Nothing Special   »   [go: up one dir, main page]

1 Service Manual

Download as pdf or txt
Download as pdf or txt
You are on page 1of 486

 

SERVICE MANUAL
 

 
 
 
 
 
 
 
Rudder Propeller SRP 1515 FP

Key Word: RAB TUG 3-P306-Shaft


Order Number: 14348488-1
Serial Numbers: SRP-117245
SRP-117246
Input Power (kW): 2200
Input Speed (rpm): 1000
Minimum Operating Speed (rpm): 450
Classification Society: BV

Distribution and Duplication Disclaimer


The distribution or duplication of this Service Manual and the utilisation We have checked the content of this Service Manual regarding
and communication of its content is not permitted, unless this has been compliance with the described hardware and software. Nevertheless,
expressly granted. variances cannot be ruled out, which means that we will not guarantee
Any violations will necessitate compensation. full compliance.
All rights reserved, particularly in the case of granting a patent or The information provided in this Service Manual is reviewed regularly,
registering a utility model. however, and any necessary amendments will be included in the
following issues. We will be grateful for any suggestions for
  improvement.

 
TTD-dl 14348488-1 23 June 2016 1/2
 
 
Revision History

Rev. Revision Date Chapter Description Document Doc. Doc. Doc. Doc.
No. DD.MM.YYYY No. No. Revision replaced deleted added
Code
0 23/06/2016

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SCHOTTEL GmbH 
Mainzer Str. 99 
56322 Spay/Rhein 
GERMANY 
Phone:  +49 2628 61‐0 
Fax:  +49 2628 61‐300 and 61‐345 
E‐mail:  info@schottel.de 
Internet:  www.schottel.de 
 
TTD-dl 14348488-1 23 June 2016 2/2
1. Table of Contents
BLANK PAGE
Table of Contents

Rev. No. Part No.


1 Table of Contens

2 Installation Instructions
Installation Drawing .................................................................................................................... ........... 1216280
Pointer ........................................................................................................................... 09/0097 ........... 1108410
Alignment Data Sheet............................................................................................................. for ........... 1191153

3 Operating, Mounting and Maintenance Instructions

Safety and Environmental Protection Regulation "SV 1" ...................................... 348/98 ........... 1099236

3.1 Mechanics
Installation and Maintenance of Self-Aligning Roller Bearings in Shaftings
(Double Lip Seal) with Synthetic Lubricating Grease.......................................... 11/1140 ........... 1194807
Propulsion Units with FP Propellers .................................................................... 15/2980 ........... 1145139
SCHOTTEL Instructions for Attaching Anodes to a Propulsion Unit,
Base Plate and the Vessel's Hull .......................................................................... 12/Déc ........... 1194807
Installation Instructions for Screw and Bolt Connections and Sealants .............. 14/0208 ........... 1180737
Preservation Instructions ....................................................................................... 641/02 ........... 1104097

3.2 Hydraulics
Flushing Specification for Hydraulic Systems with
Variable Displacement Pump .............................................................................. 07/3151 ........... 1100933
Installation Specifications for Hydraulic Systems and their Components ........... 12/1810 ........... 1099237

4 Spare Parts Catalogue

5 Documents from Suppliers


Technical Description Mounting, Maintenance and repair of propshafts
with flanged universal joints for SCHOTTEL Parts No.1216347/1214592 .. Edition 2007 ........... GEWES

Operating and Maintenance Instructions for Bulkheadseal


for SCHOTTEL Parts No.1196424 ................................................................................... EagleBurgmann

6 Diagrams

6.1 Electrical Diagrams


Wiring Diagram SRP 1515 CP ......................................................................................... ........... 1216742

en TTD-dl 14348488-1 23 June 2016 1/2


Key for individual terms and letters in the Spare Parts Catalogue:

SSS XXXX YY Z/Z

Bsp. R/R Right/Right


Bsp. L/L Left/Left

FP Fixed Pitch Propeller


CP Controlable Pitch Propeller

Bsp. 1515 Size


Bsp. 2020

SCHOTTEL propulsion unit

HY Hydraulic
OI Operating Instructions SCHOTTEL
K Sub-assemblies (further partlist available)
L Operating Instruction Supplier

2/2 TTD-dl 14348488-1 23 June 2016 en


2. Installation Documents
BLANK PAGE
Refer to Shafting Installation Instructions 1191153

Alignment Data Sheet Rev. no.: 0


SCHOTTEL order: 14348488
SCHOTTEL project: TUG-090086-03 + 04
14348493

A= 7729,40 [mm] ± 16 [mm]

B= 342,30 [mm] ± 2 [mm]

C= 5000,00 [mm] ± 3 [mm]

M= 6415,80 [mm]

1 2

Type: 41-95 Type: 41-95

Lz= 1300,00 [mm] Lz= 1300,00 [mm]

Lm= 1371,80 [mm] Lm= 1369,40 [mm]

K1=K2 ± 1= 707,90 [mm] K3=K4 ± 1 = 707,90 [mm]

See pointer drawing no.: 1108410

β= °

β1 = β2 = 1,81° ± 0,4° β3 = β4 = 4,31° ± 0,4°

Maximum misalignment engine/clutch (seen from above):= [mm]

Date: 22.03.2016 Person in charge: T. Klein Installation drawing no.: 1216280

en Alignment Data Sheet 1/1


en Alignment Data Sheet 1/1
3. Operating, Mounting and
Maintenance Instructions
BLANK PAGE
Safety and Environmental Protection Regulation ”SV 1”

Table of Contents

Preliminary remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1 Safety regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Transport and storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Installation, Starting−up and Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Installation of SCHOTTEL Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Starting−up and operation (general) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Starting−up and operation of control systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Maintenance and installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5 Removing the underwater gears of SRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6 Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
7 Noise protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8 Use of appliances causing noise fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
9 Environmental protection regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

en TDO−Ge Safety and Enviromental Protection Regulation “SV 1” 3 348/98 1099236 1/ 8


Preliminary remark

These ”Safety and Environmental Protection Regu- Where deviations between the German text and the
lations” shall provide the operator or technician re- foreign language text occur for idiomatic reasons, the
sponsible for operating, servicing, installing or re- German text is authoritative.
placing SCHOTTEL products, with information and
assistance. For this purpose, these regulations and The regulations and instructions quoted in this vol-
the accompanying operating and installation instruc- ume apply within the area of the Federal Republic of
tions must be read, understood and observed. Germany.

It must be ensured that the relevant regulations and In other countries, the statutory provisions applicable
instructions are readily available to everyone en- there shall be observed.
gaged in operation, maintenance and installation.
Observe protection mark in accordance to DIN 34!
We assume no liability for damages and breakdowns
”The passing on or copying of these documents, their
in operation which result from the failure to com-
utilization and the disclosure of their contents is pro-
ply with these regulations and the accompanying hibited, unless explicitly granted. All acts contrary to
operating and installation instructions.
this entitle us to claim for compensation. All rights re-
served in the case of a patent being granted or a de-
It is assumed that the user and/or technician is famil-
sign being registered.
iar with the product in question and has been
instructed on any possible risks involved.
References to pictorial illustrations in the text appear
in brackets.
As SCHOTTEL products are subject to further devel-
opment, we reserve the right to make any technical
alterations.

2 /8 TDO−Ge Safety and Enviromental Protection Regulation “SV 1” 3 348/98 1099236 en


1 Safety regulations

The safety regulations must always be used in com- does not comply with the regulations.
bination with the relevant operating and installation In the event of a fault, the cause must be established
instructions. immediately. If the fault cannot be defined or rectified
SCHOTTEL products are to be employed only for the in a correct and competent manner, it must be elimi-
use stipulated in the delivery cope. nated by qualified personnel.
To prevent accidents caused by slipping, negotiable
Any use other than this is considered contrary to reg- parts must be kept free of oil and grease.
ulations. The SCHOTTEL−Werft is not liable for dam-
ages resulting from this. The risk, in this instance, is In addition to the safety and environmental regula-
borne solely by the user. tions listed in these provisions, the safety regulations
of the trade association as well as the relevant regu-
The operator or technician is obliged to refuse to lations for the prevention of accidents must be obser-
carry out any work on SCHOTTEL products which ved.

2 Transport and storage

Transport

SCHOTTEL products which, due to their weight, can-


not be lifted without the use of auxiliary equipment,
must be fixed to a raising harness only at the lifting
points provided. If necessary, ask about possible lift-
ing points at the SCHOTTEL−Werft.

Both raising harness and hoist must be selected in


accordance to the load to be lifted.

Do not walk or stand below raised loads.

To prevent damage to bearings and gearwheels,


gears must be braced. 1

Example
The SRP should be braced against the direction of
rotation of operation with a pretension of 5000 to
6000 N (1/1). Figure 1
Use wooden edge protection for the propeller.

en TDO−Ge Safety and Enviromental Protection Regulation “SV 1” 3 348/98 1099236 3/ 8


Storage empty units (e.g new units).

The interior areas of the SCHOTTEL products in


question are preserved, following the trial run on the This means:
test stand. Corrosion protection is sufficient for
approx. 6 months, when stored in dry environments In the case of units equipped with a vent valve,
(no sea climate). the same be opened.
In case of units equipped with a mushroom−type
Prior to launching y prior to every intial start−up it is vent, pressure compensation is already main-
necessary to top up oil tained.
To this effect it is necessary to observe the different
operating instructions. In the case of units which are only preas-
sembled, a provisional pressure compensation
If a SCHOTTEL unit is put out of operation or re- device with dust protection must be installed at
moved due to damage, then the unit must be filled a pipe connection.
with fresh oil during the storage period, in order to
prevent damage through corrosion.
ATTENTION
When storing in the open and/or with considerable The storage of electric components, for instance in-
changes in ambient temperature, pressure relief strument panels, switch cabinets etc. in the open is
must be maintained for oil−filled units, as well as for prohibited.

3 Installation, Starting−up and Operation

Installation of SCHOTTEL Products Starting−up and operation (general)

Before commencing installation, check that the The operating instructions of the relevant provisions
delivery is complete. All parts must be installed must be observed.
and/or removed in a competent manner.
Before putting SCHOTTEL products into operation,
The installation of SCHOTTEL products requires a check must be made for obvious defects and to en-
that: sure that all protection devices (e.g. cover plates) are
installed soundly. Defective units may not be put into
Only those personnel who possess sufficient operation.
technical expertise and the required equipment
shall be employed. Units with defective instruments, pilot lamps and/or
control elements may not be put into operation.
The installation proposals of SCHOTTEL−Werft
shall be observed, and/or requested as necess- The operator must make absolutely sure that no one
ary. is located within the danger zone of the unit before
putting this into operation.
The relevant technical regulations shall be ob-
served. The indicating instruments must be checked for cor-
rect functioning directly after starting−up, if neces-
Regulations of acceptance authorities under pri- sary the unit must be switched off again.
vate law and/or public law shall be complied
with.

4 /8 TDO−Ge Safety and Enviromental Protection Regulation “SV 1” 3 348/98 1099236 en


Moving parts must be protected. If necessary, these Starting−up and operation of control
protection devices must be fitted subsequently. systems
Do not refuel in non−ventilated rooms and only when
the engine is switched off. An emergency stop of the ship is possible at all times;
Smoking is prohibited when refuelling. in the case of twin−propulsion units, both SRP pro-
Never check fuel level with an open flame. pulsion units should be swivelled to the outside by
180.
Combustion engines may only run in rooms where
adequate ventilation is ensured. The speed of the drive engines must be reduced be-
fore starting the control procedures for extreme ma-
noeuvres (if necessary down to idling speed).
Exhaust fumes are highly dangerous!

Never smoke or handle open fire in the vicinity of in-


flammable materials.

4 Maintenance and installation

Only tight−fitting, non−defective tools may be used. Smoking is prohibited when checking the acid level
”Worn out” spanners slip. of the batteries. Do not check the acid level of the bat-
Maintenance and installation work may only be car- teries using an open flame. Charge batteries in well−
ried out on units not in operation. ventilated rooms only.

Maintenance and installation work on electrical com- The fixing screw must be tightened with the appropri-
ponents may only be carried out when the unit is dis- ate torque in accordance to design, and secured
connected. Pipes and hoses under pressure must against accidental loosening in a suitable manner.
neither be tightened nor slackened. Please observe the relevant operating and installa-
Screw locking compound, sealing compound, oils, tion instructions.
acids, detergents and preservatives must not come
into contact with skin and eyes. During maintenance and repair work in the area
of rotary shaft seals and bearing races, these
Should an accident occur however, despite taking all must not be damaged.
precautions, then a doctor must be seen immediate- Rotary shaft seals and bearing races must not be
ly. painted over.
Protect them against heat, welding splashes and
Always wear protective glasses when cleaning parts abrasion dust, covering them if necessary.
with compressed air.

Benzine or any other easily inflammable substances


may not be used for cleaning the unit or its compo-
nents. Fuels and other materials required for opera-
tion must be stored only in containers which cannot
be mistaken for drink containers.

The handling of hot oil runs the risk of burning.

Do not heat oil, the oil or the vapors may ignite.

en TDO−Ge Safety and Enviromental Protection Regulation “SV 1” 3 348/98 1099236 5/ 8


SCHOTTEL products which, due to their weight, can- When removing propellers and flanges which have to
not be lifted without the use of auxiliary equipment, be pressed on and off hydraulically, these must be
must be fixed to a raising harness only at the lifting secured against falling down with the pressure plate
points provided. If necessary, ask about possible lift- (2/2) specified.
ing points at SCHOTTEL−Werft.
Do not walk or stand in front of the pressure
Components to be removed which, due to their plate!
weight, cannot be lifted without the use of auxiliary
equipment, must be supported accordingly and fixed
to the raising harness at the lifting points provided for
this purpose. If necessary, ask about possible lifting
points at SCHOTTEL−Werft. The raising harness
and hoist must be selected in accordance to the load
to be lifted.

ÂÂ
Do not walk or stand under raised loads.

Unauthorized conversions and alterations


SCHOTTEL products are prohibited.
to
ÂÂ
Spare parts and assessories not supplied by the
SCHOTTEL−Werft are also not checked or accepted
by us. The installation and/or use of such parts may,
therefore,have a possible negative influence on the
design features of our products, so that the active 2
and/or passive safety of these is reduced.

SCHOTTEL−Werft is excluded from any liability


whatsoever for damages resulting from the use of Figure 2
such parts.

6 /8 TDO−Ge Safety and Enviromental Protection Regulation “SV 1” 3 348/98 1099236 en


5 Removing the underwater gears of SRP

When removing the underwater gear−box, the power surface gear−box to and fro at the power inlet (3/3)
transmission shaft (3/4) may remain in the surface until the shaft sinks down to the underwater gear−
gear−box and drop down later uncontrolled ! There- box. Remove underwater gear−box together with the
fore, lower underwater gearbox a little and turn the power transmission shaft.

Figure 3

en TDO−Ge Safety and Enviromental Protection Regulation “SV 1” 3 348/98 1099236 7/ 8


6 Welding

When carrying out welding work to or in the vicinity that no current can flow uncontrolled via bearings,
of SCHOTTEL products, the earthing terminal must bevel gears or similar.
be connected directly at the position of welding, so

7 Noise protection

Units may only be put into operation when all noise In the case of units where operators or mechanics
protection facilities have been properly installed and are exposed to a noise level of w85 dB (A), noise
closed. protection must be worn and used.

8 Use of appliances causing noise fields

Use of walkie−talkies, mobile phones as well as other Installation of external components into the
noise field generating appliances within the immedi- SCHOTTEL made steering electronics may cause
ate proximity of SCHOTTEL−steering systems may system breakdowns. Therefore it is absolutely
cause breakdowns, and possibly to the failure of the necessary to settle details with SCHOTTEL prior to
electronical steering unit. taking any action.

9 Environmental protection regulations

The relevant environmental protection regulations When carrying out maintenance or assembly work
must be observed. on products which have to be filled with oil or fuel, the
seals and washers removed should be replaced by
Substances causing damage to the environment (i.e. new ones. Following maintenance and assembly
oils, acids, preservatives and detergents) must be work, the unit and its connections must be checked
collected and disposed of in a non−polluting manner; for tightness.
the relevant laws governing water pollution control
must be complied with. Old batteries must be disposed of in a non−polluting
manner.
Used filter cartridges must be collected in a separate
container marked for this purpose and disposed of in Before transporting any SCHOTTEL products con-
a non−polluting manner. taining oil, the latter must be drained off first.

8 /8 TDO−Ge Safety and Enviromental Protection Regulation “SV 1” 3 348/98 1099236 en


3.1 Mechanical System
BLANK PAGE
Installation and Maintenance of Self−Aligning Roller
Bearings in Shaftings (Double Lip Seal) with Synthetic
Lubricating Grease

Table of Contents

1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Installation requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Initial greasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Mounting on the shaft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Measuring the radial bearing clearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Lubricant Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Lubricating intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Relubrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

en MIX−Fr Installation and Maintenance of Self−Aligning Roller Bearings in 11/1140 1167641 1/ 7


Shaftings (Double Lip Seal)
Preliminary notes
These Instructions are to provide information and Given that SCHOTTEL propulsion systems are subject
guidance to all persons involved in the initial start−up, to further development, we reserve the right to carry out
operation and maintenance of SCHOTTEL propulsion technical modifications.
systems. Please make sure that these Instructions are
read, understood and carefully observed. Important instructions relevant to technical and
operational safety are identified by the following
These Instructions are to be made available to all symbols:
persons carrying out work on the propulsion systems.
We shall not accept liability for any damage or ! WARNING
malfunctions resulting from non−observance of these
Instructions. Indicates working and operating methods that are to be
It is a prerequisite that all users are familiar with the strictly observed to prevent any risk to personal safety.
propulsion systems and have been informed about the
possible dangers associated with their use.
Only trained and qualified staff are permitted to carry
! CAUTION

out work on the propulsion systems. Indicates working and operating methods that are to be
strictly observed to prevent damage to or destruction of
References to illustrations are written in brackets in the materials.
text, e.g. (1/3). The first number refers to the illustration
number in the manual; the second number is the item
number in the illustration. NOTE
All illustrations are schematic diagrams and do not Indicates specific features of the working process
make any claim to completeness. which are to be observed.
Any technical modification to SCHOTTEL propulsion
systems to be performed by non−SCHOTTEL staff
requires written authorisation.
i INFORMATION
However, this does not include any of the modifications Application instructions and information.
or control settings described in our instructions.
When carrying out any work on SCHOTTEL propulsion
systems, always observe the safety and environmental
protection regulations as well as the applicable laws in
force in the respective country they are used.

These Instructions have been written with the utmost care and attention to detail.
However, should you require any further information, please contact:
SCHOTTEL GmbH
Mainzer Straße 99
56322 Spay, Germany
Phone +49 (0)2628 610
Fax +49 (0)2628 61300
E−mail info@schottel.de

2/ 7 MIX−Fr Installation and Maintenance of Self−Aligning Roller Bearings in 11/1140 1167641 en


Shaftings (Double Lip Seal)
1 Installation

Installation requirements
For the defined bearings, the following vibration
velocities are permitted in the bearing housing
horizontally, vertically and diagonally:

v max x 10 mm/s (RMS).

Installation is in three stages:


1. Initial greasing of the bearing;
2. Mounting of the bearing on the shaft;
3. Measuring and adjustment of the radial bearing
clearance.

Fig. 1

Initial greasing
New bearings or ones that have been cleaned and
rinsed out are to be filled with the specified quantity of
grease as follows: 2

* Fill the bearing gaps (2/2) with grease. 1 1


* Distribute the rest in the housing to cover any
non−wetted surfaces.
* Fill the gap between the two sealing lips (2/1) with
d

grease.

Diameter of Grease quantity


bearing seat ”d” Initial fill
[mm] [g]
70 280
80 430 Fig. 2
90 630
100 850
110 1000
125 1400
140 2000
170 1500
180 1900

en MIX−Fr Installation and Maintenance of Self−Aligning Roller Bearings in 11/1140 1167641 3/ 7


Shaftings (Double Lip Seal)
Installation

! CAUTION
Prior to installation the bearing gaps are to be filled with
grease; see page 3. 1
By tightening the slotted nut (3/3) the inner ring of the
bearing is expanded by means of the tapered
connection (3/1). This reduces the radial bearing
clearance. The radial clearance reduction is the
measurement for the tight fit of the bearing.

Measuring the radial bearing clearance


To measure the adjustable radial bearing clearance
use feeler gauges (3/2) with measuring plates of
varying thicknesses, starting with 0.03 mm. The
bearing clearance is measured before, during and after
mounting the bearing; this is always between the outer
ring and pressure relieved roller.
Before measuring, turn the bearing several times to
allow the rollers to take up the correct position.
During measuring, the roller at the measuring point is 3
gently pressed against the guide ring between both
rows of rollers. Make sure the measured radial
clearance is the same across both rows of rollers.
The following table contains reference values for the
adjustable radial clearance when installing
self−aligning roller bearings with tapered bores. The fit
arising from these Installation Instructions is sufficiently
tight.

Nominal dimension of Adjustable radial


bearing borehole ”d” bearing clearance
[mm] [mm] 2
From To
80 100 0.05 + 0.01
100 120 0.065 + 0.01
120 140 0.08 + 0.01
140 160 0.09 + 0.01 Fig. 3
160 180 0.10 $ 0.01
180 200 0.10 $ 0.01
200 225 0.12 $ 0.01
225 250 0.13 $ 0.01
250 280 0.14 $ 0.01
280 315 0.15 $ 0.01

4/ 7 MIX−Fr Installation and Maintenance of Self−Aligning Roller Bearings in 11/1140 1167641 en


Shaftings (Double Lip Seal)
2 Maintenance

! WARNING DANGER OF BURNS


Staff working on hot parts of the propulsion system or
Always make sure to observe the SCHOTTEL handling hot oil are at risk of sustaining burn injuries.
operating, installation and maintenance instructions,
”Safety and Environmental Protection Regulations SV
1” and the regulations regarding safety and
environmental protection in force in the relevant
country of operation.
Make sure that the engine/propulsion motor cannot be
switched on inadvertently when performing
maintenance and repair work!

Maintenance interval Work to be carried out

As per lubrication schedule; * Relubricate


see page 6

Every 500 operating hours * Check all fastening bolts for pedestal bearings and shafting.
Every 2500 operating hours * Check shafting alignment.

en MIX−Fr Installation and Maintenance of Self−Aligning Roller Bearings in 11/1140 1167641 5/ 7


Shaftings (Double Lip Seal)
Lubricant Recommendation
Manufacturer Grease type
We recommend using class 1.5 NLGI greases as
lubricants. Mobil Mobilgrease 28
In case of non--observance of the above, any claims
made under SCHOTTEL’s warranty will be void.

Lubrication schedule

When to relubricate depends on many, complicated


interlinked factors, such as speed, operating ! CAUTION
temperature, grease type, clearance in and next to the
The lubrication intervals given in operating hours (h) in
bearing, and environmental conditions.
the table are therefore only reference values.
They apply to bearing temperatures of 70 C.
The lubrication interval is halved in each case of an
increase in bearing temperature of 15 C.

Bearing borehole ”d”


[mm]

Speed d = 70 d=100 d = 110 d = 125 d = 140 d = 170 d = 180


[min-1] d = 80
d = 90

700 2650 h 2500 h 2350 h 2000 h 1650 h 1350 h 1200 h

800 2350 h 2175 h 2000 h 1650 h 1400 h 1200 h 1100 h

900 2000 h 1825 h 1650 h 1350 h 1200 h 1050 h 950 h

1000 1650 h 1500 h 1350 h 1100 h 1000 h 900 h 800 h

1100 1400 h 1300 h 1200 h 1000 h 800 h -------- --------

1200 1350 h 1200 h 1050 h 950 h 650 h -------- --------

1300 1200 h 1100 h 1000 h 800 h -------- -------- --------

1400 1050 h 1000 h 950 h 650 h -------- -------- --------

1500 1000 h 925 h 850 h 600 h -------- -------- --------

1600 850 h 825 h 800 h 500 h -------- -------- --------

1700 800 h 775 h 750 h 450 h -------- -------- --------

1800 650 h 625 h 600 h 300 h -------- -------- --------

6/ 7 MIX--Fr Installation and Maintenance of Self--Aligning Roller Bearings in 11/1140 1167641 en


Shaftings (Double Lip Seal)
Relubrication
* Relubricate the bearing with the specified quantity
of grease using the lubricating nipple (4/1). 1

Diameter of Grease quantity


bearing seat ”d” Relubrication
[mm] [g]
70 25

d
80 40
90 55
100 70
110 80
125 110 2

140 150
Fig. 4
170 110
180 130

i INFORMATION
After relubricating three times all the grease in the
housing is to be replaced; see page 3.
* Remove any used grease from the grease outlet
(4/2).

en MIX−Fr Installation and Maintenance of Self−Aligning Roller Bearings in 11/1140 1167641 7/ 7


Shaftings (Double Lip Seal)
YOUR PROPULSION EXPERTS

Propulsion unit:
SCHOTTEL propulsion units with
fixed-pitch propellers
LUBRICATION OIL RECOMMENDATION

Document number:
1145139

Revision number:
15/2980

Language
English
SCHOTTEL

Version 1145139 / 1.3


SCHOTTEL GmbH
2

Mainzer Straße 99

56322 Spay, Germany

Phone: +49 (0)2628 610

Telefax: +49 (0)2628 61300


SCHOTTEL Lubrication Oil Recommendation 1145139 / 1.3

www.schottel.de

info@schottel.de

SCHOTTEL GmbH is referred to as SCHOTTEL in the following.

Version Revision index Remark Date

1.3 020 Revision no. 15/2980 16/11/2015

Table 1: Revision history


Table of contents

3
1 Lubrication Oil Recommendation 5
1.1.1 Warranty 5
1.1.2 Hazards 5
1.1.3 Storage and disposal 6

SCHOTTEL Lubrication Oil Recommendation 1145139 / 1.3


1.1 Quality requirements 6
1.2 Permitted lubrication oils 7
1.2.1 Standard oils 8

1.2.2 Premium oils 11



SCHOTTEL Lubrication Oil Recommendation 1145139 / 1.3 4
1. Lubrication Oil Recommenda-

5
tion
The operating materials used play a significant role in the service
life, operational reliability and functionality of SCHOTTEL propulsion

SCHOTTEL Lubrication Oil Recommendation 1145139 / 1.3


units. For this very reason, it is absolutely crucial that the right oils
are selected. The oils to be used are specified in this Oil Recommen-
dation. 

This Oil Recommendation supplements the other project-related op-


erating instructions and recommendations in this Service Manual
("Applicable product documents"). These applicable product docu-
ments are supplied with this Recommendation in the form of a Ser-
vice Manual.

CAUTION

Oils can be hazardous substances!


When handling these substances, the relevant safety mea-
sures are to be taken!

► Observe the manufacturer safety data sheets!

1.1.1 Warranty

Failure to comply with this Oil Recommendation will render any


claims made under SCHOTTEL GmbH's warranty void. The use of
approved oils is an integral part of the warranty conditions.

The oil supplier is responsible for the globally consistent quality of


the specified products, and as such is to declare product conformi-
ty with SCHOTTEL GmbH quality requirements. SCHOTTEL GmbH
shall reserve the right to request appropriate evidence of this from
the propulsion system operator.

1.1.2 Hazards

CAUTION

Oils can be hazardous substances!


When handling these substances, the relevant safety mea-
sures are to be taken!

► Observe the manufacturer safety data sheets!


1.1.3 Storage and disposal
6

Certain rules and regulations are to be observed for storage and dis-
posal. These are to be derived from the manufacturers' specifica-
tions, statutory provisions and technical rules and regulations in force
in the relevant country of use.

As these concern national specifications, it will not be possible to


SCHOTTEL Lubrication Oil Recommendation 1145139 / 1.3

make a general statement on the regulations to be observed with-


in this Oil Recommendation. Therefore, the propulsion system op-
 erator will be obliged to find out about the applicable provisions.
SCHOTTEL GmbH shall not assume any liability for improper or ille-
gitimate use of the approved oils.

1.1 Quality requirements

The lubrication oil supplier is responsible for the consistent, global


quality of the specified products, and as such is to declare product
conformity with SCHOTTEL GmbH quality requirements. SCHOTTEL
GmbH shall reserve the right to request appropriate evidence of this.

The lubrication oils are to comply with the following quality require-
ments:

CLP lubrication oil complying with DIN 51517-3

The scuffing load-carrying capacity must be > 12 complying with


FZG test A 8.3/90, DIN 51354/2

High micropitting resistance with failure load stage ≥ 10 according


to micropitting test FVA 54

Roller wear < 30 mg complying with FE 8 test, DIN 51819-3


D-7.5/80-80

Low foaming level with less than 15% foam formation

Compatibility with residues of the preservation oil used at


SCHOTTEL

Compatibility with the internal gearbox coating used at SCHOT-


TEL

Compatibility with the elastomer seals used at SCHOTTEL

Compatibility with the liquid sealants used at SCHOTTEL

Compatibility with the lubricating grease used at SCHOTTEL

For operation in Russian waters, the following applies:

Lubrication oils conforming to GOST 23652-79.

To prevent material damage it is crucial that the following information


is observed:
NOTICE

7
Contaminated or wrong lubrication oil
Propulsion unit components may become damaged.

► Observe the Lubrication Oil Recommendation (see "Lubri-


cation Oil Recommendation", Page 5).

SCHOTTEL Lubrication Oil Recommendation 1145139 / 1.3


► Use a pump with a filter unit and a 10 μm filter to fill or refill
the oil.

► Make sure the stipulated intervals for maintenance work


and oil analyses are always observed.

NOTICE

Damage to the propulsion unit due to the wrong lubrica-


tion oil being used
Propulsion unit components may become damaged

► Consult the SCHOTTEL Service Department before using


biological or synthetic lubrication oil.

INFORMATION

Only those oils are permitted for use in SCHOTTEL propulsion


units that contain agents which increase corrosion protection
and resistance to ageing and decrease wear in mixed friction
conditions.

INFORMATION

Regardless of their type, additives that are subsequently


added to the lubrication oil will alter the oil in an unforeseeable
manner. Consult the SCHOTTEL Service Department before
using any type of additive.

1.2 Permitted lubrication oils

INFORMATION

Never mix different lubrication oils!


1.2.1 Standard oils
8

INFORMATION

For applications in Russia, SCHOTTEL GmbH recommends


lubrication oil complying with GOST 23652-79 TAP-15V for
light to medium load standard applications.
SCHOTTEL Lubrication Oil Recommendation 1145139 / 1.3

Propulsion unit with fixed- Field of application:


pitch propeller or impeller
• SRP 10 FP to SRP 2020 FP and SRP 3030 FP, SRP 3040 FP,
SRP 4040 FP

• STP 110 FP to STP 2020 FP and STP 3030 FP, STP 3040 FP,
STP 4040 FP

• SCD 200 FP to SCD 5000 FP

• SPJ 15

• SPJ 55 to SPJ 520

Name Specification

ADDINOL ADDINOL CLP 150 F

ARAL Degol BG 150 Plus

BP Energol GR-XP 150

CASTROL Alpha SP 150

CEPSA RADA XMP150

CHEVRON Meropa 150

ENI AGIP BLASIA FMP 150

FUCHS LUBRITECH GEARMASTER CLP 150

FUCHS RENOLIN CLP 150 Plus

LUKOIL Steelo 150

MOBIL Mobilgear 600 XP 150

OMV OMV gear HST 150

OMV PETROL OFISI Gravis M 150

OMV PETROL OFISI Gravis MP 150

Q8 Q8 Goya NT 150

SHELL Omala S2G 150

SINOPEC Greatwall AP-HD 150

STATOIL Load Way EP 150

TEXACO Auriga EP 150


Name Specification

9
TEXACO Meropa WM 150

TOTAL Carter EP 150

TOTAL Carter XEP 150

TOTAL Epona Z 150

SCHOTTEL Lubrication Oil Recommendation 1145139 / 1.3


Propulsion units with fixed-
pitch propellers SRP/STP

320, 3000, 4000, 4600 and Name Specification


5000
ADDINOL ADDINOL CLP 100 F

ARAL Degol BG 100 Plus

BP Energol GR-XP 100

CASTROL Alpha SP 100

CEPSA RADA XMP 100

CHEVRON Meropa 100

ENI AGIP BLASIA FMP 100

FUCHS LUBRITECH GEARMASTER CLP 100

FUCHS RENOLIN CLP 100 Plus

LUKOIL Steelo 100

MOBIL Mobilgear 600 XP 100

OMV OMV gear HST 100

OMV PETROL OFISI Gravis M 100

OMV PETROL OFISI Gravis MP 100

Q8 Q8 Goya NT 100

SHELL Omala S2G 100

SINOPEC Greatwall AP-HD 100

STATOIL Load Way EP 100

TEXACO Auriga EP 100

TEXACO Meropa WM 100

TOTAL Carter EP 100

TOTAL Carter XEP 100

TOTAL Epona Z 100

SPJ 22
Name Specification

ADDINOL ADDINOL CLP 68 F

ARAL Degol BG 68 Plus

BP Energol GR-XP 68
10

Name Specification

CASTROL Alpha SP 68

CEPSA RADA XMP 68

CHEVRON Meropa 68

ENI AGIP BLASIA FMP 68


SCHOTTEL Lubrication Oil Recommendation 1145139 / 1.3

FUCHS LUBRITECH GEARMASTER CLP 68

FUCHS RENOLIN CLP 68 Plus



LUKOIL Steelo 68

MOBIL Mobilgear 600 XP 68

OMV OMV gear HST 68

OMV PETROL OFISI Gravis M 68

OMV PETROL OFISI Gravis MP 68

Q8 Q8 Goya NT 68

SHELL Omala S2G 68

SINOPEC Greatwall AP-HD 68

STATOIL Load Way EP 68

TEXACO Auriga EP 68

TEXACO Meropa WM 68

TOTAL Carter EP 68

TOTAL Carter XEP 68

TOTAL Epona Z 68

Planetary steering gear units


Name Specification

ADDINOL ADDINOL CLP 150 F

ARAL Degol BG 150 Plus

BP Energol GR-XP 150

CASTROL Alpha SP 150

CEPSA RADA XMP150

CHEVRON Meropa 150

ENI AGIP BLASIA FMP 150

FUCHS LUBRITECH GEARMASTER CLP 150

FUCHS RENOLIN CLP 150 Plus

LUKOIL Steelo 150

MOBIL Mobilgear 600 XP 150

OMV OMV gear HST 150

OMV PETROL OFISI Gravis M 150

OMV PETROL OFISI Gravis MP 150


11
Name Specification

Q8 Q8 Goya NT 150

SHELL Omala S2G 150

SINOPEC Greatwall AP-HD 150

STATOIL Load Way EP 150

SCHOTTEL Lubrication Oil Recommendation 1145139 / 1.3


TEXACO Auriga EP 150

TEXACO Meropa WM 150

TOTAL Carter EP 150 

TOTAL Carter XEP 150

TOTAL Epona Z 150

1.2.2 Premium oils

The use of GL 4/5 compliant premium oils can have beneficial effects
in terms of wear and service life; especially when used in propulsion
units with worm-geared steering drives.

INFORMATION

For applications in Russia, SCHOTTEL GmbH recommends


lubrication oil complying with GOST 23652-79 TAD-17i
(SHAUMYANA) for higher load applications.

Propulsion units with fixed- Field of application:


pitch propellers or impellers
• SRP 10 FP to SRP 2020 FP and SRP 3030 FP, SRP 3040 FP,
SRP 4040 FP

• STP 110 FP to STP 2020 FP and STP 3030 FP, STP 3040 FP,
STP 4040 FP

• SCD 200 FP to SCD 5000 FP

• SPJ 15

• SPJ 55 to SPJ 520

Name Specification

ADDINOL Eco Gear 150 M

CASTROL Optigear BM 150

CASTROL Tribol 1100 / 150

KLUEBER Klueber oil GEM 1-150 N


Propulsion units with fixed-
12

pitch propellers SRP/STP Name Specification


320, 3000, 4000, 4600 and ADDINOL Eco Gear 100 M
5000
CASTROL Optigear BM 150

CASTROL Tribol 1100 / 100

KLUEBER Klueber oil GEM 1-150 N


SCHOTTEL Lubrication Oil Recommendation 1145139 / 1.3

SPJ 22
 Name Specification

ADDINOL Eco Gear 68 M

CASTROL Optigear BM 68

CASTROL Tribol 1100 / 68

KLUEBER Klueber oil GEM 1-68 N

Planetary steering gear units


Name Specification

ADDINOL Eco Gear 150 M

CASTROL Optigear BM 150

CASTROL Tribol 1100 / 150

KLUEBER Klueber oil GEM 1-150 N


SCHOTTEL Instructions
for Attaching Anodes to a Propulsion Unit, Base Plate
and the Vessel's Hull

TRANSLATION OF THE GERMAN ORIGINAL

These Instructions are to be read and applied carefully to ensure safe operation and prevent damage
occurring to the propulsion system!

en TTD-Wh Anode Instructions 12/Dec 1194807 1/8


These Instructions have been written with the utmost
care and attention to detail. However, should you
require any further information, please contact:

SCHOTTEL GmbH
Mainzer Straße 99

2/8 TTD-Wh Anode Instructions 12/Dec 1194807 en


Table of Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Warranty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Initial Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Anode Material and Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5


4.1 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Type and size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 Anode shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Number and arrangement of anodes on the SRP, SCP and STP . . . . . . . . . . . . 6

6 Number and arrangement of anodes on the STT . . . . . . . . . . . . . . . . . . . . . . . . . . 7

7 Number and arrangement of anodes on the SPJ . . . . . . . . . . . . . . . . . . . . . . . . . . 8

en TTD-Wh Anode Instructions 12/Dec 1194807 3/8


1 Introduction
Galvanic anodes are attached at designated points on the SCHOTTEL propulsion units before delivery to minimise
corrosion. The so-called "sacrificial anodes" naturally produce an electric current which lessens the effects of
corrosion by equalising the differences in potential that exist between different materials. The connection between
the anode and the surface being protected must be made of conductive metal. For this reason, the anodes are to
be welded to the propulsion unit, base plate, tunnel or bottom of the vessel. In special cases, screw connections may
also be used. Make sure there is good contact between the anodes and the object being protected.

2 Warranty
SCHOTTEL GmbH usually guarantees the effectiveness of the attached anodes for a period of two years in normal
operating conditions.

i INFORMATION
The warranty may be extended depending on the
order specification.

Once the warranty has expired, the anodes are to be replaced. The protective effects of the anodes may be used
up earlier or at a later stage in unfavourable operating conditions or if the anodes are damaged. Therefore, the
completeness and condition of the anodes are to be checked on an annual basis according to the maintenance
schedule in the respective propulsion unit's Operating Instructions. Any missing or worn-out anodes are to be
replaced.
For anodes supplied loosely or those replacing lost ones, SCHOTTEL GmbH will only provide a warranty if:
● the anodes are supplied or approved in writing by
SCHOTTEL GmbH;
● the anodes are welded to the designated points
indicated in the respective drawings;
● the anodes are welded on by skilled welders in line
with these Instructions.
Any lost or worn-out anodes are to be replaced by the same material and weight attached at the same points.

3 Initial Installation
Anodes attached to the base plate by the shipyard are to be distributed evenly across the circumference according
to the Installation Drawing; see examples in section 5. The anodes may only be welded on right next to the base plate
on the hull if they are too big, or there is not enough room for the number of electrodes required. If possible, the anodes
are to be aligned with the sailing direction.

i INFORMATION
Anodes must never be welded to the propulsion unit's
steering tube or supporting cone, as this will affect the
flow characteristics at this location.

i INFORMATION
Always observe the SCHOTTEL Welding and Inspec­
tion Instructions.

4/8 TTD-Wh Anode Instructions 12/Dec 1194807 en


4 Anode Material and Shapes
4.1 Material
Depending on whether the vessels will be sailing at sea, along rivers or inland, anodes made of zinc, aluminium or
magnesium are welded or bolted onto the propulsion units, base plates, tunnels or hulls. The anodes (1/1) have a
welding lug (1/2) attached to them made of ship building steel. The welding lug is welded over a flat rod (1/6) to the
base material (1/7). When welding observe the General Welding Instructions and regulations of the classification
society. A spacer (1/5) is used when bolting on the anodes.
4.2 Type and size
The type and size of the anodes used depends on the size of the respective propulsion unit. Refer to the Installation
Drawing for measurements. Larger anode types are additionally secured with a central fixture (1/3).
4.3 Anode shapes
SCHOTTEL GmbH prefers drop shape anodes (A and D) because of their good flow characteristics. However,
bar-shaped anodes are also used (B and E).

1
1

A 2
3
D

2
B 3
4
5
1
C E

5
6
7

Fig. 1 Anode shapes (example: SRP 3030 CP, STT 04, STT 01)
A Anode welded in drop shape
B Anode welded in bar shape
C Anode welded in bar shape with central fixture
D Anode bolted in drop shape (top view and side view)
E Anode bolted in bar shape (top view and side view)

1 Anode 5 Spacer
2 Welding lug 6 Flat rod
3 Central fixture 7 Base material
4 Screw connection

en TTD-Wh Anode Instructions 12/Dec 1194807 5/8


5 Number and arrangement of anodes on the SRP,
SCP and STP
i INFORMATION
The exact number of anodes and their arrangement
depends on the type and size of the propulsion unit;
refer to the Installation Drawing (see example in
figure 2).

