3_OPERATE C48
B5 DARREC1_INPRO C49
B6 FRPFRQ1_START C50
OR6 FRPFRQ2_START C51
FRPFRQ3_START C52
ROVPTOV1_OPERATE B1 O C53
ROVPTOV2_OPERATE B2 SECRSYN1_SYNC_INPRO C54
ROVPTOV3_OPERATE B3 OR6 SECRSYN1_SYNC_OK C55
PSPTUV1_OPERATE B4 SECRSYN1_CL_FAIL_AL C56
NSPTOV1_OPERATE B5 ARCSARC1_ARC_FLT_DET B1 O SECRSYN1_CMD_FAIL_AL C57
B6 ARCSARC2_ARC_FLT_DET B2 C58
ARCSARC3_ARC_FLT_DET B3 C59
B4 C60
B5 C61
B6 C62
OR C63
C64
DARREC1_CLOSE_CB B1 O
DARREC1_UNSUC_RECL B2

OR6
FRPFRQ1_OPERATE B1 O
FRPFRQ2_OPERATE B2
FRPFRQ3_OPERATE B3
B4
B5
B6

GUID-4B658DCB-02B0-4C19-99C4-B10818FAA883 V1 EN

Figure 410: Disturbance recorder

3.11.3.3 Functional diagrams for condition monitoring

Failures in current measuring circuits are detected by CCRDIF1. When a failure is


detected, it can be used to block the current protection functions that measure the
calculated sequence component currents to avoid unnecessary operation. However,
it is not connected in the configuration.

CCRDIF1
BLOCK FAIL CCRDIF1_FAIL
ALARM CCRDIF1_ALARM

GUID-862FD482-2A71-456E-A9A9-B9502ECF948C V1 EN

Figure 411: Current circuit supervision function

The fuse failure supervision SEQRFUF1 detects failures in the voltage


measurement circuits. Failures, such as an open MCB, raise an alarm.

SEQRFUF1
BLOCK FUSEF_3PH SEQRFUF1_FUSEF_3PH
X120_BI2_CB_CLOSED CB_CLOSED FUSEF_U SEQRFUF1_FUSEF_U
DISCON_OPEN
X110_BI1_BUS_VT_MCB_OPEN MINCB_OPEN

GUID-DDDE0B45-9241-4A6D-9BB8-342D8DA0C295 V1 EN

Figure 412: Fuse failure supervision function

REF615 275
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

The circuit breaker condition monitoring function SSCBR1 supervises the switch
status based on the connected binary input information and the measured current
levels. SSCBR1 introduces various supervision methods.

Set the parameters for SSCBR1 properly.

SSCBR1
BLOCK TRV_T_OP_ALM SSCBR1_TRV_T_OP_ALM
X120_BI3_CB_OPENED POSOPEN TRV_T_CL_ALM SSCBR1_TRV_T_CL_ALM
X120_BI2_CB_CLOSED POSCLOSE SPR_CHR_ALM SSCBR1_SPR_CHR_ALM
CB_OPEN_COMMAND OPEN_CB_EXE OPR_ALM SSCBR1_OPR_ALM
CB_CLOSE_COMMAND CLOSE_CB_EXE OPR_LO SSCBR1_OPR_LO
X110_BI3_GAS_PRESSURE_ALARM PRES_ALM_IN IPOW_ALM SSCBR1_IPOW_ALM
PRES_LO_IN IPOW_LO SSCBR1_IPOW_LO
CB_SPRING_DISCHARGED SPR_CHR_ST CB_LIFE_ALM SSCBR1_CB_LIFE_ALM
X110_BI4_CB_SPRING_CHARGED SPR_CHR MON_ALM SSCBR1_MON_ALM
RST_IPOW PRES_ALM SSCBR1_PRES_ALM
RST_CB_WEAR PRES_LO SSCBR1_PRES_LO
RST_TRV_T OPENPOS
RST_SPR_T INVALIDPOS
CLOSEPOS

GUID-A891CCB2-2E51-4E87-9F7E-E0AFBFFCBBCA V1 EN

Figure 413: Circuit breaker condition monitoring function

OR6
SSCBR1_TRV_T_OP_ALM B1 O
SSCBR1_TRV_T_CL_ALM B2
SSCBR1_SPR_CHR_ALM B3
SSCBR1_OPR_ALM B4
SSCBR1_OPR_LO B5 OR
SSCBR1_IPOW_ALM B6
B1 O SSCBR1_ALARMS
B2

OR6
SSCBR1_IPOW_LO B1 O
SSCBR1_CB_LIFE_ALM B2
SSCBR1_MON_ALM B3
SSCBR1_PRES_ALM B4
SSCBR1_PRES_LO B5
B6

GUID-DEA89B88-04ED-42EC-BC51-7EDCBD3556CF V1 EN

Figure 414: Logic for circuit breaker monitoring alarm

NOT
X110_BI4_CB_SPRING_CHARGED IN OUT CB_SPRING_DISCHARGED

GUID-D93C83EB-1197-4108-97E1-D13E39536796 V1 EN

Figure 415: Logic for start of circuit breaker spring charging

Two separate trip circuit supervision functions are included: TCSSCBR1 for power
output X100:PO3 and TCSSCBR2 for power output X100:PO4. The functions are
blocked by the Master Trip TRPPTRC1 and TRPPTRC2 and the circuit breaker
open signal.

276 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

It is assumed that there is no external resistor in the circuit breaker


tripping coil circuit connected in parallel with the circuit breaker
normally open auxiliary contact.

Set the parameters for TCSSCBR1 properly.

TCSSCBR1
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR1_ALARM

TCSSCBR2
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR2_ALARM

OR
TCSSCBR1_ALARM B1 O TCSSCBR_ALARM
TCSSCBR2_ALARM B2

GUID-E92DD696-2EE5-4028-BE57-DA67C73C82C2 V1 EN

Figure 416: Trip circuit supervision function

OR6
TRPPTRC1_TRIP B1 O TCSSCBR_BLOCKING
TRPPTRC2_TRIP B2
X120_BI3_CB_OPENED B3
B4
B5
B6

GUID-8E139357-424E-400B-A463-137229E9B0DC V1 EN

Figure 417: Logic for blocking trip circuit supervision

3.11.3.4 Functional diagrams for control and interlocking

The main purpose of the synchronism and energizing check SECRSYN is to


provide control over the closing of the circuit breakers in power networks to
prevent the closing, if conditions for synchronism are not detected. The energizing
function allows closing, for example, when one side of the breaker is dead.

SECRSYN measures the bus and line voltages and compares them to set
conditions. When all the measured quantities are within set limits, the output
SYNC_OK is activated for allowing closing or closing the circuit breaker. The
SYNC_OK output signal of SECRSYN is connected to ENA_CLOSE input of
CBXCBR through control logic. The function is blocked in case if line side or bus
side MCB is open.

REF615 277
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

SECRSYN1
BLOCK_SECRSYN1 BLOCK SYNC_INPRO SECRSYN1_SYNC_INPRO
CL_COMMAND SYNC_OK SECRSYN1_SYNC_OK
BYPASS CL_FAIL_AL SECRSYN1_CL_FAIL_AL
CMD_FAIL_AL SECRSYN1_CMD_FAIL_AL
LLDB
LLLB
DLLB
DLDB

OR
X110_BI2_LINE_VT_MCB_OPEN B1 O BLOCK_SECRSYN1
X110_BI1_BUS_VT_MCB_OPEN B2

GUID-48E8F4CC-1F3E-43F5-AC2A-FBB39A7AF789 V1 EN

Figure 418: Synchrocheck function

Two types of disconnector and earthing switch function blocks are available.
DCSXSWI1...3 and ESSXSWI1...2 are status only type, and DCXSWI1...2 and
ESXSWI1 are controllable type. By default, the status only blocks are connected in
standard configuration. The disconnector (CB truck) and line side earthing switch
status information is connected to DCSXSWI1 and ESSXSI1.

DCSXSWI1
X110_BI6_CB_TRUCK_IN_TEST POSOPEN OPENPOS
X110_BI5_CB_TRUCK_IN_SERVICE POSCLOSE CLOSEPOS
OKPOS DCSXSWI1_OKPOS

GUID-4A1CF602-2F56-469C-9893-BDC9F793FA03 V1 EN

Figure 419: Disconnector control logic

ESSXSWI1
X110_BI8_ES1_OPENED POSOPEN OPENPOS ESSXSWI1_OPENPOS
X110_BI7_ES1_CLOSED POSCLOSE CLOSEPOS
OKPOS

GUID-EFCDB6F6-3081-4D3D-BB35-1A525173EE10 V1 EN

Figure 420: Earth switch control logic

The circuit breaker closing is enabled when the ENA_CLOSE input is activated.
The input can be activated by the configuration logic, which is a combination of
the disconnector or breaker truck and earth-switch position status, status of the trip
logics, gas pressure alarm, circuit-breaker spring charging and synchronizing ok
status.

The OKPOS output from DCSXSWI defines if the disconnector or breaker truck is
definitely either open (in test position) or close (in service position). This, together
with the open earth-switch and non-active trip signals, activates the close-enable
signal to the circuit breaker control function block. The open operation for circuit
breaker is always enabled.

The ITL_BYPASS input can be used, for example, to always enable the closing of
the circuit breaker when the circuit breaker truck is in the test position.
ITL_BYPASS overrides, for example, active interlocking conditions when the
circuit breaker truck is closed in service position.

278 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

CBXCBR1
X120_BI3_CB_OPENED POSOPEN SELECTED CBXCBR1_SELECTED
X120_BI2_CB_CLOSED POSCLOSE EXE_OP CBXCBR1_EXE_OP
TRUE ENA_OPEN EXE_CL CBXCBR1_EXE_CL
CBXCBR1_ENA_CLOSE ENA_CLOSE OPENPOS
FALSE BLK_OPEN CLOSEPOS
CBXCBR1_BLK_CLOSE BLK_CLOSE OKPOS
CBXBCR1_AU_OPEN AU_OPEN OPEN_ENAD
CBXCBR1_AU_CLOSE AU_CLOSE CLOSE_ENAD
ITL_BYPASS

GUID-E24C973A-67F1-48CC-811F-067BFF2CEF28 V1 EN

Figure 421: Circuit breaker 1 control logic

OR
CBXCBR1_EXE_CL B1 O CB_CLOSE_COMMAND
DARREC1_CLOSE_CB B2

GUID-58728843-DCDD-473D-86E8-487CC8B5204F V1 EN

Figure 422: Signals for closing coil of circuit breaker 1

OR6
CBXCBR1_EXE_OP B1 O CB_OPEN_COMMAND
TRPPTRC1_TRIP B2
DARREC1_OPEN_CB B3
B4
B5
B6

GUID-2A26C519-C690-4A30-A7F2-5FF22E25DFFC V1 EN

Figure 423: Signals for opening coil of circuit breaker 1

Connect the additional signals by the application for closing of


circuit breaker.

AND6
X110_BI4_CB_SPRING_CHARGED B1 O CBXCBR1_ENA_CLOSE
SECRSYN1_SYNC_OK B2
B3
NOT B4
B5
TRPPTRC1_TRIP IN OUT B6

NOT
TRPPTRC2_TRIP IN OUT

NOT
X110_BI3_GAS_PRESSURE_ALARM IN OUT

AND
DCSXSWI1_OKPOS B1 O
ESSXSWI1_OPENPOS B2

GUID-58344D20-1E72-48D9-A977-3B88F4E67FD9 V1 EN

Figure 424: Circuit breaker 1 close enable logic

Connect the higher-priority conditions before enabling the closing


of circuit breaker. These conditions cannot be bypassed using
bypass feature of the function.

REF615 279
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

OR6
T1PTTR1_BLK_CLOSE B1 O CBXCBR1_BLK_CLOSE
B2
B3
B4
B5
B6

GUID-2B6B90C1-0B92-4F9F-B391-FDB2B58C31CE V1 EN

Figure 425: Circuit breaker 1 close blocking logic

The configuration includes logic for generating circuit breaker external closing and
opening command with the IED in local or remote mode.

Check the logic for the external circuit breaker closing command
and modify it according to the application.

Connect additional signals for closing and opening of circuit


breaker in local or remote mode, if applicable for the application.

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXCBR1_AU_CLOSE
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-F71C5F96-7155-43CF-830F-96C7EF7B1DC3 V1 EN

Figure 426: External closing command for circuit breaker 1

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXBCR1_AU_OPEN
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-F0B5A090-24EC-42AE-8655-589FABB92683 V1 EN

Figure 427: External opening command for circuit breaker 1

3.11.3.5 Functional diagrams for measurement functions

The phase current inputs to the IED are measured by the three-phase current
measurement function CMMXU1. The current input is connected to the X120 card
in the back panel. The sequence current measurement CSMSQI1 measures the
sequence current and the residual current measurement RESCMMXU1 measures
the residual current.

The three-phase bus side phase voltage and single phase line side phase voltage
inputs to the IED are measured by voltage measurement function VMMXU1 and
VMMXU2. The voltage input is connected to the X130 card in the back panel. The

280 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

sequence voltage measurement VSMSQI1 measures the sequence voltage and the
residual voltage measurement RESVMMXU1 measures the residual voltage.

The measurements can be seen from the LHMI and they are available under the
measurement option in the menu selection. Based on the settings, function blocks
can generate low alarm or warning and high alarm or warning signals for the
measured current values.

The frequency measurement FMMXU1 of the power system and the three-phase
power measurement PEMMXU1 are available. The load profile function
LDPMSTA1 is included in the measurements sheet. LDPMSTA1 offers the ability
to observe the loading history of the corresponding feeder.

The power quality function CMHAI1 and VMHAI1 can be used to measure the
harmonic contents of the phase current and phase voltages. The voltage variation
that is sage and swells can be measured by power quality function PHQVVR1. By
default, these power quality functions are not included in the configuration.
Depending on the application, the needed logic connections can be made by
PCM600.

CMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-B0C3BB58-7029-49D0-9617-E432E26969E8 V1 EN

Figure 428: Current measurement: Three-phase current measurement

CSMSQI1

GUID-6AF87ABD-4C95-4753-8827-F9CEC888853E V1 EN

Figure 429: Current measurement: Sequence current measurement

RESCMMXU1
BLOCK HIGH_ALARM
HIGH_WARN

GUID-DC8A9472-37B2-420B-8C67-3257FA9694A2 V1 EN

Figure 430: Current measurement: Residual current measurement

VMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-D77A125E-DEFF-46DA-8A1B-26E8E0A01888 V1 EN

Figure 431: Voltage measurement: Three-phase voltage measurement

REF615 281
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

VSMSQI1

GUID-058480EF-6AA8-4109-ABF4-843B260EAB37 V1 EN

Figure 432: Voltage measurement: Sequence voltage measurement

RESVMMXU1
BLOCK HIGH_ALARM
HIGH_WARN

GUID-9581AEE9-F675-455C-AA48-63283CB8C97C V1 EN

Figure 433: Voltage measurement: Residual voltage measurement

VMMXU2
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-CB365680-957F-4315-846E-F270429B72F5 V1 EN

Figure 434: Voltage measurement: Three-phase voltage measurement

FMMXU1

GUID-31F768F6-7FB2-41C6-A75E-A1E847791946 V1 EN

Figure 435: Other measurement: Frequency measurement

PEMMXU1
RSTACM

GUID-48F72F18-D585-404E-A529-864E7BAA8907 V1 EN

Figure 436: Other measurement: Three-phase power and energy measurement

FLTMSTA1
BLOCK
CB_CLRD

GUID-114B06B5-7D33-47B0-9907-7F19931CBA43 V1 EN

Figure 437: Other measurement: Data monitoring

LDPMSTA1
RSTMEM MEM_WARN
MEM_ALARM

GUID-6906C86B-8A41-453A-B2AF-E24B37B288BF V1 EN

Figure 438: Other measurement: Load profile record

282 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

3.11.3.6 Functional diagrams for I/O and alarm LEDs

X110 (BIO).X110-Input 1 OR
B1 O X110_BI1_BUS_VT_MCB_OPEN
B2
X110 (BIO-H).X110-Input 1

X110 (BIO).X110-Input 2 OR
B1 O X110_BI2_LINE_VT_MCB_OPEN
B2
X110 (BIO-H).X110-Input 2

X110 (BIO).X110-Input 3 OR
B1 O X110_BI3_GAS_PRESSURE_ALARM
B2
X110 (BIO-H).X110-Input 3

X110 (BIO).X110-Input 4 OR
B1 O X110_BI4_CB_SPRING_CHARGED
B2
X110 (BIO-H).X110-Input 4

X110 (BIO).X110-Input 5 OR
B1 O X110_BI5_CB_TRUCK_IN_SERVICE
B2
X110 (BIO-H).X110-Input 5

X110 (BIO).X110-Input 6 OR
B1 O X110_BI6_CB_TRUCK_IN_TEST
B2
X110 (BIO-H).X110-Input 6

X110 (BIO).X110-Input 7 OR
B1 O X110_BI7_ES1_CLOSED
B2
X110 (BIO-H).X110-Input 7

X110 (BIO).X110-Input 8 OR
B1 O X110_BI8_ES1_OPENED
B2
X110 (BIO-H).X110-Input 8
GUID-61427C3B-4892-4EB7-843C-B841B51B84DE V1 EN

Figure 439: Default binary inputs - X110

REF615 283
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

X120_BI1_EXT_OC_BLOCKING
X120 (AIM).X120-Input 1

X120_BI2_CB_CLOSED
X120 (AIM).X120-Input 2

X120_BI3_CB_OPENED
X120 (AIM).X120-Input 3

X120_BI4_RST_LOCKOUT
X120 (AIM).X120-Input 4
GUID-DBCA4227-D1C9-470A-9ECB-0317EF860796 V1 EN

Figure 440: Default binary inputs - X120

UPSTEAM_OC_BLOCKING
X110 (BIO).X110-SO1

TRPPTRC3_TRIP
X110 (BIO-H).X110-HSO1

OC_OPERATE_PULSE
X110 (BIO).X110-SO2

TRPPTRC4_TRIP
X110 (BIO-H).X110-HSO2

EF_OPERATE_PULSE
X110 (BIO).X110-SO3

TRPPTRC5_TRIP
X110 (BIO-H).X110-HSO3

VOLTAGE_AND_FREQ_OPERATE_PULSE
X110 (BIO).X110-SO4
GUID-33084EAB-5DF1-4A70-BF4D-95AE4156AA4E V1 EN

Figure 441: Default binary outputs - X110

CB_CLOSE_COMMAND
X100 (PSM).X100-PO1

CCBRBRF1_TRBU
X100 (PSM).X100-PO2

GENERAL_START_PULSE
X100 (PSM).X100-SO1

GENERAL_OPERATE_PULSE
X100 (PSM).X100-SO2

CB_OPEN_COMMAND
X100 (PSM).X100-PO3

TRPPTRC2_TRIP
X100 (PSM).X100-PO4
GUID-0C588A6D-2D14-452B-A1BB-61EC0150B7EC V1 EN

Figure 442: Default binary outputs - X100

284 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

The LED main application sheet contains programmable LED


function blocks with initialization logic. If any LED function block
is missing, insert it from the object library.

REF615 285
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

LED1
OR
OK
DPHxPDOC_OPERATE B1 O ALARM
PHIPTOC1_OPERATE B2 RESET

LED2
OR6
OK
ROVPTOV_OPERATE B1 O ALARM
EFPADM_OPERATE B2 RESET
WPWDE_OPERATE B3
DEFxPDEF_OPERATE B4
INTRPTEF1_OPERATE B5
EFHPTOC1_OPERATE B6

LED3
OR6 OR
OK
NSPTOC_OPERATE B1 O B1 O ALARM
PDNSPTOC1_OPERATE B2 B2 RESET
PHPTOV_OPERATE B3
PHPTUV_OPERATE B4
FREQUENCY_OPERATE B5
NSPTOV1_OPERATE B6

PSPTUV1_OPERATE

LED4
AND
OK
X120_BI3_CB_OPENED B1 O ALARM
SECRSYN1_SYNC_OK B2 RESET

LED5
OK
T1PTTR1_ALARM ALARM
RESET

GUID-895A1F18-B4D8-473A-9B7F-4E8348D4A8FB V1 EN

286 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

LED6
OK
CCBRBRF1_TRBU ALARM
RESET

LED7
OK
DISTURB_RECORD_TRIGGERED ALARM
RESET

LED8
OK
SSCBR1_ALARMS ALARM
RESET

LED9
OR6
OK
TCSSCBR_ALARM B1 O ALARM
SEQRFUF1_FUSEF_3PH B2 RESET
SEQRFUF1_FUSEF_U B3
CCRDIF1_ALARM B4
B5
B6

LED10
OK
ARCSARC_OPERATE ALARM
RESET

LED11
OK
DARREC1_INPRO ALARM
RESET

GUID-C15617B6-8B76-4110-991E-813E4030A66E V1 EN

Figure 443: Default LED connections

3.11.3.7 Functional diagrams for other timer logics

The configuration also includes overcurrent operate, earth-fault operate and


combined voltage and frequency operate logic. The operate logics are connected to
the pulse timer TPGAPC for setting the minimum pulse length for the outputs. The
output from TPGAPC is connected to the binary outputs.

REF615 287
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

OR TPGAPC2
DPHxPDOC_OPERATE B1 O IN1 OUT1 OC_OPERATE_PULSE
PHIPTOC1_OPERATE B2 IN2 OUT2 EF_OPERATE_PULSE

OR6
DEFxPDEF_OPERATE B1 O
INTRPTEF1_OPERATE B2
EFHPTOC1_OPERATE B3
EFPADM_OPERATE B4
ROVPTOV_OPERATE B5
WPWDE_OPERATE B6

GUID-92ECDA59-537E-4B18-9CBA-8844F62DF4B8 V1 EN

Figure 444: Timer logic for overcurrent and earth-fault operate pulse

OR6 TPGAPC3
PHPTUV_OPERATE B1 O IN1 OUT1 VOLTAGE_AND_FREQ_OPERATE_PULSE
PHPTOV_OPERATE B2 IN2 OUT2
FREQUENCY_OPERATE B3
PSPTUV1_OPERATE B4
NSPTOV1_OPERATE B5
B6

GUID-9295344E-02C4-40E7-B098-8A31EBD29F66 V1 EN

Figure 445: Timer logic for voltage and frequency operate pulse

3.11.3.8 Other functions

The configuration includes few instances of multi-purpose protection function


MAPGAPC, runtime counter MDSOPT and different types of timers and control
functions. These functions are not included in application configuration but they
can be added based on the system requirements.

3.12 Standard configuration K

3.12.1 Applications
The standard configuration for directional overcurrent and directional earth-fault
protection with phase voltage-based measurements, high-impendance restricted
earth-fault protection, undervoltage and overvoltage protection, frequency
protection and measurement functions is mainly intended for cable and overhead-
line feeder applications in isolated or resonant-earthed distribution networks. The
configuration also includes additional options for selecting earth-fault protection
based on admittance, wattmetric or harmonic-based principles.

The IED with a standard configuration is delivered from the factory with default
settings and parameters. The end user flexibility for incoming, outgoing and
internal signal designation within the IED enables this configuration to be further
adapted to different primary circuit layouts and the related functionality needs by
modifying the internal functionality using PCM600.

288 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

3.12.2 Functions
UL1UL2UL3
Uo

REF615 FEEDER PROTECTION AND CONTROL IED STANDARD


CONFIGURATION
K

PROTECTION LOCAL HMI ALSO AVAILABLE


Configuration A

- Disturbance and fault recorders


System
HMI
Time
Authorization

5× - Event log and recorded data


Master Trip I ESC Clear

- High-Speed Output module (optional)


Lockout relay A
O
- IED self-supervision
R
L

94/86
U12 0. 0 kV
P 0.00 kW

- Local/Remote push button on LHMI


Q 0.00 kVAr

IL2 0 A

- User management
I ESC Clear
- Web HMI

AND
I2> 3Ith>F 3I>>> O R

46 49F 50P/51P
L
OR
3I
3× 3×
ARC 3I>/Io>BF
50L/50NL CONDITION MONITORING COMMUNICATION
51BF/51NBF
AND SUPERVISION
Protocols:
IEC 61850-8-1 1 0
61850-8-1/-9-2LE 1 0 0 0 1 1 0 0 1 1 0 0
3I> 3I>> 3I>→ 3I>>→ Modbus®® 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
51P-1 51P-2 67-1 67-2 Io 1 1
IEC 60870-5-103 1 0
0 0 1 1 1 0 1 1 0 1 0
3I 1 1 0 1 1 0 1 1 0 1 0 0
DNP3 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0
1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
U12 Interfaces: 1 1 0 0 1 1 1 0 1 1 0 1 0
3I2f> FUSEF CBCM MCS 3I 1 0 1 1 0 1 1 0 1 1 0 1 0 0
Ethernet: TX (RJ45), FX (LC)
68 60 CBCM MCS 3I
Serial: Serial glass fiber (ST),
UL1UL2UL3

RS-485, RS-232/485
2× D-sub 9, IRIG-B
OPTS TCS Redundant protocols:
OPTM TCM HSR
PRP
Io
RSTP
Io Io>>>
50N/51N
CONTROL AND INDICATION 1) MEASUREMENT

Iob - I, U, Io, Uo, P, Q, E, pf, f
Io> Io>> Io>→ Io>>→ Object Ctrl 2)
Ind 3)
- Limit value supervision
51N-1 51N-2 67N-1 67N-2
CB 1 - - Load profile record
2 3 - Symmetrical components
DC
ES 1 2
Analog interface types 1)
dIoHi> 1)
Check availability of binary inputs/outputs
87NH from technical documentation Current transformer 4
2)
Control and indication function for
Uo primary object Voltage transformer 5
3)
Status indication function for
primary object
1)
Conventional transformer inputs

2× 2× 2× 3×
3U< 3U> Uo> f>/f<, SYNC O→I PQM3I PQM3U PQMU
df/dt
27 59 59G 25 79 PQM3I PQM3V PQMV
81
U12 U12

REMARKS
18× Optional 3× No. of Calculated OR Alternative
FLOC MAP function instances value function to be
21FL MAP Io/Uo defined when
ordering

GUID-8CD5AE89-755F-489F-8B47-DC1ADF541EE7 V1 EN

Figure 446: Functionality overview for standard configuration K

3.12.2.1 Default IO connections

Connector pins for each input and output are presented in the IED physical
connections section.