2
8 x anode 233 Z
192 kg (8 x 24 kg) of
anodes supplied loose
by SCHOTTEL, to be
mounted by the yard to
the base plate…

Fig. 2 Arrangement of the anodes on the base plate according to the Propulsion Unit Drawing (example: SRP
3030 CP)

1 Propulsion unit 3 Details of number, type of anode and weight *


2 Anodes 4 Top view of base plate with anode arrangement

* Details in the example: 8 x anodes 233 Z, 192 kg (8 x 24 kg) of anodes supplied by SCHOTTEL, to be mounted
by the yard on the base plate ID. NO……. (supplied by SCHOTTEL)

6/8 TTD-Wh Anode Instructions 12/Dec 1194807 en


6 Number and arrangement of anodes on the STT
i INFORMATION i INFORMATION
Tunnels with standard lengths are supplied with If the tunnel is extended by the shipyard, details can
welded on anodes. Anodes for tunnel sections longer be found in the Propulsion Unit Drawing regarding the
than the standard length are supplied loose and are to amount of zinc or aluminium anodes in kilograms per
be welded on by the shipyard. 1000 mm tunnel extension to be welded on for anode
The exact number of anodes and their arrangement protection.
depends on the type and size of the propulsion unit; For example: Standard length 2000 mm; 2.5 kg alu­
refer to the Propulsion Unit Drawing. minium anodes/1000 mm.

1 2

5 x anodes type 120-Z


12 x anodes type 50-Z Gross weight 12.50 kg
Gross weight 5.5 kg

3 3

4
5

Fig. 3 The anodes are arranged on the propulsion unit and tunnel in compliance with the Installation Drawing
(example: STT 004 CP))
1 Anodes in the tunnel (in front of the propeller) 4 Anodes on the propulsion unit
2 Anodes in the tunnel (behind the propeller) 5 Propulsion unit
3 Details of number, type of anode and weight
* Details in the example: 12 x anodes type 50-Z, net weight 5 kg, gross weight 5.5 kg; 5 x anodes type 120-Z,
net weight 12 kg, gross weight 12.5 kg

en TTD-Wh Anode Instructions 12/Dec 1194807 7/8


7 Number and arrangement of anodes on the SPJ
i INFORMATION i INFORMATION
The SPJs in the model ranges 15 RD-L, SPJ 22, The exact number of anodes* and their arrangement
SPJ 57 RD, SPJ 82 RD, SPJ 132 RD and SPJ 220 T depends on the size of the propulsion unit.
do not require anodes, as the above-water sub-
assemblies and diffuser housing are cast from the
same material, which means no difference in poten­
tial.
Anodes that are covered by warranty for five years are
only used on the respective supporting tubes
belonging to the SPJ 320 RD and SPJ 520 RD model
ranges; these are only changed in the course of five-
yearly maintenance according to the maintenance
schedule.

Fig. 4 Anodes on the SPJ (example: SPJ 320 RD)


1 SPJ 320 RD
2 Supporting tube
3 Anode

* Number of anodes for SPJ 320 RD: 9 pieces type 233-Z, gross weight: 24 kg
* Number of anodes for SPJ 520 RD: 13 pieces type 93 AL, gross weight: 24 kg

8/8 TTD-Wh Anode Instructions 12/Dec 1194807 en


Installation Instructions for Screw and Bolt
Connections and Sealants

These Installation Instructions are to be read and applied carefully to ensure safe operation and
prevent damage occurring to the propulsion system!

en TTD-Ro Installation Instructions for Screw and Bolt Connections and Sealants 14/0208 1180737 1/13
These Installation Instructions have been written
with the utmost care and attention to detail.
However, should you require any further
information, please contact:

SCHOTTEL GmbH
Mainzer Straße 99
56322 Spay, Germany
Phone +49 (0) 2628 610
Fax +49 (0) 2628 61300
E- mail info@schottel.de

2/13 TTD-Ro Installation Instructions for Screw and Bolt Connections and Sealants 14/0208 1180737 en
Table of Contents

1 About these Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4


1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Means of Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Screw and Bolt Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6


2.1 Tightening Torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Tightening Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Securing Screw and Bolt Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Sealants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 Sealing Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1 Preparation of the Sealing Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Applying Sealing Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Thread Sealants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 Preparation of the Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Applying Thread Sealants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Filling in of Boreholes and Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.1 Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Applying quick-setting cement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Recommended Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

en TTD-Ro Installation Instructions for Screw and Bolt Connections and Sealants 14/0208 1180737 3/13
1 About these Instructions
1.1 Introduction
These Instructions provide guidelines for installation, including the handling of screw and bolt connections and
sealants, and relevant recommended products.
The Instructions are part of the Service Manual and are to be kept accessible to all staff at all times in the
immediate vicinity of the propulsion system. Staff are to have read and understood these Instructions
thoroughly before commencing any work. The basic prerequisite for work safety is the observance of all safety
instructions and other instructions provided.
Furthermore, the local accident prevention regulations and general safety provisions apply to the propulsion
system's area of application.

1.2 Means of Representation


Illustrations
References to illustrations are written in brackets in the text, e. g. (1/3). The first number refers to the illustration
number; the second number is the item number in the illustration. For example: (1/3) means figure 1, item 3.

Lists and Grouped Safety Instructions

D Items in a list and grouped safety instructions are introduced with a bullet point. The order in which they
appear does not represent their order of importance.

Instructions
" This sign is used for an instruction and indicates that an action is to be carried out. Instructions are to
be followed in the order they are stated. They may be followed by additional information for the action
that is to be carried out.

If instructions consist of several steps to be carried out in a sequence, these steps are numbered and listed
chronologically in the specified order.
For example:
1. Clean and degrease contact surfaces.
2. Check that the sealing surfaces are level and
rework them, if necessary.

4/13 TTD-Ro Installation Instructions for Screw and Bolt Connections and Sealants 14/0208 1180737 en
Warning Notices
Warning notices are set apart from the rest of the text in these Instructions. They are marked in colour and
introduced with a symbol and keywords that highlight the extent of the risk or hazard.
It is essential that warning notices are heeded and handled with great care to prevent accidents, personal
injuries and material damage from occurring.

DANGER
Indicates a hazardous situation which, if not
avoided, will result in death or serious injury.

WARNING
Indicates a hazardous situation which, if not
avoided, could result in death or serious injury.

CAUTION
Indicates a hazardous situation which, if not
avoided, could result in minor or moderate injury.

NOTICE
Indicates actions which may result in material
damage.

Any warning notice within these Instructions for Use


is structured as follows:

KEYWORD
Cause of the danger
Consequences of the danger
▶ Measures to avert the danger

Tips and Recommendations

i INFORMATION
Instructions and information for efficient and
trouble-free operation.

en TTD-Ro Installation Instructions for Screw and Bolt Connections and Sealants 14/0208 1180737 5/13
2 Screw and Bolt Connections
2.1 Tightening Torques

NOTICE i INFORMATION
Damage to the propulsion system due to Thinly applied oil or adhesive (equivalent of having
wrong tightening torques oil thinly applied) has been assumed for the coeffi-
Components may break loose. cients of friction for corrosion-resistant screws and
bolts: Overall coefficient of friction moverall=0.13
▶ Make sure you always use the tightening tor-
ques specified in the installation drawing
when bolting the well and the propulsion
system to the vessel.

The tightening torques specified in the drawings and the Service Manual are to be applied to all other screw
and bolt connections. However, if no tightening torques are specified, the values in the following table apply
in relation to thread size and property class.

Tightening torque MA (Nm)

Size Property class Property class

8.8 10.9 12.9 A4-70 A4-80 C3-80

M4 2,8 4,1 4,8 2,2 2,9 3,1


M5 5,5 8,1 9,5 4,3 5,7 6,1
M6 9,5 14 16,5 7,3 9,8 10,4
M7 15,5 23 27 12 16 17
M8 23 34 40 17 23 25
M10 46 68 79 35 48 51
M12 79 117 135 60 82 87
M14 125 185 215 98 130 140
M16 195 280 330 150 200 215
M18 280 390 460 210 270 300
M20 390 560 650 290 380 430
M22 530 750 880 390 520 580
M24 670 960 1120 490 655 720
M27 1000 1400 1650 730 965 1065
M30 1350 1900 2250 990 1310 1440
M33 1850 2600 3000 1340 1775 1950
M36 2350 3300 3900 1730 2280 2510
M39 3000 4300 5100 2250 3100 3250

6/13 TTD-Ro Installation Instructions for Screw and Bolt Connections and Sealants 14/0208 1180737 en
2.2 Tightening Order
Screw and bolt connections are to be tightened
gradually in line with the pattern shown in figure 1.
1
i INFORMATION
8 5
Observe tightening torques; see "2.1 Tightening
Torques" section, page 6.

4 3

7
6

Figure 1 Tightening Order

en TTD-Ro Installation Instructions for Screw and Bolt Connections and Sealants 14/0208 1180737 7/13
2.3 Securing Screw and Bolt
Connections
Any screw and bolt connections that are not secured
with mechanical components need to be secured
with liquid adhesive. However, make sure these
glued connections can be unscrewed without the
need for heat treatment.

CAUTION
Hazardous substances harmful to health
1
Liquid adhesives may be harmful to health if they
come into direct contact with skin (e. g. caustic
burns, allergic reactions).
▶ Manufacturer safety data sheets are to be
observed.
▶ Always wear personal protective equipment
when handling liquid adhesives.

NOTICE
Damage due to improper use of liquid
adhesives Figure 2 Applying liquid adhesive to bolts
Components may break loose and become
damaged.
▶ When handling liquid adhesives the relevant
manufacturer's specifications are to be
observed.

i INFORMATION
For recommended liquid adhesives, see the
"4 Recommended Products" section, page 13.

D For nut and bolt connections up to M16, apply


liquid adhesive to the first thread turns of the
bolt thread (2/1).
For nut and bolt connections larger than M16,
apply liquid adhesive to both parts being joined.

8/13 TTD-Ro Installation Instructions for Screw and Bolt Connections and Sealants 14/0208 1180737 en
3 Sealants
3.1 Sealing Compounds

i INFORMATION
Sealing surfaces that need installing with a sealing
compound are identified in the propulsion unit
drawings.

3.1.1 Preparation of the Sealing


Surfaces
Before applying sealing compound, the sealing
surfaces are to be prepared appropriately:
1. Clean and degrease the sealing surfaces.
2. Check that the sealing surfaces are level and
rework them, if necessary.

NOTICE
Damage to the O-rings due to sealing
compounds
O-rings may harden
▶ O-rings must not come into contact with
sealing compounds.

3. Use O-rings or any other specified seals in a dry


state.

en TTD-Ro Installation Instructions for Screw and Bolt Connections and Sealants 14/0208 1180737 9/13
3.1.2 Applying Sealing Compounds

CAUTION
Hazardous substances harmful to health
Sealing compounds may be harmful to health
(e. g. caustic burns; allergic reactions).
▶ Manufacturer safety data sheets are to be
observed.
▶ Always wear personal protective equipment
when handling sealing compounds.

i INFORMATION
For recommended cleaning agents and sealants,
see the "4 Recommended Products" section,
page13.

NOTICE
Damage to the O-rings due to sealing
compounds
O-rings may harden
▶ O-rings must not come into contact with
sealing compounds.

1. Apply a thin and even layer of sealant on one


side.
2. Allow the sealant to air according to the
manufacturer's specifications.
3. Join the components so they fit exactly and do
not move them.
4. Mount the bolts and nuts tightening them
according to specifications; see the drawing or
"2 Screw and Bolt Connections" section,
page 6.

i INFORMATION
Allow the sealant to harden according to the manu-
facturer's specifications before putting any strain
on the joined parts.

10/13 TTD-Ro Installation Instructions for Screw and Bolt Connections and Sealants 14/0208 1180737 en
3.2 Thread Sealants

i INFORMATION
Threaded pipes that need installing with thread
sealants are identified in the propulsion unit
drawings.

3.2.1 Preparation of the Threads


Before applying thread sealant, the threads are to be
prepared appropriately:
1. Clean and degrease the threads.
2. Check the condition of the threads and rework
them, if necessary.

3.2.2 Applying Thread Sealants

CAUTION
Hazardous substances harmful to health
Thread sealants may be harmful to health (e. g.
caustic burns; allergic reactions).
▶ Manufacturer safety data sheets are to be
observed.
▶ Always wear personal protective equipment
when handling thread sealants.

i INFORMATION
For recommended cleaning agents and sealants,
see the "4 Recommended Products" section,
page13.

i INFORMATION
For thread sizes up to 1/2" only apply sealant to the
external thread. For larger threads apply sealant to
both parts to be joined.

1. Apply sealant to the first thread turns that are


engaged (first thread turn remains untreated).
2. Mount the screw fittings and tighten them
according to specifications.

i INFORMATION
Allow the sealant to harden according to the manu-
facturer's specifications before putting any strain
on the joined parts.

en TTD-Ro Installation Instructions for Screw and Bolt Connections and Sealants 14/0208 1180737 11/13
3.3 Filling in of Boreholes and
Gaps

i INFORMATION
Gaps or boreholes that need to be filled with water-
resistant, quick-setting cement, are identified in
the propulsion unit drawings.

3.3.1 Conditions
D Parts are to be coated.

D Make sure surfaces are clean, dry and


degreased.

3.3.2 Applying Quick-Setting Cement

CAUTION
Hazardous substances harmful to health
Quick-setting cement may be harmful to health
(e. g. caustic burns; allergic reactions).
2
▶ Manufacturer safety data sheets are to be
observed.
1
▶ Always wear personal protective equipment
when handling quick-setting cement.

i INFORMATION
For recommended quick-setting cement, see the
"4 Recommended Products" section, page13.

1. Insert sealing plugs (3/1) into the hexagonal


socket screw heads.
2. Mix the required amount of quick-setting
cement as specified by the manufacturer.
3. Fill the boreholes/gaps with quick-setting Figure 3
cement (3/2).
4. Allow the quick-setting cement to set according
to the manufacturer's guidelines.
5. Level up the surfaces by sanding and apply a
new coat of paint in line with the relevant
specification.

12/13 TTD-Ro Installation Instructions for Screw and Bolt Connections and Sealants 14/0208 1180737 en
4 Recommended Products

Application Product Container Part no.:

Thread lockers
Loctite 245 Can 250 ml 1048197

Sealing compounds
DELO ML 5198 Can 200 ml 1058474
Loctite 574 Can 50 ml 1118507

Thread sealants
Loctite 577 Can 250 ml 1126538

Cleaning agent
Loctite Cleaner 7063 Spray can 150 ml /400 ml 1034072

Quick-setting cement
PCI-Polyfix Sack 15 kg 1127896

en TTD-Ro Installation Instructions for Screw and Bolt Connections and Sealants 14/0208 1180737 13/13
Preservation Instructions

Component assemblies are preserved following the SCHOTTEL Hydraulic Systems


trial run/assembly at the manufacturing plant; this
preservation will protect the propulsion systems for
up to 6 months. Internal parts:
Flush the system with ESSO anti−corrosive protec-
If the propulsion systems are not commissioned tion MZ45 to ensure that all internal parts are coated.
within this period of protection, they are to be Also go through the operating functions with no load.
retreated with preservatives as described in the fol- Then drain the preservation oil. Always make sure
lowing: hydraulic cylinders are retracted before being stored.

SCHOTTEL Rudder Propellers/Jets/ General


Transverse Thrusters
Fitting surfaces and untreated parts:
Internal parts: If damage has occurred to preserved fitting surfaces,
Fill the gears with SHELL anti−corrosion oil these have to be washed down with the following
S.7294/SAE 30 and fully rotate all of the power trans- solvent: Petroleum, white spirit diesel, wax remover
mitting parts to ensure that all internal parts are or similar agent.
coated. Then drain the anti−corrosion oil. Next, spray or coat the surfaces with VALVOLINE
TECTYL 846 K−19.
Steering gear:
Fill the steering gear with SHELL anti−corrosion oil For storage in seaworthy packaging, the complete
S.7294/SAE 30 and fully rotate the steering system system and loose parts are shrink−wrapped in plastic
to ensure that all internal parts are coated. film at the manufacturing plant. If this packaging
Then drain the anti−corrosion oil. becomes damaged, the system is to be provided with
desiccant bags and completely repackaged before
being sealed air−tight.
SCHOTTEL Clutches

BMK 80, K 155, K 305 and K 350:


The clutch is to be filled with SHELL preservation oil
! CAUTION

S.7294/SAE 30 and then fully rotated with no load to Before mounting fitting surfaces and untreated parts
ensure that all internal parts are coated. The preser- make sure that the preserved surfaces are washed
vation oil can then be drained. down with the following solvents:

Mechanical clutches: For example:


Coat all of the untreated parts within the clutch − Petroleum
housing with SHELL preservation oil S.7294/SAE − White spirit
30. Make sure the clutch is fully disengaged before − Diesel
application. However, also make sure that the friction − Wax remover
surfaces remain untreated. Always make sure the
clutch is disengaged before being stored.

en TDO−rg Preservation Instructions 3 641/02 1104097 1/ 1


BLANK PAGE
3.2 Hydraulic System
BLANK PAGE
Flushing Specification for Hydraulic Systems with
Variable Displacement Pump

Preliminary Notes
These instructions are to provide information and Given that SCHOTTEL propulsion systems are subject
guidance to all persons involved in the initial start−up, to further development, we reserve the right to carry out
operation and maintenance of SCHOTTEL propulsion technical modifications.
systems. Please make sure that these instructions are
read, understood and carefully observed. Important instructions relevant to technical and
operational safety are identified by the following
These instructions are to be made available to all symbols:
persons carrying out work on the propulsion systems.
We shall not accept liability for any damages or ! WARNING
malfunctions resulting from non−observance of these
instructions. Indicates working and operating methods that are to be
It is a prerequisite that all users are familiar with the strictly observed to prevent any risk to personal safety.
propulsion systems and have been informed about the
possible dangers associated with their use.
Only trained and qualified personnel are permitted to
! CAUTION

carry out work on the propulsion systems. Indicates working and operating methods that are to be
strictly observed to prevent damage to or destruction of
References to illustrations contained in the text are materials.
written in brackets, e.g. (1/3). The first number refers to
the illustration number in the manual; the second
number is the item number in the illustration. NOTE
All illustrations are schematic diagrams and do not Indicates specific features of the working process
make any claim to completeness. which are to be observed.
Any technical modification to SCHOTTEL propulsion
systems to be performed by non−SCHOTTEL
personnel requires written authorisation.
i INFORMATION
However, this does not include any of the modifications Application instructions and information.
or control settings described in our instructions.
When carrying out any work on SCHOTTEL propulsion
systems, always observe the safety and environmental
protection regulations as well as the applicable laws in
force in the relevant country of operation.

These instructions have been written with the utmost care and attention to detail.
Should you require any further information, please contact:
SCHOTTEL GmbH
Mainzer Straße 99
56322 Spay, Germany
Phone +49 (0) 2628 610
Fax +49 (0) 2628 61300
E−mail info@schottel.de

en STD−Ro Flushing Specification for Hydraulic Systems with Variable Displacement Pump 07/3151 1100933 1/ 3
Hydraulic oil used in the operation of a variable
displacement pump in a closed hydraulic system has to ! CAUTION
be absolutely pure. For this reason, the hydraulic
system is to be flushed before commissioning and after The hydraulic system is to be installed according to
maintenance and repair work has been carried out. SCHOTTEL Specification 1099237.
Two flushing procedures are required to attain the
necessary purity level.

Flushing Procedure 1
1
Tools:
D Pressure filter (10m) with check valve (2 x)
D Flushing unit with pump

! CAUTION
Variable displacement pumps and hydraulic motors
must not be rinsed in flushing procedure 1.

2
1. Disconnect the variable displacement pump (1/4)
from the flushing circuit.
2. Connect the flushing unit (1/3).
3. Disconnect the hydraulic motors (1/1) from the
10  10 
flushing circuit.
4. Install the pressure filter with check valve (1/2) in
the flushing circuit in accordance with figure 1.
3
! CAUTION
It is crucial that the minimum flushing time is observed!
The minimum flushing time can be calculated as
follows:
t = V/Q x 5
V = tank volume [ l ], Q = feed quantity of pump [l/min] 4
t = minimum flushing time [ h ]

5. Initiate the flushing procedure with a continuous


volume flow.

NOTE
The results of the oil samples are to be documented.

Figure 1

2/ 3 STD−Ro Flushing Specification for Hydraulic Systems with Variable Displacement Pump 07/3151 1100933 en
6. Take oil samples during the flushing procedure.
7. Continue the flushing procedure until a purity level
complying with ISO 4406 20/18/15 is attained or
better.
8. Remove the flushing unit.
9. Connect the hydraulic motors.
10. Connect the variable displacement pump.

NOTE
Leave the pressure filter in the flushing circuit for
flushing procedure 2.

Once flushing procedure 1 has finished, the entire


hydraulic system is to be flushed in flushing
procedure 2 during commissioning.

2
Flushing Procedure 2

1. Carry out commissioning.


10  10 

! CAUTION
During commissioning, a minimum flushing time of 30
minutes is to be upheld.

2. Remove the pressure filter (2/2) after


commissioning.

3. Reconnect the system according to the Hydraulic


Circuit Diagram.
3

Figure 2

en STD−Ro Flushing Specification for Hydraulic Systems with Variable Displacement Pump 07/3151 1100933 3/ 3
Installation Specifications for Hydraulic Systems
and their Components

TRANSLATION OF THE GERMAN ORIGINAL

These Specifications are to be read and applied carefully to ensure safe operation and prevent damage
occurring to the propulsion system!

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 1/99
These Specifications have been written with the utmost
care and attention to detail. However, should you
require any further information, please contact:

SCHOTTEL GmbH
Mainzer Straße 99
56322 Spay, Germany
Phone +49 (0) 2628 610
Fax +49 (0) 2628 61300
E- mail info@schottel.de
a).

2/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
Table of Contents

1 About these Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7


1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Applicable Product Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 SCHOTTEL GmbH: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Other Applicable Product Documents for Operation of the Hydraulic System . . . . . 7
1.3 Symbols and Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Restriction on Liability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Warranty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Warranty Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Customer Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Shipyard's Responsibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Operator's Responsibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Staff Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Qualification of Specialist Staff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Requirements of Maintenance Staff for the Hydraulic System . . . . . . . . . . . . . . . . . . 12
2.3.3 Requirements of Maintenance Staff for Electrical Components . . . . . . . . . . . . . . . . . 12
2.4 Area of Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Personal Protective Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Intended Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Foreseeable Misuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Safety and Monitoring Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Switching Off Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9.1 Disconnecting Electrical Components from the Power Supply . . . . . . . . . . . . . . . . . . 14
2.9.2 Deactivating the Activation Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.10 Safe Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 Electromagnetic Interference Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.12 Ambient Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.12 Sound Pressure Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.14 General Remaining Risks and Protective Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Safety Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Basic Safety Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Special Safety Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Prior to Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Commissioning and Resumption of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Operation and Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 Disposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Technical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Definition of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 Hydraulic System Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Open Circulation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Closed Circulation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Safety Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 3/99
5 Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1 Prior to Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Installation and Preparation for the Trial Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26


6.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1.1 Rigid Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.2 Hose Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.3 Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Connecting the Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Disconnecting the Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Preparation for the Trial Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2.1 Initial Fill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2.2 Flushing and Bleeding the Hydraulic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Commissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1 Trial Run at the Pier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Preparation for the Sea Trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8 Resumption of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.1 During Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.2 Measures After Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

10 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
10.1 Definition of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.2 Maintenance Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.3 Measurement and Control Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
10.3.1 Prior to Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
10.3.2 Prior to Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.3.3 During Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.3.4 Following Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.4 Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.4.1 Prior to Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.4.2 Prior to Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.4.3 During Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.4.4 Following Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.5 Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.5.1 Disconnecting and Connecting the Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Disconnecting the Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Connecting the Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
10.6 Rigid Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.6.1 Prior to Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.6.2 During Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Rigid Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Pipe Clamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Pipe Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Cold Bending of Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Screw Fittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Welded Reducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Flanged Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
10.6.3 Following Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.7 Replacement of Hose Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
10.7.1 General Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Pressure Equipment Directive (14th. GPSGV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Inspection Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.7.2 Prior to Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.7.3 During Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Torsion, Traction and Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Permissible Bending Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Abrasion, Chafing and Bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Hose Brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Effects of Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.7.4 Following Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

11 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
11.1 Line System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
11.1.1 Abnormal Noises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
11.1.2 No or Insufficient Feed Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
11.1.3 No or Insufficient Flow Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
11.1.4 No Oil Fed to Actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
11.2 Fluctuations in the Feed Pressure and Flow Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.3 Measurement and Control Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.4 Valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

12 Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

13 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
13.1 Short-Term Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
13.2 Long-Term Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
13.2.1 Hose Lines and Seals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Storage Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

14 Disposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
14.1 Scrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
14.2 Disposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 5/99
BLANK PAGE

6/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
1 About These Specifications
1.1 Introduction
These Specifications describe the line systems for hydraulic systems and their components (e.g. hose lines, valves,
and measurement and control equipment). Hydraulic systems are divided into different sub-assemblies; e.g.
hydraulic drive station and hydraulic pump unit.
The hydraulic system and its components, referred to as hydraulic system in the following, is part of the entire
propulsion system supplied by SCHOTTEL GmbH.
The Specifications are part of the Service Manual and are to be kept accessible to all staff at all times in the immediate
vicinity of the hydraulic system. Staff are to have read and understood these Specifications thoroughly before com­
mencing any work. The basic prerequisite for work safety is the observance of all safety instructions and other
instructions provided.
Furthermore, the local accident prevention regulations and general safety provisions apply to the hydraulic system's
area of application.
The following guidelines additionally apply:
VDI 3027 "Initial Operation and Maintenance of Hydraulic Systems"
DIN 24346 "Hydraulic Systems"
ISO 4413 "Hydraulic Fluid Power - General Rules Relating to Systems"

1.2 Applicable Product Documents


1.2.1 SCHOTTEL GmbH:
The designs of hydraulic systems can be very diverse and as part of the overall propulsion system are therefore sub­
ject to the most varied of operating instructions. General operating instructions for hydraulic systems may provide
useful information, but are generally supplemented by specific instructions. These Specifications are supplemented
by other project-related operating instructions and specifications in this Service Manual ("Applicable Product Docu­
ments").
These applicable product documents are supplied with these Specifications in the Service Manual.

1.2.2 Other Applicable Product Documents for Operation of the Hydraulic System
Shipyard:
● Classification society acceptance report
Operator:
● Instructions on accident prevention, occupational health and safety and environmental protection based on the
regulations applicable in the country of use

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 7/99
1.3 Symbols and Diagrams
Warning Notices
Warning notices are set apart from the rest of the text in these Specifications. They are marked in colour and intro­
duced with a symbol and keywords that highlight the extent of the risk or hazard.
It is essential that warning notices are heeded and handled with great care to prevent accidents, personal injuries
and material damage from occurring.

DANGER
Indicates a hazardous situation which, if not avoided,
will result in death or serious injury.

WARNING
Indicates a hazardous situation which, if not avoided,
could result in death or serious injury.

CAUTION
Indicates a hazardous situation which, if not avoided,
could result in minor or moderate injury.

NOTICE
Indicates actions which may result in material damage.

Any warning notice within these Specifications is struc­


tured as follows:

KEYWORD
Cause of the danger
Consequences of the danger
▶ Measures to avert the danger

Tips and Recommendations

i INFORMATION
Instructions and information for efficient and trouble-
free operation.

8/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
Diagrams
References to illustrations are written in brackets in the text, e. g. (1/3). The first number refers to the illustration
number; the second number is the item number in the illustration. For example: (1/3) means figure 1, item 3. All illus­
trations are schematic diagrams and do not make any claim to completeness.

Lists and Grouped Safety Instructions


● Items in a list and grouped safety instructions are introduced with a bullet point. The order in which they appear
does not represent their order of importance.

Instructions
▶ This sign is used for an instruction and indicates that an action is to be carried out. Instructions may be followed
by additional information for the action that is to be carried out.
If instructions consist of several steps to be carried out in a sequence, these steps are numbered and listed chronolo­
gically in the specified order.

For example:
1. Switch the hydraulic system off and make sure it cannot be started up unintentionally.
2. Place a suitable collecting basin underneath the pressure filter.

▶▶ This symbol refers to continuation on the next left page.


Blank Page
Blank pages are deliberate and identified as such.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 9/99
1.4 Restriction on Liability
All information and notices provided in these Specifications have been compiled in consideration of the applicable
standards and regulations, the state of the art and the insights and experience we have gained over many years.
SCHOTTEL GmbH will not accept any liability for any damage incurred as a result of the following circumstances:
● Failure to comply with these Specifications;
● Using the hydraulic system other than for its intended purpose;
● Using staff that are not trained to deal with the task in question;
● Unauthorised structural, electrical or control-related modifications and repairs;
● Technical modifications;
● Using unapproved spare parts;
● Using unsuitable, unapproved operating materials
● Operating the propulsion system using safety and monitoring devices that are defective, improperly installed
or are not functioning properly.
The obligations stipulated in the Supply Contract, SCHOTTEL GmbH's General Terms and Conditions and Terms
of Delivery, and the applicable legal regulations in force at the time of concluding the Contract shall apply.

1.5 Warranty
SCHOTTEL GmbH shall not assume responsibility for any personal injuries or material damage that may occur as
a result of failing to comply with these Specifications. Furthermore, any form of warranty granted by SCHOTTEL
GmbH shall become void, and responsibility shall be transferred to the operator.

1.6 Warranty Conditions


The warranty conditions stipulated by contract shall apply, provided that the hydraulic system is used as intended
and the maintenance instructions are observed. SCHOTTEL GmbH may request evidence of the Maintenance
Instructions being observed.
The trial run and sea trial of the hydraulic system are to be carried out by authorised SCHOTTEL GmbH employees.
Original spare parts from SCHOTTEL GmbH are to be used for maintenance and repair work. The full functionality
and safe operation of the propulsion system can only be guaranteed if spare parts supplied by SCHOTTEL GmbH
are used. The warranty shall become void if any parts are used other than original SCHOTTEL parts. SCHOTTEL
GmbH shall not assume any liability or warranty for any damage incurred by using other spare parts and accessories.
SCHOTTEL GmbH's General Terms and Conditions shall expressly apply to all orders placed (www.schottel.de/
agb). Requests for spare parts are to be made in writing.
The order form in the Service Manual is to be used for ordering original SCHOTTEL spare parts.

1.7 Customer Service


SCHOTTEL's Customer Service Department is available to provide technical information. For SCHOTTEL GmbH
contact details, see page 2. Furthermore, we are always interested in new information and learning about any new
experiences that arise from using our products and that may be useful in terms of improving them.

10/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
2 Safety
This section will provide an overview of all of the important safety aspects involved in providing staff with optimal pro­
tection and ensuring the safest and smoothest operation possible.
Failure to comply with the safety instructions and other instructions set out in these Specifications may result in ser­
ious hazards arising. Therefore, staff are to observe all safety and other instructions set out in this section and in these
Specifications and take the relevant safety measures.

2.1 Shipyard's Responsibility


The shipyard will hand over the hydraulic system to the operator after it has been installed in the respective vessel.
The shipyard is to make sure that the SCHOTTEL GmbH Service Manual is available at the hydraulic system's site
of operation in a legible condition and complete when the vessel is handed over to the operator.

2.2 Operator's Responsibility


The hydraulic system operator is responsible for complying with the applicable legal requirements of occupational
safety.
In addition to the occupational safety instructions within these Specifications, the safety, accident prevention and
environmental protection regulations for the hydraulic system's area of application are to be observed.
The operator is obliged to:
● Keep informed about applicable occupational safety provisions, and investigate the additional risks arising from
the special working conditions at the hydraulic system's site of operation by carrying out a risk assessment.
These are to be implemented in the form of operating instructions for the hydraulic system.
● Check throughout the entire period of hydraulic system use whether the operating instructions he has provided
represent the latest version of rules and regulations, and to amend these, if necessary.
● Designate a large enough danger zone around the hydraulic system. This danger zone must not be accessible
to unauthorised persons during operation; a minimum one metre clearance around the hydraulic system is to
be ensured.
● Ensure that all employees handling the hydraulic system have read and understood the Specifications. Further­
more, the operator is to instruct the staff in safety matters at regular intervals and keep them informed about
risks.
● Provide staff with the necessary protective gear.
● Ensure that the hydraulic system is only operated in compliance with its intended use and only if it is in a perfect,
operational condition.
● Ensure that the Specifications are always available at the hydraulic system's site of operation in a legible condi­
tion and complete.
● Ensure that all of the safety instructions and warning notices attached to the hydraulic system are never
removed, and are kept clean and easily legible.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 11/99
2.3 Staff Requirements
2.3.1 Qualification of Specialist Staff
The work described in these Specifications is only to be carried out by qualified specialist staff. Specialist staff are
defined as persons who due to their professional training, knowledge and experience, as well as knowledge of the
pertinent stipulations, are in a position to:
● Carry out the work assigned to them safely, and correctly assess the implications of their work.
● Identify potential hazards independently.
● Take necessary measures to eliminate any hazards, especially those concerning risk of accidents.
Staff are to be trained and instructed regularly in all matters concerning occupational safety and environmental pro­
tection.
When selecting staff, the regulations specific to age and profession that apply at the site of operation are to be
observed.

2.3.2 Requirements of Maintenance Staff for the Hydraulic System


According to DIN 31051, maintenance covers the individual measures for preventative and corrective maintenance
and inspection. Everyone involved in maintenance needs to be familiar with and adhere to these Specifications.
The preventative maintenance staff (e.g. for replacing filter elements) are to:
● Have been instructed in the respective activity.
● Demonstrate special hydraulic system expertise to be able to carry out preventative maintenance work.

The inspection staff (e.g. for checking the oil level) are to:
● Have been instructed in the respective activity.
● Be aware of the special risks involved in handling the hydraulic system. Special hydraulic system expertise is
not necessary for just inspection work.

The corrective maintenance staff (e.g. for replacing a defective temperature switch) are to:
● Have been instructed in the respective activity.
● Be able to comprehend the function of the hydraulic system and sub-systems, and their interaction with the func­
tion of the entire propulsion system.
● Be able to understand technical drawings and the sub-functions of the hydraulic system.
● Have knowledge about the function and structure of the sub-systems (e.g. line systems).

2.3.3 Requirements of Maintenance Staff for Electrical Components


Work on electrical components is only to be carried out by an authorised qualified electrician or by a trained person
directed and supervised by a qualified electrician according to the electrical engineering regulations and safety
measures.

12/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
2.4 Area of Application
The hydraulic system's area of application is determined by the stipulated classification society in its acceptance
procedure. The intended use is to be taken into account when determining the area of application.

2.5 Personal Protective Equipment


At work, personal protective equipment is to be worn to keep risks to a minimum.
The instructions about personal protective equipment displayed in the work area are always to be followed.

The protective gear needed for respective tasks is always to be worn:


Protective workwear
Close-fitting work clothes with little resistance to tearing; close-fitting sleeves with no protrusive parts
Safety footwear
Protects feet from heavy falling parts and helps prevent slipping over on slippery floors
Safety gloves
Protect hands from grazes, punctures or deeper cuts, irritating and caustic substances, and burns
Safety goggles
Protect eyes from flying parts and spraying liquid
Safety helmet
Protects the head from falling parts or injuries
Ear protectors
Protects the ears from excessively loud noises

2.6 Intended Use


The hydraulic system is intended and has been designed for the transfer, control and distribution of energy using a
liquid medium (oil) under pressure. The oil is not only used as a pressure medium, but can also be used as lubrication
oil, anti-corrosion agent and to cool sub-assemblies and components.
The hydraulic system is only to be operated in a perfect technical condition in compliance with its intended use and
these Specifications; furthermore, all operators of the hydraulic system need to be fully aware of all safety issues and
potential risks associated with its use. In particular, malfunctions that may affect safety are to be rectified immedi­
ately.
The hydraulic system must not be installed and operated in areas where there is a risk of explosions.
No modifications, additions, or conversions are to be undertaken on the hydraulic system without prior written con­
sent from SCHOTTEL GmbH. Such modifications may endanger safety and are not considered to be compliant with
intended use.
The hydraulic system may only be operated on vessels that comply with the applicable specifications of the stipu­
lated classification society. Any other procedure is not considered to be compliant with intended use and is not per­
mitted.
Any kind of claims based on damage due to improper use are exempt. The operator shall be solely responsible for
any damage that occurs as a result of improper use.
Intended use is also subject to:
● Adherence to all of the operator's applicable operating instructions
● Adherence to the directives within these Specifications
● Undertaking the specified maintenance work
Any other kind of use is not considered to be compliant with intended use.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 13/99
2.7 Foreseeable Misuse
Improper use is considered to be any kind of use of the hydraulic system other than that set out under "Intended Use".
Improper use is prohibited.
This includes:
● Structural modifications to the propulsion unit
● Structural modifications to propulsion unit control components
● Modifications to the software for propulsion unit control
● Modifications to the safety and monitoring devices
● Use of impermissible lubricants

2.8 Safety and Monitoring Devices


Safety and monitoring devices are designed to help rule out personal injuries and material damage.
The hydraulic system may only be operated when all safety and monitoring devices are in place and fully functional.
When a safety and monitoring device has been triggered, the hydraulic system may only be put back into operation,
if:
● The cause of the malfunction has been eliminated;
● It is absolutely certain that resuming operation does not represent a danger to persons or materials.
Safety and monitoring devices may be removed, modified, rendered inoperative or have their effect altered by per­
sons in charge or experts for temporary intervention purposes only, as in the case of tests and examinations,
troubleshooting, rectification of damage or defects, and to replace components. Furthermore, these interventions
have to be adequate in terms of safety, or adequate contingency measures have to be taken with regard to safety.
The staff are to be instructed to exercise additional caution in these situations.

2.9 Switching Off Devices


To enable many of the operational sequences described in these Specifications to be carried out safely, the hydraulic
system is to be first switched off, shut down and, if possible, secured by additional precautions. The required switch-
off level depends on the relevant type of operational sequence. The switch-off levels are:

2.9.1 Disconnecting Electrical Components from the Power Supply


Before working on and accessing unprotected wires or connection points, disconnect the relevant electrical com­
ponents from all voltage sources.
1. Switch off the electrical components and connected accessories.
2. Make sure that these cannot be switched on unintentionally by locking and labelling the isolators and power
switches used to disconnect the electrical components and optional accessories from the mains.

2.9.2 Deactivating the Activation Signal


Before working on a component which receives an activation signal from a superordinate electrical or mechanical
control unit, the control unit is to be deactivated and measures taken to ensure it cannot be accidentally activated.
1. Switch off the superordinate control unit (e.g. SPS) or disconnect from the mains.
2. Remove the input signal cable from the component.
3. Set the pressure to zero or disconnect the voltage supply; dissipate any residual power.

14/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
2.10 Safe Operation
If it can be assumed that safe operation is no longer possible, switch the hydraulic system off immediately and make
sure that it cannot be switched on unintentionally.
Safe operation is no longer possible, if:
● Not all of the safety and monitoring devices are in place and fully functional.
● Persons might be put at risk by operating the hydraulic system.
● The hydraulic system is defective and/or leaking.
● The hydraulic system is visibly damaged.
● The hydraulic system displays malfunctions detected by measurement and control equipment.
● The hydraulic system has been operated, stored or transported in unfavourable ambient conditions (e.g. fumes/
vapours; temperature).
● Unauthorised structural, electrical or control-related modifications, repairs or manipulations have been carried
out on the hydraulic system.
The hydraulic system may only be started up again if its safe operation can be guaranteed.

2.11 Electromagnetic Interference Fields


Interference fields from the surroundings can affect electrical components, as well as be generated by operating the
electrical components; these interference fields can in turn affect the surrounding components.
Source or target electromagnetic interference could be due to:
● Mains cables

● Signal and control cables

● Electric or electronic assemblies that radiate electromagnetic fields (e.g. mobile phones and computers), or
may be affected by them
Protection from electromagnetic interference fields is to be provided for operation of the hydraulic system. The rel­
evant specifications in this Service Manual (e.g. applicable product documents; Wiring Diagram) and the specifica­
tions of the stipulated classification society are to be observed.

2.12 Ambient Conditions


The respective environmental conditions for using the hydraulic system are dependent on the area of application
designated; see the "2.4 Area of Application" section, page 13.

2.13 Sound Pressure Level


When the hydraulic system is used as intended, a noise level of 85 dB(A) may be exceeded in the hydraulic system
operating area.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 15/99
2.14 General Remaining Risks and Protective Measures
Despite the hydraulic system's high level of intrinsical safety, risk of injury and/or environmental damage cannot be
ruled out even in the case of correct conduct.
The hydraulic system is part of an entire propulsion system. New, additional hazards may arise as a result of the inter­
action between different components.

DANGER WARNING
Voltage Hot surfaces
Hazard to life or risk of serious injuries due to electric Risk of sustaining burn injuries due to surfaces on the
voltage hydraulic system becoming hot during operation
▶ Always observe the special safety provisions ▶ Only commence any work once the hydraulic
when working on any kind of electrical system has sufficiently cooled down.
components.
▶ Wear personal protective gear, especially heat-
▶ Work on electrical components is only to be car­ resistant safety gloves.
ried out by a qualified electrician.
▶ Switch off the power supply before commencing
work and make sure it cannot be switched on
unintentionally. WARNING
Hot oil
Risk of sustaining burn injuries due to oil in the
DANGER hydraulic system becoming hot during operation
Oil may spray out under high pressure ▶ Only commence any work once the oil has suffi­
ciently cooled down.
Hazard to life or risk of serious injuries due to con­
necting parts, hoses and lines on hydraulic
▶ Wear personal protective gear, especially heat-
resistant safety gloves.
components bursting
▶ Switch off the power supply and wait until any
residual power has dissipated.
▶ Do not try and catch hold of lashing hoses. CAUTION
▶ Wear personal protective gear, especially heat- Slipping, falling and tripping over
resistant safety gloves and safety goggles. Head injuries and cuts to limbs due to sharp edges
and pointed corners
▶ Keep the work area and walked-on areas clean.
DANGER ▶ Wear personal protective equipment, especially
protective clothing and a safety helmet.
Rotating components
Hazard to life or risk of serious injuries due to body
parts being caught or pulled into rotating components
▶ Do not reach into the danger zone.
▶ Do not place objects within the danger zone.

DANGER
Malfunctions
Hazard to life or risk of serious injuries due to malfunc­
tions or damage to individual components
▶ Any defective components which affect the
safety and function of the hydraulic system are to
be replaced immediately. Always observe the
safety measures.

16/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
3 Safety Instructions
It is crucial that the safety instructions and warning notices cited in the following sections of these Specifications are
observed in order to reduce risks to health and prevent hazardous situations.

i INFORMATION
Reading the basic or special safety instructions in this
section is not enough to ensure that the hydraulic
system is worked on safely. The safety instructions
and warning notices in the relevant sections need to
be observed in order to understand safety issues
properly and effectively avert danger.

3.1 Basic Safety Instructions


● The environmental and occupational safety regulations that apply at the site of operation are to be observed.
● Before start-up, the operator is to designate an appropriate danger zone. The danger zone must not be access­
ible to unauthorised persons.
● The operator is responsible for procuring all current regulations that apply to the operation of the hydraulic
system.
● The operator is to make sure the applicable regulations are available and instruct persons working with the
hydraulic system accordingly.
● The hydraulic system is only to be operated if it is in a perfect technical condition.
● All safety instructions and warning notices on the hydraulic system are to be observed and kept in a legible con­
dition.
● Personal protective equipment is always to be worn when working on and around the hydraulic system. Always
tie back long hair; never wear loose clothing or jewellery.
● Any malfunctions that may affect the safety of staff or the hydraulic system are to be rectified immediately.
● The hydraulic system is to be shut down immediately in the event of malfunctions. The malfunction is to be recti­
fied immediately.
● The maintenance intervals stipulated in these Specifications are to be observed and documented.
● The applicable product documents in this Service Manual are to be observed.
● Before any welding, flame cutting and grinding work is carried out, the hydraulic system and its surrounding area
are to be cleaned to remove any combustible substances. There is a risk of fire and explosion by this kind of
work. Welding, flame cutting and grinding work may only be carried out if this has been expressly approved by
a supervisor.
● Safety and monitoring devices that serve to avert danger must not be modified or removed.
● The direct supervisor is to be informed in the event of injuries occurring, however serious or minor. This person
will decide whether the operating instructions need to be amended.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 17/99
3.2 Special Safety Instructions
3.2.1 Prior to Transportation
● Observe the dimensions and weights of the individual components.
● Only use lifting gear (e.g. crane or forklift truck) and slings (e.g. chains and ropes) that have been checked and
approved for the weight of the individual components and are in perfect condition.
● The operating and safety instructions for the lifting gear and slings are to be observed.
● Lifting gear and slings may only be used by persons trained and authorised to carry out this type of work.
● At least one other person has to be present when lifting, conveying and setting down the components. The load
is to be constantly watched when being lifted, conveyed or set down.
● Before transportation, the signaller and the slinger are to ensure proper communication by using agreed hand
signals, equipment or by radio.

3.2.2 Transportation
● Observe the dimensions and weights of the individual components.
● Transportation of the individual components may only be carried out by a qualified specialist company.
● Only those transport means that comply with the applicable laws, acts and regulations are to be used.
● The individual components are to be attached, fastened and packaged in such a way that damage in transit can
be ruled out.
● The transport vehicle is to be equipped to ensure the safe transportation of the individual components in terms
of weight and dimensions and comply with the requirements for the safe transportation of the individual
components.
● The packaging material is to be disposed of properly.

3.2.3 Commissioning and Resumption of Operation


● The hydraulic system is to be inspected for visible external damage and defects prior to commissioning and
every time operation is resumed. If damage or defects to the hydraulic system are established, switch it off,
make sure it cannot be started up unintentionally and notify the relevant services.
● Prior to commissioning and every time operation is resumed, make sure that no-one can be exposed to any
danger when the hydraulic system is started up.
● Prior to commissioning, the operator is to designate an appropriate danger zone around the hydraulic system.
The danger zone must not be accessible to unauthorised persons.
● Prior to commissioning and every time operation is resumed, check the function of all safety and monitoring
devices.
● When working on the hydraulic system when it is switched off, make sure that it cannot be started up unintention­
ally.

18/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
3.3 Operation and Shutdown
● Make sure that no unauthorised persons are in the designated danger zone.
● Only operate the hydraulic system when all safety and monitoring devices are in place and fully functional.
● Ensure that all of the safety instructions and warning notices attached to the hydraulic system are always easily
legible and never removed.
● When handling operating materials and supplies, the safety regulations for the product concerned are to be
observed. Refer to and observe the safety data sheets.

3.3.1 Maintenance
● The stipulated maintenance intervals are to be complied with and documented.
● Switch off the hydraulic system and make sure it cannot be started up unintentionally before commencing any
maintenance work. Switch off the power to the hydraulic motors and make sure they cannot be started up unin­
tentionally.
● Make sure the hydraulic system has cooled down before commencing maintenance work.
● Before commencing any maintenance work, close off access to the work area to any unauthorised persons. Dis­
play an information sign to indicate the maintenance work in progress.
● Before carrying out maintenance work depressurise the system sections and pressure lines to be opened and
allow to cool.
● Take special safety precautions for interconnected systems, if individual system parts are still in operation, or
have to be switched on again during maintenance.
● When handling operating materials and supplies, the safety regulations for the product concerned are to be
observed. Refer to and observe the safety data sheets.
● Dispose of all operating materials and supplies in a safe and environmentally friendly way. When doing this,
always observe the regulations regarding the disposal of operating materials and supplies applicable at the site
of operation.
● Carry out visual inspections of the hydraulic system at regular intervals; see "Maintenance Schedule", page 47.
Rectify and document any defects that arise, e.g. loose screw fittings or scorched cables.
● Regularly clean the floor around the hydraulic system during maintenance work to avert the risk of slipping.
● After completing maintenance work, dismantled safety and monitoring devices are to be reinstalled and bolted
connections tightened according to specifications.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 19/99
3.3.2 Removal
● Switch off the hydraulic system and make sure it cannot be started up unintentionally before commencing any
removal work.
● Before commencing any removal work, close off access to the work area to any unauthorised persons. Display
an information sign to indicate the removal work in progress.
● When handling operating materials and supplies, the safety regulations for the product concerned are to be
observed. Refer to and observe the safety data sheets.
● Dispose of all operating materials and supplies in a safe and environmentally friendly way. When doing this,
always observe the regulations regarding the disposal of operating materials and supplies applicable at the site
of operation.
● Regularly clean the floor around the hydraulic system during removal to avert the risk of slipping.

3.3.3 Disposal
● Dispose of all operating materials and supplies in a safe and environmentally friendly way. When doing this,
always observe the national and international regulations regarding the disposal of operating materials and sup­
plies.

20/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
4 Technical Description
i INFORMATION
Refer to the applicable product documents for all
technical data relating to the hydraulic system and
individual sub-assemblies.

4.1 Definition of Terms


Components Rigid line
A single unit (e.g. hose line, valve, and measurement Rigid lines are pipes connected by screw fittings to
and control equipment), which comprises one or more become operational.
parts and is an operational part of the hydraulic system.
Screw fitting
Hose Screw fittings are connection parts for pipes.
Hoses are flexible, tube-shaped, semi-finished
products made up of one or more layers and enclos- Valve
ures. Valves are components for controlling the volume flow
in the line system. Valves can be operated manually
Hose fitting (e.g. hand lever) or by means of an electric or hydraulic
Hose fittings are connection parts for hoses. actuator.

Hose line
Hose lines are hoses connected by hose fittings to
become operational.

Hydraulic drive
Component which transforms the energy of the oil into
mechanical energy (e.g. steering motor).

Hydraulic system
Arrangement of interconnected components that
transfer and control fluid power.

Valve
Valves are components for controlling the volume flow
in the line system. Valves can be operated manually
(e.g. hand lever) or by means of an electric or hydraulic
actuator.

Line System
The line system is made up of pipes, rigid line compon-
ents (e.g. valves), connection parts (e.g. screw fittings,
and flanges) and hose lines.

Measurement and control equipment


Measurement and control equipment includes all com-
ponents that are needed for the hydraulic system's
automatic process to function.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 21/99
4.2 Function
Hydraulic system components can be divided into dif­
ferent functional groups according to their function.

Energy conversion 8 Steering motor (actuator)


7
7 Throttle valve
6 Check valve 6
Energy control
5 Directional control valve
5
4 Pressure relief valve
Energy conversion 3 Hydraulic pump (generator) 4
2 Filter 3
Oil preparation
1 Reservoir
2

Fig. 1 Schematic Diagram of a Hydraulic System

22/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
4.2.1 Hydraulic System Structure

The hydraulic system structure depends on the sys­ Safety Concept


tem's requirements and field of application, and the
extent of the output to be transferred. Functionality and safety make up a whole. All compon­
ents installed in the hydraulic system form the basis of
The structure of the individual hydraulic system a comprehensive safety concept for temperature and
depends on: pressure monitoring; e.g. a check valve for load safety,
a pressure relief valve for overload protection, or an oil
● The power output of the individual propulsion units; level indicator for oil level monitoring.
● Where they are installed on the vessel.
● The arrangement of the sub-assemblies and com­
ponents (open or closed circulation system).
i INFORMATION
Refer to the applicable product documents in this Ser­
i INFORMATION vice Manual for the exact description of the safety
concept and the safety components used.
Refer to the applicable product documents in this Ser­
vice Manual for the exact structure and mode of oper­
ation of the hydraulic system.

Open Circulation System


The hydraulic pump (generator) draws the oil from a
reservoir and feeds it into the hydraulic system. The
pressurised oil is pumped to the actuators (e. g.
steering motor) via the line system and then fed back
into the reservoir.
The flow direction can be reversed by means of valves
(e.g. directional control valve).

Closed Circulation System


The hydraulic pump (generator) is integrated into the
hydraulic circulation system through the suction and
discharge side. The hydraulic pump is fed directly with
the oil returning from the actuators (e.g. steering
motor). The required driving torque is reduced by the
load pressure at the hydraulic pump suction port.
The normal leakage in the system is compensated for
by an additional hydraulic pump (e.g. feed pump) and
a small reservoir.
The closed circulation system offers a greater level of
efficiency and higher (control) speed at full power.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 23/99
5 Transportation
5.1 Prior to Transportation
To prevent material damage and serious or fatal injuries
it is crucial that the following points are observed: DANGER
● The individual sub-assemblies may only be lifted, Lifting and conveying in confined spaces
conveyed and set down by specialist staff trained Hazard to life or risk of serious injuries when lifting in
and qualified to do this work. confined spaces as the load may swing and tilt fol­
lowing a collision.
● Wear personal protective gear.
▶ Do not go or linger in the danger zone.
● The laws, acts and regulations applicable in the
country where it is used are to be observed.

● At least one other person has to be present when NOTICE


lifting, conveying and setting down the compon­ Leaking operating materials
ents. The load is to be constantly watched when
Operating materials may leak out during transit,
being lifted, conveyed or set down.
causing environmental damage.
● It is crucial that proper communication is ensured ▶ Prior to transportation, drain out all operating
between the signaller and the slinger before lifting materials and dispose of them in line with
commences. environmental regulations.

● Observe the dimensions and weights of the indi­


vidual sub-assemblies. Please refer to the ship­
ping documents and relevant drawings in this Ser­ NOTICE
vice Manual for the weights and dimensions. Damage to components and lines
● Only use lifting gear (e. g. crane or forklift truck) Components and lines may get damaged by the
and slings (e. g. chains and ropes) that have been slings when lifting the sub-assemblies.
checked and approved for the weight of the indi­ ▶ Do not attach the slings to superstructures or
vidual sub-assemblies and are in perfect condi­ lines; if necessary, use a crossbar.
tion.

● The operating instructions for the lifting gear and


slings are to be observed. i INFORMATION
● Lifting gear and slings may only be used by per­ For information on activities that have to be carried out
sons trained and authorised to carry out this type of before transportation of the individual sub-assem­
work. blies, please refer to the relevant operating instruc­
tions in this Service Manual.

DANGER
Suspended load
Hazard to life or risk of serious injuries due to falling
load
▶ Wear a safety helmet.
▶ Do not go or linger under suspended loads.
Never leave components suspended in the
slings over a long period of time.
▶ Only attach the sub-assemblies using the desig­
nated suspension points.

24/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
5.2 Transportation
To prevent material damage and serious or fatal injuries
it is crucial that the following points are observed:

● The individual sub-assemblies may only be trans­


ported by specialist staff trained and qualified to
carry out this task.
● Only use transportation means that comply with
the applicable laws, acts and regulations of the
country where they are used.

● The individual sub-assemblies are to be attached


and fastened in such a way that damage in transit
can be ruled out.
● Observe the dimensions and weights of the indi­
vidual sub-assemblies. Please refer to the ship­
ping documents and relevant drawings in this Ser­
vice Manual for the weights and dimensions.

● Make sure the transport vehicle is designed for the


safe transportation of the propulsion unit in terms
of weight, dimensions and requirements.

● The operating instructions for the lifting gear and


slings are to be observed.

● The packaging material is to be disposed of prop­


erly.

i INFORMATION
For information on the transportation of the individual
sub-assemblies, please refer to the relevant oper­
ating instructions in this Service Manual.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 25/99
6 Installation and Preparation for the Trial Run
6.1 Installation
i INFORMATION NOTICE
The hydraulic system is treated with a preservative Damage to the hydraulic system due to contam­
agent prior to delivery. If stored in dry ambient air (not ination getting into it
sea air), the preservative provides sufficient protec­ Malfunctions, increased wear and shorter service life
tion for approximately six months. The hydraulic due to contamination in the system
system is to be installed within these six months.
▶ Ensure strict cleanliness when installing the
system.
The hydraulic system is installed by the shipyard. To
prevent material damage and serious or fatal injuries it
▶ Flush rigid and hose lines prior to installation.
is crucial that the following points are observed: ▶ Do not use hemp, Teflon tape or putty as a
sealant.
● The hydraulic system may only be installed by spe­
▶ Do not use cleaning wool and fibrous cleaning
cialist staff trained and qualified to carry out this cloths.
task.
▶ Use suitable liquid cleaning agents to remove
● Wear personal protective gear. heavy soiling. Make sure that no cleaning agents
get into the line system.
● The laws, acts and regulations applicable in the
country where it is used are to be observed.
● The SCHOTTEL installation documents are to be
observed when installing the hydraulic system and
carrying out all flame-cutting, welding and installa­
tion work; the shipyard will be provided with these
prior to the installation of the hydraulic system.

● The site where the hydraulic system is installed is


to be adequately ventilated and lit.

● Components (e.g. rigid lines, hose lines, and screw


fittings) which are not included in SCHOTTEL's
scope of delivery, but are provided by the shipyard
during installation, have to comply with all of the
characteristics given in the installation documents
(e.g. material; pressure rating).
● Connect the sub-assemblies according to the
labelling on the connections in line with the
Hydraulic Circuit Diagram (e. g. hydraulic drive
station, and reservoir).
● Connect all electrical cables in accordance with
the Wiring Diagram provided.

i INFORMATION
Rigid and hose lines and any combination of con­
nectors, couplings and connection parts fitted to
hoses and pipes are to be checked by an expert to
ensure they are fully safe for operational use.

26/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
6.1.1 Rigid Lines

i INFORMATION
The requirements of national and technical regula­
tions specific to the application for rigid lines, and the
valid laws, acts and stipulations of the country where
are they used apply without restriction and are to be
fully observed.

● Rigid lines are to comply with all of the character­


istics specified in the Hydraulic Circuit Diagram
(e.g. material; nominal pressure).
● The pipe diameters specified in the Hydraulic Cir­
cuit Diagram are minimum values to be observed.
● Lay the rigid lines as short as possible.

● To prevent air pockets forming the riser pipe and


vent line are to be installed ascending.

● Ensure there is a minimum of bends in the pipe


routing.
● Make sure rigid lines are installed in an unstrained
condition.
● Do not fix the pipes to each other, but to suitable
attachment points. Metal clamps and cable ties
are not allowed.

● Do not use pipes to hold installed components,


such as filters or valve manifolds.

● Use suitable pipe brackets to ensure vibration is


absorbed.

● Remove protective caps just before commencing


pipework installation.

i INFORMATION
When installing rigid lines, always observe the
"10.6 Rigid Lines" section, page 55.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 27/99
6.1.2 Hose Lines

i INFORMATION
Only hose lines pre-fabricated by a hose manufac­
turer may be used in the hydraulic system.
SCHOTTEL GmbH will void any warranties and
cannot be held liable for any unauthorised structural
modifications, repairs and manipulations to hose
lines.

i INFORMATION
When installing hose lines, always observe the
"10.7 Replacement of Hose Lines" section, page 79.

6.1.3 Couplings

i INFORMATION
The coupling can be connected against a residual
pressure of 50 bar.
1 2
The coupling is a connection piece that locks to both
sides. The valves in the fixed and loose halves open
and close automatically when the coupling is con­
nected or disconnected.
Connecting the Couplings
1. Slide the loose half (coupling plug [2/1]) over the
fixed half (coupling sleeve [2/2]) and make sure it 3
is positioned in the axial centre.
2. Screw the screw fitting of the loose half onto the
fixed half.
The valves open automatically. A small amount of
oil leaks out.
3. Continue screwing the screw fitting onto the fixed
half until the red marking ring (2/3) is no longer vis­
ible.
The coupling is locked and sealed.
Disconnecting the Coupling Fig. 2 Coupling
1. Hold the loose half and unscrew the screw fitting
from the fixed half by turning it anti-clockwise.
The valves close automatically.
2. The coupling is unlocked and can be separated.

28/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
6.2 Preparation for Trial Run
6.2.1 Initial Fill
The hydraulic system has to be prepared for the trial
run. To do this, the measures described in this section
are to be carried out.

● The hydraulic system may only be initially filled by


specialist staff trained and qualified to carry out
this task.

● Wear personal protective gear.

● The laws, acts and regulations applicable in the


country where it is used are to be observed.
● Make sure the hydraulic system cannot be started
up unintentionally before commencing any work.
● When handling operating materials and supplies,
the safety regulations for the product concerned
are to be observed. Refer to and observe the
safety data sheets.
● Dispose of all operating materials and supplies in
a safe and environmentally friendly way. When
doing this, always observe the regulations
regarding the disposal of operating materials and
supplies applicable at the site of operation.

DANGER
Voltage
Hazard to life or risk of serious injuries due to electric
voltage
▶ Always observe the special safety provisions
when working on any kind of electrical
components.
▶ Work on electrical components is only to be car­
ried out by a qualified electrician.
▶ Switch off the power supply before commencing
work and make sure it cannot be switched on
unintentionally.

▶▶

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 29/99
CAUTION
Slipping, falling and tripping over
Head injuries and cuts to limbs due to sharp edges
and pointed corners
▶ Keep the work area and walked-on areas clean.
▶ Wear personal protective equipment, especially
protective clothing and a safety helmet.

NOTICE
Damage to seals
Seals may be damaged if exposed to diluting agents
during cleaning.
▶ Do not use any diluting agents when cleaning.
▶ Use petroleum naphtha, white spirit, diesel oil or
a wax remover.

▶ Clean the hydraulic system


Clean any sub-assemblies and components that
have been treated with anti-corrosion agents.

NOTICE
Damage to the hydraulic system due to contam­
inated oil
Hydraulic system components may become dam­
aged.
▶ Use a pump with a filter unit and a  10 m filter
when filling or refilling the oil.

▶ Fill the hydraulic system with the specified oper­


ating materials.
Please refer to the relevant operating instructions
in this Service Manual for the quantities and pro­
cedures involved.

i INFORMATION
Once these measures have been taken, the hydraulic
system can be flushed.

30/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
6.2.2 Flushing and Bleeding the
Hydraulic System

i INFORMATION
The sub-assemblies (e.g. hydraulic drive station and
hydraulic pump unit) were flushed prior to delivery.
Once installed, the entire hydraulic system is to be
flushed.

The following points are to be observed during flushing:

● The hydraulic system is only to be flushed by an


authorised, trained hydraulics specialist who has
the necessary expertise.
● Wear personal protective gear.

● The laws, acts and regulations applicable in the


country where it is used are to be observed.

● Before commencing any work, close off access to


the work area to any unauthorised persons. Dis­
play an information sign to indicate the work in pro­
gress.

● The hydraulic system is fully installed and all of the


connections of the individual sub-assemblies (e.g.
hydraulic drive station and hydraulic pump unit)
have been connected with each other as desig­
nated in the Hydraulic Circuit Diagram.
● All electric cables have been wired according to
the Wiring Diagram.

● The hydraulic system has been filled with the spe­


cified operating materials.
● The hydraulic system is to be inspected for visible
damage and defects prior to flushing. If damage or
defects to the hydraulic system are established,
make sure it cannot be started up unintentionally
and notify the relevant services.
● Prior to flushing, make sure that no-one can be
exposed to any danger when the hydraulic system
is started up.
● Check any control valves (e.g. ball valve and direc­
tional control valve) and, if necessary, move to the
correct position (observe the Hydraulic Circuit Dia­
gram).
● Check that all safety and monitoring devices are
functioning properly.

▶▶

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 31/99
DANGER
Voltage
Hazard to life or risk of serious injuries due to electric
voltage
▶ Always observe the special safety provisions
when working on any kind of electrical
components.
▶ Work on electrical components is only to be car­
ried out by a qualified electrician.
▶ Switch off the power supply before commencing
work and make sure it cannot be switched on
unintentionally.

DANGER
Oil may spray out under high pressure
Hazard to life or risk of serious injuries due to con­
necting parts, hoses and rigid lines on hydraulic com­
ponents bursting.
▶ Switch off the power supply and wait until any
residual power has dissipated.
▶ Do not try and catch hold of lashing hoses.
▶ Wear personal protective gear, especially heat-
resistant safety gloves and safety goggles.

DANGER
Malfunctions
Hazard to life or risk of serious injuries due to malfunc­
tions
▶ Only commence any work once completely famil­
iarised with the function of the hydraulic system
and the components used on the one hand, and
the function of the propulsion unit on the other,
and any risks or dangers have been ascertained
and eliminated.
▶ Full comprehension of the Hydraulic Circuit Dia­
gram is absolutely necessary, Furthermore, the
functionality of the installed safety components
is to be fully understood.

NOTICE
Damage to sub-assemblies and components due
to incorrect oil level
Sub-assemblies and components may become dam­
aged.
▶ Only check the oil levels when the hydraulic
system is not in operation and the oil temperature
and ambient temperature are the same.

32/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
▶ Flush the hydraulic system.
The hydraulic system has been flushed, when the
minimum flushing time and the required purity level
has been achieved according to ISO 4406 class
20/18/15.
▶ Move the control valves (e.g. ball valve and direc­
tional control valve) back into the correct position
(observe the Hydraulic Circuit Diagram).
▶ Check that the hydraulic motor of the hydraulic
pumps rotates in the correct direction.
Leave it running for about two minutes at a low
speed. Make sure the direction of rotation is the
same as that of the direction of rotation arrow on
the housing.
▶ Check the hydraulic system for loose screw fittings
and loose flanged joints.
▶ Bleed the hydraulic system.
1. Run the hydraulic system with low pressure at
idling speed.
2. Bleed the hydraulic system at the highest
point (e.g. loosen screw fittings a little).
3. Test all control functions at low pressure.
4. Slowly increase pressure.
Observe the oil levels in the hydraulic system;
if necessary, top up the oil when bleeding the
system.
5. Test all control functions.
The hydraulic system has been completely bled
when the actuators are not displaying any jerky
movements, there are no abnormal noises or foam
occurring (as may be visible in the reservoir or
through the sight glass for example).
▶ Switch off the hydraulic system.
▶ Check the hydraulic system for leaks.

i INFORMATION
Once these measures have been taken, commis­
sioning (trial run at the pier) may be carried out by an
authorised SCHOTTEL employee.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 33/99
7 Commissioning
DANGER CAUTION
Voltage Slipping, falling and tripping over
Hazard to life or risk of serious injuries due to electric Head injuries and cuts to limbs due to sharp edges
voltage and pointed corners
▶ Always observe the special safety provisions ▶ Keep the work area and walked-on areas clean.
when working on any kind of electrical
components. ▶ Wear personal protective equipment, especially
protective clothing and a safety helmet.
▶ Work on electrical components is only to be car­
ried out by a qualified electrician.
▶ Switch off the power supply before commencing
work and make sure it cannot be switched on
unintentionally.

DANGER
Oil may spray out under high pressure
Hazard to life or risk of serious injuries due to con­
necting parts, hoses and lines on hydraulic compon­
ents bursting
▶ Switch off the power supply and wait until any
residual power has dissipated.
▶ Do not try and catch hold of lashing hoses.
▶ Wear personal protective gear, especially heat-
resistant safety gloves and safety goggles.

DANGER
Damaged safety devices or components
Hazard to life or risk of serious injuries due to inef­
fective safety devices or damaged components
▶ Prior to start-up, check that the safety and monit­
oring devices are functioning properly.
▶ If damage to the hydraulic system occurs, switch
it off and make sure it cannot be started up unin­
tentionally; notify the relevant services.

DANGER
Open belt drive
Hazard to life or risk of serious injuries due to body
parts being caught or crushed.
▶ Do not reach into the running belt drive.
▶ Do not put any objects into the running belt drive.
▶ Always tie back long hair; never wear loose
clothing, jewellery or similar.
▶ Do not wear protective gloves.

34/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
7.1 Trial Run at the Pier
For the trial run at the pier, the measures set out in the
"6 Installation and Preparation for the Trial Run" section
have to have been completed and those described in
this section carried out:

● The hydraulic system is fully installed and all of the


connections of the individual sub-assemblies (e.g.
hydraulic drive station and reservoir) have been
connected to each other as designated in the
Hydraulic Circuit Diagram.
● All electric cables have been wired according to
the Wiring Diagram.

● The hydraulic system has been flushed and bled.

● The hydraulic system has been filled with the spe­


cified operating materials.

● The hydraulic system has been checked for leaks,


loose screw fittings and loose flanged joints.
● The hydraulic system has been inspected for vis­
ible external damage and defects. If damage or
defects to the hydraulic system are established,
make sure it cannot be started up unintentionally
and notify the relevant services.

● The control valves (e.g. ball valve and directional


control valve) have been moved into the correct
position (observe the Hydraulic Circuit Diagram).
● All safety and monitoring devices have been
checked that they are functioning properly.

NOTICE
Damage to sub-assemblies and components due
to incorrect oil level
Sub-assemblies and components may become dam­
aged.
▶ Only check the oil levels when the hydraulic
system is not in operation and the oil temperature
and ambient temperature are the same.

i INFORMATION
Once these preparations have been made, the trial
run at the pier may be carried out by an authorised
SCHOTTEL employee. During the trial run, all control
functions are tested.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 35/99
7.2 Preparation for the Sea Trial
The hydraulic system has to be prepared for the sea
trial. In this respect, the measures set out in the
"7.1 Trial Run at the Pier" section have to have been
completed and those described in this section carried
out:
● Make sure that no-one can be exposed to any
danger when the hydraulic system is started up.
● The hydraulic system is to be inspected for visible
external damage and defects prior to the sea trial.
If damage or defects to the hydraulic system are
established, make sure it cannot be started up
unintentionally and notify the relevant services.
● Prior to the sea trial, the operator is to designate a
danger zone around the hydraulic system. The
danger zone must not be accessible to unauthor­
ised persons.

NOTICE
Damage to sub-assemblies and components due
to incorrect oil level
Sub-assemblies and components may become dam­
aged.
▶ Only check the oil levels in the hydraulic system
when not in operation and the oil temperature and
ambient temperature are the same.

36/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
▶ Check the oil levels in the hydraulic system.
Please refer to the relevant operating instructions
in this Service Manual for the procedures involved.
▶ Check the hydraulic system for loose screw fittings
and loose flanged joints.
▶ Check that all safety and monitoring devices are
functioning properly.
▶ Move the control valves (e.g. ball valve and direc­
tional control valve) into the correct position
(observe the Hydraulic Circuit Diagram).
▶ Check the hydraulic system is functioning prop­
erly.
Leave the hydraulic system running for about two
minutes at low speed and carry out all control func­
tions.
▶ Bleed the hydraulic system; see the
"6.2.2 Flushing and Bleeding the Hydraulic
System" section, page 31.
▶ Switch off the hydraulic system.

i INFORMATION
During the initial operating hours of a new or repaired
hydraulic system or one that has been brought back
into operation, trapped air may escape from the
system. Check the oil level several times in the initial
operating hours and refill the oil, if necessary.

▶ Check the oil levels in the hydraulic system.


▶ Check the hydraulic system for leaks.

i INFORMATION
Once these measures have been completed, the sea
trial may commence. During the sea trial, the perform­
ance of the entire propulsion system is determined by
an authorised SCHOTTEL employee. The results of
the sea trial are documented in an acceptance report
and the required acceptance test is carried out by the
stipulated classification society.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 37/99
8 Resumption of Operation
The hydraulic system is installed in the vessel ready for
operation. During a sea trial, the performance of the DANGER
entire propulsion system has been determined, an
Oil may spray out under high pressure
acceptance report compiled and the required accept­
ance test of the stipulated classification society carried Hazard to life or risk of serious injuries due to con­
out. necting parts, hoses and lines on hydraulic equip­
ment bursting
To prevent material damage and serious or fatal injuries ▶ Wear personal protective gear, especially heat-
it is crucial that the following points are observed: resistant safety gloves and safety goggles.
● The hydraulic system is to be inspected for visible ▶ Switch off the power supply and wait until any
external damage and defects prior to resumimg residual power has dissipated.
operation. If damage to the hydraulic system is ▶ Do not try and catch hold of lashing hoses.
established, make sure it cannot be started up
unintentionally and notify the relevant services.
● Wear personal protective gear. DANGER
● Make sure that no-one can be exposed to any Damaged safety devices or components
danger when the hydraulic system is started up. Hazard to life or risk of serious injuries due to inef­
● When working on the hydraulic system when it is fective safety devices or damaged components
switched off, make sure that it cannot be started up ▶ Prior to resumption of operation, check that the
unintentionally. safety and monitoring devices are functioning
properly.
▶ If damage to the hydraulic system occurs, switch
DANGER it off and make sure it cannot be started up unin­
tentionally; notify the relevant services.
Voltage
Hazard to life or risk of serious injuries due to electric
voltage
▶ Always observe the special safety provisions CAUTION
when working on any kind of electrical
components. Slipping, falling and tripping over
Head injuries and cuts to limbs due to sharp edges
▶ Work on electrical components is only to be car­ and pointed corners
ried out by a qualified electrician.
▶ Switch off the power supply before commencing ▶ Keep the work area and walked-on areas clean.
work and make sure it cannot be switched on ▶ Wear personal protective equipment, especially
unintentionally. protective clothing and a safety helmet.

DANGER
Rotating components
Hazard to life or risk of serious injuries due to body
parts being caught or pulled into rotating components
▶ Do not reach into the danger zone.
▶ Do not place objects within the danger zone.

38/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
NOTICE
Damage to sub-assemblies and components due
to incorrect oil level
Sub-assemblies and components may become dam­
aged.
▶ Only check the oil levels in the hydraulic system
when not in operation and the oil temperature and
ambient temperature are the same.

▶ Check the oil levels in the hydraulic system.


Please refer to the relevant operating instructions
in this Service Manual for the procedures involved.
▶ Check the hydraulic system for loose screw fittings
and loose flanged joints.
▶ Check that all safety and monitoring devices are
functioning properly.
▶ Move the control valves (e.g. ball valve and direc­
tional control valve) into the correct position
(observe the Hydraulic Circuit Diagram).
▶ Check the hydraulic system is functioning prop­
erly.
Leave the hydraulic system running for about two
minutes at low speed and carry out all control func­
tions.
▶ Bleed the hydraulic system; see the
"6.2.2 Flushing and Bleeding the Hydraulic
System" section, page 31.
▶ Switch off the hydraulic system.

i INFORMATION
During the initial operating hours of a new or repaired
hydraulic system or one that has been brought back
into operation, trapped air may escape from the
system. Check the oil level several times in the initial
operating hours and refill the oil, if necessary.

▶ Check the oil levels in the hydraulic system.


▶ Check the hydraulic system for leaks.

i INFORMATION
Once these measures have been taken, the hydraulic
system will be ready for operation.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 39/99
9 Operation
9.1 During Operation
To prevent material damage and serious or fatal injuries
it is crucial that the following points are observed: DANGER
● Wear personal protective gear. Oil may spray out under high pressure
Hazard to life or risk of serious injuries due to con­
● The laws, acts and regulations applicable in the necting parts, hoses and lines on hydraulic
country where it is used are to be observed. components bursting
● Make sure that no unauthorised persons are in the ▶ Wear personal protective gear, especially heat-
designated danger zone. resistant safety gloves and safety goggles.
▶ Switch off the power supply and wait until any
● Ensure that all of the safety instructions and residual power has dissipated.
warning notices attached to the hydraulic system
are always easily legible and never removed. ▶ Do not try and catch hold of lashing hoses.
▶ Depressurise the hydraulic system prior to com­
● All safety and monitoring devices are operating. mencing any work and wait until any residual
power has dissipated.
● When handling operating materials and supplies,
the safety regulations for the product concerned
are to be observed. Refer to and observe the
safety data sheets. WARNING
Long-term malfunctions
DANGER Risk of serious injuries due to the failure of individual
Voltage components as a result of long-term malfunctions
Hazard to life or risk of serious injuries due to electric ▶ Rectify malfunctions immediately.
voltage ▶ Malfunctions are only to be rectified by specialist
staff trained and qualified to carry out this task.
▶ Always observe the special safety provisions
when working on any kind of electrical ▶ If damage to the hydraulic system occurs, switch
components. it off and make sure it cannot be started up unin­
tentionally; notify the relevant services.
▶ Work on electrical components is only to be car­
ried out by a qualified electrician.
▶ Switch off the power supply before commencing
work and make sure it cannot be switched on WARNING
unintentionally.
Hot surfaces
Risk of sustaining burn injuries due to surfaces on the
DANGER hydraulic system becoming hot
▶ Wear personal protective gear, especially heat-
Rotating components resistant safety gloves.
Hazard to life or risk of serious injuries due to body
parts being caught or pulled into rotating components
▶ Do not reach into the danger zone.
▶ Do not place objects within the danger zone.

40/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
CAUTION
Slipping, falling and tripping over
Head injuries and cuts to limbs due to sharp edges
and pointed corners
▶ Keep the work area and walked-on areas clean.
▶ Wear personal protective equipment, especially
protective clothing and a safety helmet.

NOTICE
Damage to sub-assemblies and components due
to incorrect oil level
Sub-assemblies and components may become dam­
aged.
▶ Only check the oil levels in the hydraulic system
when not in operation and the oil temperature and
ambient temperature are the same.

The following points are to be observed during opera­


tion:
● Observe the malfunction alarms on the vessel's
alarm monitoring system.
Rectify malfunctions immediately. If damage to the
hydraulic system occurs, switch it off and make
sure it cannot be started up unintentionally; notify
the relevant services.

● Listen out for any abnormal noises.


If abnormal noises occur, perform the tests
described in the "11 Troubleshooting" section,
page 87.

● Check the oil condition in the hydraulic system.


Please refer to the relevant operating instructions
in this Service Manual for the procedures involved.
● Check the oil levels in the hydraulic system.
Please refer to the relevant operating instructions
in this Service Manual for the procedures involved.

● Check the filters in the hydraulic system for clog­


ging and, if necessary, replace the filter or filter ele­
ment.
Please refer to the relevant operating instructions
in this Service Manual for the procedures involved.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 41/99
9.2 Measures After Operation
To prevent material damage and serious or fatal injuries
it is crucial that the following points are observed: CAUTION
● Any work on the hydraulic system may only be car­ Slipping, falling and tripping over
ried out by specialist staff trained and qualified to Head injuries and cuts to limbs due to sharp edges
carry out these tasks. and pointed corners
● Wear personal protective gear.
▶ Keep the work area and walked-on areas clean.
▶ Wear personal protective equipment, especially
● The laws, acts and regulations applicable in the protective clothing and a safety helmet.
country where it is used are to be observed.
● Ensure that all of the safety instructions and
warning notices attached to the hydraulic system NOTICE
are always easily legible and never removed.
Damage to sub-assemblies and components due
● When handling operating materials and supplies, to incorrect oil level
the safety regulations for the product concerned Sub-assemblies and components may become dam­
are to be observed. Refer to and observe the aged.
safety data sheets.
▶ Only check the oil levels in the hydraulic system
when not in operation and the oil temperature and
● Dispose of all operating materials and supplies in
ambient temperature are the same.
a safe and environmentally friendly way. When
doing this, always observe the regulations
regarding the disposal of operating materials and
supplies applicable at the site of operation.

DANGER
Voltage
Hazard to life or risk of serious injuries due to electric
voltage
▶ Always observe the special safety provisions
when working on any kind of electrical
components.
▶ Work on electrical components is only to be car­
ried out by a qualified electrician.
▶ Switch off the power supply before commencing
work and make sure it cannot be switched on
unintentionally.

WARNING
Hot surfaces
Risk of sustaining burn injuries due to surfaces on the
hydraulic system becoming hot
▶ Only commence any work once the hydraulic
system has sufficiently cooled down.
▶ Wear personal protective gear, especially heat-
resistant safety gloves.

42/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
▶ Switch the hydraulic system off and make sure it
cannot be started up unintentionally.
▶ Switch off the power to the hydraulic motors and
make sure they cannot be started up unintention­
ally.
▶ Check the hydraulic system for leaks.
▶ Inspect the hydraulic system for external visible
damage and defects. If damage or defects to the
hydraulic system are established, make sure it
cannot be started up unintentionally and notify the
relevant services.
▶ Check the oil condition in the hydraulic system.
Please refer to the relevant operating instructions
in this Service Manual for the procedures involved.
▶ Check the oil levels in the hydraulic system.
Please refer to the relevant operating instructions
in this Service Manual for the procedures involved.
▶ Check the hydraulic system for loose screw fittings
and loose flanged joints.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 43/99
10 Maintenance
To prevent material damage and serious or fatal injuries
it is crucial that the following points are observed:
● Maintenance work is only to be carried out by spe­
cialist staff trained and qualified to carry out this
task.
● Wear personal protective gear.
● The laws, acts and regulations applicable in the
country where it is used are to be observed.
● The stipulated maintenance intervals are to be
complied with.
● Switch off the hydraulic system and make sure it
cannot be started up unintentionally before com­
mencing any maintenance work.

● Before commencing any maintenance work, close


off access to the work area to any unauthorised
persons. Display an information sign to indicate the
maintenance work in progress.

● Refer to the "5.1 Prior to Transportation" section,


page 24, for components that need slings and
lifting gear to be dismantled.
● Observe the special safety measures for intercon­
nected hydraulic systems, if individual sub-assem­
blies are still in operation, or have to be switched on
again during maintenance.
● Before carrying out maintenance work depres­
surise the line sections and pressure lines to be
opened and allow to cool.

● When handling operating materials and supplies,


the safety regulations and safety data sheets for
the product concerned are to be observed.
● Dispose of all operating materials and supplies in
a safe and environmentally friendly way. When
doing this, always observe the regulations
regarding the disposal of operating materials and
supplies applicable at the site of operation.

● Carry out visual inspections of the hydraulic


system at regular intervals. Rectify any identified
defects immediately (e.g. loose screw fittings).

44/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
● After completing maintenance work, dismantled
safety and monitoring devices are to be reinstalled DANGER
and loose bolted connections tightened. Rotating components
● After completing maintenance work remove any Hazard to life or risk of serious injuries due to body
tools used from the hydraulic system area. parts being caught or pulled into rotating components
▶ Do not reach into the danger zone.
DANGER ▶ Do not place objects within the danger zone.
Malfunctions
Hazard to life or risk of serious injuries due to malfunc­
tions DANGER
▶ Observe the maintenance intervals. Oil may spray out under high pressure
▶ Any defective components which affect the Hazard to life or risk of serious injuries due to sudden
safety and function of the hydraulic system are to relief of oil pressure
be replaced immediately. ▶ Only commence any work once the line system
▶ Only commence any work once completely famil­ has been depressurised and any existing
iarised with the function of the hydraulic system residual power has dissipated.
and the components used on the one hand, and
the function of the propulsion unit on the other, ▶ Close the shut-off valves on the pressure and
suction side.
and any risks or dangers have been ascertained
and eliminated. ▶ Drain the relevant line section if necessary.
▶ Full comprehension of the Hydraulic Circuit Dia­
gram is absolutely necessary.
▶ Furthermore, the functionality of the installed WARNING
safety components is to be fully understood.
Hot surfaces
Risk of sustaining burn injuries due to surfaces on the
DANGER hydraulic system becoming hot
▶ Only commence any work once the hydraulic
Voltage system has sufficiently cooled down.
Hazard to life or risk of serious injuries due to electric ▶ Wear personal protective gear, especially heat-
voltage resistant safety gloves.
▶ Always observe the special safety provisions
when working on any kind of electrical
components.
▶ Work on electrical components is only to be car­
WARNING
ried out by a qualified electrician. Hot oil
▶ Switch off the power supply before commencing Risk of sustaining burn injuries due to hot oil in the
work and make sure it cannot be switched on hydraulic system
unintentionally.
▶ Only commence any work once the oil has suffi­
ciently cooled down.
▶ Wear personal protective gear, especially heat-
resistant safety gloves.

▶▶

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 45/99
CAUTION
Slipping, falling and tripping over
Head injuries and cuts to limbs due to sharp edges
and pointed corners
▶ Keep any walked-on areas clean.
▶ Wear personal protective equipment, especially
protective clothing and a safety helmet.

NOTICE
Damage to the hydraulic system due to contami­
nation getting into it
Malfunctions, increased wear and shorter service life
due to contamination in the system
▶ Ensure strict cleanliness when installing the
system.
▶ Clean and flush rigid and hose lines prior to
installation.
▶ Do not use hemp, Teflon tape or putty as a
sealant.
▶ Do not use cleaning wool and fibrous cleaning
cloths.
▶ Use suitable liquid cleaning agents to remove
heavy soiling. Make sure that no cleaning agents
get into the line system.