REF615 289
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Table 58: Default connections for binary inputs


Binary input Description
X110-BI1 Busbar VT secondary MCB open
X110-BI2 Line VT secondary MCB open
X110-BI3 Circuit breaker low gas pressure indication
X110-BI4 Circuit breaker spring charged indication
X110-BI5 Circuit breaker truck in (service position) indication
X110-BI6 Circuit breaker truck out (test position) indication
X110-BI7 Earthing switch closed indication
X110-BI8 Earthing switch open indication
X130-BI1 Blocking of overcurrent instantaneous stage
X130-BI2 Circuit breaker closed position indication
X130-BI3 Circuit breaker open position indication
X130-BI4 Lock-out reset

Table 59: Default connections for binary outputs


Binary output Description
X100-PO1 Close circuit breaker
X100-PO2 Breaker failure backup trip to upstream breaker
X100-SO1 General start indication
X100-SO2 General operate indication
X100-PO3 Open circuit breaker/trip coil 1
X100-PO4 Open circuit breaker/trip coil 2 or EFLPTOC2 operated
X110-SO1 -
X110-SO2 Overcurrent operate alarm
X110-SO3 Earth-fault operate alarm
X110-SO4 Voltage or frequency protection operate alarm
X110-HSO1 Arc protection instance 1 operate activated
X110-HSO2 Arc protection instance 2 operate activated
X110-HSO3 Arc protection instance 3 operate activated

Table 60: Default connections for LEDs


LED Description
1 Overcurrent protection operate
2 Earth-fault protection operate
3 Combined protection operation indication
4 Synchronism or energizing check Ok
5 Frequency protection operated
6 Circuit breaker failure protection operated
Table continues on next page

290 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

LED Description
7 Disturbance recorder triggered
8 High impedance restricted earth-fault protection operated
9 Circuit breaker condition monitoring or supervision alarm
10 Arc fault detected
11 Autoreclose in progress

3.12.2.2 Default disturbance recorder settings


Table 61: Default disturbance recorder analog channels
Channel Description
1 IL1
2 IL2
3 IL3
4 Io
5 IoB
6 Uo
7 U1
8 U2
9 U3
10 U1B
11 -
12 -

Table 62: Default disturbance recorder binary channels


Channel ID text Level trigger mode
1 PHLPTOC1 - start Positive or Rising
2 PHHPTOC1 - start Positive or Rising
3 PHIPTOC1 - start Positive or Rising
4 DPHLPDOC1 - start Positive or Rising
5 DPHHPDOC1 - start Positive or Rising
6 NSPTOC1 - start Positive or Rising
7 NSPTOC2 - start Positive or Rising
8 EFLPTOC1 - start Positive or Rising
9 EFLPTOC2 - start Positive or Rising
10 EFHPTOC1 - start Positive or Rising
11 EFIPTOC1 - start Positive or Rising
12 DEFLPDEF1 - start Positive or Rising
13 DEFHPDEF1 - start Positive or Rising
14 T1PTTR1 - start Positive or Rising
Table continues on next page

REF615 291
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Channel ID text Level trigger mode


15 PHPTOV1 - start Positive or Rising
16 PHPTOV2 - start Positive or Rising
17 PHPTUV1 - start Positive or Rising
18 PHPTUV2 - start Positive or Rising
19 ROVPTOV1 - start Positive or Rising
20 ROVPTOV2 - start Positive or Rising
21 FRPFRQ1 - start Positive or Rising
22 FRPFRQ2 - start Positive or Rising
23 FRPFRQ3 - start Positive or Rising
24 HREFPDIF1 - start Positive or Rising
25 CCBRBRF1 - trret Level trigger off
26 CCBRBRF1 - trbu Level trigger off
27 PHIPTOC1 - operate Level trigger off
PHHPTOC1 - operate
PHLPTOC1 - operate
28 DPHLPDOC1 - operate Level trigger off
DPHHPDOC1 - operate
29 NSPTOC1 - operate Level trigger off
NSPTOC2 - operate
30 EFLPTOC1 - operate Level trigger off
EFLPTOC2 - operate
EFHPTOC1 - operate
EFIPTOC1 - operate
31 DEFLPDEF1 - operate Level trigger off
DEFHPDEF1 - operate
32 T1PTTR1 - operate Level trigger off
33 INRPHAR1 - blk2h Level trigger off
34 PHPTOV1 - operate Level trigger off
PHPTOV2 - operate
35 PHPTUV1 - operate Level trigger off
PHPTUV2 - operate
36 ROVPTOV1 - operate Level trigger off
ROVPTOV2 - operate
37 FRPFRQ1 - operate Level trigger off
FRPFRQ2 - operate
FRPFRQ3 - operate
38 SEQRFUF1 - fusef3ph Level trigger off
39 SEQRFUF1 - fusefu Level trigger off
40 CCRDIF1 - fail Level trigger off
Table continues on next page

292 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

Channel ID text Level trigger mode


41 X130BI1 - ext OC blocking Level trigger off
42 X130BI2 - CB closed Level trigger off
43 X130BI3 - CB opened Level trigger off
44 SECRSYN1 - sync inpro Level trigger off
45 SECRSYN1 - sync ok Level trigger off
46 SECRSYN1 - cl fail al Level trigger off
47 SECRSYN1 - cmd fail al Level trigger off
48 ARCSARC1 - ARC flt det Level trigger off
ARCSARC2 - ARC flt det
ARCSARC3 - ARC flt det
49 ARCSARC1 - operate Positive or Rising
50 ARCSARC2 - operate Positive or Rising
51 ARCSARC3 - operate Positive or Rising
52 DARREC1 - inpro Level trigger off
53 DARREC1 - close CB Level trigger off
54 DARREC1 - unsuc recl Level trigger off

3.12.3 Functional diagrams


The functional diagrams describe the default input, output, alarm LED and function-
to-function connections. The default connections can be viewed and changed with
PCM600 according to the application requirements.

The analog channels have fixed connections to the different function blocks inside
the IED’s standard configuration. However, the 12 analog channels available for
the disturbance recorder function are freely selectable as a part of the disturbance
recorder’s parameter settings.

The phase currents to the IED are fed from a current transformer. The residual
current to the IED is fed from either residually connected CTs, an external core
balance CT, neutral CT or internally calculated.

The phase voltages to the IED are fed from a voltage transformer. The residual
voltage to the IED is fed from either residually connected VTs, an open delta
connected VT or internally calculated.

The IED offers six different settings groups which can be set based on individual
needs. Each group can be activated or deactivated using the setting group settings
available in the IED.

Depending on the communication protocol the required function block needs to be


initiated in the configuration. The Application Configuration tool also includes
fixed Boolean signals TRUE and FALSE which can be used according to the
application needs.

REF615 293
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

3.12.3.1 Functional diagrams for protection

The functional diagrams describe the protection functionality of the IEDs in detail
and according to the factory set default connections.

Five overcurrent stages are offered for overcurrent and short-circuit protection.
Two of them include directional functionality DPHxPDOC. The non-directional
instantaneous stage PHIPTOC1 can be blocked by energizing the binary input
X130: BI1.

PHIPTOC1
X130_BI1_EXT_OC_BLOCKING BLOCK OPERATE PHIPTOC1_OPERATE
ENA_MULT START PHIPTOC1_START

PHHPTOC1
BLOCK OPERATE PHHPTOC1_OPERATE
ENA_MULT START PHHPTOC1_START

PHLPTOC1
BLOCK OPERATE PHLPTOC1_OPERATE
ENA_MULT START PHLPTOC1_START

OR6
PHIPTOC1_OPERATE B1 O PHxPTOC_OPERATE
PHHPTOC1_OPERATE B2
PHLPTOC1_OPERATE B3
B4
B5
B6

GUID-BD0A9F06-B0A0-4DA9-B6C7-FDED4A790786 V1 EN

Figure 447: Overcurrent protection function

DPHHPDOC1
BLOCK OPERATE DPHHPDOC1_OPERATE
ENA_MULT START DPHHPDOC1_START
NON_DIR

DPHLPDOC1
BLOCK OPERATE DPHLPDOC1_OPERATE
ENA_MULT START DPHLPDOC1_START
NON_DIR

OR
DPHHPDOC1_OPERATE B1 O DPHxPDOC_OPERATE
DPHLPDOC1_OPERATE B2

GUID-4F6D1599-A6AE-4742-8599-84B85535E2B5 V1 EN

Figure 448: Directional overcurrent protection function

294 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

The inrush detection block's (INRPHAR1) output BLK2H enables either blocking
the function or multiplying the active settings for any of the available overcurrent
or earth-fault function blocks.

INRPHAR1
BLOCK BLK2H INRPHAR1_BLK2H

GUID-C4B49350-27F3-4310-AC69-1B01CD67F03B V1 EN

Figure 449: Inrush detector function

Two negative sequence overcurrent stages NSPTOC1 and NSPTOC2 are provided
for phase unbalance protection. These functions are used to protect the feeder
against phase unbalance. Both the negative sequence overcurrent protections are
blocked in case of detection in failure in secondary circuit of current transformer.

NSPTOC1
CCRDIF1_FAIL BLOCK OPERATE NSPTOC1_OPERATE
ENA_MULT START NSPTOC1_START

NSPTOC2
CCRDIF1_FAIL BLOCK OPERATE NSPTOC2_OPERATE
ENA_MULT START NSPTOC2_START

OR
NSPTOC1_OPERATE B1 O NSPTOC_OPERATE
NSPTOC2_OPERATE B2

GUID-6143300A-A295-45FC-A14A-D0F05747F5E5 V1 EN

Figure 450: Negative sequence overcurrent protection function

Six stages are provided for earth-fault protection. Two stages are dedicated for
directional earth-fault protection. Apart from these earth-fault protection functions,
configuration also includes a dedicated high impedance restricted earth-fault
protection function.

REF615 295
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

EFIPTOC1
BLOCK OPERATE EFIPTOC1_OPERATE
ENA_MULT START EFIPTOC1_START

EFHPTOC1
BLOCK OPERATE EFHPTOC1_OPERATE
ENA_MULT START EFHPTOC1_START

EFLPTOC1
BLOCK OPERATE EFLPTOC1_OPERATE
ENA_MULT START EFLPTOC1_START

EFLPTOC2
BLOCK OPERATE EFLPTOC2_OPERATE
ENA_MULT START EFLPTOC2_START

OR6
EFLPTOC1_OPERATE B1 O EFxPTOC_OPERATE
EFHPTOC1_OPERATE B2
EFIPTOC1_OPERATE B3
EFLPTOC2_OPERATE B4
B5
B6

GUID-352E2951-3663-401F-BC95-B122314EFA0C V1 EN

Figure 451: Earth-fault protection function

DEFHPDEF1
BLOCK OPERATE DEFHPDEF1_OPERATE
ENA_MULT START DEFHPDEF1_START
RCA_CTL

DEFLPDEF1
BLOCK OPERATE DEFLPDEF1_OPERATE
ENA_MULT START DEFLPDEF1_START
RCA_CTL

OR
DEFHPDEF1_OPERATE B1 O DEFxPDEF_OPERATE
DEFLPDEF1_OPERATE B2

GUID-2075A819-3231-435A-B225-58D2867B062B V1 EN

Figure 452: Directional overcurrent protection function

296 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

HREFPDIF1
BLOCK OPERATE HREFPDIF1_OPERATE
START HREFPDIF1_START

GUID-8034927A-76EB-4106-8ACE-2408181CF096 V1 EN

Figure 453: High impedance restricted earth-fault protection function

The thermal overload protection T1PTTR1 detects overloads under varying load
conditions. The BLK_CLOSE output of the function is used to block the closing
operation of circuit breaker.

T1PTTR1
BLK_OPR OPERATE T1PTTR1_OPERATE
ENA_MULT START T1PTTR1_START
TEMP_AMB ALARM
BLK_CLOSE T1PTTR1_BLK_CLOSE

GUID-260F8A52-6DC6-41E9-9AA2-F37CBA88AB14 V1 EN

Figure 454: Thermal overcurrent protection function

Fault locator SCEFRFLO1 provides impedance-based fault location. Function is


triggered by operation of non-directional overcurrent and earth-fault protection
function. However the outputs of fault locator are not connected to any logic and
those needs to be connected as per application need.
SCEFRFLO1
OR6 OR
BLOCK ALARM
PHLPTOC1_OPERATE B1 O B1 O TRIGG
PHHPTOC1_OPERATE B2 B2 TRIGG_XC0F
PHIPTOC1_OPERATE B3
EFHPTOC1_OPERATE B4
EFLPTOC1_OPERATE B5
EFLPTOC2_OPERATE B6

EFIPTOC1_OPERATE
GUID-129824AC-339E-453E-A209-6C2D79259970 V1 EN

Figure 455: Fault locator function

The breaker failure protection CCBRBRF1 is initiated via the START input by
number of different protection functions available in the IED. The breaker-failure
protection function offers different operating modes associated with the circuit
breaker position and the measured phase and residual currents.

The breaker failure protection function has two operating outputs: TRRET and
TRBU. The TRRET operate output is used for retripping its own breaker through
TRPPTRC2_TRIP. The TRBU output is used to give a backup trip to the breaker
feeding upstream. For this purpose, the TRBU operate output signal is connected to
the binary output X100:PO2.

REF615 297
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

CCBRBRF1
OR6 OR6
BLOCK CB_FAULT_AL
PHIPTOC1_OPERATE B1 O B1 O START TRBU CCBRBRF1_TRBU
PHHPTOC1_OPERATE B2 B2 POSCLOSE TRRET CCBRBRF1_TRRET
PHLPTOC1_OPERATE B3 B3 CB_FAULT
DPHHPDOC1_OPERATE B4 B4
DPHLPDOC1_OPERATE B5 B5
T1PTTR1_OPERATE B6 B6

OR6
EFIPTOC1_OPERATE B1 O
EFHPTOC1_OPERATE B2
EFLPTOC1_OPERATE B3
EFLPTOC2_OPERATE B4
DEFHPDEF1_OPERATE B5
DEFLPDEF1_OPERATE B6

OR6
PHPTOV1_OPERATE B1 O
PHPTOV2_OPERATE B2
PHPTUV1_OPERATE B3
PHPTUV2_OPERATE B4
ROVPTOV1_OPERATE B5
ROVPTOV2_OPERATE B6

OR6
FRPFRQ1_OPERATE B1 O
FRPFRQ2_OPERATE B2
FRPFRQ3_OPERATE B3
HREFPDIF1_OPERATE B4
NSPTOC1_OPERATE B5
NSPTOC2_OPERATE B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

X130_BI2_CB_CLOSED
GUID-A6BB61D9-2267-4355-866D-55408AF32653 V1 EN

Figure 456: Circuit breaker failure protection function

Three arc protection ARCSARC1...3 stages are included as an optional function.


The arc protection offers individual function blocks for three arc sensors that can
be connected to the IED. Each arc protection function block has two different
operation modes, that is, with or without the phase and residual current check.

The operate signals from ARCSARC1...3 are connected to both trip logic
TRPPTRC1 and TRPPTRC2. If the IED has been ordered with high speed binary
outputs, the individual operate signals from ARCSARC1...3 are connected to
dedicated trip logic TRPPTRC3...5. The output of TRPPTRC3...5 is available at
high speed outputs X110:HSO1, X110:HSO2 and X110:HSO3.

298 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

ARCSARC1
BLOCK OPERATE ARCSARC1_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC1_ARC_FLT_DET
OPR_MODE

ARCSARC2
BLOCK OPERATE ARCSARC2_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC2_ARC_FLT_DET
OPR_MODE

ARCSARC3
BLOCK OPERATE ARCSARC3_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC3_ARC_FLT_DET
OPR_MODE

OR6
ARCSARC1_OPERATE B1 O ARCSARC_OPERATE
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-AA383A83-5B29-4DF4-B7BB-9F3186903F21 V1 EN

Figure 457: Arc protection function

TRPPTRC3
BLOCK TRIP TRPPTRC3_TRIP
ARCSARC1_OPERATE OPERATE CL_LKOUT
X130_BI4_RST_LOCKOUT RST_LKOUT

TRPPTRC4
BLOCK TRIP TRPPTRC4_TRIP
ARCSARC2_OPERATE OPERATE CL_LKOUT
X130_BI4_RST_LOCKOUT RST_LKOUT

TRPPTRC5
BLOCK TRIP TRPPTRC5_TRIP
ARCSARC3_OPERATE OPERATE CL_LKOUT
X130_BI4_RST_LOCKOUT RST_LKOUT

GUID-AFC36F56-2F9B-4C33-8C04-2116CFD0297A V1 EN

Figure 458: Arc protection with dedicated HSO

The optional autorecloser function is configured to be initiated by operate signals


from a number of protection stages through the INIT_1...4 inputs. It is possible
to create individual autoreclose sequences for each input.

REF615 299
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

The autorecloser function can be inhibited with the INHIBIT_RECL input. By


default, few selected protection function operations are connected to this input. A
control command to the circuit breaker, either local or remote, also blocks the
autorecloser function via the CBXCBR1-SELECTED signal.

The circuit breaker availability for the autoreclosure sequence is expressed with the
CB_READY input in DARREC1. The signal, and other required signals, are
connected to the CB spring charged binary inputs in this configuration. The open
command from the autorecloser is connected directly to binary output X100:PO3,
whereas the close command is connected directly to binary output X100:PO1.

Set the parameters for DARREC1 properly.

Check the initialization signals of the DARREC1.

DARREC1
PHIPTOC1_OPERATE INIT_1 OPEN_CB DARREC1_OPEN_CB
PHHPTOC1_OPERATE INIT_2 CLOSE_CB DARREC1_CLOSE_CB
EFHPTOC1_OPERATE INIT_3 CMD_WAIT
EFLPTOC1_OPERATE INIT_4 INPRO DARREC1_INPRO
INIT_5 LOCKED
INIT_6 PROT_CRD
DEL_INIT_2 UNSUC_RECL DARREC1_UNSUC_RECL
DEL_INIT_3 AR_ON
DEL_INIT_4 READY
BLK_RECL_T ACTIVE
BLK_RCLM_T
BLK_THERM
X130_BI3_CB_OPENED CB_POS
X110_BI4_CB_SPRING_CHARGED CB_READY
INC_SHOTP
INHIBIT_RECL
OR6 RECL_ON
SECRSYN1_SYNC_OK SYNC
T1PTTR1_OPERATE B1 O
NSPTOC1_OPERATE B2
NSPTOC2_OPERATE B3
CBXCBR1_SELECTED B4
X110_BI3_GAS_PRESSURE_ALARM B5 OR
B6
B1 O
B2

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-5BF9F709-886D-4561-8CBB-9DE15AE6E47C V1 EN

Figure 459: Autorecloser function

Two overvoltage and undervoltage protection stages PHxPTOV and PHxPTUV


offer protection against abnormal phase voltage conditions. A failure in the voltage
measuring circuit is detected by the fuse failure function and the activation is
connected to block undervoltage protection functions to avoid faulty tripping.

300 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

DARREC1
PHIPTOC1_OPERATE INIT_1 OPEN_CB DARREC1_OPEN_CB
PHHPTOC1_OPERATE INIT_2 CLOSE_CB DARREC1_CLOSE_CB
EFHPTOC1_OPERATE INIT_3 CMD_WAIT
EFLPTOC1_OPERATE INIT_4 INPRO DARREC1_INPRO
INIT_5 LOCKED
INIT_6 PROT_CRD
DEL_INIT_2 UNSUC_RECL DARREC1_UNSUC_RECL
DEL_INIT_3 AR_ON
DEL_INIT_4 READY
BLK_RECL_T ACTIVE
BLK_RCLM_T
BLK_THERM
X130_BI3_CB_OPENED CB_POS
X110_BI4_CB_SPRING_CHARGED CB_READY
INC_SHOTP
INHIBIT_RECL
OR6 RECL_ON
SECRSYN1_SYNC_OK SYNC
T1PTTR1_OPERATE B1 O
NSPTOC1_OPERATE B2
NSPTOC2_OPERATE B3
CBXCBR1_SELECTED B4
X110_BI3_GAS_PRESSURE_ALARM B5 OR
B6
B1 O
B2

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-873C22AC-CAFC-429D-AD5B-A1CA03F9E526 V1 EN

Figure 460: Overvoltage protection function

PHPTUV1
SEQRFUF1_FUSEF_U BLOCK OPERATE PHPTUV1_OPERATE
START PHPTUV1_START

PHPTUV2
SEQRFUF1_FUSEF_U BLOCK OPERATE PHPTUV2_OPERATE
START PHPTUV2_START

OR
PHPTUV1_OPERATE B1 O PHPTUV_OPERATE
PHPTUV2_OPERATE B2

GUID-F2B553C3-1F96-411C-A8A5-197147FD8399 V1 EN

Figure 461: Undervoltage protection function

The residual overvoltage protection ROVPTOV provides earth fault protection by


detecting an abnormal level of residual voltage. It can be used, for example, as a
nonselective backup protection for the earth-fault functionality.

REF615 301
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

ROVPTOV1
BLOCK OPERATE ROVPTOV1_OPERATE
START ROVPTOV1_START

ROVPTOV2
BLOCK OPERATE ROVPTOV2_OPERATE
START ROVPTOV2_START

OR6
ROVPTOV1_OPERATE B1 O ROVPTOV_OPERATE
ROVPTOV2_OPERATE B2
B3
B4
B5
B6

GUID-02DC3919-900F-41A1-82DA-28B3FE236F56 V1 EN

Figure 462: Residual voltage protection function

The selectable underfrequency or overfrequency protection FRPFRQ prevents


damage to network components under unwanted frequency conditions. The
function also contains a selectable rate of change of the frequency (gradient)
protection to detect an increase or decrease in the fast power system frequency at
an early stage. This can be used as an early indication of a disturbance in the system.

302 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

FRPFRQ1
BLOCK OPERATE FRPFRQ1_OPERATE
OPR_OFRQ
OPR_UFRQ
OPR_FRG
START FRPFRQ1_START
ST_OFRQ
ST_UFRQ
ST_FRG

FRPFRQ2
BLOCK OPERATE FRPFRQ2_OPERATE
OPR_OFRQ
OPR_UFRQ
OPR_FRG
START FRPFRQ2_START
ST_OFRQ
ST_UFRQ
ST_FRG

FRPFRQ3
BLOCK OPERATE FRPFRQ3_OPERATE
OPR_OFRQ
OPR_UFRQ
OPR_FRG
START FRPFRQ3_START
ST_OFRQ
ST_UFRQ
ST_FRG

OR6
FRPFRQ1_OPERATE B1 O FREQUENCY_OPERATE
FRPFRQ2_OPERATE B2
FRPFRQ3_OPERATE B3
B4
B5
B6

GUID-9DB8C268-09ED-4691-97DE-09B32356C078 V1 EN

Figure 463: Frequency protection function

General start and operate signals from all the functions are connected to pulse timer
TPGAPC1 for setting the minimum pulse length for the outputs. The output from
TPGAPC1 is connected to binary outputs

REF615 303
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

OR6 OR6 TPGAPC1


PHLPTOC1_START B1 O B1 O IN1 OUT1 GENERAL_START_PULSE
PHHPTOC1_START B2 B2 IN2 OUT2 GENERAL_OPERATE_PULSE
PHIPTOC1_START B3 B3
DPHHPDOC1_START B4 B4
DPHLPDOC1_START B5 B5
T1PTTR1_START B6 B6

OR6
EFLPTOC1_START B1 O
EFLPTOC2_START B2
EFHPTOC1_START B3
EFIPTOC1_START B4 OR6 OR6
DEFHPDEF1_START B5
DEFLPDEF1_START B6 PHLPTOC1_OPERATE B1 O B1 O
PHHPTOC1_OPERATE B2 B2
PHIPTOC1_OPERATE B3 B3
DPHHPDOC1_OPERATE B4 B4
DPHLPDOC1_OPERATE B5 B5
T1PTTR1_OPERATE B6 B6
OR6
PHPTOV1_START B1 O
PHPTOV2_START B2
PHPTUV1_START B3 OR6
PHPTUV2_START B4
ROVPTOV1_START B5 PHPTOV1_OPERATE B1 O
ROVPTOV2_START B6 PHPTOV2_OPERATE B2
PHPTUV1_OPERATE B3
PHPTUV2_OPERATE B4
ROVPTOV1_OPERATE B5
ROVPTOV2_OPERATE B6

OR6
FRPFRQ1_START B1 O
FRPFRQ2_START B2
FRPFRQ3_START B3 OR6
HREFPDIF1_START B4
NSPTOC1_START B5 EFLPTOC1_OPERATE B1 O
NSPTOC2_START B6 EFLPTOC2_OPERATE B2
EFHPTOC1_OPERATE B3
EFIPTOC1_OPERATE B4
DEFHPDEF1_OPERATE B5
DEFLPDEF1_OPERATE B6

OR6
HREFPDIF1_OPERATE B1 O
NSPTOC1_OPERATE B2
NSPTOC2_OPERATE B3
FRPFRQ1_OPERATE B4
FRPFRQ2_OPERATE B5
FRPFRQ3_OPERATE B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-29DD10F3-A445-41EC-825E-B0DDAF31F9EF V1 EN

Figure 464: General start and operate signals

The operate signals from the protection functions are connected to the two trip
logics TRPPTRC1 and TRPPTRC2. The output of these trip logic functions is
available at binary output X100:PO3 and X100:PO4. The trip logic functions are
provided with a lockout and latching function, event generation and the trip signal
duration setting. If the lockout operation mode is selected, binary input X130:BI4
has been assigned to RST_LKOUT input of both the trip logic to enable external
reset with a push button.