46/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
10.1 Definition of Terms
The purpose of maintenance is to uphold or restore the
functional reliability of the hydraulic system. Regular
maintenance of the hydraulic system and individual
components helps to avert malfunctions and unsched­
uled downtimes, thus ensuring the availability of the
entire hydraulic system.
The purpose of corrective maintenance is to restore the
propulsion unit's functional reliability following malfunc­
tion by replacing defective assemblies or parts.

10.2 Maintenance Schedule

i INFORMATION
Please refer to the relevant operating instructions in
this Service Manual for other maintenance work and
procedures involved.

The hydraulic system is to be checked at regular inter­


vals. The following checks are to be carried out:
● Check the oil levels in the hydraulic system.

● Check the condition of the oil (visual inspection,


colour and smell).
● Check the operating pressure in the hydraulic
system.
● Check the operating temperature in the hydraulic
system.
● Check the hydraulic system for leaks.

● Check the filter elements in the hydraulic system.

● Check the hydraulic system for abnormal noises


(e.g. flow sounds).

● Check the condition and age of the hose lines


(observe inspection intervals).

● Check that all safety and monitoring devices are


functioning properly.

● Check the entire hydraulic system for damage.

● Check that safety instructions and warning notices


attached to and in the hydraulic system are clearly
legible.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 47/99
10.3 Measurement and Control Equipment
i INFORMATION
If malfunctions and leakages indicate that a measure­
ment and control device is damaged or defective, this
is to be replaced. SCHOTTEL GmbH will void any
warrantees and cannot be held liable for any unau­
thorised structural modifications, repairs and manip­
ulations to measurement and control equipment.

10.3.1 Prior to Installation


Prior to installation the following points are to be
observed:

● Make sure the measurement and control equip­


ment is only installed in line with specifications and
used for its intended purpose. The enclosed tech­
nical documentation of the respective manufac­
turer is to be observed.
● Only remove the protective packaging, caps and
other protective devices from the measurement
and control equipment immediately prior to install­
ation.
● Make sure that the accessible interiors of the
adjoining line system are free of foreign bodies.
● Make sure the measurement and control equip­
ment is in a perfect and clean condition when
installed.

● The measurement and control equipment is to be


connected to the line system according to stand­
ards.

48/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
10.3.2 Prior to Removal
Prior to removal the following points are to be observed:

● Any measurement and control equipment which


does not have an intrinsically safe circuit is not to
be opened under voltage.
● Remove the measurement and control equipment
carefully to prevent damaging any adjoining con­
nections (e.g. screw fittings).

DANGER
Master control system
Hazard to life or risk of serious injuries due to auto­
matic control functions.
▶ Only commence work on electrical measurement
and control equipment once the input signal
cable of the master control system has been dis­
connected from the component.

10.3.3 During Installation

i INFORMATION ● Make sure cable glands are fitted correctly and the
necessary seals are in place and undamaged (for
Sealing surfaces that need installing with pipe and electrical measurement and control equipment).
thread sealants are designated in the drawings of the ● To prevent excessive temperatures from occur­
respective sub-assembly. Also refer to the Installation ring, live conductors for electrical measurement
Instructions for Bolted Connections and Sealants in and control equipment must not be laid in unper­
this Service Manual. mitted wiring bundles.

During installation the following points are to be


observed:

● Do not apply the required tightening torque for


screwing in the measurement and control equip­
ment using the housing or cable connection boxes,
but with suitable tools using the spanner flats
intended for this purpose.
● Mount the measurement and control equipment in
an unstrained condition.
● Make sure that sealing surfaces and seals on the
measurement and control equipment and at the
place of installation are undamaged and clean.

● Make sure the cable diameter always matches the


cable gland (for electrical measurement and con­
trol equipment).

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 49/99
10.3.4 Following Installation
Following installation the following points are to be
observed:
● Measurement and control equipment has been
installed according to specifications.
● Measurement and control equipment has not been
damaged during installation.
● The measurement and control equipment has
been set to the appropriate nominal value (observe
maximum fuses; see Hydraulic Circuit Diagram).

● All electrical connections have been connected


properly (for electrical measurement and control
equipment).
● Check the line section for loose screw fittings and
loose flanged joints.

● Flush the line section (ISO 4406 class 20/18/15)


and bleed it.

● The control valves (e.g. ball valve and directional


control valve) have been moved into the correct
position (observe the Hydraulic Circuit Diagram).
● Check the line section for leaks by applying
1.5 times the operating pressure.
● Test all control functions at low pressure.

● Check that all safety and monitoring devices are


functioning properly.

50/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
10.4 Valves
i INFORMATION
If malfunctions and leakages indicate that a valve is
damaged or defective, this is to be replaced.
SCHOTTEL GmbH will void any warranties and
cannot be held liable for any unauthorised structural
modifications, repairs and manipulations to valves.

10.4.1 Prior to Installation


Prior to installation the following points are to be
observed:

● Make sure valves and fittings are only installed in


line with specifications and used for their intended
purpose. The enclosed technical documentation
of the respective manufacturer is to be observed.

● Only remove the protective packaging, caps and


other protective devices from the valve immedi­
ately prior to installation.
● Make sure that the accessible interiors of the
adjoining line system are free of foreign bodies.
● Make sure the valve is in a perfect and clean condi­
tion when installed.
● Make sure that for valves with direction arrows the
oil flow corresponds to the direction given on the
arrow.

● The valve is to be connected to the line system


according to standards.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 51/99
10.4.2 Prior to Removal
Prior to removal the following points are to be observed:

● Close the existing shut-off valves down and


upstream of the valve.

● Depressurise the valve prior to removal.

● Place a suitable collecting basin under the valve to


catch any residual oil that may leak out.

● Remove the valve carefully to prevent damaging


any adjoining connections (e.g. mating flange;
screw fittings).

10.4.3 During Installation

i INFORMATION ● Hand levers on control valves must not protrude


into public areas or emergency escape routes.
Sealing surfaces that need installing with pipe and ● Only use ball valves in the fully open or closed posi­
thread sealants are designated in the drawings of the tion. Do not use ball valves to regulate the volume
respective sub-assembly. Also refer to the Installation flow.
Instructions for Bolted Connections and Sealants in
this Service Manual.

During installation the following points are to be


observed:
● Replace the existing seals (e.g. O-rings on SAE
flanged fittings) during installation. Only use suit­
able seals.

● Do not apply the required tightening torque for


screwing in the valve using the housing, but with
suitable tools using the spanner flats intended for
this purpose.

● Make sure the valve is installed in an unstrained


condition.

● Make sure that sealing surfaces and seals on the


valve and at the place of installation are undam­
aged and clean.
● Do not use the valves as fixing points for lines.

● Oil all O-rings in the SAE flanged fittings before


inserting them into the groove ring.

● When tightening the screw fitting (line system) hold


the fitting in the required installation position using
a suitable tool.
● Only install check valves without closing springs in
a vertical position with an ascending direction of
flow. Check valves with closing springs may also
be installed in horizontal and inclined lines.

52/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
10.4.4 Following Installation
Following installation the following points are to be
observed:
● The valve has been installed according to specific­
ations.
● Make sure the valve has not been damaged during
installation.

● All control valves have run through one operating


cycle prior to resuming operation (extension lever
must not be used).

● Check the line section for loose screw fittings,


flanged joints and bolted connections.
● Flush the line section (ISO 4406 class 20/18/15)
and bleed it.
● Move the control valves (e.g. ball valve and direc­
tional control valve) back into the correct position
(observe the Hydraulic Circuit Diagram).

● Check the line section for leaks by applying


1.5 times the operating pressure.

● Test all control functions at low pressure.

● Check that all safety and monitoring devices are


functioning properly.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 53/99
10.5 Couplings
i INFORMATION
The coupling can be connected against a residual
pressure of 50 bar. 1 2

The following points are to be observed:

● Before carrying out maintenance work depres­


surise the line system or line section and allow to
cool.
● Place a suitable collecting basin under the coup­ 3
ling to catch any residual oil that may leak out.
● Clean the area around the adjoining line system
before disconnecting the coupling.
● To protect the coupling against contamination
close the coupling halves with protective caps after
disconnection.

10.5.1 Disconnecting and Connecting


the Coupling
Fig. 3 Coupling
i INFORMATION
To disconnect and connect couplings, observe the
"6.1.3 Couplings" section, page 28.

Disconnecting the Coupling


1. Hold the loose half (coupling plug [3/1]) and turn
the screw fitting anti-clockwise to the fixed half
(coupling sleeve [3/2]).
The valves close automatically.
2. The coupling is unlocked and can be separated.

Connecting the Couplings


1. Slide the loose half over the fixed half and make
sure it is positioned in the axial centre.
2. Screw the screw fitting of the loose half onto the
fixed half.
The valves open automatically. A small amount of
oil leaks out.
3. Continue screwing the screw fitting onto the fixed
half until the red marking ring (3/3) is no longer vis­
ible.
The coupling is locked and sealed.

54/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
10.6 Rigid Lines
i INFORMATION
If malfunctions and leakages indicate that pipes or
screw fittings are damaged or defective, the
respective component is to be replaced. SCHOTTEL
GmbH will void any warranties and cannot be held
liable for any unauthorised structural modifications,
repairs and manipulations to pipes or screw fittings.

All components used (pipes and screw fittings) are to


comply with all of the characteristics specified in the
Hydraulic Circuit Diagram (e.g. material; nominal pres­
sure).

10.6.1 Prior to Installation


Prior to installation the following points are to be
observed:
● Before carrying out maintenance work depres­
surise the line system or line section and allow to
cool.

● Before opening the line section concerned,


check that the rigid line has been fully depressur­
ised. Open the screw fittings slowly and carefully.
● Place a suitable collecting basin under the rigid line
concerned to catch any residual oil that may leak
out.

● Clean and flush the rigid line to be installed prior to


installation (ISO 4406 class 20/18/15).
● Make sure pipes and screw fittings are only
installed in line with specifications and used for
their intended purpose.

● Make sure that the accessible interiors of the


adjoining line system are free of foreign bodies.

● To protect the premounted rigid lines against con­


tamination always close with protective caps.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 55/99
10.6.2 During Installation 3

i INFORMATION
Sealing surfaces that need installing with pipe and
thread sealants are designated in the drawings of the
respective sub-assembly. Also refer to the Installation
Instructions for Bolted Connections and Sealants in
this Service Manual.

During installation the following points are to be


observed:

● If there is visible damage to pipes and screw fit­


tings, these must not be installed.

● Interconnected connecting parts are always to be


mounted in the same combination. Any screw con­
nection elements may only be assembled once. 1
2
Rigid Lines
● After installation, rigid lines must not be used as a 3
ladder or climbing support.
● Do not attach any other components to rigid lines.

● Install rigid lines in an unstrained condition (4/3).

● Avoid using short lengths of pipe (4/5).


The minimum length is 2.5 to 3 times the height of
the union nut. Use stud couplings or adapters.
● Make sure that components requiring regular
maintenance are readily accessible (4/1).
● Take account of routing changes to rigid line sec­
tions.
● Where possible, mount rigid lines at right angles,
parallel to one another and clearly laid out (4/2).
● Do not use rigid lines as a fixing point for pipe
clamps (4/4). 4

Fig. 4 During installation

56/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
Pipe Clamps
● Use pipe clamps with vibration and noise-
absorbing properties, e.g. DIN 3015 T1 and T2
(5/1).
1
● Pipe clamps are not to obstruct changes to rigid
line lengths (5/2).

● Attach pipe clamps directly before and after pipe


bends; but do not mount in the actual bend radius
of the pipe bend.
● Do not use rigid lines as a fixing point for pipe
clamps.
● Observe the specified spacing for rigid line pipe
clamps; see following table and diagram 5.

Outer pipe diameter Space L


(da)
[mm] [m]
6 - 12 1.0
12 - 22 1.2
22 - 32 1.5
32 - 38 2.0 2
38 - 57 2.7
57 - 75 3.0
75 - 90 3.7
90 - 102 4.0
102 - 114 4.5
114 - 168 5.0 da

Fig. 5 During installation

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 57/99
Pipe Preparation

DANGER 1

Malfunctions
Hazard to life or risk of serious injuries due to malfunc­
tions
▶ The basic prerequisites for the correct installa­
tion of screw fittings are to be fulfilled. Improper
installation may affect the safety of the hydraulic
system.

i INFORMATION
The requirements of national and technical regula­ 0.2 x
tions specific to the application, and the valid laws, 2 455
acts and stipulations apply without restriction and are
to be fully observed (e.g. DIN 3859 T2).

Only use seamless pipes of the following type: 0.2 x


455
● Precision steel tube EN 10305-4, steel P235TR2
(St 37.4), material no. 1.0255

● Seamless and stainless precision steel tube Fig. 6 Pipe Preparation


EN 10305-4, material no. 1.4571

i INFORMATION
Never use pipe cutters or cut-off grinders to shorten
the pipes.

▶ Calculate the pipe lengths. Observe the minimum


lengths of pipes and pipe ends and the length
allowances for flaring; see page 70 and page 71.
▶ Saw off the pipes at a right angle without deforming
using a sawing device; the permissible angular
deviation to the pipe axis is a maximum of 0.5
(6/1).
▶ Lightly debur the inner and outer edges of the cut
pipe sections; bevel up to 0.2 x 45 is permitted
(6/2).
▶ Remove contamination from the pipe ends (e.g.
shavings, dirt and paint). If necessary, clean with
degreaser.

58/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
Cold Bending of Pipes

i INFORMATION
Before shortening the pipes, saw off at least 10 mm of
the manufacturer's severance cut (source of error by
delivery).

When preparing the pipes, the following points are to be


observed:
● Always bend cold-drawn pipes with a pipe bending
device (use a manual pipe bending device for outer
pipe diameters of 6 to 8 mm, and a machine for
outer pipe diameters greater than 8 mm).
● The bend radius needs to be at least 3 x the outer
pipe diameter (observe manufacturer's specifica­
tions).

● It is essential that there is no cross-section nar­


rowing in the bend.

● Make sure that the minimum distance of the


straight pipe end to the pipe bend is upheld; see
page 70.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 59/99
BLANK PAGE

60/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
Screw Fittings

DANGER
Oil may spray out under high pressure
Hazard to life or risk of serious injuries due to screw fit­
tings bursting
▶ Only screw the same types of threads together.
▶ Make sure the type of seal conforms with the
screw fitting parts.
▶ Where possible, only use connecting ports,
pins and screw fittings from a standard series
on the hydraulic system.
▶ Mark different standard series in the hydraulic
system, e.g. with colour.

Some types of threads can only be differentiated with


difficulty due to their outer geometric similarities and
sizes; some screw fittings with different types of
threads appear to fit together, e.g. screw fittings with
inch threads G!/4" can be screwed into metric M14 x 1.5
boreholes without any difficulty.

General Information
Assembly is carried out using international, standard
screw fitting systems (e.g. solder-free pipe fittings com­
plying with DIN EN ISO 8434 T1 and DIN 2353, in con­
junction with DIN 3861 and DIN 3870).
1

i INFORMATION
Use reinforcing sleeves for all thin-walled pipes and
soft pipe materials.

● When using different screw fitting and sealant


materials the smallest temperature limits apply in
each case.

● Check the dimensional accuracy of the removed


screw fittings and make sure the fittings are not
damaged; if necessary, replace them.

● Each time a union nut is loosened make sure it is


tightened with the same tightening torque as for Fig. 7 Aligning the screw fittings
final assembly. Observe the maximum tightening
torque; see page 68.
● Make sure the screw fittings are installed in an
unstrained condition (7/1).

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 61/99
Cutting Ring
Installation in the Fitting Device

i INFORMATION
Pipes with outer pipe diameters of 10 mm can be dir­
ectly installed in screw fittings that are prefitted to 1
components. For outer pipe diameters greater than 2
12 mm pipes are to be premounted in the fitting
device.
Pipes made of non-rusting materials, connection
pieces for hose fittings and adjustable screw fittings
with shafts must not be fitted in the fitting device.
These are to be installed in the pre-assembly device
(see page 64) or by means of a mounting device.

▶ For pipe preparation, see the "Pipe Preparation"


section, page 58.

i INFORMATION
With non-rusting materials, the cutting ring and the
union nut thread are to be oiled.
Galvanised screw fittings with colourless slide coating
do not have to be oiled.

▶ Slide the union nut (8/1) and cutting ring (8/2) over 3
the end of the pipe.
Make sure the cutting ring collar is facing the union
nut.
▶ Insert the pipe in the fitting device and push firmly
into the inner cone as far as it will go (8/3).
▶ Tighten the union nut by hand until the pipe stops
turning.
As soon as the cutting ring has engaged with the
pipe, there is a noticeable increase in torque.
▶ Mark the position of the union nut (8/4).

Fig. 8 Installation in the fitting device

62/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
▶ Tighten the union nut using an open end spanner
by approx. one turn more than the point at which
there is a tangible increase in torque (9/1).
The cutting ring will cut into the pipe evenly.
Hold the fitting device in place.
Use an extension (approx. 15 times the spanner 1
length; e.g. 22-L = 400 mm).
Observe the maximum tightening torque; see
page 68.
▶ Loosen the union nut.
Check the collar projection. Make sure there is a
visible even collar before the first cutting edge
(9/2). The cutting ring can turn on the pipe, but
must not axially slip.
▶ Tighten the union nut without extension.
2

Fig. 9 Installation in the fitting device

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 63/99
Installation in the Hardened Pre-Assembly Device
▶ For pipe preparation, see the "Pipe Preparation"
section, page 58. 1
1

i INFORMATION
2
Check the pre-assembly device (10/2) with the cone
gauge after about 50 pre-assemblies.

▶ Fix the pre-assembly device in a vice (observe the


outer pipe diameter).
▶ Oil the thread and cone (10/1) on the pre-assembly
device. 3
4
i INFORMATION
Galvanised screw fittings with colourless slide coating
do not have to be oiled.
With non-rusting materials, the cutting ring and the
union nut thread are to be oiled.

▶ Slide the union nut (10/3) and cutting ring (10/4)


over the end of the pipe.
Make sure the cutting ring collar is facing the union
nut.
▶ Insert the pipe in the pre-assembly device and
push in firmly as far as it will go (10/5).
▶ Tighten the union nut by hand until the pipe stops
turning.
Hold the pre-assembly device in place with an 5
open end spanner.
As soon as the cutting ring has engaged with the
pipe, there is a noticeable increase in torque.
▶ Mark the position of the union nut (10/7).
▶ Tighten the union nut approx. !/2 a turn using an
open end spanner (10/6).
6
The cutting ring will cut into the pipe evenly.

Fig. 10 Installation in the pre-assembly device

64/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
▶ Loosen the union nut. 1
Check the collar projection. Make sure there is a
visible even collar before the first cutting edge
(11/1).
▶ Insert the pre-assembled pipe into the fitting
device (11/2).
▶ Tighten the union nut using an open end spanner
by approx. !/2 a turn more than the point at which
there is a tangible increase in torque.
Hold the fitting device in place with an open end
spanner.
Use an open end spanner extension (approx. 15
times the spanner length; e.g. 22-L = 400 mm).
Observe the maximum tightening torque; see
page 68.
2
▶ Loosen the union nut again.
Check the collar projection. Make sure there is a
visible even collar before the first cutting edge. The
cutting ring can turn on the pipe, but must not axi­
ally slip.
▶ Tighten the union nut without extension.

Fig. 11 Installation in the pre-assembly device

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 65/99
DSW Ring
Installation in the Fitting Device

i INFORMATION
Pipes with outer pipe diameters of 10 mm can be dir­ 1
ectly installed in screw fittings that are prefitted to 2
components. For outer pipe diameters greater than
12 mm pipes are to be premounted in the fitting
device.
Pipes made of non-rusting materials, connection
pieces for hose fittings and adjustable screw fittings
with shafts must not be fitted in the fitting device.
These are to be installed in the pre-assembly device
(see page 64) or by means of a mounting device.

▶ For pipe preparation, see the "Pipe Preparation"


section, page 58.

i INFORMATION
Galvanised screw fittings with colourless slide coating
do not have to be oiled.
With non-rusting materials, the cutting ring and the
union nut thread are to be oiled.
3
▶ Slide the union nut (12/1) and DSW ring (12/2) over
the end of the pipe.
Make sure the DSW ring collar is facing the union
nut.
▶ Insert the pipe in the fitting device and push firmly
into the inner cone as far as it will go (12/3).
▶ Tighten the union nut by hand until the pipe stops
turning.
▶ Mark the position of the union nut (12/5).
▶ Tighten the union nut using an open end spanner
by approx. 1!/2 a turn more than the point at
4
which there is a tangible increase in torque (12/4).
Hold the fitting device in place with an open end
spanner. 5
Use a spanner extension (approx. 15 times the
spanner length; e.g. 22-L = 400 mm).
Observe the maximum tightening torque; see
page 68.

Fig. 12 Installation in the fitting device

66/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
▶ Loosen the union nut (13/1).
Check the components are sitting properly: Make
sure the DSW ring surface is fitted tightly against
the surface of the fitting device (13/2). 1 2
▶ Tighten the union nut without extension.

Fig. 13 Installation in the fitting device

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 67/99
Final Assembly Tightening Torque By Means Of Torque Wrench For Screw Fittings

Outer pipe diameter L Series


6 8 10 12 15 18 22 28 35 42
Galvanised material 15 15 25 35 45 85 110 130 215 330
[Nm]
Non-rusting material 20 25 30 35 50 130 160 180 275 400
[Nm]

Outer pipe diameter S Series


6 8 10 12 14 16 20 28 30 38
Galvanised material 25 40 50 60 75 80 120 170 250 350
[Nm]
Non-rusting material 25 45 65 80 100 130 180 280 375 475
[Nm]

Final Assembly Tightening Torque By Means Of Torque Wrench For Male Connectors
The specified values apply to:
● Male connectors of stud couplings sealed by a
sealing edge form B DIN 3852 or WD seal
● Steel screw fittings with colourless galvanised
slide coating and steel counter piece
Tapered screw-in threads are not self-sealing. Additional sealants are required for sealing.

L Series S Series
Outer pipe Pipe [Nm] Metric ISO [Nm] Outer pipe Pipe [Nm] Metric ISO [Nm]
diameter thread thread diameter thread thread
6 G!/8" A 25 M10 x 1 25 6 G!/4" A 60 M12 x 1.5 35
8 G!/4" A 50 M12 x 1.5 30 8 G!/4" A 60 M14 x 1.5 60
10 G!/4" A 50 M14 x 1.5 50 10 G#/8" A 110 M16 x 1.5 95
12 G#/8" A 80 M16 x 1.5 80 12 G#/8" A 110 M18 x 1.5 120
15 G!/2" A 160 M18 x 1.5 90 14 G!/2" A 170 M20 x 1.5 170
18 G!/2" A 105 M22 x 1.5 160 16 G!/2" A 140 M22 x 1.5 190
22 G#/4" A 220 M26 x 1.5 285 20 G#/4" A 320 M27 x 2 320
28 G1" A 370 M33 x 2 425 25 G1" A 380 M33 x 2 500
35 G1!/4" A 600 M42 x 2 600 30 G1!/4" A 600 M42 x 2 600
42 G1!/2" A 800 M48 x 2 800 38 G1!/2" A 800 M48 x 2 800

68/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
Flare Fittings
Flare fittings are used to mount flared pipes on standard
fitting devices conforming to DIN 2353/ISO 8434 T1 1 2
and T4. Flare fittings comprise:
● Fitting device (14/1)
● Adapter (14/4)
● Support ring conforming to DIN 3949 (14/3)
● Union nut conforming to DIN 3949 (14/2)
The adapter creates the transition from the 24 cone of 4
the fitting device to the 37 flare fitting conforming to
SAE.
3
▶ For pipe preparation, see the "Pipe Preparation"
section, page 58.
Observe the length allowances for flaring; see
page 71.
▶ Oil the adapter and thread of the union nut (use a
paste sliding agent for non-rusting materials).
▶ Slide the union nut and support ring over the end of 2
the pipe. 3
▶ Flare the pipe with a suitable device (e.g. flaring
machine).
Check the flared edge and pipe for cracks and
clean. Make sure the inner taper has no grooves
and is clean.
Check the diameter of the pipe collar; see page 70.
▶ Push the adapter completely into the cone of the fit­
ting device (14/4).
▶ Place the flared pipe on the adapter.
4
▶ Tighten the union nut by hand until the pipe stops
turning.
Hold the fitting device in place with an open end
spanner.
As soon as the adapter has taken hold of the pipe,
there is a noticeable increase in torque.
▶ Tighten the union nut approx. 1 - 1!/2 turns using
the open end spanner (final assembly).
The adapter is pressed into the screw fitting cone
and is connected to the fitting device.
Observe the maximum tightening torque; see
page 72.
Fig. 14 Flared screw fittings
▶ Each time a union nut is loosened make sure it is
tightened with the same tightening torque as for
final assembly.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 69/99
Minimum Spacing for Straight Pipe Ends with Pipe Bends
Minimum Length for Short Pieces of Pipe

H L

Fig. 15 Minimum Spacing and Lengths

Outer pipe L Series S Series


diameter
6 8 10 12 15 18 22 28 35 42 6 8 10 12 14 16 20 28 30 38
Distance H 31 31 33 33 36 38 42 42 48 48 35 35 37 37 43 43 50 54 58 65
Length L 39 39 42 42 45 48 53 53 60 60 44 44 47 47 54 54 63 68 73 82

Reference Diameter for Pipe Collars


Pipe measurement Reference diameter
D smax Da min Da max
6 1.5 9.1 10.0
8 2 11.3 12.0
10 2 13.1 14.0
12 2 15.3 16.0
14 3 18.6 19.6
15 2.5 19.1 20.0
74
Da

16 3 20.6 22.0
18 2.5 23.2 24.0
smax

20 3.5 25.6 26.8


22 3 26.5 27.5
25 4 31.1 33.0
28 3 32.7 33.3
30 5 37 38.7
35 4 41.8 42.7
38 5 46.0 47.2
42 4 48.8 49.8
Fig. 16 Reference diameter

70/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
Determining Pipe Lengths for Flanged Screw Fittings
The pipe length is determined by measuring between the faces of the connection pieces. Measurement X is to be
subtracted from each pipe connection.

L1

Fig. 17 Determining the pipe length

Pipe measure­ X L1 Pipe measure­ X L1 Pipe measure­ X L1


ment ment ment
6x1 1 8 16 x 2.5 1.5 10 30 x 2 -0.5 13
6 x 1.5 2 9 16 x 3 2.5 11 30 x 2.5 0.5 14
8x1 1 8 18 x 1.5 0 7.5 30 x 3 1 14.5
8 x 0.5 2 9 18 x 2 1 8.5 30 x 4 3 16.5
8x2 2.5 9.5 18 x 2.5 1.5 9 30 x 5 4.5 18
10 x 1 1 8 20 x 2 1 11.5 35 x 2 1.5 12
10 x 1.5 2 9 20 x 2.5 2 12.5 35 x 2.5 2 12.5
10 x 2 3 10 20 x 3 3 13.5 35 x 3 3 13.5
12 x 1 1 8 20 x 3.5 4 14.5 35 x 4 4.5 15
12 x 1.5 2 9 22 x 1.5 1 8.5 38 x 2.5 0 16
12 x 2 3 10 22 x 2 2 9.5 38 x 3 0.5 16.5
14 x 1.5 0.5 8.5 22 x 2.5 3 10.5 38 x 4 2 18
14 x 2 1 9 22 x 3 3.5 11 38 x 5 4 20
14 x 2.5 2 10 25 x 2 1 13 42 x 2 1.5 12.5
14 x 3 3 11 25 x 2.5 1.5 13.5 42 x 3 3 14
15 x 1.5 1 8 25 x 3 2.5 14.5
15 x 2 2 9 25 x 4 4 16
15 x 2.5 3 10 28 x 2 1.5 9
16 x 1.5 0 8.5 28 x 2.5 2.5 10
16 x 2 1 9.5 28 x 3 3 10.5

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 71/99
Final Assembly Tightening Torque By Means Of Torque Wrench For Flanged Screw Fittings

Outer pipe diameter L Series


6 8 10 12 15 18 22 28 35 42
Galvanised material 20 40 45 55 70 120 200 300 600 800
Md [Nm]
Non-rusting material 30 55 65 110 190 250 400 550 900 900
Md [Nm]

Outer pipe diameter S Series


6 8 10 12 14 16 20 28 30 38
Galvanised material 30 45 55 80 90 130 250 400 500 800
Md [Nm]
Non-rusting material 85 100 130 190 260 330 350 700 900 900
Md [Nm]

Correction Table for Face-to-Face Lengths

L2

L3

Fig. 18 Correction Table for Face-to-Face Lengths

Outer pipe L Series


diameter 6x1 8x1 10 x 1.5 12 x 1.5 15 x 1.5 18 x 2 22 x 2 28 x 3 35 x 3 42 x 3
Measurement 17.5 18.5 19.5 20 21.5 23 24 26 30 34
L2
Measurement 20.5 21.5 24 24.5 25.5 27 30.5 31.5 36 40
L3

Outer pipe S Series


diameter 6x1 8x1 10 x 1.5 12 x 1.5 14 x 2 16 x 2 20 x 2 25 x 3 30 x 3 38 x 3
Measurement 17.5 18.5 20 20.5 23 25 27.5 31 33 37.5
L2
Measurement 20.5 21.5 24.5 25 27.5 31 33 38.5 41.5 48
L3

72/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
Straight Pipe Sections up to Bending Radius (Flared Fittings)
Bend first - then flare
The union nut can slide on the pipe bend.

Outer pipe dia­ Measurement L1


meter
6 43
8 44
10 46
12 47
14 50
15 50
16 52
18 58
20 58
22 60
25 60
28 60 L1
30 62
35 62
38 70
42 70 Fig. 19 Bend first - then flare

Flare first - then bend


If the pipe end is shorter than that specified in the table
due to difficulties in installation, the pipe is to be bent
after flaring.

Outer pipe dia­ Measurement L2 L2


meter
10 15
12 15
15 17
16 21
18 18

Fig. 20 Flare first - then bend

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 73/99
Taper Couplings Complying with DIN 3865
The following points are to be observed for taper coup­
lings:
● The union nuts on the screw fittings cannot be
removed.

● Screw fittings with sealing cones are to be fitted in


the relevant screw fitting pieces in the final
assembly.

i INFORMATION
Galvanised screw fittings with colourless slide coating
do not have to be oiled.
With non-rusting materials, the thread and the
tapered end are to be oiled. 1 2

▶ Insert the sealing cone (21/2) in the cone of the fit­ 3


ting device (21/3).
▶ Screw on the union nut (21/1) by hand until it tan­
gibly reaches the stop on the fitting device.
▶ Tighten the union nut a maximum of !/2 a turn using
an open end spanner (final assembly).

Ready Assembled Screw Fittings with Shafts Fig. 21 Taper coupling


● Screw fittings with shafts are to be fitted in the rel­
evant screw fitting pieces in the final assembly.

i INFORMATION
Galvanised screw fittings with colourless slide coating
do not have to be oiled.
With non-rusting materials, the thread and the
tapered end are to be oiled.

▶ Firmly tighten the straight stud coupling.


▶ Screw on the union nut (22/1) by hand until it tan­ 2
gibly reaches the stop on the fitting device.
1 3
▶ Mark the position of the union nut.
▶ Tighten the union nut by turning approx. 30 using
an open end spanner (final assembly).
Use an extension (approx. 15 times the spanner
length; e.g. 22-L = 400 mm).

Fig. 22 Screw fitting with shaft

74/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
Welded Reducers
By using international, standard screw fitting systems
reducers can be used in a wide range of combinations.
If there are no standard reducers available, pipe ends 1
with different outer pipe diameters can be welded dir­
ectly.
The following points are to be observed in the process:
● The volume flow must not be affected by the cross-
section narrowing.
● Observe the flow rate.

● Only create tapered reducers.

i INFORMATION
Never use pipe cutters or cut-off grinders to shorten 2 3
the pipes.

▶ Calculate the pipe lengths. Observe the minimum


lengths.

ÇÇÇÇÇÇÇÇÇ

D
▶ Saw off the pipes at a right angle without deforming
using a sawing device; the permissible angular
ÉÉÉÉÉÉÉÉ
ÇÇÇÇÇÇÇÇÇ
deviation to the pipe axis is a maximum of 0.5
(23/1). ÉÉÉÉÉÉÉÉ 1xD
4

▶ Remove contamination from the pipe ends (e.g.


shavings, dirt and paint). If necessary, clean with
degreaser.
▶ Bevel the inside of pipe ends with smaller outer
pipe diameters (23/2). Fig. 23 Welded reducers
▶ Bevel the outside of pipe ends with larger outer
pipe diameters (preparation for welding [23/3]).
▶ Without forcing it, insert the smaller pipe end in the
larger pipe end by hand. Observe the minimum
insertion depth (23/4).
▶ Weld the entire circumference of the pipes so they
are sealed.
▶ Clean the weld joint both inside and out. Pickle the
weld joint and remove any scale.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 75/99
Flanged Joints

i INFORMATION 1
Hose lines are equipped with a pair of flanges (flange
and mating flange fittings).

Components
By using international, standard 4-hole flanged joints
(ISO 6162 T1 [SAE J518 Code 61] and ISO 6162 T2
[SAE J518 Code 62]) flanged fittings, mating flange fit­
tings and flange halves can be used in a wide range of
combinations. Flanged joints comprise:

● Flanged fittings (4-hole full face flange and flange 2


adapter) have an O-ring groove and bolt holes.

● Mating flange fittings do not have an O-ring groove,


but have a tapped bore (e.g. metric). Mating
flanges are always used in conjunction with a
flanged fitting (flange with O-ring). Connecting
faces on components are always designed as
mating flanges.

● Flange halves (two flange halves or whole flange


half) are used in conjunction with flange adapters.

Connection Methods
3
● Flanged joints with weld joints offer the option of
connecting pipes with flanges by means of
welding. Flanged joints are designed as a welded
on connection (24/1) or welded in connection
(24/2).

● Full face flanges with threaded connections allow


a 4-hole flanged joint to be connected to an existing
threaded connection. Full face flanges are
designed with an inner thread (24/3) or external
thread (24/4).
● Flange adapters always have an internal thread,
allowing pipes and hoses with 4-hole flanged joints 4
to be connected by means of a threaded connec­
tion piece (e.g. flare fitting).

Fig. 24 Flanged joints

76/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
▶ Mount the flanged fitting on the pipe. 1
For welded on flanges:
1. Bevel the outside of the pipe end (preparation
for welding).
2. Weld the entire circumference of the pipe to 1 4
seal it.
3. Clean the weld joint both inside and out (scale-
free and pickled).
3 2
For welded in flanges:
1. Insert the pipe end into the flanged fitting and
push in firmly as far as it will go.
2. Weld the entire circumference of the pipe to
seal it.
Fig. 25 Tightening order
3. Clean the weld joint both inside and out (scale-
free and pickled).
For internal or external threads:
1. Prepare the thread surfaces observing the
separate SCHOTTEL Installation Instructions
for Bolted Connections and Sealants in this
Service Manual.
2. Screw the pipe to the flanged fitting; see
"Screw Fittings" section, page 61.
Observe the maximum tightening torque;
see pagee 68.
▶ Check the surface of the O-ring. Make sure there
are no burrs, notches, scratches or foreign bodies
present.
▶ Lubricate the O-ring with oil.
▶ Position the flange.
▶ Tighten up the bolts by hand.
▶ Tighten the bolted connections gradually in line
with the pattern shown in figure 25.
Observe the maximum tightening torque, see sep­
arate SCHOTTEL Installation Instructions for
Bolted Connections and Sealants in this Service
Manual.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 77/99
10.6.3 Following Installation

DANGER
Oil may spray out under high pressure
Hazard to life or risk of serious injuries due to sudden
expansion of the oil.
▶ Depressurise the line system and/or line section
before tightening screw fittings and parts.
▶ Wear personal protective gear, especially heat-
resistant safety gloves and safety goggles.

After installation the following points are to be


observed:
● Check the line system and/or line section for loose
screw fittings, flanged joints and bolted connec­
tions.

● Flush the line system and/or line section (ISO 4406


class 20/18/15) and bleed.

● Move the control valves (e.g. ball valve and direc­


tional control valve) back into the correct position
(observe the Hydraulic Circuit Diagram).

● Check the line system and/or line section for leaks


by applying 1.5 times the operating pressure.

● Test all control functions at low pressure.

● Check that all safety and monitoring devices are


functioning properly.

78/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
10.7 Replacement of Hose Lines
The hose lines used must comply with all of the charac­
teristics specified in the Hydraulic Circuit Diagram (e.g.
material; nominal pressure).

10.7.1 General Points

i INFORMATION
The requirements of national and technical regula­
tions specific to the application of hose lines, and the
valid laws, acts and stipulations of the country where
they are used apply without restriction and are to be
fully observed (e.g. DIN 20066 T4).

Every hose line is designed with features specified by


SCHOTTEL. Use in other conditions (also for other
media) requires the materials used for hose lines and
hose fittings to be checked with regard to the changed
conditions. This is to be organised by the operator and
documented, or SCHOTTEL is to be commissioned to
carry this out. During this examination, the design of the
hose lines is checked and the relevant documents
reviewed. As a rule, an "Examination as to Safe Prepar­
ation and Use" then needs to be carried out for the hose
line.
It is crucial that the following points are always
observed when using hose lines:
● Never exceed the maximum permitted operating
pressure for the hose line.
● Never exceed the maximum permitted temper­
ature in terms of the oil used.
● In operating conditions, the hose line materials
must be resistant to the oil used.
● Hose line wear in terms of potential abrasion is to
be calculated and checked.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 79/99
Pressure Equipment Directive (14th. GPSGV)

i INFORMATION
Only hose lines pre-fabricated by a hose manufac­
turer may be used in the hydraulic system.
SCHOTTEL GmbH will void any warrantees and
cannot be held liable for any unauthorised structural
modifications, repairs and manipulations to hose
lines.

The fabricated hose line is designed, manufactured


and certified as a rigid line according to the Pressure
Equipment Directive (14th GPSGV "Equipment and
Product Safety Act'). The hose line forms a unit com­
prising the relevant hose, both sides of the hose fittings
and the two identification tapes.
When selecting the hose lines the following points are
to be observed:
● Only use standard hose lines.

● The requirement of identification tapes for the hose


line is to be fulfilled.

● The operating pressure, nominal diameter and


hose fittings of the new hose line must correspond
with those of the old hose line.

● The usage and storage period is to be observed for


the period of use starting from the date of manufac­
ture of the hose line; (maximum period of use for
hose lines is five years, including a maximum
storage period of two years).

80/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
Cleaning

DANGER
Oil may spray out under high pressure
Hazard to life or risk of serious injuries due to con­
necting parts and hose lines bursting.
▶ Do not use steam lances for cleaning purposes.
▶ Wear personal protective gear, especially heat-
resistant safety gloves and safety goggles.

Clean hose lines after use and before each inspection


with suitable agents and flush (ISO 4406 class
20/18/15). When cleaning with steam or chemical
additives pay attention to the resistance of hose com­
ponents.

Inspection Intervals
The condition of the hose lines used is to be checked by
a competent person authorised to do so by the operator
to ensure they are safe for operational use:
● After installation and prior to using a hose line

● After accidents, modifications (conversions) to the


hydraulic system and longer periods of non-use
(extraordinary inspection)

● After corrective maintenance work on the


hydraulic system, which may result in safety being
affected

● Repeatedly, at stipulated, regular intervals

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 81/99
10.7.2 Prior to Installation
Prior to installation the following points are to be
observed:
● Before carrying out maintenance work depres­
surise the line system or line section and allow to
cool.

● Before opening the line section concerned, check


that the hose line has been fully depressurised.
Always open the hose line fittings slowly and care­
fully.

● Place a suitable collecting basin under the hose


line concerned to catch any residual oil that may
leak out.
● Clean and flush the hose line to be installed prior to
installation (ISO 4406 class 20/18/15).
● Make sure hose lines are only installed in line with
specifications and used for their intended purpose.
● Make sure that the accessible interiors of the
adjoining line system are free of foreign bodies.

● Hose lines must not be used for longer than the


maximum period of use, including the maximum
storage period.

10.7.3 During Installation


During installation the following points are to be
observed:

● Hose lines are to be protected against damage


caused by the effects of external mechanical,
thermal or chemical factors.

● If there is visible damage to the hose line, it must


not be installed.
● The hose lines need to be accessible at all times
following installation.
● After installation, hose lines must not be used as a
ladder or climbing support.
● Hose lines must never be painted over.

82/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
Torsion, Traction and Compression

i INFORMATION
1
When installing a hose line with an elbow fitting,
always mount the elbow fitting first.

● Prevent torsion (26/2).


Hose lines must not be obstructed from taking up
their natural position or moving. 2

● Prevent traction and compression (26/1).


Take account of potential shortening or extension
under pressure. Install hose lines so they sag.
● Do not bundle together hose lines with different 3
operating pressures (different linear expansion).
● Use suitable hose fittings (e.g. elbow fitting of 30,
45 or 90) or connection pieces to prevent addi­
tional strain on the hose line (26/3).

Permissible Bending Radius


● Observe the permissible bending radius.
Make sure the bending radius for the hose line is
not smaller than that specified by the manufac­
turer.
The permissible bending radius is specified in line
with the relevant standards for each type of hose in
relation to the nominal width (e.g. DIN EN 853 bis
DIN EN 857 and DIN 20021).

● The length of any hose line bend inserted after a


straight section needs to be at least 1.5 times the
external diameter da (26/4).
● Avoid bending the hose directly after the connec­
tion (26/5).

4
1.5 x da

Fig. 26 During Installation

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 83/99
Abrasion, Chafing and Bending
● Protect hose lines from external damage, such as
abrasion caused by chafing (27/2) or mechanical-
related nicks (27/1).

● Protect loosely laid hose lines from damage, abra­


sion and deformation (use hose protection ramps).

Hose Brackets

● Use hose clamps to hold the hose that do not 1


clamp it and have a smooth inner surface (27/3).

● Mount hose brackets on the straightest sections


possible (27/4).

● Hose brackets must not obstruct the natural move­


ment of the hose line or changes to its length (27/5).

● If hose lines are directly connected to a rigid line, a 2


pipe clamp is to be mounted immediately after the
screw fitting (27/6).
3
Effects of Temperature
● Protect hose lines from the damaging effects of
temperature both inside and out.
● Do not install hose lines near sources of heat.

Fig. 27 During Installation

84/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
10.7.4 Following Installation
Following installation the following points are to be
observed:
● Flush the line section (ISO 4406 class 20/18/15)
and bleed it.
● Check the line section for loose screw fittings,
flanged joints and bolted connections.

● Move the control valves (e.g. ball valve and direc­


tional control valve) back into the correct position
(observe the Hydraulic Circuit Diagram).

● Check the line section for leaks by applying


1.5 times the operating pressure.
● Test all control functions at low pressure.

● Check that all safety and monitoring devices are


functioning properly.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 85/99
11 Troubleshooting
The following points are to be observed during Successful troubleshooting requires precise know­
troubleshooting: ledge of the hydraulic system structure and mode of
operation, and of the individual components.
● Switch off the hydraulic system and make sure it
cannot be started up unintentionally before The combination of hydraulics and electrics/elec­
troubleshooting. Switch off the power to the tronics can complicate troubleshooting; therefore,
hydraulic motors and make sure they cannot be cooperation between hydraulics and electrical engin­
started up unintentionally. eers is paramount.

● Observe the special safety measures for intercon­ Always proceed systematically and purposefully even
nected hydraulic systems, if individual sub-assem­ under time pressure. In the worst case scenario, ran­
blies are still in operation, or have to be switched on domly and rashly changing the settings and removing
again during troubleshooting. components may mean that the original cause of the
fault can no longer be established.

WARNING
Long-term malfunctions
Risk of serious injuries due to the failure of individual
components as a result of long-term malfunctions
▶ Rectify malfunctions immediately.
▶ Malfunctions are only to be rectified by specialist
staff trained and qualified to carry out this task.
▶ If damage to the hydraulic system occurs, switch
it off and make sure it cannot be started up unin­
tentionally; notify the relevant services.

Any deviations from the hydraulic system's usual oper­


ating conditions indicate malfunctions and are to be
remedied immediately.
The table does not make any claim to completeness.
During operation, malfunctions may occur that are not
listed in the table.
If the malfunction cannot be rectified with the aid of this
table, please notify the SCHOTTEL Customer Service
Department. For SCHOTTEL GmbH contact details,
see page 2.
Keep the following details handy:
● Type plate (complete)

● Type and extent of the malfunction

● Time and circumstances of the malfunction

● Suspected cause

86/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
11.1 Line System
11.1.1 Abnormal Noises
Malfunction Possible causes Remedy

Cavitation in the hydraulic system Filter clogged Replace the filter

Foreign bodies in the suction line Flush the line system

Suction line leaking; air is being Seal the leaks


drawn in

Too many bends in the suction line Reinstall the suction line or use a
larger nominal diameter

Suction line too long Shorten the suction line; improve


the rigid line routing

Damaged rigid line or bent hose line Repair or replace the rigid line,
in the suction line replace the hose line and, if neces­
sary, improve the rigid and hose
line routing

Partially closed valve in the suction Make sure the oil can flow through
line the valve (e. g. check position;
clean the valve)

Wrong oil Check the oil used; observe the Oil


Specifications

Hydraulic pump speed is too high Check the hydraulic motor speed
(observe the Hydraulic Circuit Dia­
gram)

Foam formation or trapped air in oil Oil level too low Check the oil level and fill it up, if
necessary.

Reservoir has been installed in the Check the reservoir's place of


wrong place installation and change if necessary

Wrong oil Check the oil used; observe the Oil


Specifications

Inadequate bleeding Lay the vent line properly and bleed


the line system

Mechanical vibration Imbalance between hydraulic motor Check the alignment and coupling;
and hydraulic pump check for wear and repair or
replace, if necessary

Vibration in the rigid line Check the fastening parts and


tighten, or improve the installation
situation

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 87/99
Malfunction Possible causes Remedy

Mechanical vibration (continuation) Rigid line installed wrongly Improve the rigid line routing

Hydraulic pump damaged or Repair or replace the hydraulic


defective pump

Hydraulic motor damaged or Repair or replace the hydraulic


defective motor

Pressure relief valve unstable (flap­ Check the setting and adjust, if
ping) necessary, or replace the pressure
relief valve

Check valve damaged or defective Replace the check valve

Fastening bolts on motor bracket Tighten the fastening bolts


loose

Inflow and outflow rates too high/too Filter clogged Replace the filter
low

11.1.2 No or Insufficient Feed Pressure


Malfunction Possible causes Remedy

Hydraulic pump not pumping or Foam formation or trapped air in oil See "foam formation or trapped air
only inadequately in oil" malfunction

Wrong oil Check the oil used; observe the Oil


Specifications

Filter clogged Replace the filter

Valve in ine system clogged (e.g. Clean the valve, or replace


foreign bodies in housing) or dam­
aged

Inadequate rigid line routing Improve the rigid line routing

Hydraulic pump damaged or Repair or replace the hydraulic


defective pump

Excessive vacuum in suction line Filter clogged Clean the filter


due to high flow friction
Nominal diameter of suction line too Enlarge the nominal diameter of the
small suction line

Too many bends in the suction line Reinstall the suction line or use a
larger nominal diameter

Suction line too long Shorten the suction line; improve


the rigid line routing

88/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
Malfunction Possible causes Remedy

Hydraulic pump overheated Wrong oil Check the oil used; observe the Oil
Specifications

Hydraulic pump damaged or Repair or replace the hydraulic


defective pump

Insufficient cooling Improve the rigid cooling line


routing

Oil cooler damaged or defective (if Repair or replace the oil cooler
present)

Hydraulic pump speed is too high Check the hydraulic motor speed

Operating pressure not reached; Pressure relief valve damaged or Replace the pressure relief valve
constant drop in pressure defective

Wrong setting on the pressure relief Check the setting and adjust, if
valve necessary

Oil level too low Check the oil level and fill up, if
necessary

Hydraulic motor rotating in wrong Wire up the electrical connections


direction (electrical connections properly
wired up wrongly)

11.1.3 No or Insufficient Flow Rate


Malfunction Possible causes Remedy

Hydraulic pump is pumping against Shut-off valve is closed on the pres­ Open the shut-off valve on the pres­
excessive pressure sure side sure side

Insufficient cross-section ratios Filter clogged Replace the filter

Line system leaking Seal the leaks

Foam formation or trapped air in oil See "foam formation or trapped air
in oil" malfunction

Line system clogged (e.g. valve; Flush the line system


rigid line)

Insufficient speed transmission Imbalance between hydraulic motor Check the alignment; check for
between hydraulic motor and and hydraulic pump wear and repair or replace, if
hydraulic pump necessary

Pressure relief valve defective Wrong setting Check the setting and adjust, if
necessary

Pressure relief valve clogged or Replace the pressure relief valve


defective

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 89/99
11.1.4 No Oil Fed to Actuator

Malfunction Possible causes Remedy

Power supply switched off Maintenance work being carried out Finish maintenance work
on hydraulic system

Emergency stop triggered Emergency stop triggered in entire Remedy the cause and malfunction
propulsion system

Hydraulic motor is not in operation Electrical connections not right Wire up the electrical connections
properly

Power supply switched off (main­ Finish maintenance work


tenance work being carried out on
hydraulic system)

Hydraulic motor damaged or Repair or replace the hydraulic


defective motor

Motor circuit breaker switches off See "motor circuit breaker switches
off" section

Hydraulic motor is working; Coupling is damaged or defective Repair or replace the coupling
hydraulic pump is not

Motor circuit breaker switches off Electrical connections not right Wire up the electrical connections
properly

Wrong supply voltage or frequency Compare to rating plate

Line system clogged (e.g. valve; Flush the line system


rigid line)

Motor circuit breaker is switched off Maintenance work being carried out Finish maintenance work
on hydraulic system

90/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
11.2 Fluctuations in the Feed Pressure and Flow Rate
Malfunction Possible causes Remedy

Trapped air in the line system, Line system not bled properly Bleed the line system
causing an uneven or slackening
movement Electric control defective; e.g . Check the function of the hydraulic
valves are constantly switching system according to the Wiring Dia­
gram and Hydraulic Circuit Diagram

11.3 Measurement and Control Technology


Malfunction Possible causes Remedy

Absent output signal on the meas­ Signal line interrupted or defective Check the signal line
urement and control equipment
Electrical connections not right Wire up the electrical connections
properly

Measurement and control equip­ Replace the measurement and con­


ment damaged or defective trol equipment

Same output signal when pressure Mechanical overload Replace the measurement and con­
changes trol equipment

Measurement and control equip­ Replace the measurement and con­


ment damaged or defective trol equipment

Signal voltage insufficient Supply voltage too low or absent Check the supply voltage

Working resistance too high or too Adjust the working resistance or


low supply voltage

Mechanical overload Replace the measurement and con­


trol equipment

Zero point signal too high or too low Mechanical overload Replace the measurement and con­
trol equipment

Signal characteristic curve non­ Mechanical overload Recalibrate the measurement and
linear control equipment

Absent input signal on the measure­ Signal line interrupted or defective Check the signal line
ment and control equipment

Measurement and control equip­ Electrical connections not right Wire up the electrical connections
ment not switching properly

Supply voltage too low or absent Check the supply voltage

Measurement and control equip­ Replace the measurement and con­


ment damaged or defective trol equipment

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 91/99
Malfunction Possible causes Remedy

Sporadic faulty control of measure­ Extreme radio interference Shield the supply voltage
ment and control equipment
Extreme vibration Eliminate vibration; if necessary,
relocate the measurement and con­
trol equipment

Wrong oil Check the oil used; observe the Oil


Specifications

11.4 Valves
Malfunction Possible causes Remedy

Safety valve (e.g. pressure relief Sealing surfaces, sealing elements, Clean the safety valve or replace, if
valve; overflow valve) constantly valve seat or similar contaminated necessary
discharges or damaged in the valve

Pressure spring broken Replace the safety valve

Response pressure set wrongly Check the setting and adjust, if


necessary

Differential pressure too low Check the operating pressure and


adjust, if necessary

Safety valve (e.g. pressure relief Response pressure set wrongly Check the setting and adjust, if
valve; overflow valve) responds at necessary
low pressure
Differential pressure too low Check the operating pressure and
adjust, if necessary

Safety valve (e.g. pressure relief Sealing surfaces, sealing elements, Clean the safety valve or replace, if
valve; overflow valve) not valve seat or similar contaminated necessary
responding or damaged in the valve

Response pressure set wrongly Check the setting and adjust, if


necessary

Connections mixed up Check connections and correct

Valve leaking Differential pressure too high Check the line system

Sealing surfaces, sealing elements, Open the valve and repeat the
valve seat or similar contaminated closing process
or damaged in the valve

Clean the valve, or replace, if


necessary

Valve cannot be operated Valve contaminated or clogged Clean the valve, or replace, if
(e.g. foreign bodies in the housing) necessary

92/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
Malfunction Possible causes Remedy

Valve cannot be operated (continu­ Power supply has failed Check the power supply
ation)
Power supply switched off (main­ Finish maintenance work
tenance work being carried out on
hydraulic system)

Leak between valve and connection Connection device not installed Mount the connection device prop­
device tightly (e.g. screw fitting not erly
tightened properly)

Valve fitted improperly Loosen the connection device and


remount

Seal, flange seal, etc. defective Remove the valve and reseal

Interruptive opening and closing of Sealing surfaces, sealing elements, Open the valve and repeat the
valve valve seat or similar contaminated closing process
or damaged in the valve

Valve contaminated or clogged Clean the valve, or replace, if


(e.g. foreign bodies in the housing) necessary

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 93/99
12 Removal
The following points are to be observed prior during
removal: CAUTION
● The hydraulic system may only be removed by Slipping, falling and tripping over
specialist staff trained and qualified to carry out Head injuries and cuts to limbs due to sharp edges
this task. and pointed corners
● Wear personal protective gear. ▶ Keep the work area and walked-on areas clean.
▶ Wear personal protective equipment, especially
● The laws, acts and regulations applicable in the protective clothing and a safety helmet.
country where it is used are to be observed.
● Switch off the hydraulic system and make sure it
cannot be started up unintentionally before com­ NOTICE
mencing any removal work.
Environmental damage
● Before commencing any removal work, close off Environmental damage caused by the improper dis­
access to the work area to any unauthorised per­ posal of materials harmful to the environment
sons. Display an information sign to indicate the ▶ Observe the safety data sheets.
removal work in progress.
▶ Dispose of materials safely and in an environ­
● When handling operating materials and supplies, mentally friendly way.
the safety regulations for the product concerned ▶ Always observe the national and international
are to be observed. Refer to and observe the regulations regarding the disposal of materials.
safety data sheets in this Service Manual.

DANGER
Voltage
Hazard to life or risk of serious injuries due to electric
voltage
▶ Always observe the special safety provisions
when working on any kind of electrical compon­
ents.
▶ Work on electrical components is only to be car­
ried out by a qualified electrician.
▶ Switch off the power supply before commencing
work and make sure it cannot be switched on
unintentionally.

WARNING
Operating materials harmful to health
Operating materials (e.g. oils; cleaning agents) may
be harmful to health when in direct contact with skin
(e.g. caustic burns; allergic reactions).
▶ Always wear personal protective equipment
when handling operating materials.

94/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
The following tasks are to be carried out during removal:
▶ Switch the hydraulic system off and make sure it
cannot be started up unintentionally.
▶ Drain out all operating materials.
Please refer to the relevant operating instructions
in this Service Manual for the procedures involved.
▶ Remove all electric cables properly.
▶ Dismantle rigid and hose lines properly.

WARNING
Risk of injury due to thermal and mechanical cut­
ting work
Burns and cuts to limbs
▶ Wear personal protective equipment, especially
protective clothing and a safety helmet.

NOTICE
Damage to the hydraulic system
Hydraulic system sub-assemblies and components
may become damaged during thermal or mechanical
cutting work.
▶ Only perform cutting work properly as set out in
the installation documents.

▶ Separate the welded joints by flame cutting or


grinding.
▶ Separate all bolted connections between the sub-
assemblies and the vessel structure.

i INFORMATION
Once these measures have been carried out,
hydraulic system sub-assemblies and components
are separated and can be lifted. For lifting the sub-
assemblies and components, see the "5 Transporta­
tion" section, page 24.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 95/99
13 Storage
13.1 Short-Term Storage

i INFORMATION
For information on activities that have to be carried out
on the individual sub-assemblies, please refer to the
relevant operating instructions in this Service Manual.

For short-term storage, the hydraulic system sub-


assemblies and components are removed from the
vessel and put into storage for a period of up to six
weeks.

i INFORMATION
To prevent corrosion damage to the hydraulic system
sub-assemblies and components, contact the
SCHOTTEL Customer Service Department before
placing them in short-term or long-term storage. For
SCHOTTEL GmbH contact details, see page 2. The
SCHOTTEL Customer Service Department will draw
up an individual storage procedure schedule.

● The storage area has to be clean and dry (relative


humidity < 65%).
● Make sure there is no exposure to direct sunlight or
high UV radiation from a light source.
● Make sure there is no vibration in the near vicinity
of the sub-assemblies and components.
● Do not operate any ozone generating equipment in
the storage area (electric motors, high-voltage
equipment, neon tubes).
● Make sure that hydraulic system sub-assemblies
and components are accessible for inspections.
● The valid laws, acts and stipulations of the country
where components with elastomers are used (e.g.
hoses, hose lines, and seals) are to be observed
(e.g. DIN 7716 and DIN EN 982).

96/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
13.2 Long-Term Storage

i INFORMATION
For information on activities that have to be carried out
on the individual sub-assemblies, please refer to the
relevant operating instructions in this Service Manual.

For long-term storage, the hydraulic system sub-


assemblies and components are removed from the
vessel and put into storage for a period of over six
weeks.

i INFORMATION
To prevent corrosion damage to the hydraulic system
sub-assemblies and components, contact the
SCHOTTEL Customer Service Department before
placing them in short-term or long-term storage. For
SCHOTTEL GmbH contact details, see page 2. The
SCHOTTEL Customer Service Department will draw
up an individual storage procedure schedule.

13.2.1 Hose Lines and Seals


The maximum storage periods for hose lines and seals:

● Hose Lines: 2 years


● Hoses: 4 years
● NBR seals: 4 years
● FKM seals: 10 years

Storage Conditions

● Store hose lines, hoses and seals free from strain


and in a horizontal position. When storing hose
lines or hoses in coils ensure that the bending
radius is not smaller than that specified by the man­
ufacturer.
● Do not stack hose lines.

● Where possible, store seals in their original pack­


aging; prevent air circulation.

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 97/99
14 Disposal
WARNING
Operating materials harmful to health
Operating materials (e.g. oils; cleaning agents) may
be harmful to health when in direct contact with skin
(e.g. caustic burns; allergic reactions).
▶ Always wear personal protective equipment
when handling operating materials.

NOTICE
Environmental damage
Environmental damage caused by the improper dis­
posal of materials harmful to the environment
▶ Observe the safety data sheets.
▶ Dispose of materials safely and in an environ­
mentally friendly way.
▶ Always observe the national and international
regulations regarding the disposal of materials.

14.1 Scrapping
If the hydraulic system or its sub-assemblies are no
longer operational, the operator is to ensure that these
are properly scrapped; this means a state in which the
hydraulic system or its sub-assemblies can no longer
be used for their intended purpose.
SCHOTTEL GmbH shall not assume any responsibility
for any personal injuries or material damage that may
occur as a result of a hydraulic system sub-assembly
being reused for a purpose other than its intended use.
The following points are to be carried out during the
scrapping process:
● Disassemble the sub-assembly into individual
parts.
● Lock movable parts.

● Dispose of individual parts properly.

98/99 TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 en
14.2 Disposal
The operator is to ensure that materials are disposed of
in an environmentally sound process. When doing this,
the regulations regarding the disposal of operating
materials and supplies applicable at the site of opera­
tion are to be observed.
The disposal process is to include the recovery of basic
materials from the hydraulic system. These materials
might be able to be reused in a recycling process.
Materials harmful to the environment need to be dis­
posed off with extra care; these include:
● Plastic parts

● Rubber parts

● Electric parts

● Metal parts

● Operating materials and supplies

en TTD-Wa Installation Specifications for Hydraulic Systems and their Components 12/1810 1099237 99/99
4. Spare Parts Catalogue
BLANK PAGE
YOUR PROPULSION EXPERTS

Projectcode
TUG-090086-03

Code word
RAB TUG 3 - P306-Shaft

Order number
14348488

Thruster
/
/
/

Ship classification society


BV

Language
English
SPARE PARTS CATALOGUE
SCHOTTEL

Version / 1.0
SCHOTTEL GmbH
2

Mainzer Straße 99

56322 Spay / Germany


/ 1.0 Order number: 14348488

Phone: +49 (0) 2628 / 61-0

Fax: +49 (0) 2628 / 61-300

www.schottel.de

 info@schottel.de
SCHOTTEL SPARE PARTS CATALOGUE

SCHOTTEL GmbH is referred to as SCHOTTEL in the following.

Version Revision index Remark Date

1.0 000 First delivery 23.06.2016

Table 1: Revision history


Table of contents

3
1 Spare Parts Catalogue 5

/ 1.0 Order number: 14348488


1.1 Ordering Spare Parts 5
1.2 TELEFAX FORM FOR SPARE PARTS REQUESTS 7
1.3 Overview 9
1.4 counter shaft 11
1.5 Intermediate Shaft cpl. 13
1.6 Inductive proximity switch cpl 15 

1.7 1190341_GEWES_Technical Description Mounting, Maintenance and repair of propshafts

SCHOTTEL SPARE PARTS CATALOGUE


with flanged universal joints_en (Englisch).pdf 18
1.8 1196424_EAGLE BURGMANN_Operating and Maintenance Instructions for Bulkhead-
seal_en (Englisch).PDF 26

SCHOTTEL SPARE PARTS CATALOGUE / 1.0 Order number: 14348488 4
1. Spare Parts Catalogue

5
1.1 Ordering Spare Parts

/ 1.0 Order number: 14348488


We would like to draw express attention to the fact that only those
spare parts and accessories supplied by SCHOTTEL GmbH have
been checked and released. The full functionality and safe opera-
tion of the propulsion system can only be guaranteed if spare parts
supplied by SCHOTTEL GmbH are used. The warranty shall be-
come void if any parts are used other than original SCHOTTEL parts.

SCHOTTEL SPARE PARTS CATALOGUE


SCHOTTEL GmbH shall not assume any liability or warranty for any
damages incurred by using non-original spare parts and accessories.

SCHOTTEL GmbH's General Terms and Conditions shall expressly


apply to all orders placed (www.schottel.de/agb).

Requests for spare parts are to be made in writing. Orders received


and given on the telephone shall be expressly at the risk and ex-
pense of the customer.

Ordering Please always send your spare parts requests and orders to the
SCHOTTEL Service Department in writing. Please use the enclosed
order form or copy the pages from the spare parts catalogue adding
any missing details or information in your covering letter.

To enable clear identification please provide the following information


on your propulsion unit:

Project number

Code word

Order number

Propulsion unit

Classification society
6
/ 1.0 Order number: 14348488

2
 Project number
SCHOTTEL SPARE PARTS CATALOGUE

OSV-123456-01
3
Code word
XXXXX

Order number

4 14312345

Propulsion unit / Serial number


SRP 3000 FP / SRP-1234567
5 STT 1 FP / STT-1234567
/

Classification society
ABS

Language
English

Figure 1: Cover sheet of User Manual


1.2 TELEFAX FORM FOR SPARE PARTS REQUESTS

7
SCHOTTEL Sales Agency or SCHOTTEL GmbH
.......................................... Mainzerstrasse 99

/ 1.0 Order number: 14348488


.......................................... 56322 Spay/Germany
.......................................... Department: SET
.......................................... Telefax: +49 2628 61-433

Project number: TUG-090086-03

Code word: RAB TUG 3 - P306-Shaft

Order number: 

SCHOTTEL SPARE PARTS CATALOGUE


Product type:

Vessel name:

Part no.: Designation of part Pos. Assy. no. Designation of assembly Quan-
tity

Spare parts subject to approval: Yes □ No □

Type of dispatch: By mail □ By truck □ By railway □

Other: .................................................

To be delivered to: ......................................... To be invoiced to: .........................................

......................................... .........................................

......................................... .........................................

Stamp/purchaser's signature Place and date



SCHOTTEL SPARE PARTS CATALOGUE / 1.0 Order number: 14348488 8
1.3 Overview

9
/ 1.0 Order number: 14348488
Position Part Designation Quantity Instructions

1 1126373 counter shaft 2 piece 1180666

2 1153588 Intermediate Shaft cpl. 2 piece 1167641


3 1201109 Inductive proximity switch 2 piece

SCHOTTEL SPARE PARTS CATALOGUE


cpl

4 1216347 Cardan shaft 41-95 2 piece 1216347_GEWES see


chapter: Documents from
Suppliers

5 1214592 Cardan shaft 41-95 2 piece 1214592_GEWES see


chapter: Documents from
Suppliers

6 1196424 Bulkhead seal Gr. 215 2 piece 1196424_EAGLE


BURGMANN see chapter:
Documents from Suppli-
ers

7 1098729 Hexagon head screw M22X 50 20 piece

8 1055386 Hexagon head bolt M22X 80 40 piece

9 1164077 Hexagon socket head cap 20 piece


screw

10 1001027 Hexagon nut M 22 60 piece

11 1000726 Hexagon head screw M14X 55 16 piece

12 1216487 Seal 2 piece

13 1108410 Pointer 1 piece



SCHOTTEL SPARE PARTS CATALOGUE / 1.0 Order number: 14348488 10
1.4 counter shaft

11
Part: 1126373

/ 1.0 Order number: 14348488


Drawing number: 1126373

Änderungsnummer: 04/0117KG


Position Part Designation Quantity Instructions

SCHOTTEL SPARE PARTS CATALOGUE


001 1094446 Flange 1 piece

002 1126374 Shaft 1 piece

003 1040108 Bearing Housing 2 piece

004 1040104 Self-Aligning Roller Bearing 2 piece

005 1040103 Adapter Sleeves for Bearings 2 piece

006 1040101 Fixing Ring FRB 17,0/290,.0P 2 piece

007 1029221 Hexagon socket pipe plug 2 piece

008 1075352 Universal Grease 2 kilogramm


1.5 Intermediate Shaft cpl.

13
Part: 1153588

/ 1.0 Order number: 14348488


Drawing number: 1153588

Änderungsnummer: 16/0657


Position Part Designation Quantity Instructions

SCHOTTEL SPARE PARTS CATALOGUE


001 1094446 Flange 2 piece

002 1153508 Shaft D140/138 1 piece

003 1040108 Bearing Housing 4 piece

004 1040104 Self-Aligning Roller Bearing 4 piece

005 1040103 Adapter Sleeves for Bearings 4 piece

006 1040101 Fixing Ring FRB 17,0/290,.0P 2 piece

007 1007367 Lubricating Nippels Cone Type 1 piece

008 1164817 Synthetic Aviation Grease 2 kilogramm

009 1098414 Flange 1 piece

010 1088965 V-Ring V- 140S 4 piece

011 1171405 Angle 2 piece

012 1029221 Hexagon socket pipe plug 4 piece

013 1021548 Gewindebolzen M12 X 1000 2 meter

014 1001006 Hexagon nut M 12 8 piece

015 1000720 Hexagon head screw M12X 40 4 piece

016 1007336 Washer 12 8 piece


16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

V 1:5
M M

680
Flanschbohrbild um 18° zueinander versetzt! Schottabdichtung kann entsprechend der Lage 600
Holes of flanges displaced by 18°! der Schottwand auf der Welle verschoben werden.
Bulkhead sealing can be mounted on the shaft to a Oeffnung in der Schottwand 10x
Opening in bulkhead 36°
suitable positon. (=3
5000 ±1 36° 60°
)
4720

3240

L 1760 L

1100
A 1:5
310

460 ±0,30
276 ±0,30
A

92 ±0,30
420
500
Lagereinbauvariante mit Distanzstueck
Z 2
280 Bearing application variant with distance piece
X Massenschwerpunkt Y
Center of gravity
W Anschlaege und Stellbolzen
werftseitig angebracht
stopper and bolts mounted by
delivered by yard

K
V K

1100
35

12
160 ±0,30

42
320 ±0,30
M A = 350 Nm
3 3 2 3 3 480 ±0,30
640 ±0,30
Loslager Loslager Festlager Loslager Spannhuelse werftseitig
movable bearing movable bearing fixed bearing movable bearing clamping sleeve yard
supply
J
ca.2420 J
5012
140

470
550

506
Y 1 : 2,5 2 Ueberall dort, wo eine Gefaehrdung von Menschen und Material
durch rotierende Teile moeglich ist, sind vom Anwender und/ oder
Betreiber entsprechende Sicherheitsvorkehrungen zu treffen.
7 Der Einbau darf nur durch fachkundiges Personal durchgefuehrt werden!
Where danger to people or material can be caused by
rotating parts, a safety device has to be installed by
H 9 Befestigungsschrauben
weftseitig angebracht.
the user and / or operator.
The installation or parts of it is only allowed by specialists!
H

11 Fastening srew to deliver


and mounted by the yard.
Bei Endmontage an der ( M30, EN 24017-8.8)
Mit rotem Lack gekennzeichnet:
Dichtflaeche montiert.
To final mounting sealing
Distanzstueck weftseitig
M A = 1400 Nm
With red varnish color to sign:
Engine side
58 58
on the contact face mounted. 10 distance piece to be filled
by the yard
160
12
1,3 A Lagergehaeuse zur Welle ┴ max. 0,5°!
235 60
G Bearing housing to shaft ┴ max. 0,5°! G
170
W 1 : 2,5 344 Dichtflaeche vor Endmontage der Dichtringe Pos.10 mit Petroleum
oder aehnlichem Mittel gereinigt!
Lagereinbauvariante mit Giessharz Nach Montage der Dichtringe, Dichtung ueber Schmiernippel Pos.12
mit Fett L2 ID-NR:1075352 abgeschmiert!
Bearing application variant with cast resin
12 15 Gusssteiger Before final mounting, contact face for V-seals cleaned with petroleum
200

or similar fluid!
Anschlaege und Stellbolzen casting riser After final installation of the V-seals, space between V-seals greased
werftseitig angebracht Giessharz 15-20 with grease L2 ID-No:1075352!
stopper and bolts mounted by
delivered by yard cast resin
F F
Transporthalterung Pos11, 13, 14,15 und 16 bei Endmontage entfernen!
Removal transportation device Pos.11, 13, 14,15 and 16 before final
11 installation.

Fundament Dichtungen Pos.10 gemaess Einzelheit Y montiert.


13,14,16 foundation Sealings Pos.10 mounted according detail Y.
Einstellsschrauben
14,15,16 weftseitig angebracht.
Adjusting screw to deliver
Einbauvorschrift ID-NR:1167641 beachten!
Installation instruction ID-No:1167641 to be observed!
Lagergrundplatte and mounted by the yard.
baseplate-bearing
E
Mit der angegebenen Fettmenge Lager gefuellt, Rest im Gehaeuse E
Sechskantschraube M12, Dichtring so verteilt, dass keine unbenetzten Oberflaechen vorhanden sind!
und Gummidichtung kein SCHOTTEL- Fettmenge pro Lager = 2,0 kg
Lieferumfang!

parting line
Bolts and sealings yard supply! Bearings are filled up with the specified quantity of grease, the rest
of grease to be distributed in plumber block housing so that all

20 Trennfuge
surfaces are covered!
grease quantity per bearing = 2,0 kg

760
Loslager ohne Festringe (Pos.6)!
X 1 : 2,5 Z 1 : 2,5 Movable bearings without distance rings (Pos.6)!

D 235 Giessrahmen Lage der Fettaustrittsoeffnungen beachten! D


235 casting frame
Position of grease openings to be observed!
Aufschubweg 14,25 ±0,25 28 Bei der Montage mit Fett gefuellt!
push up distance = = To be filed with grease,
C12

Bei der Montage mit Fett gefuellt! = = during the mounting! Nach Montage der Zwischenwelle kpl.
22,1

To be filed with grease, Ringschrauben demontieren!


during the mounting! Befestigungsschrauben
weftseitig angebracht. Eye bolt dismounted after mounting
Fastening screw to deliver intermediate shaft complete!
and mounted by the yard.
( M30, EN 24014-10.9) Welle und Flansche blank, konserviert nach
A M A = 1900 Nm Konservierungsvorschrift ID-NR:1033901
C C
Shaft and flanges not to varnished to preserved
acc. preservation instruction ID-No:1033901
80
140 h9

140 h9

300 Abnahmepruefzeugnis DIN EN 10204:2005-01 - 3.2


138

= = 40 nach den gueltigen Vorschriften der geforderten


220 e7

Schiffsklassifikationsgesellschaft
138
350

310

Inspection certificate DIN EN 10204:2005-01 - 3.2


acc. to the rules of the demanded ship' classification society

B B

EN TIAL -0,1 219,9


FID
220 e7
N
-0,146 219,854
CO 22.1 C12 0,32
0,11
22,42
22,21
140 h9 0 140
-0,1 139,9
Maß Passung
Dieser Entwurf ist geistiges Eigentum Schutzvermerk
DIN ISO 16016 beachten
CAD-ZEICHNUNG Typ: SRP 1215
der SCHOTTEL GmbH Manuelle Aenderung verboten !
+0,3 Werkstueckkanten Allgemeintoleranz DIN ISO 2768-mK
6 0 DIN ISO 13715
Projektionsmethode 1
DIN ISO 128-30 Schweisskonstr. DIN EN ISO 13920-CF
Massstab: 1:10
Werkstoff:
Gewicht: 1094.00 kg
-0.3
+0.8
Tolerierung DIN EN ISO 8015
Oberflaechenangaben DIN EN ISO 1302 Rohteil-Nr.:
Name

4 2Fettaustrittsbohrung 4
Datum

1 3 5 5
Modell-Nr.:

A
Fettaustrittsbohrung
8 3 6 8 Bearb. 12.09.2005 GottlobH
Gepr. 12.09.2005 PickM
Benennung:

Zwischenwelle kpl.
A
AV
Bei der Montage auf 230° erwärmt! Grease opening Grease opening Norm 15.03.2016 MalewskiD D350/4x532/L5000/BHS
Demontage mittels Oeldruck! Loslager ohne Festring (Pos.6) Abt. Intermediate Shaft, Compl.
For mounting, flange heated up to 230°! Movable bearing without distance ring (pos.6)
002 16/0657 07.03.2016 NoetzelK SCHOTTEL GmbH Zeichnungs-Nr. Index: 002 Format

Remove of flange by means oil pressure tools! 001


000
06/0158
Neuanlage
Zust. Aenderung Datum
16.01.2006
13.09.2005
HoerschD
GottlobH
Name
Mainzer Strasse 99
D-56322 Spay/Rhein

Urspr.: 1150150
1153588
Ers. f.: Ers. d.:
Bl.Nr.: 1
von 1 0
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1.6 Inductive proximity switch cpl

15
Part: 1201109

/ 1.0 Order number: 14348488


Drawing number: 1201109

Änderungsnummer: 14/0968


Position Part Designation Quantity Instructions

SCHOTTEL SPARE PARTS CATALOGUE


001 1180572 Inductive Proximity Switch 1 piece

002 1103745 Housing K 11 1 piece

003 1128350 Cable Gland 1 piece

004 1179731 Cable with plug M12 1 piece

005 1201009 Console 1 piece

006 1000979 Hexagon nut M 4 2 piece

007 2018053 Hexagon socket head cap 2 piece


screw

008 1070772 Washer 18 2 piece


8 7 6 5 4 3 2 1

Montageausführung:
Einbauvariante mit Zylinderchrauben
Einbauvariante mit Sechskantschrauben Mounted version:
F Installation Option with hexagon head bolt Installation Option with cap screw F

kein SCHOTTEL Lieferumfang Schaltabstand


no SCHOTTEL supply switching distance

kein SCHOTTEL Lieferumfang Schaltabstand Verstellweg


no SCHOTTEL supply 5 switching distance Adjustment 1

5
1 81 81
1
E E

25
25
1 4 1 4
20
6,7 52 6,7 25 Verstellweg
Adjustment
1 Ma= 2Nm
Ma= 2Nm
2 2

63

63
D D

3 3
PG 13,5 52
1:1
5 5

C C

9
5

brown brown

T I A L
B

I DE N B

blue blue
CO NF
black black

Dieser Entwurf ist geistiges Eigentum Schutzvermerk


DIN ISO 16016 beachten
CAD-ZEICHNUNG Typ: SRP 550
der SCHOTTEL GmbH Manuelle Aenderung verboten !
Werkstueckkanten Projektionsmethode 1 Allgemeintoleranz DIN ISO 2768-mK Massstab: 1:2 Gewicht: 2.23 kg
DIN ISO 13715 DIN ISO 128 Schweisskonstr. DIN EN ISO 13920-C
-0.3 Tolerierung DIN ISO 8015 Werkstoff:
+0.8
Oberflaechenangaben DIN EN ISO 1302 Rohteil-Nr.:
Datum Name Modell-Nr.:
Bearb. 29.11.2013 BaumannM Benennung:
A A
Gepr. 29.11.2013 PickM
AV 02.12.2013 KensyCh
Naeherungsschalteranbau kpl.
Norm 04.04.2014 MalewskiD
Abt. AAZ Inductive proximity switch cpl.
SCHOTTEL GmbH Zeichnungs-Nr. Index: 001 Format
001
000
14/0968
0000
31.03.2014
29.11.2013
Zust. Aenderung Datum
NoetzelK
BaumannM
Name Urspr.:
Mainzer Strasse 99
D-56322 Spay/Rhein 1201109
Ers. f.: Ers. d.:
Bl.Nr.: 1
von 1 2
8 7 6 5 4 3 2 1
5. Documents from Suppliers
BLANK PAGE
Technical Description Edition 2007

Mounting, maintenance and repair of propshafts


with flanged universal joints
1. Recommendations
Assembly, disassembly, maintenance and repair of propshafts should be performed only by
qualified personnel. In addition, for repair work we recommend the use of original spare parts.
Our propshafts are supplied ready for installation and operation. All are lubricated, base
painted and the matching surfaces of the flanges are protected by an anticorrosion-oil-film,
which must be removed before assembling the propshaft into the powertrain.
The propshafts have been dynamically balanced to ensure perfect smooth running. The balance
plates attached to the drive shaft tubes or the joint drivers must not be removed as they are
essential for the vibration-free running of the propshaft. For the same reason, the joints must
not be exchanged with one another. When a propshaft is being installed care must be taken to
ensure that the engraved indicating arrows coincide so that the two joints are located within
one plane, as required for perfect motion.
Fig. 1 yoke

Marking arrows

If the rotating propshaft might be dangerous for its environment, safety-means should
be provided. This applies especially to propshafts rotating at high speed.
The propshaft should be set-up according to the installation instructions issued by the
final manufacturer. For safety reasons, propshafts used in hazardous environments
should be suitably guarded. High-speed propshafts should be guarded by safety
bands to avoid damage in the event of shaft release or fracture. The relevant national
regulations concerning industrial safety and protective efficiency are to be observed.
Dust and dirt adhering to the propshaft may deteriorate the balancing quality. Additionally, oily
dirt may ignite on hot surfaces of the propshaft and this dirt should be removed on a regular
basis. Under normal conditions the surface-temperature of propshafts should not exceed 70
centigrade (158°F). However, under unfavourable conditions the temperature may raise above
70 centigrade (158°F). In such cases please contact our application-engineers for discussing
means to lower the temperature.
During transport and storage, the propshafts should be handled carefully and be protected
against impacts and shocks in order to guarantee the balance quality. Propshafts should
preferably be transported and stored horizontally. Any neglect of these instructions may lead to
impairment of operation or a reduction in functional reliability.
CAUTION – Propshafts with length compensation may become separated at the slip
section causing damage to propshaft components and possible injury. Also universal
joints may tilt in handling possibly causing injury.
Propshafts should be stored in a dry atmosphere preferably in horizontal position and secured
from falling over or rolling.
Gelenkwellenwerk Stadtilm GmbH • Weimarische Str. 62 • D-99326 Stadtilm • Phone +49 3629 6400 • Fax +49 3629 800002 • gewes@gewes.de • www.gewes.de Page 1 of 5
Einbau und Wartung englisch – Edition 2007
2. Assembly
Before the propshaft is installed, the faces of the two flanges (shaft flange and connecting
flange) are to be cleaned, i.e. the faces and centring surface must be free of burrs, dirt, paint
and grease. The axial and radial run out tolerances admissible for the companion flange are to
be maintained, otherwise the correct running of the propshaft may be affected (Fig. 2 and
Table 1).

Fig. 2
Recommended radial run out K R Table 1
Radial axial
Speed tolerance
Run out Run out
rpm for d
KR KS
Up to
h8 0,15 0,18/100
500
500 to
h7 0,08 0,10/100
3000
More
than h6 0,05 0,07/100
3000
(KS is in relation to Ø100 mm)

Recommended axial run out K S

Both flanges are connected by means of hexagon bolts according or similar to ISO 4014 of
property class 10.9 and hexagon nuts according to ISO 7042-V of property class 10.
Not all types of our propshafts allow inserting the hexagon bolts from the joint end.
Particular attention should be given to tighten the flange connecting bolts in order to achieve
the necessary frictional torque transfer. Suitable wrenches are to be used. The specified
tightening torques are provided in our latest catalogue.

3. Maintenance
Propshafts without grease nipples are greased for life and therefore require no further
lubrication. If high pressure equipment is used for cleaning, it is important not to direct the jet
directly onto the seal.
For propshafts fitted with a tape red grease nipple (acc. to DIN 71412) or flat grease nipple
(acc. to DIN 3404) it is possible to lubricate the joints with a grease gun (see Fig. 3).
Fig. 3
Joint relubrication spline relubrication

The grease nipples must be cleaned before a grease gun is applied. The 4 bearings of each joint
are lubricated by one central grease nipple.
Gelenkwellenwerk Stadtilm GmbH • Weimarische Str. 62 • D-99326 Stadtilm • Phone +49 3629 6400 • Fax +49 3629 800002 • gewes@gewes.de • www.gewes.de Page 2 of 5
Einbau und Wartung englisch – Edition 2007
Complete lubrication is achieved when grease can be observed coming from the bearing seals.
For shafts with regreaseable shaft length compensation, 10 - 40 g of grease should be sufficient
depending on shaft size.
Grease guns must be operated smoothly, at pressures not exceeding 2 MPa to prevent any
damage to the seals.
Regreasing is necessary after cleaning with high pressure equipment. It is important not to
direct the jet directly onto the seal.
Suitable lubricants recommended:
Lithium complex greases of specification KP 1-2 N-30 or KP 2 N-20 DIN 51502
with EP additives.
No greases containing MoS2 or other solid lubricant additives to be used for the joint
bearings as well as sliding part.

When the application temperature limits exceed the normal range of +80°C to -25°C (+176oF
to -13oF), special-purpose greases of the above- mentioned specification should be used.

For general applications, the following directions are recommended:


Propshafts employed in: Maintenance interval
Road motor vehicles 50,000 km (31,000 miles) or 1 year
Off-road motor vehicles 30,000 km (18,500 miles) or 1 year
Off-road motor vehicles in building sites 10,000 km (6,200 miles) or 250 hours
Rail vehicles 3,000 hours or ½ year
Stationary plant 500 hours
Marine drive lines 1,500 hours or ½ year.