Three other trip logics TRPPTRC3...4 are also available if the IED is ordered with
high speed binary outputs options.

304 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

TRPPTRC1
OR6 OR6
BLOCK TRIP TRPPTRC1_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
PHLPTOC1_OPERATE B2 B2 RST_LKOUT
PHHPTOC1_OPERATE B3 B3
DPHHPDOC1_OPERATE B4 B4
DPHLPDOC1_OPERATE B5 B5
B6 B6

OR6
EFLPTOC1_OPERATE B1 O
EFHPTOC1_OPERATE B2
EFIPTOC1_OPERATE B3
DEFHPDEF1_OPERATE B4
DEFLPDEF1_OPERATE B5
B6

OR6
NSPTOC1_OPERATE B1 O
NSPTOC2_OPERATE B2
T1PTTR1_OPERATE B3
HREFPDIF1_OPERATE B4
B5
B6

OR6
PHPTOV1_OPERATE B1 O
PHPTOV2_OPERATE B2
PHPTUV1_OPERATE B3
PHPTUV2_OPERATE B4
ROVPTOV1_OPERATE B5
ROVPTOV2_OPERATE B6

OR6
FRPFRQ1_OPERATE B1 O
FRPFRQ2_OPERATE B2
FRPFRQ3_OPERATE B3
ARCSARC1_OPERATE B4
ARCSARC2_OPERATE B5
ARCSARC3_OPERATE B6

X130_BI4_RST_LOCKOUT
GUID-1BC54F36-8AC5-4EB7-AA07-F0067D846955 V1 EN

Figure 465: Trip logic TRPPTRC1

REF615 305
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

TRPPTRC2
OR6 OR6
BLOCK TRIP TRPPTRC2_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
PHLPTOC1_OPERATE B2 B2 RST_LKOUT
PHHPTOC1_OPERATE B3 B3
DPHHPDOC1_OPERATE B4 B4
DPHLPDOC1_OPERATE B5 B5
B6 B6

OR6
EFLPTOC1_OPERATE B1 O
EFHPTOC1_OPERATE B2
EFIPTOC1_OPERATE B3
DEFHPDEF1_OPERATE B4
DEFLPDEF1_OPERATE B5
B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
NSPTOC1_OPERATE B4
NSPTOC2_OPERATE B5
HREFPDIF1_OPERATE B6

OR6
PHPTOV1_OPERATE B1 O
PHPTOV2_OPERATE B2
PHPTUV1_OPERATE B3
PHPTUV2_OPERATE B4
ROVPTOV1_OPERATE B5
ROVPTOV2_OPERATE B6

OR6
FRPFRQ1_OPERATE B1 O
FRPFRQ2_OPERATE B2
FRPFRQ3_OPERATE B3
CCBRBRF1_TRRET B4
T1PTTR1_OPERATE B5
B6

X130_BI4_RST_LOCKOUT
GUID-8F89045C-9F78-4696-AC8F-4B261C696B3E V1 EN

Figure 466: Trip logic TRPPTRC2

3.12.3.2 Functional diagrams for disturbance recorder

The START and the OPERATE outputs from the protection stages are routed to
trigger the disturbance recorder or, alternatively, only to be recorded by the
disturbance recorder depending on the parameter settings. Additionally, the
selected signals from different functions and the few binary inputs are also
connected to the disturbance recorder.

306 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

OR6
PHIPTOC1_OPERATE B1 O
PHHPTOC1_OPERATE B2
PHLPTOC1_OPERATE B3
B4 RDRE1
B5
B6 PHLPTOC1_START C1 TRIGGERED DISTURB_RECORD_TRIGGERED
PHHPTOC1_START C2
PHIPTOC1_START C3
DPHLPDOC1_START C4
DPHHPDOC1_START C5
OR NSPTOC1_START C6
NSPTOC2_START C7
DPHLPDOC1_OPERATE B1 O EFLPTOC1_START C8
DPHHPDOC1_OPERATE B2 EFLPTOC2_START C9
EFHPTOC1_START C10
OR EFIPTOC1_START C11
DEFLPDEF1_START C12
NSPTOC1_OPERATE B1 O DEFHPDEF1_START C13
NSPTOC2_OPERATE B2 T1PTTR1_START C14
PHPTOV1_START C15
OR6 PHPTOV2_START C16
PHPTUV1_START C17
EFLPTOC1_OPERATE B1 O PHPTUV2_START C18
EFLPTOC2_OPERATE B2 ROVPTOV1_START C19
EFHPTOC1_OPERATE B3 ROVPTOV2_START C20
EFIPTOC1_OPERATE B4 FRPFRQ1_START C21
B5 FRPFRQ2_START C22
B6 FRPFRQ3_START C23
OR HREFPDIF1_START C24
CCBRBRF1_TRRET C25
DEFLPDEF1_OPERATE B1 O CCBRBRF1_TRBU C26
DEFHPDEF1_OPERATE B2 C27
C28
OR C29
C30
PHPTOV1_OPERATE B1 O C31
PHPTOV2_OPERATE B2 T1PTTR1_OPERATE C32
INRPHAR1_BLK2H C33
C34
C35
C36
OR C37
SEQRFUF1_FUSEF_3PH C38
PHPTUV1_OPERATE B1 O SEQRFUF1_FUSEF_U C39
PHPTUV2_OPERATE B2 CCRDIF1_FAIL C40
X130_BI1_EXT_OC_BLOCKING C41
X130_BI2_CB_CLOSED C42
X130_BI3_CB_OPENED C43
SECRSYN1_SYNC_INPRO C44
OR SECRSYN1_SYNC_OK C45
SECRSYN1_CL_FAIL_AL C46
ROVPTOV1_OPERATE B1 O SECRSYN1_CMD_FAIL_AL C47
ROVPTOV2_OPERATE B2 C48
ARCSARC1_OPERATE C49
ARCSARC2_OPERATE C50
ARCSARC3_OPERATE C51
DARREC1_INPRO C52
OR6 DARREC1_CLOSE_CB C53
DARREC1_UNSUC_RECL C54
FRPFRQ1_OPERATE B1 O C55
FRPFRQ2_OPERATE B2 C56
FRPFRQ3_OPERATE B3 C57
B4 C58
B5 C59
B6 C60
C61
C62
C63
C64
OR6
ARCSARC1_ARC_FLT_DET B1 O
ARCSARC2_ARC_FLT_DET B2
ARCSARC3_ARC_FLT_DET B3
B4
B5
B6

GUID-E051CE94-0FA6-4017-AD62-9DAD14D58501 V1 EN

Figure 467: Disturbance recorder

3.12.3.3 Functional diagrams for condition monitoring

Failures in current measuring circuits are detected by CCRDIF1. When a failure is


detected, it can be used to block current protection functions that measure the
calculated sequence component currents or residual current to avoid unnecessary
operation.

CCRDIF1
BLOCK FAIL CCRDIF1_FAIL
ALARM CCRDIF1_ALARM

GUID-5544B5AF-888D-4318-AF12-B69C37BCF99A V1 EN

Figure 468: Current circuit supervision function

The fuse failure supervision SEQRFUF1 detects failures in the voltage


measurement circuits at bus side. Failures, such as an open MCB, raise an alarm.

SEQRFUF1
BLOCK FUSEF_3PH SEQRFUF1_FUSEF_3PH
X130_BI2_CB_CLOSED CB_CLOSED FUSEF_U SEQRFUF1_FUSEF_U
DISCON_OPEN
X110_BI1_BUS_VT_MCB_OPEN MINCB_OPEN

GUID-58EAF3FE-89B5-4E66-8EBE-35EDD5887A78 V1 EN

Figure 469: Fuse failure supervision function

REF615 307
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

The circuit breaker condition monitoring function SSCBR1 supervises the switch
status based on the connected binary input information and the measured current
levels. SSCBR1 introduces various supervision methods.

SSCBR1
BLOCK TRV_T_OP_ALM SSCBR1_TRV_T_OP_ALM
X130_BI3_CB_OPENED POSOPEN TRV_T_CL_ALM SSCBR1_TRV_T_CL_ALM
X130_BI2_CB_CLOSED POSCLOSE SPR_CHR_ALM SSCBR1_SPR_CHR_ALM
CB_OPEN_COMMAND OPEN_CB_EXE OPR_ALM SSCBR1_OPR_ALM
CB_CLOSE_COMMAND CLOSE_CB_EXE OPR_LO SSCBR1_OPR_LO
X110_BI3_GAS_PRESSURE_ALARM PRES_ALM_IN IPOW_ALM SSCBR1_IPOW_ALM
PRES_LO_IN IPOW_LO SSCBR1_IPOW_LO
CB_SPRING_DISCHARGED SPR_CHR_ST CB_LIFE_ALM SSCBR1_CB_LIFE_ALM
X110_BI4_CB_SPRING_CHARGED SPR_CHR MON_ALM SSCBR1_MON_ALM
RST_IPOW PRES_ALM SSCBR1_PRES_ALM
RST_CB_WEAR PRES_LO SSCBR1_PRES_LO
RST_TRV_T OPENPOS
RST_SPR_T INVALIDPOS
CLOSEPOS

GUID-80C77788-4448-4D27-A555-09847AE3A849 V1 EN

Figure 470: Circuit breaker condition monitoring function

OR6
SSCBR1_TRV_T_OP_ALM B1 O
SSCBR1_TRV_T_CL_ALM B2
SSCBR1_SPR_CHR_ALM B3
SSCBR1_OPR_ALM B4
SSCBR1_OPR_LO B5 OR
SSCBR1_IPOW_ALM B6
B1 O SSCBR1_ALARMS
B2

OR6
SSCBR1_IPOW_LO B1 O
SSCBR1_CB_LIFE_ALM B2
SSCBR1_MON_ALM B3
SSCBR1_PRES_ALM B4
SSCBR1_PRES_LO B5
B6

GUID-8A486EE3-4B7E-4215-9A28-00988D28ACF1 V1 EN

Figure 471: Logic for circuit breaker monitoring alarm

NOT
X110_BI4_CB_SPRING_CHARGED IN OUT CB_SPRING_DISCHARGED

GUID-E80805A2-511D-4DAC-AB63-77FD598E7AD7 V1 EN

Figure 472: Logic for start of circuit breaker spring charging

Two separate trip circuit supervision functions are included: TCSSCBR1 for power
output X100:PO3 and TCSSCBR2 for power output X100:PO4. Both functions are
blocked by the Master Trip TRPPTRC1 and TRPPTRC2 and the circuit breaker
open signal.

It is assumed that there is no external resistor in the circuit breaker


tripping coil circuit connected in parallel with the circuit breaker
normally open auxiliary contact.

308 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

TCSSCBR1
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR1_ALARM

TCSSCBR2
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR2_ALARM

OR
TCSSCBR1_ALARM B1 O TCSSCBR_ALARM
TCSSCBR2_ALARM B2

GUID-24DC11D9-925E-4A66-B557-E98F24BBE186 V1 EN

Figure 473: Trip circuit supervision function

OR6
TRPPTRC1_TRIP B1 O TCSSCBR_BLOCKING
TRPPTRC2_TRIP B2
X130_BI3_CB_OPENED B3
B4
B5
B6

GUID-6CBCCEE3-8358-4C86-A07B-3877DB98679B V1 EN

Figure 474: Logic for blocking trip circuit supervision

3.12.3.4 Functional diagrams for control and interlocking

The main purpose of the synchronism and energizing check SECRSYN is to


provide control over the closing of the circuit breakers in power networks to
prevent the closing if conditions for synchronism are not detected. The energizing
function allows closing, for example, when one side of the breaker is dead.

SECRSYN measures the bus and line voltages and compares them to set
conditions. When all the measured quantities are within set limits, the output
SYNC_OK is activated for allowing closing or closing the circuit breaker. The
SYNC_OK output signal of SECRSYN is connected to ENA_CLOSE input of
CBXCBR through control logic. The function is blocked in case of line side or bus
side MCB is open.

REF615 309
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

SECRSYN1
BLOCK_SECRSYN1 BLOCK SYNC_INPRO SECRSYN1_SYNC_INPRO
CL_COMMAND SYNC_OK SECRSYN1_SYNC_OK
BYPASS CL_FAIL_AL SECRSYN1_CL_FAIL_AL
CMD_FAIL_AL SECRSYN1_CMD_FAIL_AL
LLDB
LLLB
DLLB
DLDB

OR
X110_BI2_LINE_VT_MCB_OPEN B1 O BLOCK_SECRSYN1
X110_BI1_BUS_VT_MCB_OPEN B2

GUID-AC5A98E3-6E38-4375-A1F0-D1BAAB2EF652 V1 EN

Figure 475: Synchrocheck function

Two types of disconnector and earthing switch function blocks are available.
DCSXSWI1...3 and ESSXSWI1...2 are status only type, and DCXSWI1...2 and
ESXSWI1 are controllable type. By default, the status only blocks are connected in
standard configuration. The disconnector (CB truck) and line side earthing switch
status information is connected to DCSXSWI1 and ESSXSI1.

DCSXSWI1
X110_BI6_CB_TRUCK_IN_TEST POSOPEN OPENPOS
X110_BI5_CB_TRUCK_IN_SERVICE POSCLOSE CLOSEPOS
OKPOS DCSXSWI1_OKPOS

GUID-64E418EC-C238-4803-ABDE-873BECA27B1B V1 EN

Figure 476: Disconnector control logic

ESSXSWI1
X110_BI8_ES1_OPENED POSOPEN OPENPOS ESSXSWI1_OPENPOS
X110_BI7_ES1_CLOSED POSCLOSE CLOSEPOS
OKPOS

GUID-E115D13F-E322-49D5-BF4D-C4ADE480305D V1 EN

Figure 477: Earthing switch control logic

The circuit breaker closing is enabled when the ENA_CLOSE input is activated.
The input can be activated by the configuration logic, which is a combination of
the disconnector or breaker truck and earth-switch position status, status of the trip
logics, gas pressure alarm, circuit-breaker spring charging and synchronizing ok
status.

The OKPOS output from DCSXSWI defines if the disconnector or breaker truck is
definitely either open (in test position) or close (in service position). This output,
together with the open earth-switch and non-active trip signals, activates the close-
enable signal to the circuit breaker control function block. The open operation for
circuit breaker is always enabled.

The ITL_BYPASS input can be used, for example, to always enable the closing of
the circuit breaker when the circuit breaker truck is in the test position.
ITL_BYPASS overrides, for example, active interlocking conditions when the
circuit breaker truck is closed in service position.

310 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

CBXCBR1
X130_BI3_CB_OPENED POSOPEN SELECTED CBXCBR1_SELECTED
X130_BI2_CB_CLOSED POSCLOSE EXE_OP CBXCBR1_EXE_OP
TRUE ENA_OPEN EXE_CL CBXCBR1_EXE_CL
CBXCBR1_ENA_CLOSE ENA_CLOSE OPENPOS
FALSE BLK_OPEN CLOSEPOS
CBXCBR1_BLK_CLOSE BLK_CLOSE OKPOS
CBXBCR1_AU_OPEN AU_OPEN OPEN_ENAD
CBXCBR1_AU_CLOSE AU_CLOSE CLOSE_ENAD
ITL_BYPASS

GUID-38527A0A-7F5E-4C8B-8155-2544FA45C4ED V1 EN

Figure 478: Circuit breaker control logic: Circuit breaker 1

Connect the addition signals required by the application for closing


and opening coil of circuit breaker.

OR
CBXCBR1_EXE_CL B1 O CB_CLOSE_COMMAND
DARREC1_CLOSE_CB B2

GUID-84F9FA17-9CAC-4B05-9BBB-041DCB249220 V1 EN

Figure 479: Circuit breaker control logic: Signals for closing coil of circuit
breaker 1

OR6
CBXCBR1_EXE_OP B1 O CB_OPEN_COMMAND
TRPPTRC1_TRIP B2
DARREC1_OPEN_CB B3
EFLPTOC2_OPERATE B4
B5
B6

GUID-C5BCF098-8F91-4484-B7C4-C737DF86A0B3 V1 EN

Figure 480: Circuit breaker control logic: Signals for opening coil of circuit
breaker 1

Connect higher-priority conditions before enabling the closing of


circuit breaker. These conditions cannot be bypassed using bypass
feature of the function.

REF615 311
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

AND6
X110_BI4_CB_SPRING_CHARGED B1 O CBXCBR1_ENA_CLOSE
SECRSYN1_SYNC_OK B2
B3
NOT B4
B5
TRPPTRC1_TRIP IN OUT B6

NOT
TRPPTRC2_TRIP IN OUT

NOT
X110_BI3_GAS_PRESSURE_ALARM IN OUT

AND
DCSXSWI1_OKPOS B1 O
ESSXSWI1_OPENPOS B2

GUID-6EE55602-0579-4751-A44B-FC1A13105BB7 V1 EN

Figure 481: Circuit breaker 1 close enable logic

OR6
T1PTTR1_BLK_CLOSE B1 O CBXCBR1_BLK_CLOSE
B2
B3
B4
B5
B6

GUID-4D4C77CA-EB68-43E8-A9EB-D1CF7DB35836 V1 EN

Figure 482: Circuit breaker 1 close blocking logic

The configuration includes logic for generating circuit breaker external closing and
opening command with IED in local or remote mode.

Check the logic for the external circuit breaker closing command
and modify it according to the application.

Connect the additional signals for opening and closing of circuit


breaker in local or remote mode, if applicable for the configuration.

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXCBR1_AU_CLOSE
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-4E30020D-F965-4959-9286-5AD3DDDDC462 V1 EN

Figure 483: External closing command for circuit breaker

312 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXBCR1_AU_OPEN
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-3D63AADE-4D5E-47D2-B05F-54245A9157E8 V1 EN

Figure 484: External opening command for circuit breaker

3.12.3.5 Functional diagrams for measurement functions

The phase current inputs to the IED are measured by the three-phase current
measurement function CMMXU1. The current input is connected to the X120 card
in the back panel. The sequence current measurement CSMSQI1 measures the
sequence current and the residual current measurement RESCMMXU1 measures
the residual current.

The current input to high impedance restricted earth fault protection function is
measured by RESCMMXU2.

The three-phase bus side phase voltage and single phase line side phase voltage
inputs to the IED are measured by voltage measurement function VMMXU1 and
VMMXU2. The voltage input is connected to the X130 card in the back panel. The
sequence voltage measurement VSMSQI1 measures the sequence voltage and the
residual voltage measurement RESVMMXU1 measures the residual voltage.

The measurements can be seen from the LHMI and they are available under the
measurement option in the menu selection. Based on the settings, function blocks
can generate low alarm or warning and high alarm or warning signals for the
measured current values.

The frequency measurement FMMXU1 of the power system and the three-phase
power measurement PEMMXU1 are available. The load profile function
LDPMSTA1 is included in the measurements sheet. LDPMSTA1 offers the ability
to observe the loading history of the corresponding feeder.

The power quality functions CMHAI1 and VMHAI1 can be used to measure the
harmonic contents of the phase current and phase voltages. The voltage variation,
that is, sage and swells can be measured by power quality function PHQVVR1. By
default these power quality functions are not included in the configuration. The
required logic connections can be made depending on the application using
PCM600.

CMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-E62D2A19-1203-43F8-BFD7-D422CCC20304 V1 EN

Figure 485: Current measurement: Three-phase current measurement

REF615 313
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

CSMSQI1

GUID-4D375BC8-564E-482C-B177-E3C4D5F9EBE6 V1 EN

Figure 486: Current measurement: Sequence current measurement

RESCMMXU1
BLOCK HIGH_ALARM
HIGH_WARN

GUID-424FF806-E6A8-4646-88E1-BBAFB01C82DF V1 EN

Figure 487: Current measurement: Residual current measurement

RESCMMXU2
BLOCK HIGH_ALARM
HIGH_WARN

GUID-379259F9-519B-46DC-92CB-CE3A85A46243 V1 EN

Figure 488: Current measurement: Residual current measurement

VMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-7D60D10E-C412-4031-A343-6A4BCE7810F8 V1 EN

Figure 489: Voltage measurement: Three-phase voltage measurement

VSMSQI1

GUID-C3A052EA-E5B0-471F-94E1-C49CB0174319 V1 EN

Figure 490: Voltage measurement: Sequence voltage measurement

RESVMMXU1
BLOCK HIGH_ALARM
HIGH_WARN

GUID-DC329C78-B66C-4730-BAE8-22AE407C758F V1 EN

Figure 491: Voltage measurement: Residual voltage measurement

VMMXU2
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-4E2D2CFC-5410-429F-990D-A2DA07506D00 V1 EN

Figure 492: Voltage measurement: Three-phase voltage measurement

FMMXU1

GUID-ED9BF264-F1EA-4A40-B9BA-CE67B5B4C46D V1 EN

Figure 493: Other measurement: Frequency measurement

314 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

PEMMXU1
RSTACM

GUID-D9E08F0F-DC98-462E-BBF8-B06BFA9EA144 V1 EN

Figure 494: Other measurement: Three phase power and energy measurement

FLTMSTA1
BLOCK
CB_CLRD

GUID-E8A8CC10-4013-4CDD-8526-7BB04BF5F04C V1 EN

Figure 495: Other measurement: Data monitoring

LDPMSTA1
RSTMEM MEM_WARN
MEM_ALARM

GUID-A6EEC867-36F5-4D71-9024-7F71C97AA8B1 V1 EN

Figure 496: Other measurement: Load profile record

REF615 315
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

3.12.3.6 Functional diagrams for I/O and alarm LEDs

X110 (BIO).X110-Input 1 OR
B1 O X110_BI1_BUS_VT_MCB_OPEN
B2
X110 (BIO-H).X110-Input 1

X110 (BIO).X110-Input 2 OR
B1 O X110_BI2_LINE_VT_MCB_OPEN
B2
X110 (BIO-H).X110-Input 2

X110 (BIO).X110-Input 3 OR
B1 O X110_BI3_GAS_PRESSURE_ALARM
B2
X110 (BIO-H).X110-Input 3

X110 (BIO).X110-Input 4 OR
B1 O X110_BI4_CB_SPRING_CHARGED
B2
X110 (BIO-H).X110-Input 4

X110 (BIO).X110-Input 5 OR
B1 O X110_BI5_CB_TRUCK_IN_SERVICE
B2
X110 (BIO-H).X110-Input 5

X110 (BIO).X110-Input 6 OR
B1 O X110_BI6_CB_TRUCK_IN_TEST
B2
X110 (BIO-H).X110-Input 6

X110 (BIO).X110-Input 7 OR
B1 O X110_BI7_ES1_CLOSED
B2
X110 (BIO-H).X110-Input 7

X110 (BIO).X110-Input 8 OR
B1 O X110_BI8_ES1_OPENED
B2
X110 (BIO-H).X110-Input 8
GUID-BF5177A7-61AF-4AB5-A41D-A114B728C0BE V1 EN

Figure 497: Binary input - X110 terminal block

316 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

X130_BI1_EXT_OC_BLOCKING
X130 (AIM).X130-Input 1

X130_BI2_CB_CLOSED
X130 (AIM).X130-Input 2

X130_BI3_CB_OPENED
X130 (AIM).X130-Input 3

X130_BI4_RST_LOCKOUT
X130 (AIM).X130-Input 4
GUID-83B68F9E-9C82-4634-AABB-FD6276D53FCC V1 EN

Figure 498: Binary input - X130 terminal block

TRPPTRC3_TRIP
X110 (BIO-H).X110-HSO1

OC_OPERATE_PULSE
X110 (BIO).X110-SO2

TRPPTRC4_TRIP
X110 (BIO-H).X110-HSO2

EF_OPERATE_PULSE
X110 (BIO).X110-SO3

TRPPTRC5_TRIP
X110 (BIO-H).X110-HSO3

VOLTAGE_AND_FREQ_OPERATE_PULSE
X110 (BIO).X110-SO4
GUID-913C45BD-2D0C-4190-8840-B583CC22480C V1 EN

Figure 499: Binary output - X110 terminal block

CB_CLOSE_COMMAND
X100 (PSM).X100-PO1

CCBRBRF1_TRBU
X100 (PSM).X100-PO2

GENERAL_START_PULSE
X100 (PSM).X100-SO1

GENERAL_OPERATE_PULSE
X100 (PSM).X100-SO2

CB_OPEN_COMMAND
X100 (PSM).X100-PO3

OR
TRPPTRC2_TRIP B1 O
EFLPTOC2_OPERATE B2
X100 (PSM).X100-PO4

GUID-B5EEF0BF-79E0-48FD-8992-7C0995E921BF V1 EN

Figure 500: Binary output - X100 terminal block

REF615 317
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

LED1
OR
OK
PHxPTOC_OPERATE B1 O ALARM
DPHxPDOC_OPERATE B2 RESET

LED2
OR6
OK
EFxPTOC_OPERATE B1 O ALARM
ROVPTOV_OPERATE B2 RESET
DEFxPDEF_OPERATE B3
B4
B5
B6

LED3
OR6
OK
NSPTOC_OPERATE B1 O ALARM
T1PTTR1_OPERATE B2 RESET
PHPTOV_OPERATE B3
PHPTUV_OPERATE B4
B5
B6

LED4
AND
OK
X130_BI3_CB_OPENED B1 O ALARM
SECRSYN1_SYNC_OK B2 RESET

LED5
OK
FREQUENCY_OPERATE ALARM
RESET

GUID-656238B5-B8BC-4D19-943B-661853C3E8FC V1 EN

318 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

LED6
OK
CCBRBRF1_TRBU ALARM
RESET

LED7
OK
DISTURB_RECORD_TRIGGERED ALARM
RESET

LED8
OK
HREFPDIF1_OPERATE ALARM
RESET

LED9
OR6
OK
TCSSCBR_ALARM B1 O ALARM
SEQRFUF1_FUSEF_3PH B2 RESET
SEQRFUF1_FUSEF_U B3
CCRDIF1_ALARM B4
SSCBR1_ALARMS B5
B6

LED10
OK
ARCSARC_OPERATE ALARM
RESET

LED11
OK
DARREC1_INPRO ALARM
RESET

GUID-C2E52A06-56A7-4873-AFE7-FDFD36BCC39D V1 EN

Figure 501: Default LED connection

3.12.3.7 Functional diagrams for other timer logics

The configuration also includes overcurrent operate, earth-fault operate and


combined voltage and frequency operate logic. The operate logics are connected to
the pulse timer TPGAPC for setting the minimum pulse length for the outputs. The
output from TPGAPC is connected to the binary outputs.

REF615 319
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

OR
DPHxPDOC_OPERATE B1 O
PHxPTOC_OPERATE B2
TPGAPC2
IN1 OUT1 OC_OPERATE_PULSE
IN2 OUT2 EF_OPERATE_PULSE

OR6
DEFxPDEF_OPERATE B1 O
EFxPTOC_OPERATE B2
HREFPDIF1_OPERATE B3
ROVPTOV_OPERATE B4
B5
B6

GUID-98FEF423-1220-41F3-A88B-6B44E8A1CDF5 V1 EN

Figure 502: Timer logic for overcurrent and earth-fault operate pulse

OR6 TPGAPC3
PHPTOV_OPERATE B1 O IN1 OUT1 VOLTAGE_AND_FREQ_OPERATE_PULSE
PHPTUV_OPERATE B2 IN2 OUT2
FREQUENCY_OPERATE B3
B4
B5
B6

GUID-59484B34-0407-4D36-B78B-DBE34269795B V1 EN

Figure 503: Timer logic for voltage and frequency operate pulse

3.12.3.8 Other functions

The configuration includes few instances of multi-purpose protection function


MAPGAPC, high impedance fault detection function PHIZ, runtime counter
MDSOPT and different types of timers and control functions. These functions are
not included in application configuration but they can be based on the system
requirements.

3.13 Standard configuration L

3.13.1 Applications
The standard configuration for directional overcurrent and directional earth-fault
protection with phase voltage-based measurements, undervoltage and overvoltage
protection, frequency protection and measurement functions is mainly intended for
cable and overhead-line feeder applications in isolated or resonant-earthed
distribution networks. The configuration also includes additional options for
selecting earth-fault protection based on admittance, wattmetric or harmonic-based
principles.

The IED with a standard configuration is delivered from the factory with default
settings and parameters. The end user flexibility for incoming, outgoing and
internal signal designation within the IED enables this configuration to be further
adapted to different primary circuit layouts and the related functionality needs by
modifying the internal functionality using PCM600.

320 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

3.13.2 Functions

REF615 FEEDER PROTECTION AND CONTROL IED STANDARD


CONFIGURATION
L

PROTECTION LOCAL HMI ALSO AVAILABLE


Configuration A

- Disturbance and fault recorders


System
HMI
Time
Authorization

5× - Event log and recorded data


Master Trip I
- High-Speed Output module (optional)
ESC Clear

Lockout relay A
O
- IED self-supervision
R
L

94/86
U12 0. 0 kV
P 0.00 kW
Q 0.00 kVAr

IL2 0 A
- Local/Remote push button on LHMI
- User management
I ESC Clear
- Web HMI

AND
I2> I2/I1> 3Ith>F 3I>>> O R
OR 46 46PD 49F 50P/51P
L
OR
3I
3× 3×
ARC 3I>/Io>BF
50L/50NL CONDITION MONITORING COMMUNICATION
51BF/51NBF
AND SUPERVISION
Protocols:
0 0 0 1 1 0 0 1 1 0 0 2× IEC 61850-8-1 1 0
61850-8-1/-9-2LE 1 0 0 0 1 1 0 0 1 1 0 0
1 0 0 1 0 1 1 1 0 0 1 0 3I>→ 3I>>→ 3I2f> 3I FUSEF CBCM MCS 3I Modbus®® 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 1 0 1 0 0
67-1 67-2 68 60 CBCM MCS 3I IEC 60870-5-103 1 0 1 1 0 1 1 0 1 1 0 1 0 0
0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 DNP3 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0
1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
0 1 1 1 0 1 1 0 1 0 UL1UL2UL3 Interfaces: 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 1 0 1 0 0 Io Io 1 0 1 1 0 1 1 0 1 1 0 1 0 0
C) Ethernet: TX (RJ45), FX (LC)
(ST), Serial: Serial glass fiber (ST),

2/485 RS-485, RS-232/485
Io>> OPTS TCS
D-sub 9, IRIG-B
51N-2 OPTM TCM
Redundant protocols:
HSR
PRP
Io RSTP
Io

Io>→ Io>>→ Io>IEF→
CONTROL AND INDICATION 1) MEASUREMENT
67N-1 67N-2 67NIEF
- I, U, Io, P, Q, E, pf, f
Object Ctrl 2)
Ind 3)
3× 3× - Limit value supervision
Yo>→ Po>→ Io>HA CB 1 - - Load profile record
21YN 32N 51NHA - Symmetrical components
DC 2 3
OR OR
ES 1 2
1)
Check availability of binary inputs/outputs Analog interface types 1)

Uo from technical documentation Current sensor 3


2)
Control and indication function for
primary object Voltage sensor 3
3× 3×
3)
Status indication function for
primary object Current transformer 1
3U< U2> U1< 3U>
27 47O- 47U+ 59 1)
Combi sensor inputs with conventional Io
UL1UL2UL3

input

3× 4×
Uo> f>/f<, O→I PQM3I PQM3U PQMU
df/dt
59G 79 PQM3I PQM3V PQMV
81

REMARKS
18× Optional 3× No. of Calculated OR Alternative
FLOC MAP function instances value function to be
21FL MAP Io/Uo defined when
ordering

GUID-A240AB33-E70D-4471-A934-D2603FE3E6FE V1 EN

Figure 504: Functionality overview for standard configuration L

3.13.2.1 Default I/O connections

Connector pins for each input and output are presented in the IED physical
connections section.

REF615 321
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Table 63: Default connections for binary inputs


Binary input Description
X110-BI1 Circuit breaker plug not inserted
X110-BI2 Circuit breaker spring discharged
X110-BI3 Circuit breaker open indication
X110-BI4 Circuit breaker closed indication
X110-BI5 Circuit breaker truck out (test position) indication
X110-BI6 Circuit breaker truck in (service position) indication
X110-BI7 Earthing switch open indication
X110-BI8 Earthing switch closed indication

Table 64: Default connections for binary outputs


Binary output Description
X100-PO1 Release for circuit breaker closing
X100-PO2 Circuit breaker close command
X100-SO1 Release for circuit breaker tuck
X100-SO2 Release for earthing switch
X100-PO3 Circuit breaker open command
X100-PO4 Breaker failure backup trip to upstream breaker
X110-HSO1 Arc protection instance 1 operate activated
X110-HSO2 Arc protection instance 2 operate activated
X110-HSO3 Arc protection instance 3 operate activated

Table 65: Default connections for LEDs


LED Description
1 Circuit breaker close enabled
2 Short circuit protection operated
3 Earth-fault protection operated
4 Current unbalance protection operated
5 NPS or PPS voltage protection operated
6 Overvoltage or residual overvoltage protection operated
7 Thermal overload alarm
8 Undervoltage or frequency protection operated
9 Supervision alarm
10 Circuit breaker condition monitoring alarm
11 -

322 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

3.13.2.2 Default disturbance recorder settings


Table 66: Default disturbance recorder analog channels
Channel Description
1 IL1
2 IL2
3 IL3
4 Io
5 U1
6 U2
7 U3
8 -
9 -
10 -
11 -
12 -

Table 67: Default disturbance recorder binary channels


Channel ID text Level trigger mode
1 DPHLPDOC1 - start Positive or Rising
2 DPHLPDOC2 - start Positive or Rising
3 DPHHPDOC1 - start Positive or Rising
4 PHIPTOC1 - start Positive or Rising
5 NSPTOC1 - start Positive or Rising
6 NSPTOC2 - start Positive or Rising
7 DEFLPDEF1 - start Positive or Rising
EFPADM1 - start
WPWDE1 - start
8 DEFLPDEF2 - start Positive or Rising
EFPADM2 - start
WPWDE2 - start
9 DEFLPDEF3 - start Positive or Rising
EFPADM3 - start
WPWDE3 - start
10 INTRPTEF1 - start Positive or Rising
11 EFHPTOC1 - start Positive or Rising
12 PDNSPTOC1 - start Positive or Rising
13 T1PTTR1 - start Positive or Rising
14 PHPTOV1 - start Positive or Rising
15 PHPTOV2 - start Positive or Rising
Table continues on next page

REF615 323
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Channel ID text Level trigger mode


16 PHPTOV3 - start Positive or Rising
17 PSPTUV1 - start Positive or Rising
18 NSPTOV1 - start Positive or Rising
19 PHPTUV1 - start Positive or Rising
20 PHPTUV2 - start Positive or Rising
21 PHPTUV3 - start Positive or Rising
22 ROVPTOV1 - start Positive or Rising
23 ROVPTOV2 - start Positive or Rising
24 ROVPTOV3 - start Positive or Rising
25 CCBRBRF1 - trret Level trigger off
26 CCBRBRF1 - trbu Level trigger off
27 PHIPTOC1 - operate Level trigger off
DPHHPDOC1 - operate
DPHLPDOC1 - operate
DPHLPDOC2 - operate
28 NSPTOC1 - operate Level trigger off
NSPTOC2 - operate
29 DEFHPDEF1 - operate Level trigger off
DEFLPDEF1 - operate
DEFLPDEF2 - operate
EFPADM1 - operate
EFPADM2 - operate
EFPADM3 - operate
WPWDE1 - operate
WPWDE2 - operate
WPWDE3 - operate
30 INTRPTEF1 - operate Level trigger off
31 EFHPTOC1 - operate Level trigger off
32 PDNSPTOC1 - operate Level trigger off
33 INRPHAR1 - blk2h Level trigger off
34 T1PTTR1 - operate Level trigger off
ROVPTOV2 - operate
ROVPTOV3 - operate
PSPTUV1 - operate
NSPTOV2 - operate
38 SEQRFUF1 - fusef3ph Level trigger off
39 SEQRFUF1 - fusefu Level trigger off
40 CCRDIF1 - fail Level trigger off
Table continues on next page

324 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

Channel ID text Level trigger mode


35 PHPTOV1 - operate Level trigger off
PHPTOV2 - operate
PHPTOV3 - operate
36 PHPTUV1 - operate Level trigger off
PHPTUV2 - operate
PHPTUV3 - operate
37 ROVPTOV1 - operate Level trigger off
41 X110BI4 - CB closed Level trigger off
42 X110BI3 - CB opened Level trigger off
43 ARCSARC1 - ARC flt det Level trigger off
ARCSARC2 - ARC flt det
ARCSARC3 - ARC flt det
44 DARREC1 - close CB Level trigger off
DARREC1 - unsuc recl
45 ARCSARC1 - operate Level trigger off
46 ARCSARC2 - operate Positive or Rising
47 ARCSARC3 - operate Positive or Rising
48 DARREC1 - inpro Positive or Rising
49 FRPFRQ1 - start Level trigger off
50 FRPFRQ2 - start Positive or Rising
51 FRPFRQ3 - start Positive or Rising
52 FRPFRQ - operate Positive or Rising
FRPFRQ2 - operate
FRPFRQ3 - operate

3.13.2.3 Sensor settings

This chapter gives short examples on how to define the correct parameters for
sensors. See the technical manual for detailed information about sensor settings.

Sensors have corrections factors, measured and verified by the


sensor manufacturer, to increase the measurement accuracy of
primary values. Correction factors are recommended to be set. Two
types of correction factors are available for voltage and rogowski
sensors. The Amplitude correction factor is named Amplitude corr.
A(B/C) and Angle correction factor is named Angle corr A(B/C).
These correction factors can be found on the Sensor's rating plate. If
the correction factors are not available, contact the sensor
manufacturer for more information.

REF615 325
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Rogowski sensor setting example


In this example, an 80 A/0.150 V at 50 Hz sensor is used and the application has a
150 A nominal current (In). As the Rogowski sensor is linear and does not saturate,
the 80 A/0.150 V at 50 Hz sensor also works as a 150 A/0.28125 V at 50 Hz
sensor. When defining another primary value for the sensor, also the nominal
voltage has to be redefined to maintain the same transformation ratio. However, the
setting in the IED (Rated Secondary Value) is not in V but in mV/Hz, which makes
the same setting value valid for both 50 and 60 Hz nominal frequency.

In
× Kr
I pr
RSV =
fn
GUID-6A480073-5C35-4319-8B38-402608D4C098 V2 EN

RSV Rated Secondary Value in mV/Hz


In Application nominal current

Ipr Sensor-rated primary current

fn Network nominal frequency

Kr Sensor-rated voltage at the rated current in mV

In this example, the value is as calculated using the equation.

150 A
× 150mV
80 A mV
= 5.625
50Hz Hz
GUID-13DE42A0-29C0-4FE0-B00B-1215B37E3B7B V2 EN

With this information, the IED Rogowski sensor settings can be set.

Table 68: Example setting values for rogowski sensor


Setting Value
Primary current 150 A
Rated secondary value 5.625 mV/Hz
Nominal current 150 A

Unless otherwise specified, the Nominal Current setting should


always be the same as the Primary Current setting.

Voltage sensor setting example


The voltage sensor is based on the resistive divider or capacitive divider principle.
Therefore, the voltage is linear throughout the whole measuring range. The output
signal is a voltage, directly proportional to the primary voltage. For the voltage

326 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

sensor all parameters are readable directly from its rating plate and conversions are
not needed.

In this example the system phase-to-phase voltage rating is 10 kV. Thus, the
Primary voltage parameter is set to 10 kV. For IEDs with sensor measurement
support the Voltage input type is always set to “CVD sensor” and it cannot be
changed. The same applies for the VT connection parameter which is always set to
“WYE” type. The division ratio for ABB voltage sensors is most often 10000:1.
Thus, the Division ratio parameter is usually set to “10000”. The primary voltage is
proportionally divided by this division ratio.

Table 69: Example setting values for voltage sensor


Setting Value
Primary voltage 10 kV
VT connection Wye
Voltage input type 3=CVD sensor
Division ratio 10000

3.13.3 Functional diagrams


The functional diagrams describe the default input, output, alarm LED and function-
to-function connections. The default connections can be viewed and changed with
PCM600 according to the application requirements.

The analog channels have fixed connections to the different function blocks inside
the IED’s standard configuration. However, the 12 analog channels available for
the disturbance recorder function are freely selectable as a part of the disturbance
recorder’s parameter settings.

The phase currents to the IED are fed from Rogowski or Combi sensors. The
residual current to the IED is fed from either residually connected CTs, an external
core balance CT, neutral CT or internally calculated.

The phase voltages to the IED are fed from Combi sensors. The residual voltage is
internally calculated.

The IED offers six different settings groups which can be set based on individual
needs. Each group can be activated or deactivated using the setting group settings
available in the IED.

Depending on the communication protocol the required function block needs to be


initiated in the configuration. The Application Configuration tool also includes
fixed Boolean signals TRUE and FALSE which can be used according to the
application needs.

REF615 327
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

3.13.3.1 Functional diagrams for protection

The functional diagrams describe the IEDs protection functionality in detail and
according to the factory set default connections.

Four overcurrent stages are offered for overcurrent and short-circuit protection.
Three of them include directional functionality DPHxPDOC.

PHIPTOC1
BLOCK OPERATE PHIPTOC1_OPERATE
ENA_MULT START PHIPTOC1_START

GUID-BD8968B4-3161-4D6F-9B9D-FD51C828C872 V1 EN

Figure 505: Overcurrent protection function

DPHHPDOC1
BLOCK OPERATE DPHHPDOC1_OPERATE
ENA_MULT START DPHHPDOC1_START
NON_DIR

DPHLPDOC1
BLOCK OPERATE DPHLPDOC1_OPERATE
ENA_MULT START DPHLPDOC1_START
NON_DIR

DPHLPDOC2
BLOCK OPERATE DPHLPDOC2_OPERATE
ENA_MULT START DPHLPDOC2_START
NON_DIR

OR6
DPHHPDOC1_OPERATE B1 O DPHxPDOC_OPERATE
DPHLPDOC1_OPERATE B2
DPHLPDOC2_OPERATE B3
B4
B5
B6

GUID-2AC404B1-6335-45C6-B65A-549C6348C40E V1 EN

Figure 506: Directional overcurrent protection functions

The upstream blocking from the start of the overcurrent second low stage
DPHLPDOC2 is connected to the binary output. This signal is not connected in the
configuration. This output can be used for sending a blocking signal to the relevant
overcurrent protection stage of the IED at the infeeding bay.

328 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

OR6
DPHLPDOC2_START B1 O
B2
B3
B4
B5
B6

GUID-7AEA0818-3740-426B-89CB-128FC04D5E3D V1 EN

Figure 507: Upstream blocking logic

The inrush detection block's (INRPHAR1) output BLK2H enables either blocking
the function or multiplying the active settings for any of the available overcurrent
or earth-fault function blocks.

INRPHAR1
BLOCK BLK2H INRPHAR1_BLK2H

GUID-8A44950A-08F8-487A-8285-291BBBFC04C7 V1 EN

Figure 508: Inrush detector function

Two negative sequence overcurrent stages NSPTOC1 and NSPTOC2 are provided
for phase unbalance protection. These functions are used to protect the feeder
against phase unbalance.

NSPTOC1
BLOCK OPERATE NSPTOC1_OPERATE
ENA_MULT START NSPTOC1_START

NSPTOC2
BLOCK OPERATE NSPTOC2_OPERATE
ENA_MULT START NSPTOC2_START

GUID-9F91B557-1412-4CB4-897C-9D4BEBCC31F4 V1 EN

Figure 509: Negative sequence overcurrent protection function

Three stages are provided for directional earth-fault protection. According to the
IED's order code, the directional earth-fault protection method can be based on
conventional directional earth-fault DEFxPDEF only or alternatively together with
admittance criteria EFPADM or wattmetric earth-fault protection WPWDE or
harmonic based earth-fault protection HAEFPTOC. A dedicated protection stage
INTRPTEF is used either for transient-based earth-fault protection or for cable
intermittent earth-fault protection in compensated networks.

REF615 329
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

DEFLPDEF1
BLOCK OPERATE DEFLPDEF1_OPERATE
ENA_MULT START DEFLPDEF1_START
RCA_CTL

DEFLPDEF2
BLOCK OPERATE DEFLPDEF2_OPERATE
ENA_MULT START DEFLPDEF2_START
RCA_CTL

DEFHPDEF1
BLOCK OPERATE DEFHPDEF1_OPERATE
ENA_MULT START DEFHPDEF1_START
RCA_CTL

OR6
DEFLPDEF1_OPERATE B1 O DEFxPDEF_OPERATE
DEFLPDEF2_OPERATE B2
DEFHPDEF1_OPERATE B3
B4
B5
B6

GUID-5DBE7FA7-715A-4972-99C1-D5D5B0E7DEF4 V1 EN

Figure 510: Directional earth-fault protection functions

INTRPTEF1
BLOCK OPERATE INTRPTEF1_OPERATE
START INTRPTEF1_START
BLK_EF

GUID-C7EF270A-B48D-4BC2-A108-0E1F0A22A24F V1 EN

Figure 511: Transient or intermittent earth-fault protection function

330 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

WPWDE1
BLOCK OPERATE WPWDE1_OPERATE
RCA_CTL START WPWDE1_START

WPWDE2
BLOCK OPERATE WPWDE2_OPERATE
RCA_CTL START WPWDE2_START

WPWDE3
BLOCK OPERATE WPWDE3_OPERATE
RCA_CTL START WPWDE3_START

OR6
WPWDE1_OPERATE B1 O WPWDE_OPERATE
WPWDE2_OPERATE B2
WPWDE3_OPERATE B3
B4
B5
B6

GUID-2415F7DF-2F35-4B56-B26E-A99FD8140D7B V1 EN

Figure 512: Wattmetric protection function

EFPADM1
BLOCK OPERATE EFPADM1_OPERATE
RELEASE START EFPADM1_START

EFPADM2
BLOCK OPERATE EFPADM2_OPERATE
RELEASE START EFPADM2_START

EFPADM3
BLOCK OPERATE EFPADM3_OPERATE
RELEASE START EFPADM3_START

OR6
EFPADM1_OPERATE B1 O EFPADM_OPERATE
EFPADM2_OPERATE B2
EFPADM3_OPERATE B3
B4
B5
B6

GUID-DB548625-AE6E-4629-80D7-65C17D2726B1 V1 EN

Figure 513: Admittance based earth-fault protection function

REF615 331
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

A dedicated non-directional earth-fault protection block EFHPTOC1 protects from


double earth-fault situations in isolated or compensated networks. The protection
function uses the calculated residual current originating from the phase currents.

EFHPTOC1
BLOCK OPERATE EFHPTOC1_OPERATE
ENA_MULT START EFHPTOC1_START

GUID-5F955CEE-D4DA-4562-9D85-A3924AE2E777 V1 EN

Figure 514: Earth-fault protection function

The phase discontinuity protection PDNSPTOC1 protects from interruptions in the


normal three-phase load supply, for example, in downed conductor situations.

PDNSPTOC1
BLOCK OPERATE PDNSPTOC1_OPERATE
START PDNSPTOC1_START

GUID-4030CC9B-C67C-4C3F-9735-046BCA54C9A2 V1 EN

Figure 515: Phase discontinuity protection

The thermal overload protection T1PTTR1 detects overloads under varying load
conditions. The BLK_CLOSE output of the function is used to block the closing
operation of circuit breaker.

T1PTTR1
BLK_OPR OPERATE T1PTTR1_OPERATE
ENA_MULT START T1PTTR1_START
TEMP_AMB ALARM T1PTTR1_ALARM
BLK_CLOSE T1PTTR1_BLK_CLOSE

GUID-D24BA182-57B6-45D4-9D7D-DE6431A2D40D V1 EN

Figure 516: Thermal overcurrent protection function

The breaker failure protection CCBRBRF1 is initiated via the START input by a
number of different protection functions available in the IED. The breaker failure
protection function offers different operating modes associated with the circuit
breaker position and the measured phase and residual currents.

The breaker failure protection function has two operating outputs: TRRET and
TRBU. The TRRET operate output is used for retripping its own breaker through
TRPPTRC2_TRIP. The same TRRET output is also connected to the binary output
X100:PO4.
CCBRBRF1
OR6 OR6
BLOCK CB_FAULT_AL
PHIPTOC1_OPERATE B1 O B1 O START TRBU CCBRBRF1_TRBU
DPHHPDOC1_OPERATE B2 B2 POSCLOSE TRRET CCBRBRF1_TRRET
DPHLPDOC1_OPERATE B3 B3 CB_FAULT
ARCSARC1_OPERATE B4 B4
ARCSARC2_OPERATE B5 B5
ARCSARC3_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF2_OPERATE B2
WPWDE2_OPERATE B3
WPWDE3_OPERATE B4
EFPADM2_OPERATE B5
EFPADM3_OPERATE B6

X110_BI4_CB_CLOSED
GUID-E6CCE23A-E287-45F4-86DF-14AF5240AE95 V1 EN

Figure 517: Circuit breaker failure protection function

332 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

Three arc protection ARCSARC1...3 stages are included as an optional function.


The arc protection offers individual function blocks for three arc sensors that can
be connected to the IED. Each arc protection function block has two different
operation modes, that is, with or without the phase and residual current check.