Shorter maintenance intervals will be required where the propshafts are operated in extremely
adverse conditions. The maintenance intervals of the propshafts in special applications are to
be agreed with the final customer (OEM).
Propshafts taken out of pro-longed storage (6 months and more) should be lubricated before
being installed.

4. Repair
Only qualified and experienced technicians should repair or assemble propshafts as poor
workmanship and improper procedures may cause malfunction due to excessive wear, heat, or
vibration.

The propshafts can be reconditioned with the aid of simple auxiliary tools, as the joints can be
completely disassembled and the length-compensating attachment can be exchanged.

The principal points of wear are:


ƒ Joint bearing:
¾ Visual inspection: Perceptible play in the bearings, damaged sealings
¾ After disassembling: Wear marks and indications of pitting on the bearing surfaces;
damaged rollers; worn sealing,
ƒ Sliding part:
¾ Visual inspection: Perceptible play permitting twisting and/or tilting; damaged sealing;
damaged sealing area of the hub (if coated then coated with RILSAN®)
¾ After disassembling: Indications of pitting at profile flanks and at the head periphery;
damaged sealings, damaged coating of the hub/ splined shaft, corrosion.
Gelenkwellenwerk Stadtilm GmbH • Weimarische Str. 62 • D-99326 Stadtilm • Phone +49 3629 6400 • Fax +49 3629 800002 • gewes@gewes.de • www.gewes.de Page 3 of 5
Einbau und Wartung englisch – Edition 2007
4.1. Replacing the journal crosses
Pay attention to clean surroundings to avoid any dirt or dust intruding in the bearings to be
assembled, and to a smooth surface of the bore for the bearing.

4.1.1. Closed bearing eye


Because the bearing bushes cannot be removed completely out of the bearing eye (because of
interference with the cross and claw), in a first step the two opposite bearing bushes of the fork
of the weld yoke will be removed half way. Thereafter by applying the ring as shown in fig. 4
or by inserting of discs the complete removal of the bearing bushes can be done. At this
disassembly some damage at the bushing or the plastic disc at the bottom of the bushing may
occur. In this case these parts have to be replaced anyway.
If you still cannot take off the bearing bush by hand after pressing it out half way, you may tap
the yoke ear lightly for loosening the bearing bushing.
The disassembly of the two bearing bushes of the flange yoke follows the same procedure as
described above. (Fig. 5)

Fig. 4 Fig. 5
Press Press
flange sleeve adaptor ring
flange sleeve
journal cross

protection
cover

Auxiliary tool Auxiliary tool

The bearing bush must not be canted while it is being pressed in, it should be seated firmly in
the bore of the flange yoke. The locking rings must fit snugly into the ring grooves provided.
To avoid any deformation, the flange yoke should be supported during the push-in operation, if
possible. Any adjustment necessary to take-up any play in the joints or lack of concentricity
should be carried out at the same time (permissible tolerance +/- 0.05 mm). Play and press fit,
are compensated for by using locking rings of different thickness. The joint must be smooth
moveable to avoid too much friction and heat during operation, by which the joint may fail
prematurely.

4.1.2. Split bearing eye ( bolted yoke)


On joints with split bearing eye bores the bearing caps should be slackened to allow removal of
the cap. After the 2 bearing caps have been removed, the spider, including the bearing sleeves,
can be separated from the yokes.
Note! Bearing caps and yokes are in pairs and therefore must not be interchanged or mounted
in a different position during reassembly (you may mark them differently before disassembly
for this purpose!).
The complete cross will be assembled by inserting it in the yokes and putting the caps on the
yokes. The caps have to be tightened to the yokes with new proper screws applying the
prescribed torque.
Gelenkwellenwerk Stadtilm GmbH • Weimarische Str. 62 • D-99326 Stadtilm • Phone +49 3629 6400 • Fax +49 3629 800002 • gewes@gewes.de • www.gewes.de Page 4 of 5
Einbau und Wartung englisch – Edition 2007
To achieve the right backlash you may either use discs of different thickness at the bottom of
the bearing bush ring segments of different thickness, which keep the cross concentric to the 2
claws. The joint must be smooth moveable to avoid too much friction and heat during
operation, by which the joint may fail prematurely.

4.2. Slip assembly


Disassembling and remounting entails experience and craftsmanship besides appropriate
equipment, especially in welding and balancing.
In a first step the tube and the profiled part have to be separated by removing the weld seam on
a lathe (Fig. 6). The profiled hub and shaft always have to be replaced together, because these
parts are matched individually as a unit.
Before welding the tube and profiled part make sure a perfect alignment of both parts, e.g. by
providing an interference fit.

Fig. 6 tool

Splined part centering

tube

The radial tolerance of the alignment should be within 0.5 mm.


After the welding operation this components (tube and profiled part) are put together with the
other profiled part. At this step it has to be observed, that the inner yokes have to be in the
same plane at a radial tolerance of max. 3°.
Thereafter the complete propshaft has to be straightened at a max. radial run out of 0.5 mm.

4.3. Balancing
Balancing too entails craftsmanship, experience and suitable equipment.
If not available, you may use our workshop or ask us for an authorized workshop near your
site.
After a repair (replacement of crosses or slip assembly) generally propshaft running at more
than 500 rpm should be balanced. Unbalanced propshafts may cause vibrations, which
jeopardize operators and can damage or destroy the propshaft itself and adjacent components
of the whole powertrain.
The balancing quality has been regulated by DIN ISO 1940 standard:
Balancing quality G 40 for propshafts for general applications
Balancing quality G 16 for propshafts for special applications

Gelenkwellenwerk Stadtilm GmbH


Weimarische Str. 62
D-99326 Stadtilm
Germany / Deutschland
Telefon: +49 3629 640 0
Telefax: +49 3629 80 00 02
Internet: www.gewes.de
E-Mail: gewes@gewes.de
Gelenkwellenwerk Stadtilm GmbH • Weimarische Str. 62 • D-99326 Stadtilm • Phone +49 3629 6400 • Fax +49 3629 800002 • gewes@gewes.de • www.gewes.de Page 5 of 5
Einbau und Wartung englisch – Edition 2007
Installation and maintenance manual

Shaft seal type WD-BHS


Bulkheadseal

WD-BHS_01_en_MWA.docx Original installation manual Page 1 of 17


Table of contents

1. General instructions 3
1.1 Safety instructions 3
1.1.1. Warning and instruction texts 3
1.1.2. General safety instructions 3
1.2 Information about the product 4
1.2.1. Manufacturer and the country of origin 4
1.2.2. Revision history 4
1.2.3. Type designation 4
1.2.4. Scope of delivery 5
1.2.5. Materials 5
1.2.6. Intended usage 5
1.2.7. General description 5
1.2.8. Usage conditions 5
1.2.9. Emission 5
1.2.10. Copyright 6

2. Transport and storage 6


2.1. Transport 6
2.2. Storage 6

3. Installation and commissioning 7


3.1. General information regarding installation 7
3.2. Preparation for installation 7
3.3. Installation of the shaft seal 8
3.4. Instructions for commissioning 11

4. Repairs 12
4.1. Dismantling 12
4.2. Replacement of wearing parts 13
4.3. Maintenance intervals 13
4.4. Evaluation of dismantled components 14
4.5. Disposal of seal parts 14

5. Annexe
“Assembling instructions for multi-parts rings”
“Storage Instructions”

WD-BHS_01_en_MWA.docx Original installation manual Page 2 of 17


1. General instructions

1.1 Safety instructions

1.1.1 Warning and instruction text


In this document, warning text are differentiated as per the following risk levels:

DANGER!
Non-adherence to these instructions leads to irreversible personal injuries that may sometimes
be lethal.

WARNING!
Non-adherence to these instructions may lead to irreversible physical injuries that may
sometimes be lethal.

CAUTION!
Non-adherence to these instructions may lead to personal injuries and/or damage to the
devices or environmental damage.

ATTENTION!
Non-adherence to these instructions may damage the product or objects in its
vicinity.

IMPORTANT!
Important instructions include usage tips and other especially important
information

Warning text in other chapters of this description draw your attention to individual usage-specific risks.
Warning and instruction text are normally added before the corresponding descriptions.

1.1.2 General safety instructions


Each person, who is involved in the installation, assembly, dismantling, commissioning and repairs of the shaft
seal, must have read and understood this installation manual and especially the safety instructions. We
recommend getting an acknowledgement of the same from all these persons.

EagleBurgmann Espey shaft seals are of high quality and operationally safe. However, shaft seals may pose risks
if they are not used for the intended purpose or used improperly.
All operations that hamper the operational safety of the shaft seal are prohibited.
Arbitrary alterations and changes in shaft seals are not allowed.
Alterations approved by EagleBurgmann Espey may be carried out only with EagleBurgmann Espey original
parts.
Shaft seals may be installed, operated, maintained and dismantled only by authorised, trained and instructed
experts.

WD-BHS_01_en_MWA.docx Original installation manual Page 3 of 17


The responsibilities for activities must be clearly defined and adhered to. such that safety is the primary
objective.
Always work on shaft seals only when the system is at a standstill and in the depressurised state. Secure the
machine against unintentional starting.

ATTENTION! Clean the seals that have been contaminated with hazardous materials thoroughly so
that they do not pose any risk to people or to the environment.

When sending the cleaned seals or seal parts back to EagleBurgmann, fill in the EagleBurgmann Espey data
sheet FB 57b “Declaration of clearance for the contact mediums of seals” (can be requested from
EagleBurgmann Espey) and enclose it.
In addition to the instructions given in this manual, adhere to the generally applicable regulations for industrial
safety and accident prevention.

ATTENTION! If the medium to be sealed is governed by the Hazardous Substance Ordinance,


adhere to the regulations for handling the hazardous substances (safety data sheets in accordance
with directives 91/155/EEC) and the accident prevention regulations.

The operating company must check the possible effects associated with a failure of the shaft seal and whether
the safety measures need to be taken for the protection of people or to the environment.
Ensure that the assemblies of more than 25 kg are assembled and dismantled only by 2 persons. Ensure that the
assemblies of more than 40 kg are assembled and dismantled only using suitable lifting aids. Always deploy
capable personnel.

1.2 Information about the product

1.2.1 Manufacturer and the country of origin

EagleBurgmann Espey GmbH


Thomas-Edison-Straße 19
D-47445 Moers

PO Box 30 01 44
D-47426 Moers

Tel. +49 (0) 2841 / 9 98 27-0


Fax + 49 (0) 2841 / 9 98 27-56

Federal Republic of Germany

1.2.2 Revision history

Date: Name Type of revision: Approved


Rev. 0 31.03.2015 Straeten Document prepared ☒


1.2.3 Type designation


WD-BHS

WD-BHS_01_en_MWA.docx Original installation manual Page 4 of 17


1.2.4 Scope of delivery
· Shaft seal
· Assembly drawing including parts list
· Data sheet “Fitting position: bored seal rings” (only for the HD and HDT models)

1.2.5 Materials
The materials of the WD-BHS shaft seal are determined depending on the usage and are associated with the
order. They can be determined from the order, the drawing and the enclosed documents.

1.2.6 Intended usage


This shaft seal is exclusively intended for use in the specified machine. Any other use or usage beyond the
intended scope is considered as unintended use and the manufacturer’s liability shall become void in such a
case.
An operation outside the specified machine is considered to be unintended use.
For operating the shaft seal under different usage conditions or at another installation site, for safety please
consult first with EagleBurgmann Espey.

IMPORTANT! Changes in the usage conditions must be documented.

1.2.7 General description


The shaft seals of the WD-BHS series are floating ring seals that are designed with a two-piece housing. The shaft
seals of the WD-BHS series are characterised by a high runtime performance and low leakage.
Floating seal rings seal in a radial direction with respect to the shaft and ensure an extremely small operating
clearance.
The shaft seals of the WD-BHS series are available “with” or “without” barrier-gas connection.

1.1.2 Usage conditions


Information regarding the usage conditions can be obtained from the EagleBurgmann Espey assembly drawing
and/or the data sheets of the machine manufacturer.
The shaft seal (type, suitability, materials) must be selected by EagleBurgmann Espey employees or other
authorised agencies. EagleBurgmann Espey does not bear any liability for the incorrect selection by
unauthorised persons.

1.1.3 Emissions

WARNING! If the medium to be sealed is governed by the Hazardous Substance Ordinance, adhere
to the regulations for handling the hazardous substances (safety data sheets in accordance with
directives 91/155/EEC) and the accident prevention regulations.

The operating company must check the possible effects associated with the operation of the shaft seal and
whether the safety measures need to be taken for the protection of persons or environment.

1.1.4 Copyright
EagleBurgmann Espey GmbH has the copyright for this document. Buyers and operating companies of shaft
seals are allowed to use it to create their own documents. Claims of any nature cannot be derived from this.

WD-BHS_01_en_MWA.docx Original installation manual Page 5 of 17


2. Transport and storage

2.1 Transport
Unless otherwise agreed upon contractually, EagleBurgmann Espey shall use standard packing that is suitable for
a transport with truck, railway or aircraft. Adhere to the pictographs and handling instructions provided on the
packing.
When checking the incoming goods:
· Check the packing for external damage
· Open the packing carefully. Ensure that the separately provided parts are not damaged or lost.
· Check the order for completeness. Notify the damaged products or missing parts to the supplier
immediately in writing and with conclusive photos.

2.2 Storage
The following instructions are applicable for shaft seals that were delivered and stored in an undamaged original
packing as well as for those that have already been installed in a machine, but not yet put into operation.
Shaft seals and spare parts are most finely machined machine elements that are tested several times. Special
conditions are applicable for the storage.
During the storage period, seal materials are subject to material-specific, time-dependent changes (warping,
ageing) which may restrict the complete functional capability of the shaft seal. Therefore, adhere to the following
storage instructions.
Space for storing the shaft seals:
· Dust free
· Adequately ventilated
· Uniform temperature
Relative humidity below 65%
Temperature between 19 °C and 25 °C (66 to77°F)
Protect the shaft seal from:
· Direct heat effects (e.g.: heater, sun)
· Ultraviolet light (e.g.: halogen, fluorescent lamps, sunlight, arc welding)
· Presence or development of Ozone (e.g.: arc welding, mercury vapour lamps, high-voltage devices,
electrical motors)
Keep the shaft seals, which are stored outside of a machine, in the original packing and on a level surface. Check
the packing for damage periodically. Send the properly stored shaft seals to EagleBurgmann Espey for inspection
after three years of storage.
Exposure to preservation agents when a shaft seal installed in a machine is not allowed. For the preservation of the
machine containing the installed shaft seal, consult EagleBurgmann Espey. There is a risk of deposits and a
chemical attack on seal parts due to the preservation agents.
EagleBurgmann Espey does not bear any liability for damage caused due to improper storage.
See also the annex “Storage Instructions”.

WD-BHS_01_en_MWA.docx Original installation manual Page 6 of 17


3. Installation and commissioning

3.1 General information regarding installation

IMPORTANT! All figures in this operating and maintenance manual are examples or principle
representations that may vary from the appearance of the delivered seal.

This installation manual describes the installation and dismantling of a WD200 shaft seal as well as the
replacement of wear parts. The installation manual includes the corresponding assembly drawing, the dimension
sheet of the seal as well as the “Fitting position: bored seal rings” data sheet provided for the HD and HDT
models.
Always adhere to the applicable industrial safety regulations when installing/dismantling the seal. Always work on
shaft seals only when the system is at a standstill and in the depressurised state. Secure the machine against
unintentional starting.

IMPORTANT!
· Install the seal under the cleanest conditions and with utmost care.
· Avoid using force at the time of installation under any circumstance.
· Avoid bumping. Damages hamper the safe operation of the seal.
· Follow the instructions in the latest drawing.

3.2 Preparation for installation


The following is required for installation:
- Corresponding assembly drawing/dimensions sheet
Additional hardware required:
- Suitable tools
- Suitable thread lock
- Suitable cleaning agent
- Non-hardening, medium and temperature-resistant sealant paste
- If necessary, suitable installation aids in accordance with the assembly drawing (e.g. installation sleeve,
customer installation devices, lubricant for the O-ring installation)
Check the mounting interfaces in accordance with the specifications.

WD-BHS_01_en_MWA.docx Original installation manual Page 7 of 17


3.3 Installation of the shaft seal
The seal is delivered in the pre-assembled condition. The seal must first be dismantled in order to install it.
Remove the housing joint bolts and carefully push out both the housing halves from each other. Housing joint
grooves are provided to ensure that the housing joint is not damaged when assembling.

Housing joint
groove

Figure 3.1: Housing halves with a joint groove

IMPORTANT! Tilting or an offset of the joint surfaces during dismantling may break the seal rings

Remove all seal rings.


Degrease the housing joints using a suitable cleaning agent.
Check whether the cylindrical pins are in the lower housing half (the housing half with the threads ). If not, place
it there. If the pins are placed in the upper housing half, they might be lost at the time of installation.
Keep the seal parts ready by considering the installation position in accordance with the assembly drawing and
the dimensions sheet.

When handling the seal parts, ensure that the seal rings are handled carefully and the finely machined seal
surfaces of the housing (e.g. joint surfaces) are not damaged. Seal parts must be free of dust and grease.
Place the on-site flat gasket seal or the O-ring on the bulkhead.

WD-BHS_01_en_MWA.docx Original installation manual Page 8 of 17


Place the lower housing half (the housing half with the threads) around the shaft and slight screw with the on-
site fastening screws.

Bulkhead

On-site flat gasket

Lower housing half

Figure 3.2: installed lower housing half

The seal ring comprises three or more segments, one detent and one tension spring, which is provided with a
hook and an eyelet that form the spring lock. Individual seal ring segments are provided with a marking.

Segment marking
Thrust piece

Detent
groove

Seal ring segments

Detent

Figure 3.3: Seal ring - segment marking Figure 3.4: Seal ring segments

Open the return spring and keep the segments and the return spring on a clean surface.

IMPORTANT! The tension spring is under tension. Hold the seal ring segments firmly when opening
the spring.

WD-BHS_01_en_MWA.docx Original installation manual Page 9 of 17


Push the tension spring through the seal ring groove of the housing, thread the detent and close the spring lock.
Lift the spring from the shaft, place the first seal ring segment on the shaft and insert the spring in the spring groove
of the seal ring segment.

IMPORTANT! Pay attention to the position of the thrust pieces according to assembly drawing!

Turn the spring and the segment on the shaft until the segment disappears in the housing groove.

IMPORTANT! The seal ring segments must enclose the shaft in this order as per the segment
marking. (See the annex “Installation manual for multi-part seal rings”)

Keyway

Figure 3.6: Keyway

Figure 3.5: First seal ring segment installed

Install the other seal ring segments in the same manner. The detent must mesh in the detent groove of the seal
ring.
When all seal rings are installed, turn these on the shaft such that the detent meshes in the detent groove of the
housing half.

Align the seal rings in the housing grooves and place the upper housing half carefully.

IMPORTANT! Excessive sealing paste can be pushed in the seal ring grooves when screwing the
housing halves and lead to the failure of the seal.

WD-BHS_01_en_MWA.docx Original installation manual Page 10 of 17


Align the seal rings in the housing grooves and place the upper housing half carefully.

Housing joint bolts

Abb. 3.7: Montage der oberen Gehäusehälfte

IMPORTANT! Tilting or an offset of the joint surfaces during installation may break the seal rings.

Screw both housing halves using housing joint bolts, fix fastening screws in the upper housing half and tighten
them slightly.
Following torques are recommended for the housing joint bolts:

Thread M6 M8 M10 M12 M16


Property class A4-70 A4-70 A4-70 A4-70 A4-70
Tightening torque MA 7 Nm 16 Nm 31 Nm 53 Nm 129 Nm

Check the position of the flat gasket.


Align the seal with the shaft and fix it on the real wall of the machine by tightening the fastening screws crosswise.

3.4 Instructions for commissioning


Before commissioning, check whether the shaft seal has been installed properly and whether it is undamaged.
All connections must be installed and checked in accordance with the directives in drawings and machine
specifications.

ATTENTION! At shaft seals of the WD-BHS series, the barrier-gas pressure must always be higher
than the pressure on the „left side“ & „right side“ of the shaft seal.

WD-BHS_01_en_MWA.docx Original installation manual Page 11 of 17


4. Repairs

4.1 Dismantling
Always work on shaft seals only when the system is at a standstill and in the depressurised state.
Secure the machine against unintentional restarting.
Clean the seals that have been operated with hazardous materials thoroughly so that they do not pose any risk
to the human beings and environment. When sending the cleaning seals or seal parts back to EagleBurgmann, fill
in the EagleBurgmann Espey data sheet FB 57b “Declaration of clearance for the contact mediums of seals”
(can be requested from EagleBurgmann Espey) and enclose it.
Loosen the on-site fastening screws slightly. Remove the fastening screws and the housing joint bolts from the
upper housing half.
Carefully lift the upper housing half perpendicularly upwards. Housing joint grooves are provided to ensure that the
housing joint is not damaged when pushing.

Housing joint bolts

Fastening screws

Figure 4.1: Dismantling the upper housing half

IMPORTANT! Tilting or an offset of the joint surfaces during dismantling may break the seal rings.

Lift the detent spring and remove the first and the second seal ring segment. Turn the spring on the shaft until the
next segment is within reach. Remove the segment. Remove the other segment as well. After removing all
segments, open the spring lock and pull out the spring and the detent from the housing groove.
Remove all other seal rings as well.
Then remove the fastening screws of the lower housing half and remove the housing half.
Criteria to evaluate whether the already used parts can be reused are described in section 4.4: “Evaluation of
dismantled components”.

WD-BHS_01_en_MWA.docx Original installation manual Page 12 of 17


4.2 Replacement of wearing parts
Store the spare parts (e.g.: seal rings, O-rings, flat seals) in a levelled and clean area such that they are
accessible.
When handling the seal parts, ensure that the seal rings are handled carefully and the finely machined seal
surfaces of the housing (e.g. joint surfaces) are not damaged. Seal parts must be free of dust and grease.
Check the existing seal components for damage.
Clean the reusable parts. Replace the damaged parts with the provided spare parts.

IMPORTANT! If one of the seal rings is damaged, the entire “seal ring set” must be replaced.

Replace the on-site secondary seals (e.g. O-ring or flat seal), if any, in the housing.
Now install the seal as described before (section 3.3: Installation of the shaft seal).

4.3 Maintenance intervals


The seal is maintenance-free.
The seal should be checked for damage and cleaned within the scope of a machine inspection. Damaged seal
rings must be replaced.

IMPORTANT! Use only the original spare parts of EagleBurgmann Espey. Since O-rings, flat seals,
etc. are also considered as wearing parts, replace these at the time of inspection.

In order to avoid longer waiting times for a due maintenance or repair, we recommend keeping a set of reserve
parts in the warehouse.

WD-BHS_01_en_MWA.docx Original installation manual Page 13 of 17


4.4 Evaluation of dismantled components
Seal rings must be replaced if they show one of the following characteristics:
· Breaks at the inner diameter
· Severe wear at the inner diameter (the circumferential inlet groove is no longer completely visible)
· Breaks at the axial seal surface

Axial seal surface

Inlet
groove
Inner diameter
Figure 4.3: Seal ring (new)

Figure 4.2: Multi-part seal ring

Break in the axial


seal surface

Inlet groove is
Break at the inner no longer
diameter completely
visible

Figure 4.4: Seal ring (with traces of wear)

If there are uncertainties regarding the evaluation of the usable parts, contact EagleBurgmann Espey.

4.5 Disposal of seal parts


Adhere to the statutory regulations for disposal.
Seal parts are normally easy to dispose of after cleaning them thoroughly.
· Sort the metallic parts (e.g. steel, stainless steel, other metals) as per their type and dispose with metal
waste
· Seal ring materials (e.g.: carbon, ceramic, other) belong to residual waste
· Secondary seals (e.g. PTFE, other plastics) belong to special waste. Some plastics can be sorted as per
their types and can be sent for recycling.

WD-BHS_01_en_MWA.docx Original installation manual Page 14 of 17


Montageanweisung für mehrteilige Dichtringe WD+WKA-Rev.00.doc

Montageanweisung für mehrteilige Dichtringe


Assembling instructions for multi-part seal rings

Der Dichtring muss entsprechend seiner Segmentkennzeichnung montiert werden.

The sealing ring segments must be assembled in accordance with the segment
identification.

Dichtringausführung, 3-teilig / Seal ring design, 3-parts

Dichtringkennzeichnung / seal ring identification

Segmentkennzeichnung / Segment identification


Beispiel / Example: 1;1;1 etc.

Dichtringausführung, 4-teilig / Seal ring design, 4-parts

Dichtringkennzeichnung / seal ring identification

Segmentkennzeichnung / Segment identification


Beispiel / Example: 1;1;1;1 etc.

Datum: Name Art der Revision:


Rev. 0 18.04.2008 Böhm Dokument erstellt

EagleBurgmann Espey GmbH D-47445 Moers • Thomas-Edison-Str. 19 Tel. +49 (0) 2841/ 9 98 27-0
D-47426 Moers • Postfach 30 01 44 Fax +49 (0) 2841/ 9 98 27-56

Registergericht: Kleve HRB 7808


Montageanweisung für mehrteilige Dichtringe WD+WKA-Rev.00.doc

Montageanweisung für mehrteilige Dichtringe


Assembling instructions for multi-part seal rings

Der Dichtring muss entsprechend seiner Segmentkennzeichnung montiert werden.

The sealing ring segments must be assembled in accordance with the segment
identification.

Dichtringausführung, „x“-teilig / Seal ring design, „x“-parts

Dichtringkennzeichnung / seal ring identification

Segmentkennzeichnung / Segment identification


Beispiel: Dichtring, 5-teilig / Example: Seal ring 5-parts
1-1;2-2;3-3,4-4,5-5 etc.

Beispiel – Dichtring, 5-teilig / Example – Seal ring, 5-parts

Richtig / correct Falsch / incorrect

Datum: Name Art der Revision:


Rev. 0 18.04.2008 Böhm Dokument erstellt

EagleBurgmann Espey GmbH D-47445 Moers • Thomas-Edison-Str. 19 Tel. +49 (0) 2841/ 9 98 27-0
D-47426 Moers • Postfach 30 01 44 Fax +49 (0) 2841/ 9 98 27-56

Registergericht: Kleve HRB 7808


Einlagerungshinweise_Rev1.doc

Einlagerungshinweise
Für Produkte von EagleBurgmann Espey GmbH

Espey Wellendichtungen sind feinst bearbeitete und geprüfte Maschinenelemente, deren Lagerung und zulässige
Lagerzeit besondere Maßnahmen erfordern. Die verwendeten Werkstoffe unterliegen zum Teil
werkstoffspezifischen, zeitabhängigen Veränderungen, die die Funktionsfähigkeit der Dichtung einschränken
könnten.
Um eine volle Funktionsfähigkeit der Espey Wellendichtungen zu gewährleisten, müssen folgende Hinweise zur
Lagerung beachtet werden:
· Die Espey Wellendichtungen sowie Ersatzteile für die Dichtungen müssen in der unbeschädigten
Originalverpackung eingelagert werden.
· Der Lagerraum sollte staubfrei und mäßig gelüftet sein (normale mitteleuropäische Bedingungen), die
Temperatur sollte idealerweise zwischen 19°C und 25°C liegen bei einer relativen Luftfeuchtigkeit unter 65%.
· Äußerliche Beschädigungen (z.B. durch zu hohe Gewichtsauflage) müssen vermieden werden.
· Elastomere sollten nicht dauerhaft dem Tageslicht ausgesetzt sein und von Ozonquellen ferngehalten werden.
Außerdem sollten Elastomere nicht länger als 3 Jahre nach Auslieferung verwendet werden.

Storage Instructions
For products of EagleBurgmann Espey GmbH

Espey shaft seals are finely machined and tested machine components and their storage and maximum storage
time must comply with some special requirements. The materials used are subject to some material-specific, time-
dependent changes that may limit the functionality of the seal.
To keep the full functionality of the Espey shaft seals, the following guidelines for storage must be observed:
· The Espey shaft seals and spare parts for the seals must be stored in its original, undamaged packaging.
· The storage area should be clean and adequately ventilated (normal middle European conditions), the
temperature should ideally be between 19 ° C and 25 ° C (66 to 77°F) at a relative humidity below 65%.
· External damage (e.g. due to excessive weight bearing) must be avoided.
· Elastomers should not be constantly exposed to daylight and be kept away from ozone sources. In addition,
elastomers are no longer used as 3 years after delivery.

Datum: Name Art der Revision:


Rev. 0 19.05.2011 Hansen Dokument erstellt
Rev. 1 15.12.2015 Straeten Lagerbedingungen angepasst

EagleBurgmann Espey GmbH D-47445 Moers • Thomas-Edison-Str. 19 Tel. +49 (0) 2841/ 9 98 27-0
D-47426 Moers • Postfach 30 01 44 Fax +49 (0) 2841/ 9 98 27-56
Registergericht: Kleve HRB 7808 ·
6. Diagrams
BLANK PAGE
6.1 Electrical Diagrams
BLANK PAGE
0 1 2 3 4 5 6 7 8 9

Electro­ diagram

SCHOTTEL
GmbH
Mainzer Straße 99
D­56322 Spay/Rhein
Tel.: 02628/ 61­0

2x  SCHOTTEL
RUDDERPROPELLER

TYPE SRP 1515 CP

No.  the pages      : 262

Datum 06.Apr.2016 Order datas = INFO 1 / 11


Bearb. MSC
1216742 +

Gepr. Bl. 1
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

panel main desk panel main desk
Ps  unit Stb  unit
=AZ1+MDP =AZ2+MDP
IDNR 1174651 IDNR 1174652

SCHOTTEL SCHOTTEL
control control
switch box switch box
=AZ1+SCS­ =AZ2+SCS­
ID.NR.:1175754 ID.NR.:1175754

switch box
switch box
clutch
clutch
control
control

SRP SRP

AZ1 = AZ2 =
Ps unit Stb unit

Datum 06.Apr.2016 unit arrangement = INFO 2 / 11


Bearb. MSC
1216742 +

Gepr. Bl. 2
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Seite Seitenbenennung Anlage Ort Blatt Änderung Datum Bearb.


unit place page Changes Date Editor
Page Page designation
1 Order datas INFO 1 06.Apr.2016 MSC
2 unit arrangement INFO 2 06.Apr.2016 MSC
3 contents INFO 3 06.Apr.2016 MSC
4 contents INFO 4 06.Apr.2016 MSC
5 contents INFO 5 06.Apr.2016 MSC
6 contents INFO 6 06.Apr.2016 MSC
7 contents INFO 7 06.Apr.2016 MSC
8 contents INFO 8 06.Apr.2016 MSC
9 contents INFO 9 06.Apr.2016 MSC
10 contents INFO 10 06.Apr.2016 MSC
11 contents INFO 11 06.Apr.2016 MSC
12            cable informations NOTES CABLE 1 06.Apr.2016 MSC
13 Notes NOTES CABLE 2 06.Apr.2016 MSC
14 cable diagram unit  NOTES CABLE 3 06.Apr.2016 MSC
15 Cable List NOTES CABLE 4 06.Apr.2016 MSC
16 Cable List NOTES CABLE 5 06.Apr.2016 MSC
17 Cable List NOTES CABLE 6 06.Apr.2016 MSC
18 Cable List NOTES CABLE 7 06.Apr.2016 MSC
19            system switch box control system AZ1 SCS 1 06.Apr.2016 MSC
20 power distribution AZ1 SCS 2 06.Apr.2016 MSC
21 power distribution AZ1 SCS 3 06.Apr.2016 MSC
22 power distribution AZ1 SCS 4 06.Apr.2016 MSC
23 power distribution AZ1 SCS 5 06.Apr.2016 MSC
24 NFU control ON AZ1 SCS 6 06.Apr.2016 MSC
25 local control AZ1 SCS 7 06.Apr.2016 MSC
26 DATA BUS AZ1 SCS 8 06.Apr.2016 MSC
27 DATA BUS AZ1 SCS 9 06.Apr.2016 MSC
28 DATA BUS AZ1 SCS 10 06.Apr.2016 MSC
29 desk control AZ1 SCS 11 06.Apr.2016 MSC
30 desk control AZ1 SCS 12 06.Apr.2016 MSC

Datum 06.Apr.2016 contents = INFO 3 / 11


Bearb. MSC
1216742 +

Gepr. Bl. 3
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Seite Seitenbenennung Anlage Ort Blatt Änderung Datum Bearb.


unit place page Changes Date Editor
Page Page designation
31 desk control AZ1 SCS 13 06.Apr.2016 MSC
32 desk control AZ1 SCS 14 06.Apr.2016 MSC
33 desk control AZ1 SCS 15 06.Apr.2016 MSC
34 FFU speed control AZ1 SCS 16 06.Apr.2016 MSC
35 FFU speed control AZ1 SCS 17 06.Apr.2016 MSC
36 FFU speed control AZ1 SCS 18 06.Apr.2016 MSC
37 FFU speed control AZ1 SCS 19 06.Apr.2016 MSC
38 NFU speed control AZ1 SCS 20 06.Apr.2016 MSC
39 thrust direction indicator AZ1 SCS 21 06.Apr.2016 MSC
40 FFU thrust direction steering AZ1 SCS 22 06.Apr.2016 MSC
41 FFU thrust direction steering AZ1 SCS 23 06.Apr.2016 MSC
42 FFU thrust direction steering control signals AZ1 SCS 24 06.Apr.2016 MSC
43 FFU thrust direction steering valve control hy pump AZ1 SCS 25 06.Apr.2016 MSC
44 FFU thrust direction steering valve control hy pump AZ1 SCS 26 06.Apr.2016 MSC
45 shaft speed indication AZ1 SCS 27 06.Apr.2016 MSC
46 clutch control AZ1 SCS 28 06.Apr.2016 MSC
47 pitch direction indicator AZ1 SCS 29 06.Apr.2016 MSC
48 pitch control system AZ1 SCS 30 06.Apr.2016 MSC
49 pitch control system AZ1 SCS 31 06.Apr.2016 MSC
50 pitch control system AZ1 SCS 32 06.Apr.2016 MSC
51 pitch control system AZ1 SCS 33 06.Apr.2016 MSC
52 pitch control system AZ1 SCS 34 06.Apr.2016 MSC
53 pitch control system AZ1 SCS 35 06.Apr.2016 MSC
54 pitch control system AZ1 SCS 36 06.Apr.2016 MSC
55 pitch control system AZ1 SCS 37 06.Apr.2016 MSC
56 pitch control system AZ1 SCS 38 06.Apr.2016 MSC
57 interface external systems AZ1 SCS 39 06.Apr.2016 MSC
58 interface external systems AZ1 SCS 40 06.Apr.2016 MSC
59 interface external systems AZ1 SCS 41 06.Apr.2016 MSC
60 interface external systems AZ1 SCS 42 06.Apr.2016 MSC

Datum 06.Apr.2016 contents = INFO 4 / 11


Bearb. MSC
1216742 +

Gepr. Bl. 4
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Seite Seitenbenennung Anlage Ort Blatt Änderung Datum Bearb.


unit place page Changes Date Editor
Page Page designation
61 interface external systems AZ1 SCS 43 06.Apr.2016 MSC
62 interface to ship warining unit AZ1 SCS 44 06.Apr.2016 MSC
63 interface to ship warining unit AZ1 SCS 45 06.Apr.2016 MSC
64 interface to autopilot AZ1 SCS 46 06.Apr.2016 MSC
65 interface to drive motor AZ1 SCS 47 06.Apr.2016 MSC
66 interface to FIFI pump / generator AZ1 SCS 48 06.Apr.2016 MSC
67 switch box  AZ1 SCS 49 06.Apr.2016 MSC
68 switch box  AZ1 SCS 50 06.Apr.2016 MSC
69 mounting parts switch box AZ1 SCS 51 06.Apr.2016 MSC
70            panel main desk AZ1 MDP 1 06.Apr.2016 MSC
71 power supply AZ1 MDP 2 06.Apr.2016 MSC
72 power supply AZ1 MDP 3 06.Apr.2016 MSC
73 NFU signals AZ1 MDP 4 06.Apr.2016 MSC
74 take over desk AZ1 MDP 5 06.Apr.2016 MSC
75 take over desk AZ1 MDP 6 06.Apr.2016 MSC
76 control bus AZ1 MDP 8 06.Apr.2016 MSC
77 panel main desk connection control handle AZ1 MDP 9 06.Apr.2016 MSC
78 indicator  AZ1 MDP 10 06.Apr.2016 MSC
79 panel main desk AZ1 MDP 11 06.Apr.2016 MSC
80 panel main desk AZ1 MDP 12 06.Apr.2016 MSC
81 panel main desk AZ1 MDP 13 06.Apr.2016 MSC
82            connection engine room AZ1 EGR 1 06.Apr.2016 MSC
83 connection engine room AZ1 EGR 2 06.Apr.2016 MSC
84 connection engine room AZ1 EGR 3 06.Apr.2016 MSC
85            connection clutch AZ1 CLU 1 06.Apr.2016 MSC
86 connection clutch AZ1 CLU 2 06.Apr.2016 MSC
87            connection SRP AZ1 SRP 1 06.Apr.2016 MSC
88 connection SRP AZ1 SRP 2 06.Apr.2016 MSC
89 connection SRP AZ1 SRP 3 06.Apr.2016 MSC
90 connection SRP AZ1 SRP 4 06.Apr.2016 MSC

Datum 06.Apr.2016 contents = INFO 5 / 11


Bearb. MSC
1216742 +

Gepr. Bl. 5
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Seite Seitenbenennung Anlage Ort Blatt Änderung Datum Bearb.


unit place page Changes Date Editor
Page Page designation
91 connection SRP AZ1 SRP 5 06.Apr.2016 MSC
92            connection CP standby pump AZ1 HYCP 1 06.Apr.2016 MSC
93 connection CP standby pump AZ1 HYCP 2 06.Apr.2016 MSC
94            system switch box control system AZ2 SCS 1 06.Apr.2016 MSC
95 power distribution AZ2 SCS 2 06.Apr.2016 MSC
96 power distribution AZ2 SCS 3 06.Apr.2016 MSC
97 power distribution AZ2 SCS 4 06.Apr.2016 MSC
98 power distribution AZ2 SCS 5 06.Apr.2016 MSC
99 NFU control ON AZ2 SCS 6 06.Apr.2016 MSC
100 local control AZ2 SCS 7 06.Apr.2016 MSC
101 DATA BUS AZ2 SCS 8 06.Apr.2016 MSC
102 DATA BUS AZ2 SCS 9 06.Apr.2016 MSC
103 DATA BUS AZ2 SCS 10 06.Apr.2016 MSC
104 desk control AZ2 SCS 11 06.Apr.2016 MSC
105 desk control AZ2 SCS 12 06.Apr.2016 MSC
106 desk control AZ2 SCS 13 06.Apr.2016 MSC
107 desk control AZ2 SCS 14 06.Apr.2016 MSC
108 desk control AZ2 SCS 15 06.Apr.2016 MSC
109 FFU speed control AZ2 SCS 16 06.Apr.2016 MSC
110 FFU speed control AZ2 SCS 17 06.Apr.2016 MSC
111 FFU speed control AZ2 SCS 18 06.Apr.2016 MSC
112 FFU speed control AZ2 SCS 19 06.Apr.2016 MSC
113 NFU speed control AZ2 SCS 20 06.Apr.2016 MSC
114 thrust direction indicator AZ2 SCS 21 06.Apr.2016 MSC
115 FFU thrust direction steering AZ2 SCS 22 06.Apr.2016 MSC
116 FFU thrust direction steering AZ2 SCS 23 06.Apr.2016 MSC
117 FFU thrust direction steering control signals AZ2 SCS 24 06.Apr.2016 MSC
118 FFU thrust direction steering valve control hy pump AZ2 SCS 25 06.Apr.2016 MSC
119 FFU thrust direction steering valve control hy pump AZ2 SCS 26 06.Apr.2016 MSC
120 shaft speed indication AZ2 SCS 27 06.Apr.2016 MSC

Datum 06.Apr.2016 contents = INFO 6 / 11


Bearb. MSC
1216742 +

Gepr. Bl. 6
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Seite Seitenbenennung Anlage Ort Blatt Änderung Datum Bearb.


unit place page Changes Date Editor
Page Page designation
121 clutch control AZ2 SCS 28 06.Apr.2016 MSC
122 pitch direction indicator AZ2 SCS 29 06.Apr.2016 MSC
123 pitch control system AZ2 SCS 30 06.Apr.2016 MSC
124 pitch control system AZ2 SCS 31 06.Apr.2016 MSC
125 pitch control system AZ2 SCS 32 06.Apr.2016 MSC
126 pitch control system AZ2 SCS 33 06.Apr.2016 MSC
127 pitch control system AZ2 SCS 34 06.Apr.2016 MSC
128 pitch control system AZ2 SCS 35 06.Apr.2016 MSC
129 pitch control system AZ2 SCS 36 06.Apr.2016 MSC
130 pitch control system AZ2 SCS 37 06.Apr.2016 MSC
131 pitch control system AZ2 SCS 38 06.Apr.2016 MSC
132 interface external systems AZ2 SCS 39 06.Apr.2016 MSC
133 interface external systems AZ2 SCS 40 06.Apr.2016 MSC
134 interface external systems AZ2 SCS 41 06.Apr.2016 MSC
135 interface external systems AZ2 SCS 42 06.Apr.2016 MSC
136 interface external systems AZ2 SCS 43 06.Apr.2016 MSC
137 interface to ship warining unit AZ2 SCS 44 06.Apr.2016 MSC
138 interface to ship warining unit AZ2 SCS 45 06.Apr.2016 MSC
139 interface to autopilot AZ2 SCS 46 06.Apr.2016 MSC
140 interface to drive motor AZ2 SCS 47 06.Apr.2016 MSC
141 interface to FIFI pump / generator AZ2 SCS 48 06.Apr.2016 MSC
142 switch box  AZ2 SCS 49 06.Apr.2016 MSC
143 switch box  AZ2 SCS 50 06.Apr.2016 MSC
144 mounting parts switch box AZ2 SCS 51 06.Apr.2016 MSC
145            panel main desk AZ2 MDP 1 06.Apr.2016 MSC
146 power supply AZ2 MDP 2 06.Apr.2016 MSC
147 power supply AZ2 MDP 3 06.Apr.2016 MSC
148 NFU signals AZ2 MDP 4 06.Apr.2016 MSC
149 control bus AZ2 MDP 5 06.Apr.2016 MSC
150 take over desk AZ2 MDP 6 06.Apr.2016 MSC