The operate signals from ARCSARC1...3 are connected to both trip logic
TRPPTRC1 and TRPPTRC2. If the IED has been ordered with high speed binary
outputs, the individual operate signals from ARCSARC1...3 are connected to
dedicated trip logic TRPPTRC3...5. The output of TRPPTRC3...5 is available at
high speed outputs X110:HSO1, X110:HSO2 and X110:HSO3.

REF615 333
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

ARCSARC1
BLOCK OPERATE ARCSARC1_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC1_ARC_FLT_DET
OPR_MODE

ARCSARC2
BLOCK OPERATE ARCSARC2_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC2_ARC_FLT_DET
OPR_MODE

ARCSARC3
BLOCK OPERATE ARCSARC3_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC3_ARC_FLT_DET
OPR_MODE

OR6
ARCSARC1_OPERATE B1 O ARCSARC_OPERATE
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-B9E0D769-8CF3-4292-AE05-BED577FCEAAA V1 EN

TRPPTRC3
BLOCK TRIP TRPPTRC3_TRIP
ARCSARC1_OPERATE OPERATE CL_LKOUT
RST_LKOUT

TRPPTRC4
BLOCK TRIP TRPPTRC4_TRIP
ARCSARC2_OPERATE OPERATE CL_LKOUT
RST_LKOUT

TRPPTRC5
BLOCK TRIP TRPPTRC5_TRIP
ARCSARC3_OPERATE OPERATE CL_LKOUT
RST_LKOUT

GUID-2C084651-18B3-4B64-A2A8-FA002A7A2789 V1 EN

Figure 518: Arc protection with dedicated HSO

The optional autorecloser function is configured to be initiated by operate signals


from a number of protection stages through the INIT_1...5 inputs. It is possible
to create individual autoreclose sequences for each input.

The autorecloser function can be inhibited with the INHIBIT_RECL input. By


default, few selected protection function operations are connected to this input. A

334 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

control command to the circuit breaker, either local or remote, also blocks the
autorecloser function via the CBXCBR1-SELECTED signal.

The circuit breaker availability for the autorecloser sequence is expressed with the
CB_READY input in DARREC1. The signal, and other required signals, are
connected to the CB spring charged binary inputs in this configuration. The open
command from the autorecloser is connected directly to binary output X100:PO3,
whereas the close command is connected directly to the binary output X100:PO2.

Set the parameters for DARREC1 properly.

Check the initialization signals of the DARREC1.

DARREC1
PHIPTOC1_OPERATE INIT_1 OPEN_CB DARREC1_OPEN_CB
OR6 DPHHPDOC1_OPERATE INIT_2 CLOSE_CB DARREC1_CLOSE_CB
DPHLPDOC2_OPERATE INIT_3 CMD_WAIT
DEFLPDEF2_OPERATE B1 O INIT_4 INPRO DARREC1_INPRO
EFPADM2_OPERATE B2 INIT_5 LOCKED
WPWDE2_OPERATE B3 INIT_6 PROT_CRD
B4 DEL_INIT_2 UNSUC_RECL DARREC1_UNSUC_RECL
B5 DEL_INIT_3 AR_ON
B6 DEL_INIT_4 READY
BLK_RECL_T ACTIVE
BLK_RCLM_T
BLK_THERM
X110_BI3_CB_OPENED CB_POS
CBXCBR1_CLOSE_ENAD CB_READY
OR6 INC_SHOTP
INHIBIT_RECL
DEFHPDEF1_OPERATE B1 O RECL_ON
EFPADM3_OPERATE B2 SYNC
WPWDE3_OPERATE B3
B4
B5
B6

OR6
PDNSPTOC1_OPERATE B1 O
NSPTOC1_OPERATE B2
NSPTOC2_OPERATE B3
CBXCBR1_SELECTED B4
INTRPTEF1_OPERATE B5
ARCSARCx_OPERATE B6

GUID-D0E92975-43CA-4C06-ADD5-171BC5C5EC2B V1 EN

Figure 519: Autorecloser function

Three overvoltage and undervoltage protection stages PHxPTOV and PHxPTUV


offer protection against abnormal phase voltage conditions. Positive sequence
undervoltage PSPTUV and negative sequence overvoltage NSPTOV protection
functions enable voltage-based unbalance protection. A failure in the voltage
measuring circuit is detected by the fuse failure function. The activation is
connected to block undervoltage protection functions and voltage based unbalance
protection functions to avoid faulty tripping.

REF615 335
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

PHPTOV1
BLOCK OPERATE PHPTOV1_OPERATE
START PHPTOV1_START

PHPTOV2
BLOCK OPERATE PHPTOV2_OPERATE
START PHPTOV2_START

PHPTOV3
BLOCK OPERATE PHPTOV3_OPERATE
START PHPTOV3_START

OR6
PHPTOV1_OPERATE B1 O PHPTOV_OPERATE
PHPTOV2_OPERATE B2
PHPTOV3_OPERATE B3
B4
B5
B6

GUID-132F1D97-2E54-4924-B2BD-AA4FF9188285 V1 EN

Figure 520: Overvoltage protection function

PHPTUV1
SEQRFUF1_FUSEF_U BLOCK OPERATE PHPTUV1_OPERATE
START PHPTUV1_START

PHPTUV2
SEQRFUF1_FUSEF_U BLOCK OPERATE PHPTUV2_OPERATE
START PHPTUV2_START

PHPTUV3
SEQRFUF1_FUSEF_U BLOCK OPERATE PHPTUV3_OPERATE
START PHPTUV3_START

OR6
PHPTUV1_OPERATE B1 O PHPTUV_OPERATE
PHPTUV2_OPERATE B2
PHPTUV3_OPERATE B3
B4
B5
B6

GUID-495CB32C-5BEB-47DB-ADB3-5FE266D3482D V1 EN

Figure 521: Undervoltage protection function

336 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

The residual overvoltage protection ROVPTOV provides earth fault protection by


detecting an abnormal level of residual voltage. It can be used, for example, as a
nonselective backup protection for the selective directional earth-fault functionality.

ROVPTOV1
BLOCK OPERATE ROVPTOV1_OPERATE
START ROVPTOV1_START

ROVPTOV2
BLOCK OPERATE ROVPTOV2_OPERATE
START ROVPTOV2_START

ROVPTOV3
BLOCK OPERATE ROVPTOV3_OPERATE
START ROVPTOV3_START

OR6
ROVPTOV1_OPERATE B1 O ROVPTOV_OPERATE
ROVPTOV2_OPERATE B2
ROVPTOV3_OPERATE B3
B4
B5
B6

GUID-2155DB79-DEBD-4DD9-9384-FD5352967608 V1 EN

Figure 522: Residual voltage protection function

NSPTOV1
SEQRFUF1_FUSEF_U BLOCK OPERATE NSPTOV1_OPERATE
START NSPTOV1_START

GUID-911F6005-2A2B-4012-85F8-BC6D88B453B6 V1 EN

Figure 523: Negative sequence overvoltage protection function

PSPTUV1
SEQRFUF1_FUSEF_U BLOCK OPERATE PSPTUV1_OPERATE
START PSPTUV1_START

GUID-A60BCAA1-D381-4F34-9C15-56DD20DA737E V1 EN

Figure 524: Positive sequence undervoltage protection function

The selectable underfrequency or overfrequency protection FRPFRQ prevents


damage to network components under unwanted frequency conditions. The
function also contains a selectable rate of change of the frequency (gradient)
protection to detect an increase or decrease in the fast power system frequency at
an early stage. This can be used as an early indication of a disturbance in the system.

REF615 337
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

FRPFRQ1
BLOCK OPERATE FRPFRQ1_OPERATE
OPR_OFRQ
OPR_UFRQ
OPR_FRG
START FRPFRQ1_START
ST_OFRQ
ST_UFRQ
ST_FRG

FRPFRQ2
BLOCK OPERATE FRPFRQ2_OPERATE
OPR_OFRQ
OPR_UFRQ
OPR_FRG
START FRPFRQ2_START
ST_OFRQ
ST_UFRQ
ST_FRG

FRPFRQ3
BLOCK OPERATE FRPFRQ3_OPERATE
OPR_OFRQ
OPR_UFRQ
OPR_FRG
START FRPFRQ3_START
ST_OFRQ
ST_UFRQ
ST_FRG

OR6
FRPFRQ1_OPERATE B1 O FREQUENCY_OPERATE
FRPFRQ2_OPERATE B2
FRPFRQ3_OPERATE B3
B4
B5
B6

GUID-F8133DC0-F5B6-4B19-993B-A88C87927D48 V1 EN

Figure 525: Frequency protection function

General start and operate signals from all functions are connected to pulse timer
TPGAPC for setting the minimum pulse length for the outputs. The output from
TPGAPC can be connected to binary outputs. However, these are not connected in
the configuration.

If a new protection function block is added to the configuration,


check the activation logic and add connections.

338 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

OR6 OR6
DPHLPDOC1_START B1 O B1 O
DPHLPDOC2_START B2 B2
DPHHPDOC1_START B3 B3
PHIPTOC1_START B4 B4
NSPTOC1_START B5 B5
NSPTOC2_START B6 B6
TPGAPC1
IN1 OUT1
IN2 OUT2
OR6 OR6 OR6
DEFLPDEF1_START B1 O DPHLPDOC1_OPERATE B1 O B1 O
DEFLPDEF2_START B2 DPHLPDOC2_OPERATE B2 B2
DEFHPDEF1_START B3 DPHHPDOC1_OPERATE B3 B3
INTRPTEF1_START B4 NSPTOC1_OPERATE B4 B4
EFHPTOC1_START B5 NSPTOC2_OPERATE B5 B5
PDNSPTOC1_START B6 PHIPTOC1_OPERATE B6 B6

OR6 OR6
PHPTOV1_START B1 O DEFLPDEF1_OPERATE B1 O
PHPTOV2_START B2 DEFLPDEF2_OPERATE B2
PHPTOV3_START B3 DEFHPDEF1_OPERATE B3
PSPTUV1_START B4 INTRPTEF1_OPERATE B4
NSPTOV1_START B5 EFHPTOC1_OPERATE B5
PHPTUV1_START B6 PDNSPTOC1_OPERATE B6

OR6 OR6
PHPTUV2_START B1 O EFPADM1_OPERATE B1 O
PHPTUV3_START B2 EFPADM2_OPERATE B2
ROVPTOV1_START B3 EFPADM3_OPERATE B3
ROVPTOV2_START B4 ARCSARC1_OPERATE B4
ROVPTOV3_START B5 ARCSARC2_OPERATE B5
B6 ARCSARC3_OPERATE B6

OR6 OR6
EFPADM1_START B1 O PHPTUV1_OPERATE B1 O
EFPADM2_START B2 PHPTUV2_OPERATE B2
EFPADM3_START B3 PHPTUV3_OPERATE B3
WPWDE1_START B4 NSPTOV1_OPERATE B4
WPWDE2_START B5 PSPTUV1_OPERATE B5
WPWDE3_START B6 PHPTOV1_OPERATE B6

OR6 OR6
FRPFRQ1_START B1 O PHPTOV2_OPERATE B1 O
FRPFRQ2_START B2 PHPTOV3_OPERATE B2
FRPFRQ3_START B3 ROVPTOV1_OPERATE B3
B4 ROVPTOV2_OPERATE B4
B5 ROVPTOV3_OPERATE B5
B6 B6

OR6
WPWDE1_OPERATE B1 O
WPWDE2_OPERATE B2
WPWDE3_OPERATE B3
FRPFRQ1_OPERATE B4
FRPFRQ2_OPERATE B5
FRPFRQ3_OPERATE B6

GUID-97753A90-F609-4FF1-BE07-E1E93BFC70E6 V1 EN

Figure 526: General start and operate signals

The operate signals from the protection functions are connected to the two trip
logics TRPPTRC1 and TRPPTRC2. The output from TRPPTRC1 trip logic
functions is available at binary output X100:PO3. The trip logic functions are
provided with a lockout and latching function, event generation and the trip signal
duration setting. If the lockout operation mode is required, the binary input has
been assigned to RST_LKOUT input of both the trip logic to enable external reset
with a push button.

Three other trip logics TRPPTRC3..4 are also available if the IED is ordered with
high speed binary outputs options.

REF615 339
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

TRPPTRC1
OR6 OR6
BLOCK TRIP TRPPTRC1_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
DPHLPDOC2_OPERATE B2 B2 RST_LKOUT
DPHHPDOC1_OPERATE B3 B3
DPHLPDOC1_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF1_OPERATE B2
DEFLPDEF2_OPERATE B3
EFPADM1_OPERATE B4
EFPADM2_OPERATE B5
EFPADM3_OPERATE B6

OR6
INTRPTEF1_OPERATE B1 O
EFHPTOC1_OPERATE B2
PDNSPTOC1_OPERATE B3
ROVPTOV1_OPERATE B4
ROVPTOV2_OPERATE B5
ROVPTOV3_OPERATE B6

OR6
WPWDE1_OPERATE B1 O
WPWDE2_OPERATE B2
WPWDE3_OPERATE B3
ARCSARC1_OPERATE B4
ARCSARC2_OPERATE B5
ARCSARC3_OPERATE B6

OR6
PHPTOV1_OPERATE B1 O
PHPTOV2_OPERATE B2
PHPTOV3_OPERATE B3
PSPTUV1_OPERATE B4
NSPTOV1_OPERATE B5
PHPTUV1_OPERATE B6

OR6
PHPTUV2_OPERATE B1 O
PHPTUV3_OPERATE B2
FRPFRQ1_OPERATE B3
FRPFRQ2_OPERATE B4
FRPFRQ3_OPERATE B5
B6

GUID-67E2C6C0-D9A7-438A-824C-80B14965AE5E V1 EN

Figure 527: Trip logic TRPPTRC1

340 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

TRPPTRC2
OR6 OR6
BLOCK TRIP TRPPTRC2_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
DPHLPDOC2_OPERATE B2 B2 RST_LKOUT
DPHHPDOC1_OPERATE B3 B3
DPHLPDOC1_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
DEFHPDEF1_OPERATE B1 O
DEFLPDEF1_OPERATE B2
DEFLPDEF2_OPERATE B3
EFPADM1_OPERATE B4
EFPADM2_OPERATE B5
EFPADM3_OPERATE B6

OR6
INTRPTEF1_OPERATE B1 O
EFHPTOC1_OPERATE B2
PDNSPTOC1_OPERATE B3
ROVPTOV1_OPERATE B4
ROVPTOV2_OPERATE B5
ROVPTOV3_OPERATE B6

OR6
NSPTOV1_OPERATE B1 O
CCBRBRF1_TRRET B2
WPWDE1_OPERATE B3
WPWDE2_OPERATE B4
WPWDE3_OPERATE B5
PSPTUV1_OPERATE B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
PHPTUV1_OPERATE B4
PHPTUV2_OPERATE B5
PHPTUV3_OPERATE B6

OR6
PHPTOV1_OPERATE B1 O
PHPTOV2_OPERATE B2
PHPTOV3_OPERATE B3
FRPFRQ1_OPERATE B4
FRPFRQ2_OPERATE B5
FRPFRQ3_OPERATE B6

GUID-C7506F05-1EE1-466B-B904-923D2568A6EC V1 EN

Figure 528: Trip logic TRPPTRC2

3.13.3.2 Functional diagrams for disturbance recorder

The START and OPERATE outputs from the protection stages are routed to trigger
the disturbance recorder or, alternatively, only to be recorded by the disturbance
recorder depending on the parameter settings. Additionally, the selected signals
from different functions and few binary inputs are also connected to the
disturbance recorder.

The disturbance recorder main application sheet contains


disturbance recorder function block and the connections to the
variables.

REF615 341
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Once the order of signals connected to the binary inputs of RDRE is


changed, make the changes to the parameter setting tool.

OR6
DEFLPDEF1_START B1 O
EFPADM1_START B2
WPWDE1_START B3
B4
B5
B6 RDRE1
DPHLPDOC1_START C1 TRIGGERED
OR6 DPHLPDOC2_START C2
DPHHPDOC1_START C3
PHIPTOC1_OPERATE B1 O OR6 PHIPTOC1_START C4
DPHHPDOC1_OPERATE B2 NSPTOC1_START C5
DPHLPDOC1_OPERATE B3 DEFLPDEF2_START B1 O NSPTOC2_START C6
DPHLPDOC2_OPERATE B4 EFPADM2_START B2 C7
B5 WPWDE2_START B3 C8
B6 B4 C9
B5 INTRPTEF1_START C10
B6 EFHPTOC1_START C11
PDNSPTOC1_START C12
T1PTTR1_START C13
OR PHPTOV1_START C14
OR6 PHPTOV2_START C15
NSPTOC1_OPERATE B1 O PHPTOV3_START C16
NSPTOC2_OPERATE B2 DEFHPDEF1_START B1 O PSPTUV1_START C17
EFPADM3_START B2 NSPTOV1_START C18
WPWDE3_START B3 PHPTUV1_START C19
B4 PHPTUV2_START C20
B5 PHPTUV3_START C21
OR6 B6 ROVPTOV1_START C22
ROVPTOV2_START C23
DEFHPDEF1_OPERATE B1 O ROVPTOV3_START C24
DEFLPDEF1_OPERATE B2 CCBRBRF1_TRRET C25
DEFLPDEF2_OPERATE B3 CCBRBRF1_TRBU C26
EFPADM1_OPERATE B4 C27
EFPADM2_OPERATE B5 C28
EFPADM3_OPERATE B6 C29
INTRPTEF1_OPERATE C30
OR6 EFHPTOC1_OPERATE C31
PDNSPTOC1_OPERATE C32
OR PHPTOV1_OPERATE B1 O INRPHAR1_BLK2H C33
OR6 PHPTOV2_OPERATE B2 T1PTTR1_OPERATE C34
B1 O PHPTOV3_OPERATE B3 C35
B1 O B2 B4 C36
WPWDE1_OPERATE B2 B5 C37
WPWDE2_OPERATE B3 B6 SEQRFUF1_FUSEF_3PH C38
WPWDE3_OPERATE B4 SEQRFUF1_FUSEF_U C39
B5 CCRDIF1_FAIL C40
B6 X110_BI4_CB_CLOSED C41
X110_BI3_CB_OPENED C42
OR6 C43
C44
PHPTUV1_OPERATE B1 O ARCSARC1_OPERATE C45
PHPTUV2_OPERATE B2 ARCSARC2_OPERATE C46
PHPTUV3_OPERATE B3 ARCSARC3_OPERATE C47
B4 DARREC1_INPRO C48
B5 FRPFRQ1_START C49
B6 FRPFRQ2_START C50
OR6 FRPFRQ3_START C51
C52
ROVPTOV1_OPERATE B1 O C53
ROVPTOV2_OPERATE B2 C54
ROVPTOV3_OPERATE B3 OR6 C55
PSPTUV1_OPERATE B4 C56
NSPTOV1_OPERATE B5 ARCSARC1_ARC_FLT_DET B1 O C57
B6 ARCSARC2_ARC_FLT_DET B2 C58
ARCSARC3_ARC_FLT_DET B3 C59
B4 C60
B5 C61
B6 C62
OR C63
C64
DARREC1_CLOSE_CB B1 O
DARREC1_UNSUC_RECL B2

OR6
FRPFRQ1_OPERATE B1 O
FRPFRQ2_OPERATE B2
FRPFRQ3_OPERATE B3
B4
B5
B6

GUID-61109734-AD19-4B16-A9AF-B54576A65C0C V1 EN

Figure 529: Disturbance recorder

3.13.3.3 Functional diagrams for condition monitoring

CCRDIF1 detects the failure in the current measuring circuits. When a failure is
detected, it can be used to block the current protection functions that measure the
calculated sequence component currents to avoid unnecessary operation. However,
it is not connected in the configuration.

CCRDIF1
BLOCK FAIL CCRDIF1_FAIL
ALARM CCRDIF1_ALARM

GUID-A83F6FE3-8FB5-4364-B2CF-C4660FCE0E45 V1 EN

Figure 530: Current circuit supervision function

The fuse failure supervision SEQRFUF1 detects failures in the voltage


measurement circuits. Failures, such as an open MCB, raise an alarm.

342 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

SEQRFUF1
BLOCK FUSEF_3PH SEQRFUF1_FUSEF_3PH
X110_BI4_CB_CLOSED CB_CLOSED FUSEF_U SEQRFUF1_FUSEF_U
DISCON_OPEN
MINCB_OPEN

GUID-DDF6EFE9-7547-4CAD-8158-4A1A568C6B76 V1 EN

Figure 531: Fuse failure supervision function

The circuit breaker condition monitoring function SSCBR1 supervises the switch
status based on the connected binary input information and the measured current
levels. SSCBR1 introduces various supervision methods.

Set the parameters for SSCBR1 properly.

SSCBR1
BLOCK TRV_T_OP_ALM SSCBR1_TRV_T_OP_ALM
X110_BI3_CB_OPENED POSOPEN TRV_T_CL_ALM SSCBR1_TRV_T_CL_ALM
X110_BI4_CB_CLOSED POSCLOSE SPR_CHR_ALM SSCBR1_SPR_CHR_ALM
CB_OPEN_COMMAND OPEN_CB_EXE OPR_ALM SSCBR1_OPR_ALM
CB_CLOSE_COMMAND CLOSE_CB_EXE OPR_LO SSCBR1_OPR_LO
PRES_ALM_IN IPOW_ALM SSCBR1_IPOW_ALM
PRES_LO_IN IPOW_LO SSCBR1_IPOW_LO
X110_BI2_CB_SPRING_DISCHARGED SPR_CHR_ST CB_LIFE_ALM SSCBR1_CB_LIFE_ALM
CB_SPRING_CHARGED SPR_CHR MON_ALM SSCBR1_MON_ALM
RST_IPOW PRES_ALM SSCBR1_PRES_ALM
RST_CB_WEAR PRES_LO SSCBR1_PRES_LO
RST_TRV_T OPENPOS
RST_SPR_T INVALIDPOS
CLOSEPOS

GUID-E3A89E30-4683-4F71-9306-6549552846DE V1 EN

Figure 532: Circuit breaker condition monitoring function

OR6
SSCBR1_TRV_T_OP_ALM B1 O
SSCBR1_TRV_T_CL_ALM B2
SSCBR1_SPR_CHR_ALM B3
SSCBR1_OPR_ALM B4
SSCBR1_OPR_LO B5 OR
SSCBR1_IPOW_ALM B6
B1 O SSCBR1_ALARMS
B2

OR6
SSCBR1_IPOW_LO B1 O
SSCBR1_CB_LIFE_ALM B2
SSCBR1_MON_ALM B3
SSCBR1_PRES_ALM B4
SSCBR1_PRES_LO B5
B6

GUID-8DDFC2EE-F3B0-4CB9-9230-FC0D1493C37F V1 EN

Figure 533: Logic for circuit breaker monitoring alarm

NOT
X110_BI2_CB_SPRING_DISCHARGED IN OUT CB_SPRING_CHARGED

GUID-90C81E51-8D41-46C0-A945-49469661F78F V1 EN

Figure 534: Logic for start of circuit breaker spring charged

Two separate trip circuit supervision functions are included: TCSSCBR1 for power
output X100:PO3 and TCSSCBR2 for power output X100:PO4. The functions are
blocked by the Master Trip, TRPPTRC1 and TRPPTRC2, and the binary input
X110:BI1 indicating IED plug out.

REF615 343
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

It is assumed that there is an external resistor in the circuit breaker


tripping coil circuit connected in parallel with the circuit breaker
normally open auxiliary contact.

Set the parameters for TCSSCBR1 properly.

TCSSCBR1
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR1_ALARM

TCSSCBR2
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR2_ALARM

OR
TCSSCBR1_ALARM B1 O TCSSCBR_ALARM
TCSSCBR2_ALARM B2

GUID-5248E2A0-0212-41A0-9124-40151EA71FA9 V1 EN

Figure 535: Trip circuit supervision function

OR6
TRPPTRC1_TRIP B1 O TCSSCBR_BLOCKING
TRPPTRC2_TRIP B2
X110_BI3_CB_OPENED B3
B4
B5
B6

GUID-1C0AD672-5573-4348-AADA-DB5EA1326A76 V1 EN

Figure 536: Logic for blocking trip circuit supervision

3.13.3.4 Functional diagrams for control and interlocking

Two types of disconnector and earthing switch function blocks are available.
DCSXSWI1...3 and ESSXSWI1...2 are status only type, and DCXSWI1...2 and
ESXSWI1 are controllable type. By default, the status only blocks are connected in
standard configuration. The disconnector (CB truck) and line side earthing switch
status information are connected to DCSXSWI1 and ESSXSI1.

The configuration includes closed enable interlocking logic for disconnector and
earthing switch. These signals are available for binary outputs X100:SO1 and
X100:SO2.

344 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

DCSXSWI1
X110_BI5_CB_TRUCK_IN_TEST POSOPEN OPENPOS
X110_BI6_CB_TRUCK_IN_SERVICE POSCLOSE CLOSEPOS
OKPOS DCSXSWI1_OKPOS

AND6
CBXCBR1_OPENPOS B1 O DC1_CLOSE_ENABLE
ESSXSWI1_OPENPOS B2
B3
B4
B5
B6

GUID-142CE220-F290-41CB-9E39-1B7080026BEB V1 EN

Figure 537: Disconnector interlocking logic

Connect the additional signals for the application for closing of


earthing switch.

ESSXSWI1
X110_BI7_ES1_OPENED POSOPEN OPENPOS ESSXSWI1_OPENPOS
X110_BI8_ES1_CLOSED POSCLOSE CLOSEPOS
OKPOS

OR6
X110_BI1_PLUG_OUT B1 O ES1_CLOSE_ENABLED
X110_BI5_CB_TRUCK_IN_TEST B2
B3
B4
B5
B6

GUID-C582C1A4-2E92-40E3-A812-CC44D1A1FE46 V1 EN

Figure 538: Earthing switch close enable logic

The circuit breaker closing is enabled when the ENA_CLOSE input is activated.
The input can be activated by the configuration logic, which is a combination of
the disconnector or breaker truck and earth-switch position status, status of the trip
logics, gas pressure alarm and circuit-breaker spring charging status.

The OKPOS output from DCSXSWI defines whether disconnector or breaker truck
is either open (in test position) or close (in service position). This output, together
with the open earth-switch and non-active trip signals, activates the close-enable
signal to the circuit breaker control function block. The open operation for circuit
breaker is always enabled.

The ITL_BYPASS input can be used, for example, to always enable the closing of
the circuit breaker when the circuit breaker truck is in the test position.
ITL_BYPASS overrides, for example, active interlocking conditions when the
circuit breaker truck is closed in service position.

REF615 345
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

CBXCBR1
X110_BI3_CB_OPENED POSOPEN SELECTED CBXCBR1_SELECTED
X110_BI4_CB_CLOSED POSCLOSE EXE_OP CBXCBR1_EXE_OP
TRUE ENA_OPEN EXE_CL CBXCBR1_EXE_CL
CBXCBR1_ENA_CLOSE ENA_CLOSE OPENPOS CBXCBR1_OPENPOS
FALSE BLK_OPEN CLOSEPOS
CBXCBR1_BLK_CLOSE BLK_CLOSE OKPOS
CBXBCR1_AU_OPEN AU_OPEN OPEN_ENAD
CBXCBR1_AU_CLOSE AU_CLOSE CLOSE_ENAD CBXCBR1_CLOSE_ENAD
ITL_BYPASS

GUID-41D06A2F-930F-4252-8791-66809C2B53A5 V1 EN

Figure 539: Circuit breaker control logic: Circuit breaker 1

Connect the additional signals required for the application for


closing and opening of circuit breaker.

OR
CBXCBR1_EXE_CL B1 O CB_CLOSE_COMMAND
DARREC1_CLOSE_CB B2

GUID-13E343ED-6BDF-4C49-B87C-9102858743F6 V1 EN

Figure 540: Circuit breaker control logic: Signal for closing coil of circuit breaker
1

OR6
CBXCBR1_EXE_OP B1 O CB_OPEN_COMMAND
TRPPTRC1_TRIP B2
DARREC1_OPEN_CB B3
B4
B5
B6

GUID-C50B912E-F0EE-4D07-8BB5-3BCCF0706C4F V1 EN

Figure 541: Circuit breaker control logic: Signal for opening coil of circuit
breaker 1

AND6
CB_SPRING_CHARGED B1 O CBXCBR1_ENA_CLOSE
B2
NOT B3
B4
TRPPTRC1_TRIP IN OUT B5
B6

NOT
TRPPTRC2_TRIP IN OUT

AND
DCSXSWI1_OKPOS B1 O
ESSXSWI1_OPENPOS B2

TCSSCBR_ALARM
GUID-29BE55F8-E969-45D3-A784-E733A8E28552 V2 EN

Figure 542: Circuit breaker close enable logic

Connect the higher-priority conditions before enabling the closing


of circuit breaker. These conditions cannot be bypassed with bypass
feature of the function.

346 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

OR6
T1PTTR1_BLK_CLOSE B1 O CBXCBR1_BLK_CLOSE
B2
B3
B4
B5
B6

GUID-ADBC0393-0928-425B-BD65-5AC7F54440EA V1 EN

Figure 543: Circuit breaker close blocking logic

The configuration includes logic for generating circuit breaker external closing and
opening command with the IED in local or remote mode.

Check the logic for the external circuit breaker closing command
and modify it according to the application.

Connect the additional signal for closing and opening of circuit


breaker in local or remote mode if applicable for the configuration.

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXCBR1_AU_CLOSE
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-3C821932-5AE1-49F7-9179-4414221BC7A8 V1 EN

Figure 544: External closing command for circuit breaker

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXBCR1_AU_OPEN
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-7BBD30FE-55C8-4869-8680-91BFF424703E V1 EN

Figure 545: External opening command for circuit breaker

3.13.3.5 Functional diagrams for measurement functions

The phase current inputs to the IED are measured by the three-phase current
measurement function CMMXU1. The three phase current input is connected to the
X131, X132 and X133 card in the back panel for three phases. The sequence
current measurement CSMSQI1 measures the sequence current and the residual
current measurement RESCMMXU1 measures the residual current. Residual
current input is connected to the X130 card in the back panel.

The three-phase bus side phase voltage inputs to the IED are measured by voltage
measurement function VMMXU1. The three-phase current input is connected to

REF615 347
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

the X131, X132 and X133 card in the back panel for three-phases. The sequence
voltage measurement VSMSQI1 measures the sequence voltage and the residual
voltage measurement RESCMMXU1 measures the voltage current.

The measurements can be seen in the LHMI and they are available under the
measurement option in the menu selection. Based on the settings, function blocks
can generate low alarm or warning and high alarm or warning signals for the
measured current values.

The frequency measurement FMMXU1 of the power system and the three-phase
power measurement PEMMXU1 are available. The load profile function
LDPMSTA1 is included in the measurements sheet. LDPMSTA1 offers the ability
to observe the loading history of the corresponding feeder.

The power quality functions CMHAI1 and VMHAI1 can be used to measure the
harmonic contents of the phase current and phase voltages. The voltage variation,
that is, sage and swells can be measured by power quality function PHQVVR1. By
default, these power quality functions are not included in the configuration. The
required logic connections can be made depending on the application by PCM600.

CMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-5CF6151E-675F-4D52-A05B-76747273B4C3 V1 EN

Figure 546: Current measurement: Three-phase current measurement

CSMSQI1

GUID-174871F1-2798-4488-858C-65138C7DAAA5 V1 EN

Figure 547: Current measurement: Sequence current measurement

RESCMMXU1
BLOCK HIGH_ALARM
HIGH_WARN

GUID-1256C1B6-5D8B-463D-B7D3-037188280FCE V1 EN

Figure 548: Current measurement: Residual current measurement

VMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-A7110FEF-3870-45F8-B88B-3D93F2930B03 V1 EN

Figure 549: Voltage measurement: Three-phase voltage measurement

348 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

VSMSQI1

GUID-690B0379-F909-4B29-B4E0-9CFE7E2D04A9 V1 EN

Figure 550: Voltage measurement: Sequence voltage measurement

FMMXU1

GUID-9CA9AC9F-F655-4388-B8DF-D7F3976303E8 V1 EN

Figure 551: Other measurement: Frequency measurement

PEMMXU1
RSTACM

GUID-F0DE06C2-085C-4D22-A335-BCD31825A860 V1 EN

Figure 552: Other measurement: Three-phase power and energy measurement

FLTMSTA1
BLOCK
CB_CLRD

GUID-AF81ADD7-B8B0-4909-A853-BB2833B97F4C V1 EN

Figure 553: Other measurement: Data monitoring

LDPMSTA1
RSTMEM MEM_WARN
MEM_ALARM

GUID-EEB651DB-EF5B-4AC5-A36C-5DD219289DAE V1 EN

Figure 554: Other measurement: Load profile record

REF615 349
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

3.13.3.6 Functional diagrams for I/O and alarm LEDs

X110 (BIO).X110-Input 1 OR
B1 O X110_BI1_PLUG_OUT
B2
X110 (BIO-H).X110-Input 1

X110 (BIO).X110-Input 2 OR
B1 O X110_BI2_CB_SPRING_DISCHARGED
B2
X110 (BIO-H).X110-Input 2

X110 (BIO).X110-Input 3 OR
B1 O X110_BI3_CB_OPENED
B2
X110 (BIO-H).X110-Input 3

X110 (BIO).X110-Input 4 OR
B1 O X110_BI4_CB_CLOSED
B2
X110 (BIO-H).X110-Input 4

X110 (BIO).X110-Input 5 OR
B1 O X110_BI5_CB_TRUCK_IN_TEST
B2
X110 (BIO-H).X110-Input 5

X110 (BIO).X110-Input 6 OR
B1 O X110_BI6_CB_TRUCK_IN_SERVICE
B2
X110 (BIO-H).X110-Input 6

X110 (BIO).X110-Input 7 OR
B1 O X110_BI7_ES1_OPENED
B2
X110 (BIO-H).X110-Input 7

X110 (BIO).X110-Input 8 OR
B1 O X110_BI8_ES1_CLOSED
B2
X110 (BIO-H).X110-Input 8
GUID-F81BB3AC-2639-42F9-ABA0-2078F82B6371 V1 EN

Figure 555: Default binary inputs - X110 terminal block

350 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

TRPPTRC3_TRIP
X110 (BIO-H).X110-HSO1

TRPPTRC4_TRIP
X110 (BIO-H).X110-HSO2

TRPPTRC5_TRIP
X110 (BIO-H).X110-HSO3
GUID-666BBFAD-0EF6-4707-99A3-7A5BF35CC725 V1 EN

Figure 556: Default binary outputs - X110 terminal block

CBXCBR1_CLOSE_ENAD
X100 (PSM).X100-PO1

CB_CLOSE_COMMAND
X100 (PSM).X100-PO2

DC1_CLOSE_ENABLE
X100 (PSM).X100-SO1

ES1_CLOSE_ENABLED
X100 (PSM).X100-SO2

CB_OPEN_COMMAND
X100 (PSM).X100-PO3

CCBRBRF1_TRRET
X100 (PSM).X100-PO4
GUID-E3B54637-D2EA-41F7-9C10-645647E5F8D6 V1 EN

Figure 557: Default binary outputs - X100 terminal block

REF615 351
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

LED1
OK
CBXCBR1_CLOSE_ENAD ALARM
RESET

LED2
OR
OK
DPHxPDOC_OPERATE B1 O ALARM
PHIPTOC1_OPERATE B2 RESET

LED3
OR6
OK
EFPADM_OPERATE B1 O ALARM
WPWDE_OPERATE B2 RESET
DEFxPDEF_OPERATE B3
INTRPTEF1_OPERATE B4
EFHPTOC1_OPERATE B5
B6

LED4
OR6
OK
NSPTOC1_OPERATE B1 O ALARM
NSPTOC2_OPERATE B2 RESET
PDNSPTOC1_OPERATE B3
B4
B5
B6

LED5
OR
OK
NSPTOV1_OPERATE B1 O ALARM
PSPTUV1_OPERATE B2 RESET

GUID-BCE4BD5B-5020-4EDB-9AE0-51D6BFE8C7C6 V1 EN

352 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

LED6
OR
OK
ROVPTOV_OPERATE B1 O ALARM
PHPTOV_OPERATE B2 RESET

LED7
OK
T1PTTR1_ALARM ALARM
RESET

LED8
OR
OK
PHPTUV_OPERATE B1 O ALARM
FRPFRQ_OPERATE B2 RESET

LED9
OR6
OK
TCSSCBR_ALARM B1 O ALARM
SEQRFUF1_FUSEF_3PH B2 RESET
SEQRFUF1_FUSEF_U B3
CCRDIF1_ALARM B4
B5
B6

LED10
OR
OK
CB_OPEN_COMMAND B1 O ALARM
SSCBR1_ALARMS B2 RESET

GUID-6D8DB1A3-1324-42F8-8128-9C5970CDF40A V1 EN

Figure 558: Default LED connections

3.13.3.7 Functional diagrams for other timer logics

The configuration also includes overcurrent operate, earth-fault operate and


combined voltage & frequency operate logic. The operate logics are connected to
the pulse timer TPGAPC for setting the minimum pulse length for the outputs. The
output from TPGAPC is connected to binary outputs.
OR TPGAPC2
DPHxPDOC_OPERATE B1 O IN1 OUT1
PHIPTOC1_OPERATE B2 IN2 OUT2

OR6
DEFxPDEF_OPERATE B1 O
ROVPTOV_OPERATE B2
INTRPTEF1_OPERATE B3
EFHPTOC1_OPERATE B4
EFPADM_OPERATE B5
WPWDE_OPERATE B6

GUID-7C6F304B-7652-4BC3-9CBE-996F73C8DBA7 V1 EN

Figure 559: Timer logic for overcurrent and earth-fault operate pulse

REF615 353
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

OR6 TPGAPC3
PHPTOV_OPERATE B1 O IN1 OUT1
PHPTUV_OPERATE B2 IN2 OUT2
FRPFRQ_OPERATE B3
PSPTUV1_OPERATE B4
NSPTOV1_OPERATE B5
B6

GUID-C791951B-7C53-4683-8683-F0DDB1CD50AF V1 EN

Figure 560: Timer logic for voltage and frequency operate pulse

3.13.3.8 Other functions

The configuration includes few instances of multi-purpose protection function


MAPGAPC, runtime counter MDSOPT and different types of timers and control
functions and optional fault locator. These functions are not included in application
configuration but they can be added based on the system requirements.

3.14 Standard configuration N

3.14.1 Applications
The standard configuration N provides the highest functionality level of all the
REF615 standard configurations. Standard configuration N is delivered as pre-
configured with the same configuration as standard configuration D. Standard
configuration N provides the possibility to standardize on one type of REF615.
Depending on the specific feeder application, the appropriate functionality can be
selected and an own configuration created with the Application Configuration tool
in PCM600. Standard configuration N is not designed to utilize at once all the
available functionality content in one IED. To ensure the performance of the IED,
the user specific configuration load needs to be verified with the Application
Configuration tool in PCM600.

354 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

3.14.2 Functions
UL1UL2UL3
Uo

REF615 FEEDER PROTECTION AND CONTROL IED STANDARD


CONFIGURATION
N

PROTECTION LOCAL HMI ALSO AVAILABLE


Configuration A

- Disturbance and fault recorders


System
HMI
Time
Authorization

5× - Event log and recorded data


Master Trip I ESC Clear

- High-Speed Output module (optional)


Lockout relay A
O
- IED self-supervision
R
L

94/86
U12 0. 0 kV
P 0.00 kW

- Local/Remote push button on LHMI


Q 0.00 kVAr

IL2 0 A

- User management
I ESC Clear
- Web HMI

AND
I2> I2/I1> 3Ith>F 3I>>> O R
OR 46 46PD 49F 50P/51P
L
OR
3I
3× 3×
ARC 3I>/Io>BF
50L/50NL CONDITION MONITORING COMMUNICATION
51BF/51NBF
AND SUPERVISION
Protocols:
0 0 0 1 1 0 0 1 1 0 0 2× 2× IEC 61850-8-1 1 0
61850-8-1/-9-2LE 1 0 0 0 1 1 0 0 1 1 0 0
1 0 0 1 0 1 1 1 0 0 1 0 3I> 3I>> 3I>→ 3I>>→ 3I FUSEF CBCM Modbus®® 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 1 0 1 0 0
51P-1 51P-2 67-1 67-2 60 CBCM IEC 60870-5-103 1 0 1 1 0 1 1 0 1 1 0 1 0 0
0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 DNP3 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0
1 0 0 1 0 1 1 1 0 0 1 0
UL1UL2UL3 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0
0 1 1 1 0 1 1 0 1 0 Interfaces: 1 1 0 0 1 1 1 0 1 1 0 1 0
1 0 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 0
C) U12 2× Ethernet: TX (RJ45), FX (LC)
(ST), 3I2f> MCS 3I OPTS TCS Serial: Serial glass fiber (ST),
2/485 68 Io MCS 3I OPTM TCM RS-485, RS-232/485
D-sub 9, IRIG-B
Redundant protocols:
HSR
Io PRP
RSTP

Io Io>>> Io> Io>> PHIZ
50N/51N 51N-1 51N-2 HIZ
CONTROL AND INDICATION 1) MEASUREMENT

Uo Object Ctrl 2)
Ind 3)
- I, U, Io, Uo, P, Q, E, pf, f
2× - Limit value supervision
Io>→ Io>>→ Io>IEF→ CB 1 -
- Load profile record
67N-1 67N-2 67NIEF
DC 2 3 - RTD/mA measurement (optional)
- Symmetrical components
ES 1 2
3× 3×
Yo>→ Po>→ Io>HA 1)
Check availability of binary inputs/outputs Analog interface types 1)

21YN 32N 51NHA from technical documentation


2)
Control and indication function for Current transformer 4
OR OR primary object
Voltage transformer 5
3)
Status indication function for
primary object 1)
Conventional transformer inputs

3× 3×
3U< U2> U1< 3U> SYNC O→I PQM3I PQM3U PQMU
27 47O- 47U+ 59 25 79 PQM3I PQM3V PQMV
U12
3× 4×
Uo> f>/f<,
df/dt
UL1UL2UL3 59G
81
REMARKS
Optional 3× No. of Calculated OR Alternative
function instances value function to be
18× Io/Uo
2xRTD
FLOC MAP defined when
1xmA ordering
21FL MAP

GUID-33D8F0DD-5B76-40C1-8FAB-EF75271C1F88 V1 EN

Figure 561: Functionality overview for standard configuration N

3.14.2.1 Default I/O connections

Connector pins for each input and output are presented in the IED physical
connections section.

REF615 355
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Table 70: Default connections for binary inputs


Binary input Description
X110-BI2 Autoreclose external start command
X110-BI3 Circuit breaker low gas pressure indication
X110-BI4 Circuit breaker spring charged indication
X110-BI5 Circuit breaker truck in (service position) indication
X110-BI6 Circuit breaker truck out (test position) indication
X110-BI7 Earthing switch closed indication
X110-BI8 Earthing switch open indication
X1210-BI1 Blocking of overcurrent instantaneous stage
X120-BI2 Circuit breaker closed indication
X120-BI3 Circuit breaker open indication
X120-BI4 Reset of master trip lockout

Table 71: Default connections for binary outputs


Binary output Description
X100-PO1 Close circuit breaker
X100-PO2 Circuit breaker failure protection trip to upstream breaker
X100-PO3 Open circuit breaker/trip coil 1
X100-PO4 Open circuit breaker/trip coil 2
X100-SO1 General start indication
X100-SO2 General operate indication
X110-SO1 Upstream overcurrent blocking
X110-SO2 Overcurrent opertae alarm
X110-SO3 Earth-fault operate alarm
X110-HSO1 Arc protection instance 1 operate activated
X110-HSO2 Arc protection instance 2 operate activated
X110-HSO3 Arc protection instance 3 operate activated

Table 72: Default connections for LEDs


LED Description
1 Non-directional overcurrent operate
2 Non-directional earth-fault operate
3 Sensitive earth-fault operate
4 Negative sequence overcurrent or phase discontinuity
5 Thermal overload alarm
6 Breaker failure operate
7 Disturbance recorder triggered
8 Circuit breaker condition monitoring alarm
Table continues on next page

356 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

LED Description
9 Trip circuit supervision alarm
10 Arc protection operate
11 Autoreclose in progress

3.14.2.2 Default disturbance recorder settings


Table 73: Default disturbance recorder analog channels
Channel Description
1 IL1
2 IL2
3 IL3
4 Io
5 -
6 -
7 -
8 -
9 -
10 -
11 -
12 -

Table 74: Default disturbance recorder binary channels


Channel ID text Level trigger mode
1 PHLPTOC1 - start Positive or Rising
2 PHHPTOC1 - start Positive or Rising
3 PHLPTOC2 - start Positive or Rising
4 PHIPTOC1 - start Positive or Rising
5 NSPTOC1 - start Positive or Rising
6 NSPTOC2 - start Positive or Rising
7 EFLPTOC1 - start Positive or Rising
8 EFHPTOC1 - start Positive or Rising
9 EFIPTOC1 - start Positive or Rising
10 EFLPTOC2 - start Positive or Rising
11 - -
12 PDNSPTOC1 - start Positive or Rising
13 T1PTTR1 - start Positive or Rising
14 CCBRBRF1 - trret Level trigger off
15 CCBRBRF1 - trbu Level trigger off
Table continues on next page

REF615 357
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

Channel ID text Level trigger mode


16 PHIPTOC1 - operate Level trigger off
PHHPTOC1 - operate
PHLPTOC2 - operate
PHLPTOC1 - operate
17 NSPTOC1 - operate Level trigger off
NSPTOC2 - operate
18 EFLPTOC1 - operate Level trigger off
EFHPTOC1 - operate
EFIPTOC1 - operate
19 X110BI2 - ext start AutoReclose Level trigger off
20 EFLPTOC2 - operate Level trigger off
21 PDNSPTOC1 - operate Level trigger off
22 INRPHAR1 - blk2h Level trigger off
23 T1PTTR1 - operate Level trigger off
24 ARCSARC1 - ARC flt det Level trigger off
ARCSARC2 - ARC flt det
ARCSARC3 - ARC flt det
25 ARCSARC1 - operate Positive or Rising
26 ARCSARC2 - operate Positive or Rising
27 ARCSARC3 - operate Positive or Rising
28 DARREC1 - inpro Level trigger off
29 DARREC1 - close CB Level trigger off
30 DARREC1 - unsuc recl Level trigger off
31 X120BI1 - ext OC blocking Level trigger off
32 X120BI2 - CB closed Level trigger off
33 X120BI3 - CB opened Level trigger off

3.14.3 Functional diagrams


The functional diagrams describe the default input, output, alarm LED and function-
to-function connections. The default connections can be viewed and changed with
PCM600 according to the application requirements.

The analog channels have fixed connections to the different function blocks inside
the IED’s standard configuration. However, the 12 analog channels available for
the disturbance recorder function are freely selectable as a part of the disturbance
recorder’s parameter settings.

The phase currents to the IED are fed from a current transformer. The residual
current to the IED is fed from either residually connected CTs, an external core
balance CT, neutral CT or internally calculated.

358 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

The phase voltages to the IED are fed from a voltage transformer. The residual
voltage to the IED is fed from either residually connected VTs, an open delta
connected VT or internally calculated.

The IED offers six different settings groups which can be set based on individual
needs. Each group can be activated or deactivated using the setting group settings
available in the IED.

Depending on the communication protocol the required function block needs to be


initiated in the configuration. The Application Configuration tool also includes
fixed Boolean signals TRUE and FALSE which can be used according to the
application needs.

3.14.3.1 Functional diagrams for protection

The functional diagrams describe the IEDs protection functionality in detail and
according to the factory set default connections.

Four non-directional overcurrent stage and three directional overcurrent stages are
offered for overcurrent and short-circuit protection. The non-directional
instantaneous stage PHIPTOC1 can be blocked by energizing the binary input
X120: BI1.

PHIPTOC1
X120_BI1_EXT_OC_BLOCKING BLOCK OPERATE PHIPTOC1_OPERATE
ENA_MULT START PHIPTOC1_START

PHHPTOC1
BLOCK OPERATE PHHPTOC1_OPERATE
ENA_MULT START PHHPTOC1_START

PHLPTOC1
BLOCK OPERATE PHLPTOC1_OPERATE
ENA_MULT START PHLPTOC1_START

PHLPTOC2
BLOCK OPERATE PHLPTOC2_OPERATE
ENA_MULT START PHLPTOC2_START

OR6
PHIPTOC1_OPERATE B1 O PHxPTOC_OPERATE
PHHPTOC1_OPERATE B2
PHLPTOC1_OPERATE B3
PHLPTOC2_OPERATE B4
B5
B6

GUID-6C6E7FFE-4CA7-4DFF-BA88-36F4C1EE19DA V1 EN

Figure 562: Overcurrent protection functions

REF615 359
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

The upstream blocking from the start of the overcurrent second low stage
PHLPTOC2 is connected to the binary output X110:SO1. This output can be used
for sending a blocking signal to the relevant overcurrent protection stage of the
IED at the infeeding bay.

OR6
PHLPTOC2_START B1 O UPSTEAM_OC_BLOCKING
B2
B3
B4
B5
B6

GUID-97C38BE4-34C3-408A-95E1-3AD7BEBD8588 V1 EN

Figure 563: Upstream blocking logic

The inrush detection block's (INRPHAR1) output BLK2H enables either blocking
the function or multiplying the active settings for any of the available overcurrent
or earth-fault function blocks.

INRPHAR1
BLOCK BLK2H INRPHAR1_BLK2H

GUID-4BBC0DE7-8C67-4E17-A6CF-F0D0E5535D53 V1 EN

Figure 564: Inrush detector function

Two negative sequence overcurrent stages NSPTOC1 and NSPTOC2 are provided
for phase unbalance protection. These functions are used to protect the feeder
against phase unbalance.

NSPTOC1
BLOCK OPERATE NSPTOC1_OPERATE
ENA_MULT START NSPTOC1_START

NSPTOC2
BLOCK OPERATE NSPTOC2_OPERATE
ENA_MULT START NSPTOC2_START

OR
NSPTOC1_OPERATE B1 O NSPTOC_OPERATE
NSPTOC2_OPERATE B2

GUID-D2BCBB3A-C69C-438B-BC3F-31C77B49BCC5 V1 EN

Figure 565: Negative sequence overcurrent protection function

Four non-directional earth-fault stages and three directional earth-fault stages are
offered earth-fault protection. However in the configuration three non-directional
earth fault stages are considered. One stage is dedicated to sensitive earth-fault
protection EFLPTOC2. According to the IED's order code, the directional earth-
fault protection method can be based on conventional directional earth-fault
DEFxPDEF only or alternatively together with admittance criteria EFPADM,
wattmetric earth-fault protection WPWDE or harmonic based earth-fault protection

360 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

HAEFPTOC. A dedicated protection stage INTRPTEF is used either for transient


based earth-fault protection or for cable intermittent earth-fault protection in
compensated networks.