Datum 06.Apr.2016 contents = INFO 7 / 11


Bearb. MSC
1216742 +

Gepr. Bl. 7
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Seite Seitenbenennung Anlage Ort Blatt Änderung Datum Bearb.


unit place page Changes Date Editor
Page Page designation
151 take over desk AZ2 MDP 7 06.Apr.2016 MSC
152 panel main desk connection control handle AZ2 MDP 9 06.Apr.2016 MSC
153 indicator  AZ2 MDP 10 06.Apr.2016 MSC
154 panel main desk AZ2 MDP 11 06.Apr.2016 MSC
155 panel main desk AZ2 MDP 12 06.Apr.2016 MSC
156 panel main desk AZ2 MDP 13 06.Apr.2016 MSC
157            connection engine room AZ2 EGR 1 06.Apr.2016 MSC
158 connection engine room AZ2 EGR 2 06.Apr.2016 MSC
159 connection engine room AZ2 EGR 3 06.Apr.2016 MSC
160            connection clutch AZ2 CLU 1 06.Apr.2016 MSC
161 connection clutch AZ2 CLU 2 06.Apr.2016 MSC
162            connection SRP AZ2 SRP 1 06.Apr.2016 MSC
163 connection SRP AZ2 SRP 2 06.Apr.2016 MSC
164 connection SRP AZ2 SRP 3 06.Apr.2016 MSC
165 connection SRP AZ2 SRP 4 06.Apr.2016 MSC
166 connection SRP AZ2 SRP 5 06.Apr.2016 MSC
167            connection CP standby pump AZ2 HYCP 1 06.Apr.2016 MSC
168 connection CP standby pump AZ2 HYCP 2 06.Apr.2016 MSC
169             drive motor unit AZ YARD PM 1 06.Apr.2016 MSC
170 connections to drive motor AZ1 YARD PM 2 06.Apr.2016 MSC
171 connections to drive motor AZ2 YARD PM 3 06.Apr.2016 MSC
172                ship warning unit connection unit YARD SWU 1 06.Apr.2016 MSC
173 ship warning unit connection unit unit AZ1 YARD SWU 2 06.Apr.2016 MSC
174 ship warning unit connection unit UNIT AZ1 YARD SWU 3 06.Apr.2016 MSC
175 ship warning unit connection unit UNIT AZ1 YARD SWU 4 06.Apr.2016 MSC
176 ship warning unit connection unit unit AZ2 YARD SWU 5 06.Apr.2016 MSC
177 ship warning unit connection unit UNIT AZ2 YARD SWU 6 06.Apr.2016 MSC
178 ship warning unit connection unit UNIT AZ2 YARD SWU 7 06.Apr.2016 MSC
179                     Autopilot YARD AP 1 06.Apr.2016 MSC
180 connections to Autopilot YARD AP 2 06.Apr.2016 MSC

Datum 06.Apr.2016 contents = INFO 8 / 11


Bearb. MSC
1216742 +

Gepr. Bl. 8
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Seite Seitenbenennung Anlage Ort Blatt Änderung Datum Bearb.


unit place page Changes Date Editor
Page Page designation
181                 FIFI pump YARD FIFI 1 06.Apr.2016 MSC
182 unit AZ1 connection  to FIFI pump system YARD FIFI 2 06.Apr.2016 MSC
183 unit AZ2 connection  to FIFI pump system YARD FIFI 3 06.Apr.2016 MSC
184                parts list PARTS 1 06.Apr.2016 MSC
185 parts list PARTS 2 06.Apr.2016 MSC
186 parts list PARTS 3 06.Apr.2016 MSC
187 parts list PARTS 4 06.Apr.2016 MSC
188 parts list PARTS 5 06.Apr.2016 MSC
189 parts list PARTS 6 06.Apr.2016 MSC
190 parts list PARTS 7 06.Apr.2016 MSC
191 parts list PARTS 8 06.Apr.2016 MSC
192 parts list PARTS 9 06.Apr.2016 MSC
193 parts list PARTS 10 06.Apr.2016 MSC
194 parts list PARTS 11 06.Apr.2016 MSC
195 parts list PARTS 12 06.Apr.2016 MSC
196 parts list PARTS 13 06.Apr.2016 MSC
197 parts list PARTS 14 06.Apr.2016 MSC
198                  CABLE  CABLE 1 06.Apr.2016 MSC
199 =AZ1+W­200 C4* CABLE 2 06.Apr.2016 MSC
200 =AZ1+W­201 C3* CABLE 3 06.Apr.2016 MSC
201 =AZ1+W­202 C3* CABLE 4 06.Apr.2016 MSC
202 =AZ1+W­203 C2* CABLE 5 06.Apr.2016 MSC
203 =AZ1+W­204 C2* CABLE 6 06.Apr.2016 MSC
204 =AZ1+W­210 C1* CABLE 7 06.Apr.2016 MSC
205 =AZ1+W­211 C1* CABLE 8 06.Apr.2016 MSC
206 =AZ1+W­213 C2* CABLE 9 06.Apr.2016 MSC
207 =AZ1+W­220 C2* CABLE 10 06.Apr.2016 MSC
208 =AZ1+W­240 C2* CABLE 11 06.Apr.2016 MSC
209 =AZ1+W­241 C2* CABLE 12 06.Apr.2016 MSC
210 =AZ1+W­242 C1* CABLE 13 06.Apr.2016 MSC

Datum 06.Apr.2016 contents = INFO 9 / 11


Bearb. MSC
1216742 +

Gepr. Bl. 9
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Seite Seitenbenennung Anlage Ort Blatt Änderung Datum Bearb.


unit place page Changes Date Editor
Page Page designation
211 =AZ1+W­243 C2* CABLE 14 06.Apr.2016 MSC
212 =AZ1+W­244 C2* CABLE 15 06.Apr.2016 MSC
213 =AZ1+W­250 C2* CABLE 16 06.Apr.2016 MSC
214 =AZ1+W­253 C2* CABLE 17 06.Apr.2016 MSC
215 =AZ1+W­254 C2* CABLE 18 06.Apr.2016 MSC
216 =AZ1+W­255 C2* CABLE 19 06.Apr.2016 MSC
217 =AZ1+W­300 C2 CABLE 20 06.Apr.2016 MSC
218 =AZ1+W­301 C2* CABLE 21 06.Apr.2016 MSC
219 =AZ1+W­302 C2* CABLE 22 06.Apr.2016 MSC
220 =AZ1+W­303 C1* CABLE 23 06.Apr.2016 MSC
221 =AZ1+W­304 C1* CABLE 24 06.Apr.2016 MSC
222 =AZ1+W­305 C2* CABLE 25 06.Apr.2016 MSC
223 =AZ1+W­620 C4* CABLE 26 06.Apr.2016 MSC
224 =AZ1+W­710 C2* CABLE 27 06.Apr.2016 MSC
225 =AZ1+W­711 C2* CABLE 28 06.Apr.2016 MSC
226 =AZ1+W­720 C2* CABLE 29 06.Apr.2016 MSC
227 =AZ1+W­770 C2* CABLE 30 06.Apr.2016 MSC
228 =AZ1+W­820 C2* CABLE 31 06.Apr.2016 MSC
229 =AZ1+W­821 C2* CABLE 32 06.Apr.2016 MSC
230 =AZ1+W­840 K3* CABLE 33 06.Apr.2016 MSC
231 =AZ2+W­200 C4* CABLE 34 06.Apr.2016 MSC
232 =AZ2+W­201 C3* CABLE 35 06.Apr.2016 MSC
233 =AZ2+W­202 C3* CABLE 36 06.Apr.2016 MSC
234 =AZ2+W­203 C2* CABLE 37 06.Apr.2016 MSC
235 =AZ2+W­204 C2* CABLE 38 06.Apr.2016 MSC
236 =AZ2+W­210 C1* CABLE 39 06.Apr.2016 MSC
237 =AZ2+W­211 C1* CABLE 40 06.Apr.2016 MSC
238 =AZ2+W­213 C2* CABLE 41 06.Apr.2016 MSC
239 =AZ2+W­220 C2* CABLE 42 06.Apr.2016 MSC
240 =AZ2+W­240 C2* CABLE 43 06.Apr.2016 MSC

Datum 06.Apr.2016 contents = INFO 10 / 11


Bearb. MSC
1216742 +

Gepr. Bl. 10
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Seite Seitenbenennung Anlage Ort Blatt Änderung Datum Bearb.


unit place page Changes Date Editor
Page Page designation
241 =AZ2+W­241 C2* CABLE 44 06.Apr.2016 MSC
242 =AZ2+W­242 C1* CABLE 45 06.Apr.2016 MSC
243 =AZ2+W­243 C2* CABLE 46 06.Apr.2016 MSC
244 =AZ2+W­244 C2* CABLE 47 06.Apr.2016 MSC
245 =AZ2+W­250 C2* CABLE 48 06.Apr.2016 MSC
246 =AZ2+W­253 C2* CABLE 49 06.Apr.2016 MSC
247 =AZ2+W­254 C2* CABLE 50 06.Apr.2016 MSC
248 =AZ2+W­255 C2* CABLE 51 06.Apr.2016 MSC
249 =AZ2+W­300 C2 CABLE 52 06.Apr.2016 MSC
250 =AZ2+W­301 C2* CABLE 53 06.Apr.2016 MSC
251 =AZ2+W­302 C2* CABLE 54 06.Apr.2016 MSC
252 =AZ2+W­303 C1* CABLE 55 06.Apr.2016 MSC
253 =AZ2+W­304 C1* CABLE 56 06.Apr.2016 MSC
254 =AZ2+W­305 C2* CABLE 57 06.Apr.2016 MSC
255 =AZ2+W­620 C4* CABLE 58 06.Apr.2016 MSC
256 =AZ2+W­710 C2* CABLE 59 06.Apr.2016 MSC
257 =AZ2+W­711 C2* CABLE 60 06.Apr.2016 MSC
258 =AZ2+W­720 C2* CABLE 61 06.Apr.2016 MSC
259 =AZ2+W­770 C2* CABLE 62 06.Apr.2016 MSC
260 =AZ2+W­820 C2* CABLE 63 06.Apr.2016 MSC
261 =AZ2+W­821 C2* CABLE 64 06.Apr.2016 MSC
262 =AZ2+W­840 K3* CABLE 65 06.Apr.2016 MSC

Datum 06.Apr.2016 contents = INFO 11 / 11


Bearb. MSC
1216742 +

Gepr. Bl. 11
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

cable informations

Datum 06.Apr.2016            = NOTES 1 / 7


Bearb. MSC
1216742 + CABLE
cable informations
Gepr. cable Bl. 12
Änderung Datum Name Norm Aldorf
drawings
e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Fixing of cables inside switch cabinet if EMC rail is installed Cable connection
General Information
screen connection

* = no supply from SCHOTTEL
The screen of cables must be connected on both sides 
Type of cables: MPRXCX or TCX(C) ( IEC 92­3 or IEC 60092) or similar according to the rules.

The cable typ TCX(C) must be installed with twisted pair wires.

Cable installation according to EMC requirements IEC 61000­5­2.

Allowable voltage drop in the cables <5%.
­SH ­SH

Electromagnetic cable categories

cable class category sensitivity radiation type

C1* very sensitive very sensitive without data bus signals EMC


clamping yoke
conductors
C2* sensitive sensitive without control signals, 24V DC feed line
wires
C3* indifferent insensitive small AC feed line (<=250V)

C4* noisy insensitive high AC feed line (>=250V)

C5* very noisy very high frequency drives armour


insensitive
screen EMC shielding rail
mounted in the socle

Minimum distance between cables of different categories

Cable Cable Cable Cable Cable


150mm 150mm 150mm 150mm hammerfoot
Class 1 Class 2 Class 3 Class 4 Class 5 steel base clamp
outer sheath
300mm 300mm

300mm

cable
450mm
Cable input with glands
450mm

600mm
wires

PEC (parallel earth conductor) e.g.cable tray

cable entry surface switch cabinet EMC locknut
Potential equalisation via EMC earthing straps
or unpainted conductive mounting plate to earth cabinet
Attention

For installation and power supply at SCHOTTEL electric systems the requirements conductors
of the classification society for "steering gear circuits" must be observed !
EMC insert
There must be separate power supplies for the units.
earthing cones for
armour armor / screen connection
screen

EMC cable gland

outer sheath

cable

Datum 06.Apr.2016 Notes = NOTES 2 / 7


Bearb. MSC
1216742 + CABLE

Gepr. cable Bl. 13


Änderung Datum Name Norm Aldorf
drawings
e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

main panel main panel main panel


cables are desgin
+MDP PS unit STB unit
for a max length
=AZ1+MDP­ =AZ2+MDP­
of 70m
to the switch box

marking of cable=AZX+W­100*
X=1 Ps aft unit
X=2 Stb aft unit

=WH­010*

=MSB
switchboard =AZX+W­305*
AC power =AZX+W­304*
=AZX+W­303*
=AZX+W­302*
* =AZX+W­301*
=AZX+W­300*

=AZX+W­200*
=AZX+W­201*

=AZX+W­202*

=AZX+W­620* =AZX+W­210* =AZX+W­220* =AZX+W­241* =AZX+W­242* =AZX+W­243* =AZX+W­244* =AZX+W­203* =AZX+W­820* =AZX+W­720* =AZX+W­770* =AZX+W­710*
=AZX+W­211*
=AZX+W­204* =AZX+W­821* =AZX+W­711*
=AZX+W­213*
=AZX+W­240*
=AZX+W­250*
=AZX+W­253*
=AZX+W­254* ICS
=AZX+W­255* speed pick up thrust shaft pitch ESB AP FIFI PM
Integrated
switch box hydraulic direction speed direction emergency Autopilot FIFI pump switch box
control and
clutch control switchboard system system propulsion
M1 SRP pump indicator indicator indicator monitoring
+CLU 24V DC * motor *
­EGR+4B1 ­4A3 ­5A3 ­9A3 system *
* *
HYCP M1
ED.pitch
pump

=AZX+W­840*

Datum 06.Apr.2016 cable diagram unit  = NOTES 3 / 7


Bearb. MSC
1216742 + CABLE

Gepr. cable Bl. 14


Änderung Datum Name Norm Aldorf
drawing
e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung von nach Kabeltyp gesamt Adern Querschnitt Länge * = Kabel von der Werft 


Cross­section Length
Cable designations from to Cable type total cores * = cable from shipyard
mm² m
=AZ1+SCS­W1 =AZ1+SCS­X3 screen Ölflex 4 1.5 ­
=AZ1+W­200 =AZ1+SCS­X1 =AZ1+MSB­440VX1 MPRXCX 3+screen 2.5 ­ C4*
=AZ1+W­201 =AZ1+SCS­X1 =AZ1+MSB­115VX1 MPRXCX· 2+screen 1.5 ­ C3*
=AZ1+W­202 =AZ1+SCS­X1 =AZ1+SCS­SB MPRXCX 1+screen 16 ­ C3*
=AZ1+W­203 =AZ1+SCS­X2 =ESB+24­X1 MPRXCX· 2+screen 6 ­ C2*
=AZ1+W­204 =AZ1+SCS­X2 =ESB+24­X1 MPRXCX· 3+screen 2.5 ­ C2*
=AZ1+W­210 =AZ1+SCS­X41 =AZ1+SRP­4A4 TCX(C) 2x2+screen 0.75 ­ C1*
=AZ1+W­211 =AZ1+SCS­X41 =AZ1+SRP­4A4 TCX(C) 2x2+screen 0.75 ­ C1*
=AZ1+W­213 =AZ1+SCS­X51 =AZ1+SRP­5B1 TCX(C) 2x2+screen 0.75 ­ C2*
=AZ1+W­220 =AZ1+SCS­X52 =AZ1+CLU­X5 MPRXCX 10+screen 1.5 ­ C2*
=AZ1+W­240 =AZ1+SCS­X42 =AZ1+SRP­X4 MPRXCX 16+screen 1.5 ­ C2*
=AZ1+W­241 =AZ1+SCS­X42 =AZ1+EGR­4B1 TCX(C) 2x2+screen 0.75 ­ C2*
=AZ1+W­242 =AZ1+SCS­X44 =AZ1+EGR­4A3­4A3 TCX(C) 4x2+screen 0.75 ­ C1*
=AZ1+W­243 =AZ1+SCS­X54 =AZ1+EGR­5A3­5A3 TCX(C) 2x2+screen 0.75 ­ C2*
=AZ1+W­244 =AZ1+SCS­X94 =AZ1+EGR­9A3­9A3 TCX(C) 2x2+screen 0.75 ­ C2*
=AZ1+W­250 =AZ1+SCS­X92 =AZ1+SRP­X9 MPRXCX 10+screen 1.5 ­ C2*
=AZ1+W­253 =AZ1+SCS­X91 =AZ1+SRP­9A4 TCX(C) 2x2+screen 0.75 ­ C2*
=AZ1+W­254 =AZ1+SCS­X91 =AZ1+SRP­9A4 TCX(C) 2x2+screen 0.75 ­ C2*
=AZ1+W­255 =AZ1+SCS­X91 =AZ1+SRP­9A4 TCX(C) 4x2+screen 0.75 ­ C2*
=AZ1+W­300 =AZ1+SCS­X12 =AZ1+MDP­AX1 MPRXCX 4+screen 2.5 ­ C2
=AZ1+W­301 =AZ1+SCS­X12 =AZ1+MDP­AX9 MPRXCX· 3+screen 2.5 ­ C2*
=AZ1+W­302 MPRXCX 19+screen 1.5 ­ C2*
=AZ1+SCS­X12 =AZ1+MDP­AX1 19+screen 1.5 C2*
=AZ1+SCS­X12 =AZ1+MDP­AX2 19+screen 1.5 C2*
=AZ1+W­303 =AZ1+SCS­X12 =AZ1+MDP­AX3 TCX(C) 2x2+screen 0.75 ­ C1*
=AZ1+W­304 =AZ1+SCS­X12 =AZ1+MDP­AX9 TCX(C) 2x2+screen 0.75 ­ C1*
=AZ1+W­305 =AZ1+SCS­X12 =AZ1+MDP­AX9 TCX(C) 2x2+screen 0.75 ­ C2*
=AZ1+W­620 =AZ1+SCS­X9 =AZ1+HYCP­M1 MPRXCX· 3+screen 1.5 ­ C4*
=AZ1+W­710 TCX(C) 10x2+screen 0.75 ­ C2*
=AZ1+SCS­X3 =YARD+PM­AZ1­X1 10x2+screen 0.75 C2*
=AZ1+SCS­X3.K3 =YARD+PM­AZ1­X2 10x2+screen 0.75 C2*
=AZ1+SCS­X3 =YARD+PM­AZ1­X2 10x2+screen 0.75 C2*
=AZ1+SCS­X8 =YARD+PM­AZ1­X1 10x2+screen 0.75 C2*
=AZ1+W­711 =AZ1+SCS­X3 =YARD+PM­AZ1­X3 TCX(C) 2x2+screen 0.75 ­ C2*
=AZ1+W­720 TCX(C) 4x2+screen 0.75 ­ C2*

Datum 20.Mai.2016 Cable List = NOTES 4 / 7


Bearb. MSC
1216742 + CABLE

Gepr. Bl. 15
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung von nach Kabeltyp gesamt Adern Querschnitt Länge * = Kabel von der Werft 


Cross­section Length
Cable designations from to Cable type total cores * = cable from shipyard
mm² m
=AZ1+SCS­X5 =YARD+AP­X1 4x2+screen 0.75 C2*
=AZ1+SCS­X5.K1 =YARD+AP­X1 4x2+screen 0.75 C2*
=AZ1+W­770 TCX(C) 4x2+screen 0.75 ­ C2*
=YARD+FIFI­X1 =AZ1+SCS­X8.K1 4x2+screen 0.75 C2*
=YARD+FIFI­X1 =AZ1+SCS­X8 4x2+screen 0.75 C2*
=AZ1+W­820 TCX(C) 10x2+screen 0.75 ­ C2*
=YARD+SWU­X1 =AZ1+SCS­X4.K1 10x2+screen 0.75 C2*
=YARD+SWU­X1 =AZ1+SCS­X4.K2 10x2+screen 0.75 C2*
=YARD+SWU­X1 =AZ1+SCS­X4.K3 10x2+screen 0.75 C2*
=YARD+SWU­X1 =AZ1+SCS­X4.K4 10x2+screen 0.75 C2*
=YARD+SWU­X1 =AZ1+SCS­X4.K5 10x2+screen 0.75 C2*
=YARD+SWU­X1 =AZ1+SCS­X4.K6 10x2+screen 0.75 C2*
=YARD+SWU­X1 =AZ1+SCS­X4.K7 10x2+screen 0.75 C2*
=YARD+SWU­X1 =AZ1+SCS­X4.K8 10x2+screen 0.75 C2*
=AZ1+W­821 TCX(C) 10x2+screen 0.75 ­ C2*
=YARD+SWU­X1 =AZ1+SCS­X4.K10 10x2+screen 0.75 C2*
=YARD+SWU­X1 =AZ1+SCS­X4.K11 10x2+screen 0.75 C2*
=YARD+SWU­X1 =AZ1+SCS­X4.K12 10x2+screen 0.75 C2*
=YARD+SWU­X1 =AZ1+SCS­X4.K13 10x2+screen 0.75 C2*
=YARD+SWU­X1 =AZ1+SCS­X4.K14 10x2+screen 0.75 C2*
=YARD+SWU­X1 =AZ1+SCS­X4.K15 10x2+screen 0.75 C2*
=YARD+SWU­X1 =AZ1+SCS­X4.K16 10x2+screen 0.75 C2*
=YARD+SWU­X1 =AZ1+SCS­X4.K17 10x2+screen 0.75 C2*
=YARD+SWU­X1 =AZ1+SCS­X4.K18 10x2+screen 0.75 C2*
=YARD+SWU­X1 =AZ1+SCS­X4 10x2+screen 0.75 C2*
=AZ1+W­840 =AZ1+SRP­X2 =YARD+SWU­X1 TCX(C) 7x2+screen 0.75 ­ K3*
=AZ2+SCS­W1 =AZ2+SCS­X3 screen Ölflex 4 1.5 ­
=AZ2+W­200 =AZ2+SCS­X1 =AZ2+MSB­440VX1 MPRXCX 3+screen 2.5 ­ C4*
=AZ2+W­201 =AZ2+SCS­X1 =AZ2+MSB­115VX1 MPRXCX· 2+screen 1.5 ­ C3*
=AZ2+W­202 =AZ2+SCS­X1 =AZ2+SCS­SB MPRXCX 1+screen 16 ­ C3*
=AZ2+W­203 =AZ2+SCS­X2 =ESB+24­X1 MPRXCX· 2+screen 6 ­ C2*
=AZ2+W­204 =AZ2+SCS­X2 =ESB+24­X1 MPRXCX· 3+screen 2.5 ­ C2*
=AZ2+W­210 =AZ2+SCS­X41 =AZ2+SRP­4A4 TCX(C) 2x2+screen 0.75 ­ C1*
=AZ2+W­211 =AZ2+SCS­X41 =AZ2+SRP­4A4 TCX(C) 2x2+screen 0.75 ­ C1*
=AZ2+W­213 =AZ2+SCS­X51 =AZ2+SRP­5B1 TCX(C) 2x2+screen 0.75 ­ C2*

Datum 20.Mai.2016 Cable List = NOTES 5 / 7


Bearb. MSC
1216742 + CABLE

Gepr. Bl. 16
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung von nach Kabeltyp gesamt Adern Querschnitt Länge * = Kabel von der Werft 


Cross­section Length
Cable designations from to Cable type total cores * = cable from shipyard
mm² m
=AZ2+W­220 =AZ2+SCS­X52 =AZ2+CLU­X5 MPRXCX 10+screen 1.5 ­ C2*
=AZ2+W­240 =AZ2+SCS­X42 =AZ2+SRP­X4 MPRXCX 16+screen 1.5 ­ C2*
=AZ2+W­241 =AZ2+SCS­X42 =AZ2+EGR­4B1 TCX(C) 2x2+screen 0.75 ­ C2*
=AZ2+W­242 =AZ2+SCS­X44 =AZ2+EGR­4A3­4A3 TCX(C) 4x2+screen 0.75 ­ C1*
=AZ2+W­243 =AZ2+SCS­X54 =AZ2+EGR­5A3­5A3 TCX(C) 2x2+screen 0.75 ­ C2*
=AZ2+W­244 =AZ2+SCS­X94 =AZ2+EGR­9A3­9A3 TCX(C) 2x2+screen 0.75 ­ C2*
=AZ2+W­250 =AZ2+SCS­X92 =AZ2+SRP­X9 MPRXCX 10+screen 1.5 ­ C2*
=AZ2+W­253 =AZ2+SCS­X91 =AZ2+SRP­9A4 TCX(C) 2x2+screen 0.75 ­ C2*
=AZ2+W­254 =AZ2+SCS­X91 =AZ2+SRP­9A4 TCX(C) 2x2+screen 0.75 ­ C2*
=AZ2+W­255 =AZ2+SCS­X91 =AZ2+SRP­9A4 TCX(C) 4x2+screen 0.75 ­ C2*
=AZ2+W­300 =AZ2+SCS­X12 =AZ2+MDP­AX1 MPRXCX 4+screen 2.5 ­ C2
=AZ2+W­301 =AZ2+SCS­X12 =AZ2+MDP­AX9 MPRXCX· 3+screen 2.5 ­ C2*
=AZ2+W­302 MPRXCX 19+screen 1.5 ­ C2*
=AZ2+SCS­X12 =AZ2+MDP­AX1 19+screen 1.5 C2*
=AZ2+SCS­X12 =AZ2+MDP­AX2 19+screen 1.5 C2*
=AZ2+W­303 =AZ2+SCS­X12 =AZ2+MDP­AX3 TCX(C) 2x2+screen 0.75 ­ C1*
=AZ2+W­304 =AZ2+SCS­X12 =AZ2+MDP­AX9 TCX(C) 2x2+screen 0.75 ­ C1*
=AZ2+W­305 =AZ2+SCS­X12 =AZ2+MDP­AX9 TCX(C) 2x2+screen 0.75 ­ C2*
=AZ2+W­620 =AZ2+SCS­X9 =AZ2+HYCP­M1 MPRXCX· 3+screen 1.5 ­ C4*
=AZ2+W­710 TCX(C) 10x2+screen 0.75 ­ C2*
=AZ2+SCS­X3 =YARD+PM­AZ2­X1 10x2+screen 0.75 C2*
=AZ2+SCS­X3.K3 =YARD+PM­AZ2­X2 10x2+screen 0.75 C2*
=AZ2+SCS­X3 =YARD+PM­AZ2­X2 10x2+screen 0.75 C2*
=AZ2+SCS­X8 =YARD+PM­AZ2­X1 10x2+screen 0.75 C2*
=AZ2+W­711 =AZ2+SCS­X3 =YARD+PM­AZ2­X3 TCX(C) 2x2+screen 0.75 ­ C2*
=AZ2+W­720 TCX(C) 4x2+screen 0.75 ­ C2*
=AZ2+SCS­X5 =YARD+AP­X1 4x2+screen 0.75 C2*
=AZ2+SCS­X5.K1 =YARD+AP­X1 4x2+screen 0.75 C2*
=AZ2+W­770 TCX(C) 4x2+screen 0.75 ­ C2*
=YARD+FIFI­X2 =AZ2+SCS­X8.K1 4x2+screen 0.75 C2*
=YARD+FIFI­X2 =AZ2+SCS­X8 4x2+screen 0.75 C2*
=AZ2+W­820 TCX(C) 10x2+screen 0.75 ­ C2*
=YARD+SWU­X2 =AZ2+SCS­X4.K1 10x2+screen 0.75 C2*
=YARD+SWU­X2 =AZ2+SCS­X4.K2 10x2+screen 0.75 C2*
=YARD+SWU­X2 =AZ2+SCS­X4.K3 10x2+screen 0.75 C2*

Datum 20.Mai.2016 Cable List = NOTES 6 / 7


Bearb. MSC
1216742 + CABLE

Gepr. Bl. 17
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung von nach Kabeltyp gesamt Adern Querschnitt Länge * = Kabel von der Werft 


Cross­section Length
Cable designations from to Cable type total cores * = cable from shipyard
mm² m
=YARD+SWU­X2 =AZ2+SCS­X4.K4 10x2+screen 0.75 C2*
=YARD+SWU­X2 =AZ2+SCS­X4.K5 10x2+screen 0.75 C2*
=YARD+SWU­X2 =AZ2+SCS­X4.K6 10x2+screen 0.75 C2*
=YARD+SWU­X2 =AZ2+SCS­X4.K7 10x2+screen 0.75 C2*
=YARD+SWU­X2 =AZ2+SCS­X4.K8 10x2+screen 0.75 C2*
=AZ2+W­821 TCX(C) 10x2+screen 0.75 ­ C2*
=YARD+SWU­X2 =AZ2+SCS­X4.K10 10x2+screen 0.75 C2*
=YARD+SWU­X2 =AZ2+SCS­X4.K11 10x2+screen 0.75 C2*
=YARD+SWU­X2 =AZ2+SCS­X4.K12 10x2+screen 0.75 C2*
=YARD+SWU­X2 =AZ2+SCS­X4.K13 10x2+screen 0.75 C2*
=YARD+SWU­X2 =AZ2+SCS­X4.K14 10x2+screen 0.75 C2*
=YARD+SWU­X2 =AZ2+SCS­X4.K15 10x2+screen 0.75 C2*
=YARD+SWU­X2 =AZ2+SCS­X4.K16 10x2+screen 0.75 C2*
=YARD+SWU­X2 =AZ2+SCS­X4.K17 10x2+screen 0.75 C2*
=YARD+SWU­X2 =AZ2+SCS­X4.K18 10x2+screen 0.75 C2*
=YARD+SWU­X2 =AZ2+SCS­X4 10x2+screen 0.75 C2*
=AZ2+W­840 =AZ2+SRP­X2 =YARD+SWU­X2 TCX(C) 7x2+screen 0.75 ­ K3*

Datum 20.Mai.2016 Cable List = NOTES 7 / 7


Bearb. MSC
1216742 + CABLE

Gepr. Bl. 18
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

terminal groups of component
unit   = AZ1 component   + SCS

terminal name function
=AZ1+SCS­X1 AC feed line earth connection
=AZ1+SCS­X2 DC feed line
=AZ1+SCS­X3 interface to propulsion motor
=AZ1+SCS­X4 connection to warning unit
=AZ1+SCS­X5 connection to Autopilot
connection to DP system
connection to Joystick system
=AZ1+SCS­X8 connection to switch box FIFI
=AZ1+SCS­X10 connection CP standby pump

=AZ1+SCS­X12 connection to steering desks
connection to warning panel
=AZ1+SCS­X41 CAN bus steering system to thruster
=AZ1+SCS­X42 connection to steering hydraulic
=AZ1+SCS­X44 connection to thrust direction indicator
=AZ1+SCS­X51 connection speed pick up thruster
=AZ1+SCS­X52 connection clutch control
=AZ1+SCS­X54 connection to shaft speed indicator
=AZ1+SCS­X91 connection CP feed back unit
=AZ1+SCS­X92 connection CP hydraulic
=AZ1+SCS­X94 connection to pitch direction indicator

Datum 06.Apr.2016            = AZ1 1 / 51


Bearb. MSC
1216742 + SCS
system switch box control system
Gepr. switch box Bl. 19
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

not signed areas 1,5mm²

2,5²
1 3 5 5 3 1

­F1 ­F2
5.5
L1 L2 L3 1.9A
7...10A
PE 8A 2 4 6 4 6 2
­S1
T1 T2 T3
1 3 5
­9K7
5.4
2 4 6
2,5²

­A1
3.3
­X1 1 2 3 PE SB ­X1 4 ­X1 5 6 PE SB ­X9 1 2 3 SB PE L3 L2 L1
+W­200 +W­202 +W­201 +W­620
MPRXCX MPRXCX MPRXCX· MPRXCX·
3X2,5mm² C4* BK BU BN 1X16mm² C3* 2X1,5mm² C3* BK BU 3X1,5mm² C4* 375V ­ 575V AC
N PE L
25V DC / 20A
­X1
­SB

­M1.U

­M1.V

­M1.W
+MSB

+HYCP/2.8/
+HYCP/2.7/

+HYCP/2.8/
­440VX1 1 2 3 ­115VX1 1 2

20A 6A

L1 L
L2 N
L3

main switchboard AC

AC DC
feed line switch box earth feed line switch box CP pump converter
440V  AC connection 115V  AC auxiliary

Datum 06.Apr.2016 power distribution = AZ1 2 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 20


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

not signed areas 1,5mm²

L+/4.0
L­/4.0
2,5mm² 2,5mm²

­P5/+MDP/10.0

­P6/+MDP/10.0
­A2 ­A1
5.2 L+ L­ 2.8 L+ L­

25V DC / 10A

24V DC 25V DC / 20A

375V ­ 575V AC +W­301
MPRXCX·
+ ­ 3X2,5mm² C2* BK BU

2,5mm² ­X12 5 6

1,5²
L1 L2
­S2
T1 T2 A+/21.0
A­/21.0
2,5mm²

+W­203 ­X2 1 2 SB +W­204 ­X2 3 4 SB


MPRXCX· MPRXCX·
2X6mm² C2* BK BU 3X2,5mm² C2* BK BU

=ESB
+24­X1 1 2 +24­X1 3 4

16A 2A

L+

24VDC +30% ­25% AC ripple < 1V

emergency switchboard 24V DC

feed line AC DC feed line


switch box 24V DC converter indicators

Datum 06.Apr.2016 power distribution = AZ1 3 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 21


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 1,5mm²
3.6/L­
3.6/L+

­1F1 ­1F2 ­1F3 ­1F4 ­1F5 ­1F6 ­4F1 ­5F1 ­9F1


B6A 1F1+ B6A B6A B6A B6A B6A B6A B6A B6A

1F1­

1F2+

1F3+

1F3­

1F4+

1F4­

1F5+

1F5­

4F1+

4F1­

5F1+

5F1­

9F1+

9F1­
8.0/

6.0/

5.0/

17.0/

22.0/

28.0/

30.0/
8.0/

6.0/

6.0/

5.0/

17.0/

22.0/

28.0/

30.0/
1,5²

­X12 1 2 3 4 SB
+W­300
MPRXCX
4x2,5mm²
M1
C2
­P1

­P2

­P3

­P4
+MDP/2.1/

+MDP/2.1/

+MDP/2.1/

+MDP/2.1/

control instrument feed line NFU systems SCHOTTEL interface fan FFU steering clutch FFU pitch
system light control panels control signals external systems switch box valve control control valve control

Datum 06.Apr.2016 power distribution = AZ1 4 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 22


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²
4.4/1F4+ 1F4+/8.0

­A1 ­A2
2.8 13 3.1 13

­F1
21
­9K6 2.6 13
14 14 33.1
B1
14 12 95 50°

14 96

FA.AUX/32.4

A1 A1 A1 A1 A1 A1 A1 A1
­K1 ­X4.K1 ­K2 ­X4.K2 ­9K7 ­X4.K16 ­X4.K17 ­X4.K18
A2 A2 A2 A2 A2 A2 A2 A2
4.4/1F4­ 1F4­/8.0

failure failure auxiliary failure overload switch box


AC / DC converter emergency feed line CP pump auxiliary auxiliary temperature
24V DC CP pump CP pump max

14 14 14 14 1  2   2.6 14 14 14
12 11  12.3 12 11  44.0 12 11  12.3 12 11  44.1 3  4   2.6 12 11  45.6 12 11  45.7 12 11  45.7
44 44 5  6   2.7
42 41 42 41 13 14  32.2
21 22

Datum 06.Apr.2016 power distribution = AZ1 5 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 23


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²
4.1/1F2+
4.3/1F3+ 1F3+/20.0

12 14 31 1
­1K2 ­1K2 ­1K5
.1 .1 .7
21 42 44 2

3 1 LOC/11.1
­1S1
4 2 A1 A2
­1V2 3
­1K5

­P11/+MDP/2.7

­P12/+MDP/2.7

­P13/+MDP/4.0

­P14/+MDP/3.1
K
.7
4

REM/7.0
REM.ON/11.3 +W­302
MPRXCX
19x1,5mm²
C2*

REM.AC/14.5 ­X12 7 8 9 10

1,5²

A1 A2
­1V1
K

A1 11 K K b A1 A1 A1
­1K2 1H1 ­1K4 ­1K5 ­X4.K4
A2 41 A A yellow a A2 A2 A2
4.3/1F3­ 1F3­/20.0

local control NFU control ON feed line NFU control failure


NFU control ON OFF NFU control

14 14 1 2 .5 14
12 21 .2 12 11  12.1 3 4 .8 12 11  44.3
44 24
42 31 .3 22 21  16.5
34
32 31  22.6
44
42 41  30.7

Datum 06.Apr.2016 NFU control ON = AZ1 6 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 24


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²

6.4/REM

­4A3 ­9A3
26.3 36.5

3 4 3 4

12 14 12 14
­3K1 ­9K2
16.5 30.8
12 14 11 11
­4K2
22.7
11 3K1.22/20.1 12 14 12 14
­9K3 ­9K5
37.5 37.8
12 14 11 11
­4K5 3K1.32/20.1
26.7
11

­X12 11 ­X12 12 ­X12 13 ­X12 14 ­X12 15 ­X12 16 ­X12 17 ­X12 18 ­X12 19 20 21 SB

+W­302 +W­302
C2* C2*
­P15

­P18

­P16

­P17

­P22

­P20

­P21

­P23

­P25

­P24
+MDP/4.5/

+MDP/3.2/

+MDP/4.2/

+MDP/4.3/

+MDP/3.1/

+MDP/4.2/

+MDP/4.1/

+MDP/3.2/

+MDP/4.4/

+MDP/4.3/
feed line indication thruster thruster NFU RPM increase decrease NFU pitch increase decrease
signals NFU steering turning turning control RPM RPM control pitch pitch
ON ccw cw in service in service

Datum 06.Apr.2016 local control = AZ1 7 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 25


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²
4.0/1F1+ 1F1+/10.0
5.9/1F4+ 1F4+/12.0

­P31/+MDP/8.1

­P32/+MDP/8.1

­P33/+MDP/8.1

­P34/+MDP/8.1
+W­303
TCX(C) 1.1 1.2 2.1 2.2

2x2x0,75mm²
C1*
­X12 22 23 24 25 SB

­XC
CAN

7 3 2

GN YE

GN YE CANG/9.0
CANH/9.0
CANL/9.0

­1A1.0 1 5 2 6 3 7 4 8
­1A1.1 2 1 6 4
1.5 1.4 1.3 1.2 1.1

24VDC 0V UL+ UL+. UL­ UL­. PE PE. N.C. CAN H DRAIN CAN L CAN GND
WAGO feed line
modul 750­626
WAGO Controller CANopen 750­837
ON modul    :1167520
software:1167521
1 2 3 4 5 6 7 8

7 8

5.9/1F4­ 1F4­/23.0
4.1/1F1­ 1F1­/10.0

power supply CAN BUS control system

Datum 06.Apr.2016 DATA BUS = AZ1 8 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 26


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²

­3A1 11 12 ­4A1 11 12 ­4A2 11 12


16.1 120 Ohm 22.1 120 Ohm 22.3 120 Ohm
ON ON ON

TXD

RXD

TXD

RXD

TXD

RXD
OFF OFF OFF

CAN_GND

CAN_GND

CAN_GND
CAN_H

CAN_H

CAN_H
CAN_L

CAN_L

CAN_L
2 3 4 2 3 4 2 3 4

GN YE GN YE GN YE

8.9/CANH CANH/10.0
8.9/CANL CANL/10.0
8.9/CANG CANG/10.0

DCM speed control DCM azimuth steering DPV azimuth steering

Datum 06.Apr.2016 DATA BUS = AZ1 9 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 27


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²

­9A1 11 12 ­9A2 11 12 ­A81


30.1 120 Ohm 30.3 120 Ohm 39.1 120 Ohm
ON ON ON

TXD

RXD

TXD

RXD
OFF OFF OFF

CAN_GND

CAN_GND

CAN_GND
CAN_H

CAN_H

CAN_H
CAN_L

CAN_L

CAN_L
2 3 4 2 3 4 2 3 4

GN YE GN YE GN YE

9.9/CANH
9.9/CANL
9.9/CANG
8.9/1F1­ 1F1­/14.0
8.9/1F1+ 1F1+/16.0
GN
YE
+W­210
TCX(C) ­X41 5 6 7 8 SB
2x2x0,75²
C1* 1.1 1.2 2.1 2.2

DCM pitch steering DPV pitch steering analoque values


external systems

­4A4.6

­4A4.7

­4A4.8

­4A4.9
+SRP/4.4/

+SRP/4.4/

+SRP/4.5/

+SRP/4.5/
feed back unit
steering

Datum 06.Apr.2016 DATA BUS = AZ1 10 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 28