EFIPTOC1
BLOCK OPERATE EFIPTOC1_OPERATE
ENA_MULT START EFIPTOC1_START

EFHPTOC1
BLOCK OPERATE EFHPTOC1_OPERATE
ENA_MULT START EFHPTOC1_START

EFLPTOC1
BLOCK OPERATE EFLPTOC1_OPERATE
ENA_MULT START EFLPTOC1_START

OR6
EFHPTOC1_OPERATE B1 O EFxPTOC_OPERATE
EFLPTOC1_OPERATE B2
EFIPTOC1_OPERATE B3
B4
B5
B6

GUID-0C05F72B-4EF4-4926-89AA-23AC67B1272C V1 EN

Figure 566: Earth-fault protection functions

EFLPTOC2
BLOCK OPERATE EFLPTOC2_OPERATE
ENA_MULT START EFLPTOC2_START

GUID-65E9D918-294A-4936-9F02-65AD242EA181 V1 EN

Figure 567: Sensitive earth-fault protection function

The phase discontinuity protection PDNSPTOC1 protects from interruptions in the


normal three-phase load supply, for example, in downed conductor situations.

PDNSPTOC1
BLOCK OPERATE PDNSPTOC1_OPERATE
START PDNSPTOC1_START

GUID-02B0B781-07E0-4ED2-B30B-E88EB378D6C6 V1 EN

Figure 568: Phase discontinuity protection

The thermal overload protection T1PTTR1 detects overloads under varying load
conditions. The BLK_CLOSE output of the function can be used to block the
closing operation of circuit breaker.

REF615 361
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

T1PTTR1
BLK_OPR OPERATE T1PTTR1_OPERATE
ENA_MULT START T1PTTR1_START
TEMP_AMB ALARM T1PTTR1_ALARM
BLK_CLOSE

GUID-5995DF50-E527-4A1A-8704-5D0E283131CF V1 EN

Figure 569: Thermal overcurrent protection function

The breaker failure protection CCBRBRF1 is initiated via the START input by
number of different protection functions available in the IED. The breaker failure
protection function offers different operating modes associated with the circuit
breaker position and the measured phase and residual currents.

The breaker failure protection function has two operating outputs: TRRET and
TRBU. The TRRET operate output is used for retripping its own breaker through
TRPPTRC2_TRIP. The TRBU output is used to give a backup trip to the breaker
feeding upstream. For this purpose, the TRBU operate output signal is connected to
the binary output X100:PO2.

CCBRBRF1
OR6 OR6
BLOCK CB_FAULT_AL
PHIPTOC1_OPERATE B1 O B1 O START TRBU CCBRBRF1_TRBU
PHHPTOC1_OPERATE B2 B2 POSCLOSE TRRET CCBRBRF1_TRRET
PHLPTOC2_OPERATE B3 B3 CB_FAULT
EFLPTOC1_OPERATE B4 B4
EFHPTOC1_OPERATE B5 B5
EFIPTOC1_OPERATE B6 B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

X120_BI2_CB_CLOSED
GUID-39F151C5-77E0-4268-99D6-0F172571155C V1 EN

Figure 570: Circuit breaker failure protection function

Three arc protection ARCSARC1...3 stages are included as an optional function.


The arc protection offers individual function blocks for three arc sensors that can
be connected to the IED. Each arc protection function block has two different
operation modes, that is, with or without the phase and residual current check.

The operate signals from ARCSARC1...3 are connected to both trip logic
TRPPTRC1 and TRPPTRC2. If the IED has been ordered with high speed binary
outputs, the individual operate signals from ARCSARC1...3 are connected to
dedicated trip logic TRPPTRC3...5. The outputs of TRPPTRC3...5 are available at
high speed outputs X110:HSO1, X110:HSO2 and X110:HSO3.

362 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

ARCSARC1
BLOCK OPERATE ARCSARC1_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC1_ARC_FLT_DET
OPR_MODE

ARCSARC2
BLOCK OPERATE ARCSARC2_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC2_ARC_FLT_DET
OPR_MODE

ARCSARC3
BLOCK OPERATE ARCSARC3_OPERATE
REM_FLT_ARC ARC_FLT_DET ARCSARC3_ARC_FLT_DET
OPR_MODE

OR6
ARCSARC1_OPERATE B1 O ARCSARC_OPERATE
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-2B82370A-5D2B-4CAE-A858-6F04CC83058B V1 EN

TRPPTRC3
BLOCK TRIP TRPPTRC3_TRIP
ARCSARC1_OPERATE OPERATE CL_LKOUT
X120_BI4_RST_LOCKOUT RST_LKOUT

TRPPTRC4
BLOCK TRIP TRPPTRC4_TRIP
ARCSARC2_OPERATE OPERATE CL_LKOUT
X120_BI4_RST_LOCKOUT RST_LKOUT

TRPPTRC5
BLOCK TRIP TRPPTRC5_TRIP
ARCSARC3_OPERATE OPERATE CL_LKOUT
X120_BI4_RST_LOCKOUT RST_LKOUT

GUID-0F1C0838-790F-4526-801E-DBA88E061C80 V1 EN

Figure 571: Arc protection with dedicated HSO

The optional autorecloser function is configured to be initiated by operate signals


from a number of protection stages through the INIT_1...5 inputs. The
INIT_6 input in the autorecloser function block is controlled by a binary input
X110: BI2 enabling the use of the external autorecloser start command. It is
possible to create individual autoreclose sequences for each input.

The autorecloser function can be inhibited with the INHIBIT_RECL input. By


default, few selected protection function operations are connected to this input. A

REF615 363
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

control command to the circuit breaker, either local or remote, also blocks the
autorecloser function via the CBXCBR1-SELECTED signal.

The circuit breaker availability for the autorecloser sequence is expressed with the
CB_READY input in DARREC1. The signal, and other required signals, are
connected to the CB spring charged binary inputs in this configuration. The open
command from the autorecloser is connected directly to binary output X100:PO3,
whereas the close command is connected directly to the binary output X100:PO1.
DARREC1
PHIPTOC1_OPERATE INIT_1 OPEN_CB DARREC1_OPEN_CB
PHLPTOC2_OPERATE INIT_2 CLOSE_CB DARREC1_CLOSE_CB
PHHPTOC1_OPERATE INIT_3 CMD_WAIT
EFLPTOC1_OPERATE INIT_4 INPRO DARREC1_INPRO
EFHPTOC1_OPERATE INIT_5 LOCKED
X110_BI2_EXT_START_AUTORECLOSE INIT_6 PROT_CRD
DEL_INIT_2 UNSUC_RECL DARREC1_UNSUC_RECL
DEL_INIT_3 AR_ON
DEL_INIT_4 READY
BLK_RECL_T ACTIVE
BLK_RCLM_T
BLK_THERM
X120_BI3_CB_OPENED CB_POS
X110_BI4_CB_SPRING_CHARGED CB_READY
INC_SHOTP
INHIBIT_RECL
OR6 RECL_ON
SYNC
PDNSPTOC1_OPERATE B1 O
NSPTOC1_OPERATE B2
NSPTOC2_OPERATE B3
CBXCBR1_SELECTED B4
X110_BI3_GAS_PRESSURE_ALARM B5 OR
B6
B1 O
B2

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-54D649CF-D62C-45B9-8371-06270522AB89 V1 EN

Figure 572: Autorecloser function

General start and operate from all the functions are connected to pulse timer
TPGAPC1 for setting the minimum pulse length for the outputs. The output from
TPGAPC1 is connected to binary outputs

364 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

OR6
PHLPTOC1_START B1 O
PHHPTOC1_START B2
PHLPTOC2_START B3
PHIPTOC1_START B4
NSPTOC1_START B5
NSPTOC2_START B6

OR6
OR6
B1 O
EFLPTOC1_START B1 O B2
EFLPTOC2_START B2 B3
EFIPTOC1_START B3 B4
EFHPTOC1_START B4 B5 TPGAPC1
PDNSPTOC1_START B5 B6
B6 IN1 OUT1 GENERAL_START_PULSE
IN2 OUT2 GENERAL_OPERATE_PULSE

OR6 OR6
PHLPTOC1_OPERATE B1 O B1 O
PHHPTOC1_OPERATE B2 B2
PHLPTOC2_OPERATE B3 B3
PHIPTOC1_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
EFIPTOC1_OPERATE B1 O
EFHPTOC1_OPERATE B2
PDNSPTOC1_OPERATE B3
EFLPTOC1_OPERATE B4
EFLPTOC2_OPERATE B5
B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

GUID-6BA9A7FE-D984-48C6-B8E2-704C4C38FA44 V1 EN

Figure 573: General start and operate signals

The operate signals from the protection functions are connected to the two trip
logics TRPPTRC1 and TRPPTRC2. The output of these trip logic functions is
available at binary output X100:PO3 and X100:PO4. The trip logic functions are
provided with a lockout and latching function, event generation and the trip signal
duration setting. If the lockout operation mode is selected, binary input X120:BI4
has been assigned to RST_LKOUT input of both the trip logic to enable external
reset with a push button.

Three other trip logics TRPPTRC3...4 are also available if the IED is ordered with
high speed binary outputs options.

REF615 365
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

TRPPTRC1
OR6 OR6
BLOCK TRIP TRPPTRC1_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
PHLPTOC1_OPERATE B2 B2 RST_LKOUT
PHHPTOC1_OPERATE B3 B3
PHLPTOC2_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
EFLPTOC1_OPERATE B1 O
EFHPTOC1_OPERATE B2
EFIPTOC1_OPERATE B3
EFLPTOC2_OPERATE B4
PDNSPTOC1_OPERATE B5
B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

X120_BI4_RST_LOCKOUT
GUID-782738AD-0B54-496D-BD22-8DE67454A545 V1 EN

Figure 574: Trip logic TRPPTRC1

TRPPTRC2
OR6 OR6
BLOCK TRIP TRPPTRC2_TRIP
PHIPTOC1_OPERATE B1 O B1 O OPERATE CL_LKOUT
PHLPTOC1_OPERATE B2 B2 RST_LKOUT
PHHPTOC1_OPERATE B3 B3
PHLPTOC2_OPERATE B4 B4
NSPTOC1_OPERATE B5 B5
NSPTOC2_OPERATE B6 B6

OR6
EFHPTOC1_OPERATE B1 O
PDNSPTOC1_OPERATE B2
EFLPTOC1_OPERATE B3
EFLPTOC2_OPERATE B4
EFIPTOC1_OPERATE B5
CCBRBRF1_TRRET B6

OR6
ARCSARC1_OPERATE B1 O
ARCSARC2_OPERATE B2
ARCSARC3_OPERATE B3
B4
B5
B6

X120_BI4_RST_LOCKOUT
GUID-F22B7AB4-4791-4726-8AE6-04EA9D09F96B V1 EN

Figure 575: Trip logic TRPPTRC2

3.14.3.2 Functional diagrams for disturbance recorder

The START and the OPERATE outputs from the protection stages are routed to
trigger the disturbance recorder or, alternatively, only to be recorded by the
disturbance recorder depending on the parameter settings. Additionally, the
selected signals from different functions and few binary inputs are also connected
to the disturbance recorder.

366 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

RDRE1
PHLPTOC1_START C1 TRIGGERED DISTURB_RECORD_TRIGGERED
PHHPTOC1_START C2
PHLPTOC2_START C3
PHIPTOC1_START C4
NSPTOC1_START C5
NSPTOC2_START C6
EFLPTOC1_START C7
EFHPTOC1_START C8
EFIPTOC1_START C9
EFLPTOC2_START C10
C11
PDNSPTOC1_START C12
T1PTTR1_START C13
OR6 CCBRBRF1_TRRET C14
CCBRBRF1_TRBU C15
PHIPTOC1_OPERATE B1 O C16
PHHPTOC1_OPERATE B2 C17
PHLPTOC2_OPERATE B3 C18
PHLPTOC1_OPERATE B4 X110_BI2_EXT_START_AUTORECLOSE C19
B5 EFLPTOC2_OPERATE C20
B6 PDNSPTOC1_OPERATE C21
INRPHAR1_BLK2H C22
T1PTTR1_OPERATE C23
C24
ARCSARC1_OPERATE C25
OR ARCSARC2_OPERATE C26
ARCSARC3_OPERATE C27
NSPTOC1_OPERATE B1 O DARREC1_INPRO C28
NSPTOC2_OPERATE B2 DARREC1_CLOSE_CB C29
DARREC1_UNSUC_RECL C30
X120_BI1_EXT_OC_BLOCKING C31
X120_BI2_CB_CLOSED C32
X120_BI3_CB_OPENED C33
OR6 C34
C35
EFLPTOC1_OPERATE B1 O C36
EFHPTOC1_OPERATE B2 C37
EFIPTOC1_OPERATE B3 C38
B4 C39
B5 C40
B6 C41
C42
C43
C44
C45
OR6 C46
C47
ARCSARC1_ARC_FLT_DET B1 O C48
ARCSARC2_ARC_FLT_DET B2 C49
ARCSARC3_ARC_FLT_DET B3 C50
B4 C51
B5 C52
B6 C53
C54
C55
C56
C57
C58
C59
C60
C61
C62
C63
C64

GUID-2821DA29-8905-4A62-AA2C-91C1F979B841 V1 EN

Figure 576: Disturbance recorder

3.14.3.3 Functional diagrams for condition monitoring

The circuit breaker condition monitoring function SSCBR1 supervises the switch
status based on the connected binary input information and the measured current
levels. SSCBR1 introduces various supervision methods.

Set parameters for SSCBR1 properly.

REF615 367
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

SSCBR1
BLOCK TRV_T_OP_ALM SSCBR1_TRV_T_OP_ALM
X120_BI3_CB_OPENED POSOPEN TRV_T_CL_ALM SSCBR1_TRV_T_CL_ALM
X120_BI2_CB_CLOSED POSCLOSE SPR_CHR_ALM SSCBR1_SPR_CHR_ALM
CB_OPEN_COMMAND OPEN_CB_EXE OPR_ALM SSCBR1_OPR_ALM
CB_CLOSE_COMMAND CLOSE_CB_EXE OPR_LO SSCBR1_OPR_LO
X110_BI3_GAS_PRESSURE_ALARM PRES_ALM_IN IPOW_ALM SSCBR1_IPOW_ALM
PRES_LO_IN IPOW_LO SSCBR1_IPOW_LO
CB_SPRING_DISCHARGED SPR_CHR_ST CB_LIFE_ALM SSCBR1_CB_LIFE_ALM
X110_BI4_CB_SPRING_CHARGED SPR_CHR MON_ALM SSCBR1_MON_ALM
RST_IPOW PRES_ALM SSCBR1_PRES_ALM
RST_CB_WEAR PRES_LO SSCBR1_PRES_LO
RST_TRV_T OPENPOS
RST_SPR_T INVALIDPOS
CLOSEPOS

GUID-A18DA22E-BEF5-4C12-89A7-4F02E304561E V1 EN

Figure 577: Circuit breaker condition monitoring function

OR6
SSCBR1_TRV_T_OP_ALM B1 O
SSCBR1_TRV_T_CL_ALM B2
SSCBR1_SPR_CHR_ALM B3
SSCBR1_OPR_ALM B4
SSCBR1_OPR_LO B5 OR
SSCBR1_IPOW_ALM B6
B1 O SSCBR1_ALARMS
B2

OR6
SSCBR1_IPOW_LO B1 O
SSCBR1_CB_LIFE_ALM B2
SSCBR1_MON_ALM B3
SSCBR1_PRES_ALM B4
SSCBR1_PRES_LO B5
B6

GUID-001C6E30-A6E4-475D-9142-2CB675A26FCC V1 EN

Figure 578: Logic for circuit breaker monitoring alarm

NOT
X110_BI4_CB_SPRING_CHARGED IN OUT CB_SPRING_DISCHARGED

GUID-BE312318-2FBB-4272-BE2B-835BD63D592E V1 EN

Figure 579: Logic for start of circuit breaker spring charging

Two separate trip circuit supervision functions are included: TCSSCBR1 for power
output X100:PO3 and TCSSCBR2 for power output X100:PO4. Both functions are
blocked by the Master Trip TRPPTRC1 and TRPPTRC2 and the circuit breaker
open signal.

It is assumed that there is no external resistor in the circuit breaker


tripping coil circuit connected in parallel with the circuit breaker
normally open auxiliary contact.

Set the parameters for TCSSCBR properly.

368 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

TCSSCBR1
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR1_ALARM

TCSSCBR2
TCSSCBR_BLOCKING BLOCK ALARM TCSSCBR2_ALARM

OR
TCSSCBR1_ALARM B1 O TCSSCBR_ALARM
TCSSCBR2_ALARM B2

GUID-D9B2A8EF-4B42-48D5-AD1D-E4A5131C2874 V1 EN

Figure 580: Trip circuit supervision function

OR6
TRPPTRC1_TRIP B1 O TCSSCBR_BLOCKING
TRPPTRC2_TRIP B2
X120_BI3_CB_OPENED B3
B4
B5
B6

GUID-CABC7A2A-8406-44EA-8AE9-34E3EB7B1FA6 V1 EN

Figure 581: Logic for blocking of trip circuit supervision function

3.14.3.4 Functional diagrams for control and interlocking

Two types of disconnector and earthing switch function blocks are available.
DCSXSWI1...3 and ESSXSWI1...2 are status only type, and DCXSWI1...2 and
ESXSWI1 are controllable type. By default, the status only blocks are connected in
the standard configuration. The disconnector (CB truck) and line side earthing
switch status information are connected to DCSXSWI1 and ESSXSI1.

DCSXSWI1
X110_BI6_CB_TRUCK_IN_TEST POSOPEN OPENPOS
X110_BI5_CB_TRUCK_IN_SERVICE POSCLOSE CLOSEPOS
OKPOS DCSXSWI1_OKPOS

GUID-88089155-4117-4BF7-BEAD-8EB5D61595E1 V1 EN

Figure 582: Disconnector control logic

ESSXSWI1
X110_BI8_ES1_OPENED POSOPEN OPENPOS ESSXSWI1_OPENPOS
X110_BI7_ES1_CLOSED POSCLOSE CLOSEPOS
OKPOS

GUID-52A1CCBB-9AD0-467E-9673-72905B03507C V

Figure 583: Earthing-switch control logic

The circuit breaker closing is enabled when the ENA_CLOSE input is activated.
The input can be activated by the configuration logic, which is a combination of

REF615 369
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

the disconnector or breaker truck and earth-switch position status, status of the trip
logics, gas pressure alarm and circuit-breaker spring charging status.

The OKPOS output from DCSXSWI defines whether the disconnector or breaker
truck is either open (in test position) or close (in service position). This output,
together with the open earth-switch and non-active trip signals, activates the close-
enable signal to the circuit breaker control function block. The open operation for
circuit breaker is always enabled.

The ITL_BYPASS input can be used, for example, to always enable the closing of
the circuit breaker when the circuit breaker truck is in the test position.
ITL_BYPASS overrides, for example, active interlocking conditions when the
circuit breaker truck is closed in service position.

CBXCBR1
X120_BI3_CB_OPENED POSOPEN SELECTED CBXCBR1_SELECTED
X120_BI2_CB_CLOSED POSCLOSE EXE_OP CBXCBR1_EXE_OP
TRUE ENA_OPEN EXE_CL CBXCBR1_EXE_CL
CBXCBR1_ENA_CLOSE ENA_CLOSE OPENPOS
FALSE BLK_OPEN CLOSEPOS
BLK_CLOSE OKPOS
CBXBCR1_AU_OPEN AU_OPEN OPEN_ENAD
CBXCBR1_AU_CLOSE AU_CLOSE CLOSE_ENAD
ITL_BYPASS

GUID-A9EA74A8-8931-4A9A-B602-C5940687A28E V1 EN

Figure 584: Circuit breaker control logic: Circuit breaker 1

Connect the addition signals required for the application for closing
and opening of circuit breaker.

OR
CBXCBR1_EXE_CL B1 O CB_CLOSE_COMMAND
DARREC1_CLOSE_CB B2

GUID-A30683B8-1318-48BE-851C-9F56B071E150 V1 EN

Figure 585: Circuit breaker control logic: Signals for closing coil of circuit breaker

OR6
CBXCBR1_EXE_OP B1 O CB_OPEN_COMMAND
TRPPTRC1_TRIP B2
DARREC1_OPEN_CB B3
B4
B5
B6

GUID-6834DCB2-126F-40BF-A10B-23B4E5E02534 V1 EN

Figure 586: Circuit breaker control logic: Signals for opening coil of circuit breaker

370 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

AND6
DCSXSWI1_OKPOS B1 O CBXCBR1_ENA_CLOSE
ESSXSWI1_OPENPOS B2
X110_BI4_CB_SPRING_CHARGED B3
B4
NOT B5
B6
TRPPTRC1_TRIP IN OUT

NOT
TRPPTRC2_TRIP IN OUT

NOT
X110_BI3_GAS_PRESSURE_ALARM IN OUT

GUID-4BD1BA07-C7A7-4510-BAB9-DBF3BABD1A02 V1 EN

Figure 587: Circuit breaker close enable logic

The configuration includes the logic for generating circuit breaker external closing
and opening command with the IED in local or remote mode.

Check the logic for the external circuit breaker closing command
and modify it according to the application.

Connect the additional signal for closing and opening of circuit


breaker in local or remote mode if applicable for the configuration.

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXCBR1_AU_CLOSE
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-065B8F38-D535-4FBF-B2B5-9FB82191614C V1 EN

Figure 588: External closing command for circuit breaker 1

AND
CONTROL_LOCAL B1 O
FALSE B2
OR
B1 O CBXBCR1_AU_OPEN
B2
AND
CONTROL_REMOTE B1 O
FALSE B2

GUID-0978DD77-5996-4E3C-BFCE-E0726ED2BC9A V1 EN

Figure 589: External opening command for circuit breaker 1

3.14.3.5 Functional diagrams for measurement functions

The phase current inputs to the IED are measured by the three-phase current
measurement function CMMXU1. The current input is connected to the X120 card
in the back panel. The sequence current measurement CSMSQI1 measures the
sequence current and the residual current measurement RESCMMXU1 measures
the residual current.

REF615 371
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

The measurements can be seen in the LHMI and they are available under the
measurement option in the menu selection. Based on the settings, function blocks
can generate low alarm or warning and high alarm or warning signals for the
measured current values.

The load profile function LDPMSTA1 is included in the measurements sheet.


LDPMSTA1 gives the ability to observe the loading history of the corresponding
feeder.

The power quality functions CMHAI1 and VMHAI1 can be used to measure the
harmonic contents of the phase current and phase voltages. The voltage variation,
that is, sage and swells can be measured by power quality function PHQVVR1. By
default, these power quality functions are not included in the configuration. The
required logic connections can be made depending on the application by PCM600.

The three-phase bus side phase voltage and single phase line side phase voltage
inputs to the IED can be measured by voltage measurement function VMMXU1
and VMMXU2. The voltage input is connected to the X130 card in the back panel.
The sequence voltage measurement VSMSQI1 measures the sequence voltage and
the residual voltage measurement RESVMMXU1 measures the residual voltage.

The frequency measurement FMMXU1 of the power system and the three-phase
power measurement PEMMXU1 are available.

However, these voltage, frequency and power measurement functions need to be


added in application configurations.

CMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-77B3EBC2-B1B3-45B9-A87D-994D23CD6CCF V1 EN

Figure 590: Current measurement: Three-phase current measurement

CSMSQI1

GUID-6AA5792D-D33A-459E-B38C-C42BA50E56A6 V1 EN

Figure 591: Current measurement: Sequence current measurement

RESCMMXU1
BLOCK HIGH_ALARM
HIGH_WARN

GUID-15030D32-F6B4-4234-8B89-1129B3A86DB7 V1 EN

Figure 592: Current measurement: Residual current measurement

372 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

VMMXU1
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-3B972DE4-6494-4F05-A3A6-889B2C107CAC V1 EN

Figure 593: Voltage measurement: Three-phase voltage measurement

VSMSQI1

GUID-B73E15A5-5F01-4C52-B6CF-FC253E9C73CC V1 EN

Figure 594: Residual measurement: Residual voltage measurement

VMMXU2
BLOCK HIGH_ALARM
HIGH_WARN
LOW_WARN
LOW_ALARM

GUID-47E4200D-7795-4437-94FB-24B1385E8DF8 V1 EN

Figure 595: Voltage measurement: Three-phase voltage measurement

FMMXU1

GUID-D9F7BF94-F97E-4DE9-8F52-1EE26998B098 V1 EN

Figure 596: Other measurement: Frequency measurement

PEMMXU1
RSTACM

GUID-C81ADCD4-65DF-477A-93D1-B272754B312B V1 EN

Figure 597: Other measurement: Three-phase power and energy measurement

FLTMSTA1
BLOCK
CB_CLRD

GUID-CA3D6392-494E-4BC9-BBB9-9F98D96BE196 V1 EN

Figure 598: Other measurement: Data monitoring

LDPMSTA1
RSTMEM MEM_WARN
MEM_ALARM

GUID-4982BDFA-AD01-4C0C-A14B-EA098362AE51 V1 EN

Figure 599: Other measurement: Load profile record

REF615 373
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

3.14.3.6 Functional diagrams for I/O and alarm LEDs

X110 (BIO).X110-Input 2 OR
B1 O X110_BI2_EXT_START_AUTORECLOSE
B2
X110 (BIO-H).X110-Input 2

X110 (BIO).X110-Input 3 OR
B1 O X110_BI3_GAS_PRESSURE_ALARM
B2
X110 (BIO-H).X110-Input 3

X110 (BIO).X110-Input 4 OR
B1 O X110_BI4_CB_SPRING_CHARGED
B2
X110 (BIO-H).X110-Input 4

X110 (BIO).X110-Input 5 OR
B1 O X110_BI5_CB_TRUCK_IN_SERVICE
B2
X110 (BIO-H).X110-Input 5

X110 (BIO).X110-Input 6 OR
B1 O X110_BI6_CB_TRUCK_IN_TEST
B2
X110 (BIO-H).X110-Input 6

X110 (BIO).X110-Input 7 OR
B1 O X110_BI7_ES1_CLOSED
B2
X110 (BIO-H).X110-Input 7

X110 (BIO).X110-Input 8 OR
B1 O X110_BI8_ES1_OPENED
B2
X110 (BIO-H).X110-Input 8
GUID-46F2BC2B-B863-4F13-8EFE-E10E5D695CE8 V1 EN

Figure 600: Binary inputs - X110 terminal block

X120_BI1_EXT_OC_BLOCKING
X120 (AIM).X120-Input 1

X120_BI2_CB_CLOSED
X120 (AIM).X120-Input 2

X120_BI3_CB_OPENED
X120 (AIM).X120-Input 3

X120_BI4_RST_LOCKOUT
X120 (AIM).X120-Input 4
GUID-56BDDBE9-A1DF-4D1B-9AD4-4501D67E40EB V1 EN

Figure 601: Binary inputs - X120 terminal block

374 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

UPSTEAM_OC_BLOCKING
X110 (BIO).X110-SO1

TRPPTRC3_TRIP
X110 (BIO-H).X110-HSO1

OC_OPERATE_PULSE
X110 (BIO).X110-SO2

TRPPTRC4_TRIP
X110 (BIO-H).X110-HSO2

EF_OPERATE_PULSE
X110 (BIO).X110-SO3

TRPPTRC5_TRIP
X110 (BIO-H).X110-HSO3
GUID-3241C034-AC38-41BA-AC50-CA5FC1E9425E V1 EN

Figure 602: Binary outputs - X110 terminal block

CB_CLOSE_COMMAND
X100 (PSM).X100-PO1

CCBRBRF1_TRBU
X100 (PSM).X100-PO2

GENERAL_START_PULSE
X100 (PSM).X100-SO1

GENERAL_OPERATE_PULSE
X100 (PSM).X100-SO2

CB_OPEN_COMMAND
X100 (PSM).X100-PO3

TRPPTRC2_TRIP
X100 (PSM).X100-PO4
GUID-3817524D-C0C1-42F8-A4DC-FB5DA4EFFFD0 V1 EN

Figure 603: Binary outputs - X100 terminal block

REF615 375
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

LED1
OK
PHxPTOC_OPERATE ALARM
RESET

LED2
OK
EFxPTOC_OPERATE ALARM
RESET

LED3
OK
EFLPTOC2_OPERATE ALARM
RESET

LED4
OR
OK
NSPTOC_OPERATE B1 O ALARM
PDNSPTOC1_OPERATE B2 RESET

LED5
OK
T1PTTR1_ALARM ALARM
RESET

GUID-0A540AFB-3DD1-47A7-AE63-E65932766D34 V1 EN

376 REF615
Application Manual
1MRS756378 N Section 3
REF615 standard configurations

LED6
OK
CCBRBRF1_TRBU ALARM
RESET

LED7
OK
DISTURB_RECORD_TRIGGERED ALARM
RESET

LED8
OK
SSCBR1_ALARMS ALARM
RESET

LED9
OK
TCSSCBR_ALARM ALARM
RESET

LED10
OK
ARCSARC_OPERATE ALARM
RESET

LED11
OK
DARREC1_INPRO ALARM
RESET

GUID-76107B29-33D4-4CA1-8F5C-D03382A9D583 V1 EN

Figure 604: Default LED connection

3.14.3.7 Functional diagrams for other timer logics

The configuration also includes overcurrent operate and earth-fault operate logic.
The operate logics are connected to the pulse timer TPGAPC for setting the
minimum pulse length for the outputs. The output from TPGAPC is connected to
binary outputs.
TPGAPC2
PHxPTOC_OPERATE IN1 OUT1 OC_OPERATE_PULSE
IN2 OUT2 EF_OPERATE_PULSE

OR
EFxPTOC_OPERATE B1 O
EFLPTOC2_OPERATE B2

GUID-5DAD5155-7666-4E05-B6AC-7CD7EB01E6F9 V1 EN

Figure 605: Timer logic for overcurrent and earth-fault operate pulse

REF615 377
Application Manual
Section 3 1MRS756378 N
REF615 standard configurations

3.14.3.8 Other functions

The configuration includes few instances of residual overvoltage protection, phase


over and under voltage protection, positive sequence under voltage protection,
negative sequence overvoltage protection, frequency protection, multi-purpose
protection function MAPGAPC, high impedance fault detection function PHIZ,
runtime counter MDSOPT and different types of timers and control functions.
These functions are not included in application configuration but they can be added
based on the system requirements.

378 REF615
Application Manual
1MRS756378 N Section 4
Requirements for measurement transformers

Section 4 Requirements for measurement


transformers

4.1 Current transformers

4.1.1 Current transformer requirements for non-directional


overcurrent protection
For reliable and correct operation of the overcurrent protection, the CT has to be
chosen carefully. The distortion of the secondary current of a saturated CT may
endanger the operation, selectivity, and co-ordination of protection. However,
when the CT is correctly selected, a fast and reliable short circuit protection can be
enabled.

The selection of a CT depends not only on the CT specifications but also on the
network fault current magnitude, desired protection objectives, and the actual CT
burden. The protection settings of the IED should be defined in accordance with
the CT performance as well as other factors.

4.1.1.1 Current transformer accuracy class and accuracy limit factor

The rated accuracy limit factor (Fn) is the ratio of the rated accuracy limit primary
current to the rated primary current. For example, a protective current transformer
of type 5P10 has the accuracy class 5P and the accuracy limit factor 10. For
protective current transformers, the accuracy class is designed by the highest
permissible percentage composite error at the rated accuracy limit primary current
prescribed for the accuracy class concerned, followed by the letter "P" (meaning
protection).

Table 75: Limits of errors according to IEC 60044-1 for protective current transformers
Accuracy class Current error at Phase displacement at rated primary Composite error at
rated primary current rated accuracy limit
current (%) minutes centiradians primary current (%)
5P ±1 ±60 ±1.8 5
10P ±3 - - 10

The accuracy classes 5P and 10P are both suitable for non-directional overcurrent
protection. The 5P class provides a better accuracy. This should be noted also if
there are accuracy requirements for the metering functions (current metering,
power metering, and so on) of the IED.

REF615 379
Application Manual
Section 4 1MRS756378 N
Requirements for measurement transformers

The CT accuracy primary limit current describes the highest fault current
magnitude at which the CT fulfils the specified accuracy. Beyond this level, the
secondary current of the CT is distorted and it might have severe effects on the
performance of the protection IED.

In practise, the actual accuracy limit factor (Fa) differs from the rated accuracy
limit factor (Fn) and is proportional to the ratio of the rated CT burden and the
actual CT burden.

The actual accuracy limit factor is calculated using the formula:

Sin + Sn
Fa ≈ Fn ×
Sin + S
A071141 V1 EN

Fn the accuracy limit factor with the nominal external burden Sn

Sin the internal secondary burden of the CT

S the actual external burden

4.1.1.2 Non-directional overcurrent protection

The current transformer selection


Non-directional overcurrent protection does not set high requirements on the
accuracy class or on the actual accuracy limit factor (Fa) of the CTs. It is, however,
recommended to select a CT with Fa of at least 20.

The nominal primary current I1n should be chosen in such a way that the thermal
and dynamic strength of the current measuring input of the IED is not exceeded.
This is always fulfilled when

I1n > Ikmax / 100,

Ikmax is the highest fault current.

The saturation of the CT protects the measuring circuit and the current input of the
IED. For that reason, in practice, even a few times smaller nominal primary current
can be used than given by the formula.

Recommended start current settings


If Ikmin is the lowest primary current at which the highest set overcurrent stage is to
operate, the start current should be set using the formula:

Current start value < 0.7 x (Ikmin / I1n)

I1n is the nominal primary current of the CT.

380 REF615
Application Manual
1MRS756378 N Section 4
Requirements for measurement transformers

The factor 0.7 takes into account the protection IED inaccuracy, current
transformer errors, and imperfections of the short circuit calculations.

The adequate performance of the CT should be checked when the setting of the
high set stage overcurrent protection is defined. The operate time delay caused by
the CT saturation is typically small enough when the overcurrent setting is
noticeably lower than Fa.

When defining the setting values for the low set stages, the saturation of the CT
does not need to be taken into account and the start current setting is simply
according to the formula.

Delay in operation caused by saturation of current transformers


The saturation of CT may cause a delayed IED operation. To ensure the time
selectivity, the delay must be taken into account when setting the operate times of
successive IEDs.

With definite time mode of operation, the saturation of CT may cause a delay that
is as long as the time the constant of the DC component of the fault current, when
the current is only slightly higher than the starting current. This depends on the
accuracy limit factor of the CT, on the remanence flux of the core of the CT, and
on the operate time setting.

With inverse time mode of operation, the delay should always be considered as
being as long as the time constant of the DC component.

With inverse time mode of operation and when the high-set stages are not used, the
AC component of the fault current should not saturate the CT less than 20 times the
starting current. Otherwise, the inverse operation time can be further prolonged.
Therefore, the accuracy limit factor Fa should be chosen using the formula:

Fa > 20*Current start value / I1n

The Current start value is the primary start current setting of the IED.

4.1.1.3 Example for non-directional overcurrent protection

The following figure describes a typical medium voltage feeder. The protection is
implemented as three-stage definite time non-directional overcurrent protection.

REF615 381
Application Manual
Section 4 1MRS756378 N
Requirements for measurement transformers

A071142 V1 EN

Figure 606: Example of three-stage overcurrent protection

The maximum three-phase fault current is 41.7 kA and the minimum three-phase
short circuit current is 22.8 kA. The actual accuracy limit factor of the CT is
calculated to be 59.

The start current setting for low-set stage (3I>) is selected to be about twice the
nominal current of the cable. The operate time is selected so that it is selective with
the next IED (not visible in the figure above). The settings for the high-set stage
and instantaneous stage are defined also so that grading is ensured with the
downstream protection. In addition, the start current settings have to be defined so
that the IED operates with the minimum fault current and it does not operate with
the maximum load current. The settings for all three stages are as in the figure above.

For the application point of view, the suitable setting for instantaneous stage (I>>>)
in this example is 3 500 A (5.83 x I2n). For the CT characteristics point of view, the
criteria given by the current transformer selection formula is fulfilled and also the
IED setting is considerably below the Fa. In this application, the CT rated burden
could have been selected much lower than 10 VA for economical reasons.

382 REF615
Application Manual
1MRS756378 N Section 5
IED physical connections

Section 5 IED physical connections

5.1 Inputs

5.1.1 Energizing inputs

5.1.1.1 Phase currents

The IED can also be used in single or two-phase applications by


leaving one or two energizing inputs unoccupied. However, at least
terminals X120/7-8 must be connected.

Table 76: Phase current inputs included in configurations A, B, C, D, E, F, H, J, K and N


Terminal Description
X120-7, 8 IL1
X120-9, 10 IL2
X120-11, 12 IL3

5.1.1.2 Residual current


Table 77: Residual current input included in configurations A, B, C, D, E, F, H, J and N
Terminal Description
X120-13, 14 Io

Table 78: Residual current input included in configuration K


Terminal Description
X120-5, 6 IoB1)
X120-13, 14 Io

1) Used only for HREFPDIF1

Table 79: Residual current input included in configuration G


Terminal Description
X130-1, 2 Io

REF615 383
Application Manual
Section 5 1MRS756378 N
IED physical connections

5.1.1.3 Phase voltages


Table 80: Phase voltage inputs included in configurations E, F, H, J, K and N
Terminal Description
X130-11,12 U1
X130-13,14 U2
X130-15,16 U3

Table 81: Reference voltage input for SECRSYN1 included in configurations H, J, K and N
Terminal Description
X130-9,10 U12B

5.1.1.4 Residual voltage


Table 82: Additional residual voltage input included in configurations A and B
Terminal Description
X120-5, 6 Uo

Table 83: Additional residual voltage input included in configurations E, F, H, J, K and N


Terminal Description
X130-17, 18 Uo

5.1.1.5 Sensor inputs


Table 84: Combi sensor inputs included in configurations G and L
Terminal Description
X131 IL1
U1
X132 IL2
U2
X133 IL3
U3

5.1.2 Auxiliary supply voltage input


The auxiliary voltage of the IED is connected to terminals X100/1-2. At DC
supply, the positive lead is connected to terminal X100-1. The permitted auxiliary
voltage range (AC/DC or DC) is marked on the top of the LHMI of the IED.

384 REF615
Application Manual
1MRS756378 N Section 5
IED physical connections

Table 85: Auxiliary voltage supply


Terminal Description
X100-1 + Input
X100-2 - Input

5.1.3 Binary inputs


The binary inputs can be used, for example, to generate a blocking signal, to
unlatch output contacts, to trigger the disturbance recorder or for remote control of
IED settings.

Binary inputs of slot X110 are available with configurations B, D, E, F, G, H, J, K,


L and N.

Table 86: Binary input terminals X110-1...13 with BIO0005 module


Terminal Description
X110-1 BI1, +
X110-2 BI1, -
X110-3 BI2, +
X110-4 BI2, -
X110-5 BI3, +
X110-6 BI3, -
X110-6 BI4, -
X110-7 BI4, +
X110-8 BI5, +
X110-9 BI5, -
X110-9 BI6, -
X110-10 BI6, +
X110-11 BI7, +
X110-12 BI7, -
X110-12 BI8, -
X110-13 BI8, +

Table 87: Binary input terminals X110-1...10 with BIO0007 module


Terminal Description
X110-1 BI1, +
X110-5 BI1, -
X110-2 BI2, +
X110-5 BI2, -
X110-3 BI3, +
X110-5 BI3, -
Table continues on next page

REF615 385
Application Manual
Section 5 1MRS756378 N
IED physical connections

Terminal Description
X110-4 BI4, +
X110-5 BI4, -
X110-6 BI5, +
X110-10 BI5, -
X110-7 BI6, +
X110-10 BI6, -
X110-8 BI7, +
X110-10 BI7, -
X110-9 BI8, +
X110-10 BI8, -

Binary inputs of slot X120 are available with configurations C, D, E, F, H, J and N

Table 88: Binary input terminals X120-1...6


Terminal Description
X120-1 BI1, +
X120-2 BI1, -
X120-3 BI2, +
X120-2 BI2, -
X120-4 BI3, +
X120-2 BI3, -
X120-5 BI4, +
X120-6 BI4, -

Binary inputs of slot X120 are available with configurations A and B.

Table 89: Binary input terminals X120-1...4


Terminal Description
X120-1 BI1, +
X120-2 BI1, -
X120-3 BI2, +
X120-2 BI2, -
X120-4 BI3, +
X120-2 BI3, -

Binary inputs of slot X130 are optional for configurations B and D.

386 REF615
Application Manual
1MRS756378 N Section 5
IED physical connections

Table 90: Binary input terminals X130-1...9


Terminal Description
X130-1 BI1, +
X130-2 BI1, -
X130-2 BI2, -
X130-3 BI2, +
X130-4 BI3, +
X130-5 BI3, -
X130-5 BI4, -
X130-6 BI4, +
X130-7 BI5, +
X130-8 BI5, -
X130-8 BI6, -
X130-9 BI6, +

Binary inputs of slot X130 are available with configuration K and optionally
available with configurations E, F, H, J and N.

Table 91: Binary input terminals X130-1...8 with AIM0006 module


Terminal Description
X130-1 BI1, +
X130-2 BI1, -
X130-3 BI2, +
X130-4 BI2, -
X130-5 BI3, +
X130-6 BI3, -
X130-7 BI4, +
X130-8 BI4, -

5.1.4 Optional light sensor inputs


If the IED is provided with the optional communication module with light sensor
inputs, the pre-manufactured lens-sensor fibres are connected to inputs X13, X14
and X15, see the terminal diagrams.For further information, see arc protection.

The IED is provided with connection sockets X13, X14 and X15
only if the optional communication module with light sensor inputs
has been installed. If the arc protection option is selected when
ordering an IED, the light sensor inputs are included in the
communication module.

REF615 387
Application Manual
Section 5 1MRS756378 N
IED physical connections

Table 92: Light sensor input connectors


Terminal Description
X13 Input Light sensor 1
X14 Input Light sensor 2
X15 Input Light sensor 3

5.1.5 RTD/mA inputs


It is possible to connect mA and RTD based measurement sensors to the IED if the
IED is provided with optional RTD0001 module in standard configurations A and
B and with AIM0003 module in standard configurations E, F, H, J and N.

Table 93: Optional RTD/mA inputs with RTD0001 module


Terminal Description
X130-1 mA1 (AI1), +
X130-2 mA1 (AI1), -
X130-3 mA2 (AI2), +
X130-4 mA2 (AI2), -
X130-5 RTD1 (AI3), +
X130-6 RTD1 (AI3), -
X130-7 RTD2 (AI4), +
X130-8 RTD2 (AI4), -
X130-9 RTD3 (AI5), +
X130-10 RTD3 (AI5), -

X130-11 Common1)

X130-12 Common2)
X130-13 RTD4 (AI6), +
X130-14 RTD4 (AI6), -
X130-15 RTD5 (AI7), +
X130-16 RTD5 (AI7), -
X130-17 RTD6 (AI8), +
X130-18 RTD6 (AI8), -

1) Common ground for RTD channels 1-3


2) Common ground for RTD channels 4-6

Table 94: Optional RTD/mA inputs with AIM0003 module


Terminal Description
X130-1 mA 1 (AI1), +
X130-2 mA 1 (AI1), -
X130-3 RTD1 (AI2), +
X130-4 RTD1 (AI2), -
Table continues on next page

388 REF615
Application Manual
1MRS756378 N Section 5
IED physical connections

Terminal Description
X130-5 RTD1 (AI2), ground
X130-6 RTD2 (AI3), +
X130-7 RTD2 (AI3), -
X130-8 RTD2 (AI3), ground

5.2 Outputs

5.2.1 Outputs for tripping and controlling


Output contacts PO1, PO2, PO3 and PO4 are heavy-duty trip contacts capable of
controlling most circuit breakers. On delivery from the factory, the trip signals
from all the protection stages are routed to PO3 and PO4.

Table 95: Output contacts


Terminal Description
X100-6 PO1, NO
X100-7 PO1, NO
X100-8 PO2, NO
X100-9 PO2, NO
X100-15 PO3, NO (TCS resistor)
X100-16 PO3, NO
X100-17 PO3, NO
X100-18 PO3 (TCS1 input), NO
X100-19 PO3 (TCS1 input), NO
X100-20 PO4, NO (TCS resistor)
X100-21 PO4, NO
X100-22 PO4, NO
X100-23 PO4 (TCS2 input), NO
X100-24 PO4 (TCS2 input), NO

5.2.2 Outputs for signalling


SO output contacts can be used for signalling on start and tripping of the IEDOn
delivery from the factory, the start and alarm signals from all the protection stages
are routed to signalling outputs.

REF615 389
Application Manual
Section 5 1MRS756378 N
IED physical connections

Table 96: Output contacts X100-10...14


Terminal Description
X100-10 SO1, common
X100-11 SO1, NC
X100-12 SO1, NO
X100-13 SO2, NO
X100-14 SO2, NO

Output contacts of slot X110 are available with configurations B, D, E, F, G, H, J,


K, L and N.

Table 97: Output contacts X110-14...24 with BIO0005


Terminal Description
X110-14 SO1, common
X110-15 SO1, NO
X110-16 SO1, NC
X110-17 SO2, common
X110-18 SO2, NO
X110-19 SO2, NC
X110-20 SO3, common
X110-21 SO3, NO
X110-22 SO3, NC
X110-23 SO4, common
X110-24 SO4, NO

Table 98: Optional High-speed output contacts X110-15…24 with BIO0007


Terminal Description
X110-15 HSO1, NO
X110-16 HSO1, NO
X110-19 HSO2, NO
X110-20 HSO2, NO
X110-23 HSO3, NO
X110-24 HSO3, NO

Output contacts of slot X130 are available in the optional BIO module (BIO0006).

Output contacts of slot X130 are optional for configurations B and D.

390 REF615
Application Manual
1MRS756378 N Section 5
IED physical connections

Table 99: Output contacts X130-10...18


Terminal Description
X130-10 SO1, common
X130-11 SO1, NO
X130-12 SO1, NC
X130-13 SO2, common
X130-14 SO2, NO
X130-15 SO2, NC
X130-16 SO3, common
X130-17 SO3, NO
X130-18 SO3, NC

5.2.3 IRF
The IRF contact functions as an output contact for the self-supervision system of
the protection IED. Under normal operating conditions, the IED is energized and
the contact is closed (X100/3-5). When a fault is detected by the self-supervision
system or the auxiliary voltage is disconnected, the output contact drops off and the
contact closes (X100/3-4).

Table 100: IRF contact


Terminal Description
X100-3 IRF, common
X100-4 Closed; IRF, or Uaux disconnected

X100-5 Closed; no IRF, and Uaux connected

REF615 391
Application Manual
392
1MRS756378 N Section 6
Glossary

Section 6 Glossary

615 series Series of numerical IEDs for low-end protection and


supervision applications of utility substations, and
industrial switchgear and equipment
AC Alternating current
AI Analog input
ASCII American Standard Code for Information Interchange
BI Binary input
BIO Binary input and output
BO Binary output
CB Circuit breaker
CT Current transformer
DC 1. Direct current
2. Disconnector
3. Double command
DNP3 A distributed network protocol originally developed by
Westronic. The DNP3 Users Group has the ownership
of the protocol and assumes responsibility for its
evolution.
DPC Double-point control
EMC Electromagnetic compatibility
Ethernet A standard for connecting a family of frame-based
computer networking technologies into a LAN
FIFO First in, first out
FTP File transfer protocol
GOOSE Generic Object-Oriented Substation Event
HMI Human-machine interface
HSO High-speed output
HSR High-availability seamless redundancy
HW Hardware
I/O Input/output
IEC International Electrotechnical Commission
IEC 60870-5-103 1. Communication standard for protective equipment

REF615 393
Application Manual
Section 6 1MRS756378 N
Glossary

2. A serial master/slave protocol for point-to-point


communication
IEC 61850 International standard for substation communication
and modeling
IEC 61850-8-1 A communication protocol based on the IEC 61850
standard series
IED Intelligent electronic device
IP address A set of four numbers between 0 and 255, separated
by periods. Each server connected to the Internet is
assigned a unique IP address that specifies the
location for the TCP/IP protocol.
IRIG-B Inter-Range Instrumentation Group's time code format
B
LAN Local area network
LC Connector type for glass fibre cable
LCD Liquid crystal display
LE Light Edition
LED Light-emitting diode
LHMI Local human-machine interface
MAC Media access control
MCB Miniature circuit breaker
MMS 1. Manufacturing message specification
2. Metering management system
Modbus A serial communication protocol developed by the
Modicon company in 1979. Originally used for
communication in PLCs and RTU devices.
Modbus TCP/IP Modbus RTU protocol which uses TCP/IP and
Ethernet to carry data between devices
PCM600 Protection and Control IED Manager
PO Power output
PRP Parallel redundancy protocol
PTP Precision Time Protocol
RCA Also known as MTA or base angle. Characteristic angle.
REF615 Feeder protection and control IED
RIO600 Remote I/O unit
RJ-45 Galvanic connector type
RS-232 Serial interface standard
RS-485 Serial link according to EIA standard RS485

394 REF615
Application Manual
1MRS756378 N Section 6
Glossary

RSTP Rapid spanning tree protocol


RTD Resistance temperature detector
RTU Remote terminal unit
SAN Singly attached node
Single-line diagram Simplified notation for representing a three-phase
power system. Instead of representing each of three
phases with a separate line or terminal, only one
conductor is represented.
SLD Single-line diagram
SMV Sampled measured values
SNTP Simple Network Time Protocol
SO Signal output
TCP/IP Transmission Control Protocol/Internet Protocol
TCS Trip-circuit supervision
VT Voltage transformer
WAN Wide area network
WHMI Web human-machine interface

REF615 395
Application Manual
396
397
Contact us

1MRS756378 N © Copyright 2014 ABB. All rights reserved.


ABB Oy
Medium Voltage Products,
Distribution Automation
P.O. Box 699
FI-65101 VAASA, Finland
Phone +358 10 22 11
Fax +358 10 22 41094

ABB Limited
Distribution Automation
Maneja
Vadodara 390013, India
Phone +91 265 2604032
Fax +91 265 2638922

www.abb.com/substationautomation

You might also like