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²

CL.AU/28.0

REM.ON/6.1
LOC/6.4

CL.EN/28.4

­1A1.2 1 5 2 6 3 7 4 8

DI 0 DI 1 DI 2 DI 3 DI 4 DI 5 DI 6 DI 7

not used not used not used not used not used not used


WAGO CANopen 750 ­ 430

local desk ECR desk send command reserve thruster thruster clutch in auto mode clutch engaged


ON ON retracted lowered

Datum 06.Apr.2016 desk control = AZ1 11 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 29


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²
8.9/1F4+ 1F4+/23.0

12 14 12 14
­1K4 ­K1
6.5 5.0
11 11

COLL.AL/45.8

ST.PRE/26.6
HY.MIN/26.5
12 14

PI.PRE/38.0

CL.AIR/28.5
­K2
5.2
11

­1A1.3 1 5 2 6 3 7 4 8

DI 0 DI 1 DI 2 DI 3 DI 4 DI 5 DI 6 DI 7

not used
WAGO CANopen 750 ­ 430

NFU fault unit fault power hy oil level min oil pressure oil pressure air pressure reserve


steering supply steering OK pitch control clutch
manual OK OK

Datum 06.Apr.2016 desk control = AZ1 12 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 30


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²

FIFI.ON/48.3

­1A1.4 1 5 2 6 3 7 4 8

DI 0 DI 1 DI 2 DI 3 DI 4 DI 5 DI 6 DI 7

not used WAGO CANopen 750 ­ 430

FiFi mode Generator mode reserve brake closed reserve reserve reserve reserve


ON ON

Datum 06.Apr.2016 desk control = AZ1 13 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 31


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²

­1A1.5
WAGO CANopen 750 ­ 530

not used not used not used

DO 0 DO 1 DO 2 DO 3 DO 4 DO 5 DO 6 DO 7

1 5 2 6 3 7 4 8

REM.AC
6.1/
A1 11 K K
­1K7
A2 41 A A
10.9/1F1­ 1F1­/15.0

ECR desk main desk reserve el. shaft el. shaft remote control clutch clutch OFF


in service in service in line healthy active auto mode

14
12 21  28.1
44
42 31

Datum 06.Apr.2016 desk control = AZ1 14 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 32


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²

­1A1.6 ­1A1.7
WAGO CANopen 750­530 WAGO
CANopen 750­600

DO 0 DO 1 DO 2 DO 3 DO 4 DO 5 DO 6 DO 7 END

1 5 2 6 3 7 4 8

A1 A1 A1
­X8.K1 ­1K6 ­X4.K3
A2 A2 A2
14.9/1F1­ 1F1­/16.0

send command buzzer cleaning mode hy­pump ON hy­pump OFF FIFI mode Generator mode failure control


to remote in service in service system

14 14 14
12 11  48.1 12 11 12 11  44.2
44
42 41

Datum 06.Apr.2016 desk control = AZ1 15 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 33


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
10.9/1F1+ 1F1+/19.0

­3A1
9.1 26 28 9 10
DCM
UB24V

UB24V

card    :1167522
programm:1167523
GND24

GND24

25 27

22 24
­1K4
6.5
21

A1 A1 A1
­3K1 ­3K2 ­X4.K5
A2 A2 A2
15.9/1F1­ 1F1­/19.0

failure FFU speed control

14 14 14
12 11   7.4 12 11  18.3 12 11  44.4
24 24
22 21  20.2 22 21  47.5
34 34
32 31  20.2 32 31  47.6
44 44
42 41 42 41

Datum 06.Apr.2016 FFU speed control = AZ1 16 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 34


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 1,5mm²

­PM1/=YARD+PM/2.0

­PM2/=YARD+PM/2.1

­PM3/=YARD+PM/2.2

­PM4/=YARD+PM/2.2

­PM5/=YARD+PM/2.3

FIFI.SER/48.3
+W­710
TCX(C) 1.1 1.2 2.1 2.2 3.1

10x2x0,75²
C2*

­X3 1 ­X3 2 ­X3 3 ­X3 4 ­X3 5

4.5/1F5+ 1F5+/18.0

SP1/27.0

­3A1
16.1 13 14 15 16 17 18 19 20
DCM
DI­0.0

DI­0.1

DI­0.2

DI­0.3

DI­1.0

DI­1.1

DI­1.2

DI­1.3
propulsion propulsion engine engine
S3 motor motor at ilde overload FIFI mode Generator speed Generator
ON OFF ON in service mode pick up at
OFF (clutch engaged) in service bus bar
1 2 3 4 5 6 7 8 (clutch engaged)

ON
OFF

A1
­3K5
A2
4.5/1F5­ 1F5­/18.0

feed line drive motor drive motor drive motor drive motor


signals OFF running idle overload

14
12 11  23.2
24
22 21  26.8
34
32 31  38.2
44
42 41

Datum 20.Mai.2016 FFU speed control = AZ1 17 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 35


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
17.9/1F5+ 1F5+/41.0
17.9/1F5­ 1F5­/41.0

9A4.13/+SRP/5.6

9A4.14/+SRP/5.6

9A4.15/+SRP/5.6

3A3.1/47.7

3A3.2/47.7

3A3.4/47.7

3A3.3/47.8
+W­255
TCX(C) 1.1 1.2 2.1

4x2x
0,75² C2*

­X91 13 14 15

­3A3
1 2 4 3
+ ­
3.FB/20.3 ­
4­20mA
0­10V +
+ ­
12 14 6 5 4 3
­3K2
16.6
11

3A1.29/20.3

­3A1
16.1 30 21 29 22 23 24
DCM
10V REF

AI­1

AGND

AI­2

AI­3

AI­4
setpiont speed feed back
analoque feed back signal
NFU RPM

actual value load feedback
pitch position drive motor

Datum 06.Apr.2016 FFU speed control = AZ1 18 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 36


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²

­3A1
16.1
DCM

actual lever open bypass decrease increase set point


in zero valve RPM RPM speed

AGND
DO­0

DO­1

DO­2

DO­3

AO­0

AO­1
5 6 7 8 31 29 32

3A1.32/47.4

RPM.DE

RPM.IN
20.1/
20.1/

A1
­X3.K3
A2
16.9/1F1­ 1F1­/22.0
16.9/1F1+ 1F1+/22.0

speed lever in zero

14
12 11  47.1

Datum 06.Apr.2016 FFU speed control = AZ1 19 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 37


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
6.9/1F3­ 1F3­/26.0
6.9/1F3+ 1F3+/26.0

18.7/3A1.29 3A4.2/47.4

18.4/3.FB 3A4.3/47.4

­3A4 15 16
J7
14 13 4 3 2
UB24V

GND24

0...10V

0­15V

AGND
1 2 3
> 4,5mA

DZ/GND
0..20mA
GND24

0..10V

DZ/24

DZ/IN
MF1

MF2
13 5 1 7 6 8
9 10 11 12

21 31
­3K1
16.5
24 22 34 32

19.5/RPM.IN
19.4/RPM.DE

7.5/3K1.22
7.5/3K1.32

Datum 06.Apr.2016 NFU speed control = AZ1 20 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 38


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²
3.6/A+ A+/27.0
3.6/A­ A­/27.0

GN GN
YE YE

YE GN YE GN

­X41 1 2 3 4 SB ­X44 1 2 3 4 5 6 SB ­X12 27 28 29 30 SB


+W­211 +W­242 +W­304
TCX(C) TCX(C) TCX(C) 1.1 1.2 2.1 2.2

2x2x0,75mm² C1* 1.1 1.2 2.1 2.2 4x2x0,75mm² C1* 1.1 1.2 2.1 2.2 3.1 3.2 2x2x0,75mm²
C1*
­4A4.1

­4A4.2

­4A4.3

­4A4.4

­P41

­P42

­P43

­P44
­4A3.1

­4A3.2

­4A3.4

­4A3.5

­4A3.4.1

­4A3.5.1

+MDP/10.1/

+MDP/10.1/

+MDP/10.1/

+MDP/10.2/
+SRP/4.2/

+SRP/4.2/

+SRP/4.2/

+SRP/4.2/

+EGR/2.0/

+EGR/2.1/

+EGR/2.1/

+EGR/2.1/

+EGR/2.2/

+EGR/2.2/

CAN BUS thrust direction CAN BUS


indicator indicator indicator
near hydraulic
pump

Datum 06.Apr.2016 thrust direction indicator = AZ1 21 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 39


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
4.7/4F1+
19.9/1F1+ 1F1+/30.0

­4A1 ­4A2
9.3 26 28 9 10 9.5 26 28 30 32 9 10
DCM DPV
UB24V

UB24V

UB24V

UB24V

UB24V

UB24V
card    :1167524 card    :1168411
GND24

GND24

GND24

GND24

GND24

GND24
programm:1167525 programm:1168412

25 27 25 27 29 31

32 34
­1K4
6.5
31

A1 A1 A1
­4K1 ­4K2 ­X4.K6
A2 A2 A2

19.9/1F1­ 1F1­/24.0
4.7/4F1­

failure
FFU steering

14 14 14
12 11  26.1 12 11  7.1 12 11  44.5
24 44
22 21  26.1 42 41
34
32 31  26.2
44
42 41  26.2

Datum 06.Apr.2016 FFU thrust direction steering = AZ1 22 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 40


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 1,5mm²

­4B1.1/+EGR/2.3

­4B1.3/+EGR/2.3

­4B1.4/+EGR/2.3
+W­241
TCX(C) 1.1 1.2 2.1

2x2x0,75mm²
C2*

­X42 5 6 7 SB

12.9/1F4+ 1F4+/26.0
8.9/1F4­ 1F4­/26.0
12 14
­3K5
17.8
11

­4A1
22.1 13 14 15 16 17 18 19 20
DCM
format encoder

DI­0.0

DI­0.1

DI­0.2

DI­0.3

DI­1.0

DI­1.1

DI­1.2

DI­1.3
S3 main back up overload speed input
ON power plant power plant power plant hy pump
OFF steering ON steering ON steering (puls)
1 2 3 4 5 6 7 8
ON
OFF
S4
drive direction
CP­unit

main power plant overload power plant hydraulic pump power plant


steering ON steering speed pick up steering in service

Datum 06.Apr.2016 FFU thrust direction steering = AZ1 23 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 41


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²

­4A1
22.1
DCM

desk steering steering steering


take CCW CW locked
over

AGND
DO­0

DO­1

DO­2

DO­3

AO­0

AO­1
5 6 7 8 31 32 29

A1
X4.K7
A2
22.5/1F1­ 1F1­/30.0

steering
locked

14
12 11  44.6

Datum 06.Apr.2016 FFU thrust direction steering = AZ1 24 / 51


Bearb. MSC
1216742 + SCS
control signals
Gepr. switch box Bl. 42
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²

­4A2
22.3 23 21 22 24 17 18 19 20
DPV
AI­1

AGND

10VREF

AI­2

DI­1.0

DI­1.1

DI­1.2

DI­1.3
invers ext. +­180°
invers ext. +­45°

steering value amplifier additonal additonal


input ±10V ON steering steering
system system
S3 +­10V = +­45° +­10V = +­180°
ON ON
ON
OFF
1 2 3 4 5 6 7 8
ON
OFF
SWITCH HYDROMATIC LINDE PSL / PSV
S4 1 2 3 4 5 6 7 8 9 A B C D E F
valve char.
valve char.
valve char.
valve char.
dither
dither
DPV 2
Shaftspeed
overlap

S 4.1 ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON


S 4.2 OFF ON ON OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON
S 4.3 OFF OFF OFF ON ON ON ON OFF OFF OFF OFF ON ON ON ON
S 4.4 OFF OFF OFF OFF OFF OFF OFF ON ON ON ON ON ON ON ON

steering signal hy pump
remote control in service

Datum 06.Apr.2016 FFU thrust direction steering = AZ1 25 / 51


Bearb. MSC
1216742 + SCS
valve control hy pump
Gepr. switch box Bl. 43
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
20.9/1F3+ 1F3+/36.0
23.9/1F4+ 1F4+/37.0

­4A2
22.3
DPV

­4A3
7.2 1

AO­1COM

AO­2COM

ST.PRE/12.5
HY.MIN/12.4
22 24
AO­1

AO­2
­3K5
17.8
6 5 7 8 21

6 5 2 3 4

12 14 22 24 32 34 42 44
­4K1 ­4K1
22.6 22.6
11 21 31 41

­X42 1 2 3 4 ­X42 8 9 11 10
+W­240
MPRXCX +W­240
16x1,5mm² K3*
C2*

­4R1
­4Y1.1

­4Y1.2

­4Y2.1

­4Y2.2

­2S21.1

­2S21.2

­2S22.2
120Ohm
+SRP/3.2/

+SRP/3.3/

+SRP/3.4/

+SRP/3.4/

+SRP/3.0/

+SRP/3.1/

+SRP/3.2/
A1 A1 A1
­4K5 ­X4.K11 ­X4.K10
A2 A2 A2

20.9/1F3­ 1F3­/36.0
23.9/1F4­ 1F4­/37.0

steering valves steering valves
hy oil steering oil
level pressure
min min
14 14 14
12 11  7.1 12 11  45.1 12 11  45.0
44
42 41

Datum 06.Apr.2016 FFU thrust direction steering = AZ1 26 / 51


Bearb. MSC
1216742 + SCS
valve control hy pump
Gepr. switch box Bl. 44
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75²
21.9/A+ A+/29.0

­5A1 15 16
14
S 1
UB24V

1 2 Hz
ON
OFF OFF OFF 128
1 2 3 4 ON OFF 256
OFF ON 512
f
f
ramp gen

ON ON 1024

DZ/GND
GND24

0...10V

0...15V

AGND
DZ/24

DZ/IN
MF2

MF1

13 1 5 7 6 8 4 3 2 14 13
9 10 11 12

17.9/SP1

+W­213 ­X51 1 2 3 SB PE ­X12 31 32 ­X54 1 2 3 4 SB


TCX(C) +W­305 +W­243
2x2x0,75² C2* 1.1 1.2 2.1 TCX(C) 1.1 1.2 TCX(C) 1.1 1.2 2.1 2.2

2x2x0,75mm² 2x2x0,75² C2*
C2*
­5B1.1

­5B1.3

­5B1.4

­P45

­P46

­5A3.1

­5A3.2

­5A3.3

­5A3.4
+MDP/10.3/

+MDP/10.3/
+SRP/4.7/

+SRP/4.8/

+SRP/4.8/

+EGR/2.7/

+EGR/2.8/

+EGR/2.8/

+EGR/2.8/
A1
­X4.K9
A2
21.9/A­ A­/29.0

propeller propeller
RPM pick up RPM indicator

14
12 11  44.8

Datum 06.Apr.2016 shaft speed indication = AZ1 27 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 45


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²
4.8/5F1+

21
­1K7
14.7
12 14

11.8/CL.AU

CL.AIR/12.7
CL.EN/11.8
­X52 1 2 3 4 5 6 7 8 SB

+W­220
MPRXCX
10x1,5mm²
C2*
­5Y1.1

­5Y1.2

­5Y2.1

­5Y2.2

­5S1.1

­5S1.2

­5S2.1

­5S2.2
+CLU/2.2/

+CLU/2.2/

+CLU/2.3/

+CLU/2.3/

+CLU/2.4/

+CLU/2.4/

+CLU/2.6/

+CLU/2.6/
A1 A1
­X4.K12 ­X3.K12
A2 A2

4.8/5F1­

clutch clutch clutch clutch


disengaging engaging engaged control
air min

14 14
12 11  45.2 12 11  47.2

Datum 06.Apr.2016 clutch control = AZ1 28 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 46


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²

­9A4
Meßumformer
ID.NR.:1131850

8 7 4 1 2 3 6 5 8 7

27.8/A+
27.8/A­

­X91 1 2 3 4 SB ­X12 33 34 SB ­X94 1 2 3 4 SB


+W­253 +W­244
TCX(C) 1.1 1.2 2.1 2.2 2.1 2.2 TCX(C) 1.1 1.2 2.1 2.2
+W­305
2x2x0,75² C2* C2* 2x2x0,75² C2*
9A4.1

9A4.2

9A4.3

9A4.4

­P47

­P48

­9A3.1

­9A3.2

­9A3.3

­9A3.4
+MDP/10.4/

+MDP/10.4/
+SRP/5.1/

+SRP/5.2/

+SRP/5.2/

+SRP/5.2/

+EGR/2.5/

+EGR/2.5/

+EGR/2.5/

+EGR/2.5/
actual value pitch indicator pitch direction indicator
pitch direction near pitch control lever

Datum 06.Apr.2016 pitch direction indicator = AZ1 29 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 47


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC
4.9/9F1+
22.5/1F1+ 1F1+/32.0

­9A1 ­9A2
10.0 26 28 9 10 10.2 26 28 30 32 9 10
DCM DPV
UB24V

UB24V

UB24V

UB24V

UB24V

UB24V
card    :1168413 card    :1168411
GND24

GND24

GND24

GND24

GND24

GND24
programm:1168415 programm:1168412

25 27 25 27 29 31

42 44
­1K4
6.5
41

A1 A1 A1
­9K1 ­9K2 ­X4.K13
A2 A2 A2

24.8/1F1­ 1F1­/33.1
4.9/9F1­

failure
FFU pitch
control

14 14 14
12 11  36.1 12 11  7.7 12 11  45.3
24 44
22 21  36.2 42 41
34
32 31  36.3
44
42 41  36.3

Datum 06.Apr.2016 pitch control system = AZ1 30 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 48


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC

9A4.5/+SRP/5.2

9A4.6/+SRP/5.3

9A4.7/+SRP/5.3
+W­254
TCX(C) 1.1 1.2 2.1

2x2x0,75² C2*

­X91 5 6 7 SB

­9A1
30.1 21 30 22 29 23 24
DCM
AI­1

10V REF

AI­2

AGND

AI­3

AI­4
setpiont feed back
analoque analoque

actual value
pitch feed back

Datum 06.Apr.2016 pitch control system = AZ1 31 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 49


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC
30.8/1F1+ 1F1+/39.0

13 12 14
­9K7 ­9K4
5.4 37.7
14 11

FA.AUX/5.6
­9A1
30.1 13 14 15 16 17 18 19 20
DCM
format encoder

DI­0.0

DI­0.1

DI­0.2

DI­0.3

DI­1.0

DI­1.1

DI­1.2

DI­1.3
S3
ON
OFF
1 2 3 4 5 6 7 8
ON
OFF
S4
drive direction
CP­unit

pitch pitch pump electrically


el.pump zero
local failure
running position
control pump

Datum 06.Apr.2016 pitch control system = AZ1 32 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 50


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC

­9A1
30.1
DCM

start stop not steering


pitch pitch used locked
el.pump el.pump
DO­0

DO­1

DO­2

DO­3
5 6 7 8

A1 11 K K A1
­9K6 X4.K14
A2 41 A A A2
30.6/1F1­ 1F1­/39.0

pitch
locked

14 14
12 21   5.4 12 11  45.4
44
42 31  38.2

Datum 06.Apr.2016 pitch control system = AZ1 33 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 51


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC

­9A1
30.1
DCM

analog analog
set point feed back
signal signal
0..10V 0..10V

AGND
AO­0

AO­1

31 32 29

Datum 06.Apr.2016 pitch control system = AZ1 34 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 52


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC

­9A2
30.3 23 21 22 24 17 18 19 20
DPV
AI­1

AGND

10VREF

AI­2

DI­1.0

DI­1.1

DI­1.2

DI­1.3
invers ext. +­180°
invers ext. +­45°

amplifier additonal additonal


ON steering steering
S3 system system
ON +­10V = +­45° +­10V = +­180°
ON ON
OFF
1 2 3 4 5 6 7 8
ON
OFF
SWITCH HYDROMATIC LINDE PSL / PSV
S4 1 2 3 4 5 6 7 8 9 A B C D E F
valve char.
valve char.
valve char.
valve char.
dither
dither
DPV 2
Shaftspeed
overlap

S 4.1 ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON


S 4.2 OFF ON ON OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON
S 4.3 OFF OFF OFF ON ON ON ON OFF OFF OFF OFF ON ON ON ON
S 4.4 OFF OFF OFF OFF OFF OFF OFF ON ON ON ON ON ON ON ON

Datum 06.Apr.2016 pitch control system = AZ1 35 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 53


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC
26.9/1F3+ 1F3+/47.0

­9A2
30.3
DPV

­9A3
7.8 1

AO­1COM

AO­2COM
AO­1

AO­2
6 5 7 8
5 6 2 3 4

12 14 22 24 32 34 42 44
­9K1 ­9K1
30.7 30.7
11 21 31 41

­X92 1 2 3 4
+W­250
MPRXCX
10x1,5mm²
C2*
­9Y1.1

­9Y1.2

­9Y1.3

­9R1
120Ohm
+SRP/3.7/

+SRP/3.8/

+SRP/3.8/

26.9/1F3­ 1F3­/47.0

steering valves steering valves

Datum 06.Apr.2016 pitch control system = AZ1 36 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 54


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC
26.9/1F4+ 1F4+/38.0

­X91 8 9 10 11 12 SB

2.2 3.1 3.2 4.1 4.2


+W­255
C2*

A1 A1 A1
­9K3 ­9K4 ­9K5
­9A4.8

­9A4.9

­9A4.10

­9A4.11

­9A4.12 A2 A2 A2
+SRP/5.3/

+SRP/5.3/

+SRP/5.4/

+SRP/5.5/

+SRP/5.5/

26.9/1F4­ 1F4­/38.0

pitch max pitch  pitch max pitch max pitch pitch max


forward neutral backward forward neutral backward

14 14 14
12 11  7.8 12 11  32.2 12 11  7.8
44 44 44
42 41 42 41 42 41

Datum 06.Apr.2016 pitch control system = AZ1 37 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 55


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC
37.9/1F4+

9S1.1/+SRP/3.5

9S1.2/+SRP/3.6
+W­250
C2*

­X92 5 ­X92 6 SB

12.6/PI.PRE

31
­3K5
A
17.8
32 34 ­9V1
K
31
­9K6
33.1
42 44

A1
X4.K15
A2
37.9/1F4­

oil pressure
CP pump
min

14
12 11  45.5

Datum 06.Apr.2016 pitch control system = AZ1 38 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 56


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
32.8/1F1+ 1F1+/40.0

­A81
10.4 26 28 9 10
DCM modul    :1167526
UB24V

UB24V

software:1167527

10VREF
GND24

GND24

AGND

25 27 30 29

A1
X4.K8
A2
33.8/1F1­ 1F1­/43.0

failure
external
systems

14
12 11  44.7

Datum 06.Apr.2016 interface external systems = AZ1 39 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 57


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
39.9/1F1+ 1F1+/47.0

46.0
APR

­A81
39.1 13 14 15 16 17 18 19 20
DCM
DI­0.0

DI­0.1

DI­0.2

DI­0.3

DI­1.0

DI­1.1

DI­1.2

DI­1.3
S3
ON Autopilot ready DP system DP system
OFF for service activated ready for service
1 2 3 4 5 6 7 8
ON
OFF J7
1 2 3
S4
extern 2

J8
1 2 3

Autopilot Autopilot ready DP system DP system


take control for service take control ready
for service

Datum 06.Apr.2016 interface external systems = AZ1 40 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 58


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
18.9/1F5+ 1F5+/45.0
18.9/1F5­

­A83
46.2 1 2 4 3
+ ­
0­20mA ­
0­10V +
+ ­
6 5 4 3

­A81
39.1 21 22 23 24 29
DCM
AI­1

AI­2

AI­3

AI­4

AGND
set point steering value set point speed value set point steering value set point pitch value
from AP system from DP system from DP system from DP system

Datum 06.Apr.2016 interface external systems = AZ1 41 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 59


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²

­A81
39.1
DCM AGND

AGND
AO­0

AO­1
31 29 32 29

speed feed back speed feed back feed back feed back


for DP system for Joystick system steering angle steering angle
DP system Joystick system

Datum 06.Apr.2016 interface external systems = AZ1 42 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 60


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²

­A81
39.1
DCM

Autopilot mode unit ready for DP mode in service


in service DP system

AGND
DO­0

DO­1

DO­2

DO­3

AO­0

AO­1
5 6 7 8 31 32 29

A1
­X5.K1
A2

39.9/1F1­

unit ready for Autopilot mode unit ready feed back


Autopilot in service for DP DP mode
not used system in service

14
12 11  46.2

Datum 06.Apr.2016 interface external systems = AZ1 43 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 61


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²

12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14
­X4.K1 ­X4.K2 ­X4.K3 ­X4.K4 ­X4.K5 ­X4.K6 ­X4.K7 ­X4.K8 ­X4.K9
5.1 5.3 15.8 6.8 16.7 22.8 24.4 39.7 27.3
11 11 11 11 11 11 11 11 11

+W­820
TCX(C) 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 7.1 7.2 8.1 8.2
­X4 SB
10x2x0,75²
C2*
­WU1

­WU2

­WU3

­WU4

­WU5

­WU6

­WU7

­WU8

­WU9

­WU10

­WU11

­WU12

­WU13

­WU14

­WU15

­WU16
=YARD+SWU/2.0/

=YARD+SWU/2.0/

=YARD+SWU/2.1/

=YARD+SWU/2.1/

=YARD+SWU/2.2/

=YARD+SWU/2.2/

=YARD+SWU/2.3/

=YARD+SWU/2.3/

=YARD+SWU/2.3/

=YARD+SWU/2.4/

=YARD+SWU/2.4/

=YARD+SWU/2.4/

=YARD+SWU/2.5/

=YARD+SWU/2.5/

=YARD+SWU/2.5/

=YARD+SWU/2.6/
failure failure failure failure failure failure steering failure OPTION
AC / DC emergency control NFU FFU RPM FFU locked external suppresing
converter feed line system control control steering systems lub oil
24V DC flow min

Datum 06.Apr.2016 interface to ship warining unit = AZ1 44 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 62


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
41.9/1F5+ 1F5+/46.0

COLL.AL/12.2
12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14
­X4.K10 ­X4.K11 ­X4.K12 ­X4.K13 ­X4.K14 ­X4.K15 ­X4.K16 ­X4.K17 ­X4.K18
26.9 26.8 28.6 30.9 33.5 38.3 5.5 5.6 5.8
11 11 11 11 11 11 11 11 11

­X4 1 2 SB
+W­821
TCX(C) 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 7.1 7.2 8.1 8.2 9.1 9.2 10.1 10.2

10x2x0,75²
C2*
­WU19

­WU20

­WU21

­WU22

­WU23

­WU24

­WU25

­WU26

­WU27

­WU28

­WU29

­WU30

­WU31

­WU32

­WU33

­WU34

­WU35

­WU36

­WU41

­WU42
=YARD+SWU/2.6/

=YARD+SWU/2.7/

=YARD+SWU/2.7/

=YARD+SWU/2.7/

=YARD+SWU/2.8/

=YARD+SWU/2.8/

=YARD+SWU/3.0/

=YARD+SWU/3.0/

=YARD+SWU/3.1/

=YARD+SWU/3.1/

=YARD+SWU/3.2/

=YARD+SWU/3.2/

=YARD+SWU/3.3/

=YARD+SWU/3.3/

=YARD+SWU/3.3/

=YARD+SWU/3.4/

=YARD+SWU/3.4/

=YARD+SWU/3.5/

=YARD+SWU/3.6/

=YARD+SWU/3.6/
steering oil hy oil clutch air failure pitch CP failure overload switch box collective
pressure level pressure FFU locked pump oil auxiliary auxiliary temperature alarm unit
min min min pitch control pressure CP pump CP pump max
min

Datum 06.Apr.2016 interface to ship warining unit = AZ1 45 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 63


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²

­A83
41.1 6 5 4 3
+ ­
0­10V ­
0­20mA +
+ ­
1 2 4 3

40.3/APR
45.8/1F5+ 1F5+/47.0

11
­X5.K1
43.2
12 14

+W­720 ­X5 1 2 ­X5 3 4 SB


TCX(C)
4x2x0,75mm² 1.1 1.2 2.1 2.2 3.1 3.2

C2*
­AP1

­AP2

­AP3

­AP4

­AP5

­AP6
=YARD+AP/2.1/

=YARD+AP/2.1/

=YARD+AP/2.2/

=YARD+AP/2.2/

=YARD+AP/2.3/

=YARD+AP/2.3/

Autopilot Autopilot set point


system ready mode steering value
for service in service from Autopilot

Datum 06.Apr.2016 interface to autopilot = AZ1 46 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 64


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
46.8/1F5+ 1F5+/48.1
40.9/1F1+
36.8/1F3+
36.8/1F3­

20.5/3A4.2

19.9/3A1.32

12 14 12 14 20.5/3A4.3
­X3.K3 ­X3.K12
19.1 28.7
11 11 22 24 32 34
­3K2
16.6
21 31

­3A2

­3A3.1/18.7

­3A3.2/18.7

­3A3.4/18.7

­3A3.3/18.7
1 2 4 3

0­10V
4­20mA

6 5

­X3 6 7 ­X3 13 14 ­X3 15 16 17 18 SB


+W­711
4.1 4.2 5.1 5.2 TCX(C) 1.1 1.2 2.1 2.2
+W­710
C2* 2x2x0,75mm² C2*
­PM31

­PM32

­PM33

­PM34

­PM41

­PM42

­PM43

­PM44
=YARD+PM/2.6/

=YARD+PM/2.6/

=YARD+PM/2.7/

=YARD+PM/2.7/

=YARD+PM/2.8/

=YARD+PM/2.8/

=YARD+PM/2.9/

=YARD+PM/2.9/
lever in clutch speed value engine load
idle pos. disengaged signal

Datum 20.Mai.2016 interface to drive motor = AZ1 47 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 65


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
47.9/1F5+

FIFI.SER/17.5
FIFI.ON/13.1
12 14
­X8.K1
15.5
11

­X8 1 2 3 4 5 6 7 SB 8 9 10 SB
+W­770
TCX(C) 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 6.1 6.2 7.1
+W­710
4x2x0,75mm² C2*
C2*
­FIFI1

­FIFI2

­FIFI3

­FIFI5

­FIFI6

­FIFI7

­FIFI8

­FIFI9

­PM6

­PM7

­PM8
=YARD+PM/2.4/

=YARD+PM/2.4/

=YARD+PM/2.5/
=YARD+FIFI/2.1/

=YARD+FIFI/2.1/

=YARD+FIFI/2.4/

=YARD+FIFI/2.4/

=YARD+FIFI/2.5/

=YARD+FIFI/2.6/

=YARD+FIFI/2.6/

=YARD+FIFI/2.7/
FIFI mode feed FIFI FIFI feed line engine engine feed line engine engine
possible line mode pump signals load 80% load 100% signals load 80% load 100%
ON in service

Datum 20.Mai.2016 interface to = AZ1 48 / 51


Bearb. MSC
1216742 + SCS
FIFI pump / generator
Gepr. switch box Bl. 66
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

local
control
1H1

1S1

800
remote     local
control
1000

M1

1000 300
mounting holes

d=8

cable input
 holes must be drilled by the yard 
glands are yard supply

technical datas of switch box feed lines for power supply
AC voltage: 400V / 50Hz
mechanic colors AC voltage: 230V/50Hz

960
Protection class: IP 54 switch box housing: RAL 7035
weight:  approx. 200kg panel: black
DC voltage: 24V DC
internal wiring
NAXAF ( GL 47682 HH, no. 07/90 )
temperature: engine room temperature 45°C
screened cable type: LIYCY 95% humidity with out condensation
vibrtion. 0,7g

960 20
20

Datum 06.Apr.2016 switch box  = AZ1 49 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 67


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
Änderung
0

25
100 125 75 150 50 115 50 180

Datum
Name
X1

Norm
Gepr.
K1

Bearb.
Datum
XC SP
X2
1

K2

MSC
1K2

Aldorf
S1
1A1.0
1K4

06.Apr.2016
1A1.1 1K5 S2
X12 1A1.2
1A1.3 1K6
1A1.4 1K7
F1

X41 1A1.5
1A1.6 3K1
X42 1A1.7
F2

X44 3A1 3K2


2

X51 3K5
9K7

3A4
X52
4K1
X54 4A1
4K2
4R1

X91 A1
4K5
4A2
X92 9K1

X94 5A1 9K2


9K3
9A1
9K4
9R1
3

X3 9K5 A2
9A2
K1
K2 9K6
K3
K4
K5
K6 A81
K7
K8
K9
X4 K10 1F1
K11
4A3

K12
K13 1F2
K14
K15
K16 1F3
K16
1F4
K1
X5 1F5
K1 4F1
4

X8 5F1
9A3 9A4

9F1
1V1­3

3A2
3A3
A83
5

X10

switch box 
6

switch box
7

1216742
e.­diagram
8

= AZ1
+ SCS
9

Bl.
50 / 51

68
262 Bl.
0 1 2 3 4 5 6 7 8 9

Position ID NR Menge Benennung


­SCHRANK 1100501 1 Schrank

­FEST 1135768 2 Türfeststeller


­KANAL 1126577 1.0m Kabelkanal 25 x 75
­KANAL 1126579 3.0m Kabelkanal 50 x 75
­KANAL 1126580 1.0m Kabelkanal 75 x 75
­KANAL 1126581 1.0m Kabelkanal 100 x 75
­SCHIENE 1085605 4.0m Tragschiene
­END 1126844 4 Endwinkel
­FLAN 1169919 2 Kabeleinführungsflansch

Datum 06.Apr.2016 mounting parts switch box = AZ1 51 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 69


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

terminal groups of component
unit   = AZ1 component   + MDP

terminal name function
=AZ1+MDP­AX1 connection socket feed line control panel
=AZ1+MDP­AX2 connection socket signals NFU systems control
=AZ1+MDP­AX3 connection socket control bus control panel
=AZ1+MDP­AX4 connection socket input signals desk selection
=AZ1+MDP­AX5 connection socket output signals desk selection
=AZ1+MDP­AX9 connection socket for indicator signals

Datum 06.Apr.2016            = AZ1 1 / 13


Bearb. MSC
1216742 + MDP
panel main desk
Gepr. main desk Bl. 70
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

­A1
3.1
control panel

1 2 3 4 5 6 7 8
­X1 ­X1 ­X1

­AX1
1 2 3 4 5 6 7 8
3.1

­AX1 1 2 3 4 ­AX1 1 2 3 4 ­AX1 5 6 ­AX1 5 6 ­AX1 7 8 X1 7 8

L­/6.7
+SCS­P1

+SCS­P2

+SCS­P3

+SCS­P4

+SCS­P11

+SCS­P12
+SCS/4.2/

+SCS/4.2/

+SCS/4.2/

+SCS/4.3/

+SCS/6.6/

+SCS/6.6/
feed line input instrument light feed line input
control panel indicators NFU sytems

Datum 06.Apr.2016 power supply = AZ1 2 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 71


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

­A1
2.0 ON speed steering pitch
control panel

9 10 11 12 13 14
­X1 ­X1

­AX1
9 10 11 12 13 14
2.0

­AX1 9 10 11 12 ­AX1 9 10 11 12 ­AX1 13 14


+SCS­P14

+SCS­P22

+SCS­P18

+SCS­P23
+SCS/6.7/

+SCS/7.4/

+SCS/7.1/

+SCS/7.7/

indication NFU systems

Datum 06.Apr.2016 power supply = AZ1 3 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 72


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

­A1
2.0
control panel

2 3 4 4 6 7 8 1
­X2 ­X2 ­X2 ­X2 ­X2 ­X2 ­X2 ­X2

­AX2
1 2 3 4 5 6 7 8 9

­AX2 14 ­AX2 24 ­AX2 34 ­AX2 44 ­AX2 54 ­AX2 64 ­AX2 74 ­AX2 84 ­AX2 13 ­AX2 14 24 34 44 54 64 74 84 13
+SCS­P13

+SCS­P21

+SCS­P20

+SCS­P16

+SCS­P17

+SCS­P24

+SCS­P25

+SCS­P15
+SCS/6.7/

+SCS/7.5/

+SCS/7.4/

+SCS/7.2/

+SCS/7.3/

+SCS/7.8/

+SCS/7.8/

+SCS/7.0/
NFU decrease increase thruster thruster decrease increase feed line NFU control
ON rpm rpm turning turning pitch pitch
ccw cw

Datum 06.Apr.2016 NFU signals = AZ1 4 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 73


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

­A1
2.0
control panel

1 2 3 4 5 6 7 8
­X4 ­X4 ­X4 ­X4 ­X4 ­X4 ­X4 ­X4

­AX4 ­AX1
1 2 3 4 5 6 7 8
2.0
send to main desk

send to Stbd wing
send to Ps wing
main desk ON

Stbd wing ON
aft desk ON

Ps wing ON
send to aft

­AX4 1 ­AX4 2 ­AX4 3 ­AX4 4 ­AX4 5 ­AX4 6 ­AX4 7 ­AX4 8 ­AX4 9 9 ­AX1 1

input desk selection input desk selection
from other panels from other panels

Datum 06.Apr.2016 take over desk = AZ1 5 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 74


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

­A1
2.0
control panel

2 3 4 4 6 7 8 9 1
­X5 ­X5 ­X5 ­X5 ­X5 ­X5 ­X5 ­X5 ­X5

­AX5
1 2 3 4 5 6 7 8 9

­AX5 14 ­AX5 24 ­AX5 34 ­AX5 44 ­AX5 54 ­AX5 64 ­AX5 74 ­AX5 84 ­AX5 13 ­AX5 14 24 34 44 54 64 74 84 13

A1 A1
­K1 ­K2
A2 A2

2.3/L­

12 14 12 14
­K1 ­K2
.7 .8
11 11

main desk send to aft desk send to Ps wing send to Stbd wing send to feed main desk aft desk
ON main desk ON aft desk ON Ps wing ON Stbd wing line ON ON

14 14
12 11 .7 12 11 .8

Datum 06.Apr.2016 take over desk = AZ1 6 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 75


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

­A1
2.0
control panel

CAN­GND

CAN­GND
CAN­H

CAN­H
CAN­L

CAN­L
7 2 3 9 4 5 1 2 3 4 5 6
­X3 ­X3 ­X6

­AX3
7 2 3 9 4 5
PE

CAN­SERVICE 120 Ohm
PLUG

ON
­AX3 1 2 3 4 ­AX3 5 6 7 8
+SCS­P31

+SCS­P32

+SCS­P33

+SCS­P34
+SCS/8.4/

+SCS/8.5/

+SCS/8.5/

+SCS/8.5/

control bus

Datum 06.Apr.2016 control bus = AZ1 8 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 76


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

­A2
COPILOT
­B1 ­B2 ­S1
steering speed speed lever

violett

violett
braun

braun
in zero

weiß

weiß
grün

grau

grün

grau
rosa

rosa
blau

gelb

blau

gelb
rot

rot
+VCC 24V DC

lever in zero

CODE SWITCH CODE SWITCH
CAN GND

CAN GND

STEERING SPEED
CAN H

CAN H
CAN L

CAN L
GND

2 9
1 2 3 4 5 6 7 8 9
X1

­A1
1 2 3 4 5 6 7 8 9 1 2
2.0
X3.1 ­X7

control panel

connection COPILOT

Datum 06.Apr.2016 panel main desk = AZ1 9 / 13


Bearb. MSC
1216742 + MDP
connection control handle
Gepr. main desk Bl. 77
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Azimuth indication speed indication pitch indication


­P41 ­P51 ­P91
120 Ohm
power supply ON
OFF

CONTROLLER CONTROLLER CONTROLLER

1 2 4 5 8 9 6 7 3 3 1 2 5 4 8 9 3 1 2 5 4 8 9
P41 P51 P91

­AX9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7
­X91 ­X92

120 Ohm
ON
OFF

­AX9 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 1 2 8 9 6 7 5 13 14 15 16 17 18

­AX1
2.0 5 6
+SCS­P5

+SCS­P6

+SCS­P41

+SCS­P42

+SCS­P43

+SCS­P44

+SCS­P45

+SCS­P46

+SCS­P47

+SCS­P48
+SCS/3.4/

+SCS/3.4/

+SCS/21.6/

+SCS/21.6/

+SCS/21.6/

+SCS/21.7/

+SCS/27.4/

+SCS/27.5/

+SCS/29.4/

+SCS/29.4/

feed line CAN BUS instrument light propeller pitch feed line instrument light CAN BUS propeller pitch
indicator RPM indicator indicator indicator RPM indicator indicator

Datum 06.Apr.2016 indicator  = AZ1 10 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 78


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

340
4
stay bolt M5x20

BACKUP CONTROL
RPM PITCH AZIMUTH

STATUS

CLUTCH CONTROL DESK SELECTION EXTERN SYSTEMS


490

MODES LIGHT CONTROL MODES

panel top view

200 175

Datum 06.Apr.2016 panel main desk = AZ1 11 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 79


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

desk cut out for control panel
10 160 160

panel

115
20

120
300

120

450
hole d= 6

length of cable 1200mm

115
80 4 500

10

20
hole d= 6
K1
K2

300

270
AX1 AX2 AX3 AX4 AX5 AX9

wiring duct for ship cables

Technical datas panel
15 470
mounting plate

15
earth connection M8x20 mechanic
mounting holes
Protection class top side: IP 54
Protection class back side: IP 20

colors
control panel : black

Datum 06.Apr.2016 panel main desk = AZ1 12 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 80


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

control panel

PE LED
RUN

1 6 1 8 1 9 1 8 PWR

X6 X4 X5 X2 RES

1
PE
X8 S1

1 14

X1 PROG. RUN 8
1
S2

8
OFF ON
X3.1 X3

1 2

X7 ON OFF OFF ON
ON OFF

Datum 06.Apr.2016 panel main desk = AZ1 13 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 81


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

SCHOTTEL  components
engine room

Datum 06.Apr.2016            = AZ1 1 / 3


Bearb. MSC
1216742 + EGR
connection engine room
Gepr. engine rom Bl. 82
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

­4A3 ­9A3 ­5A3


­9A3 ­5A3
­4A3
120 Ohm 0..300Upm
1 2 RPM
ON PITCH
OFF 1156410 St.1 0..10V
power supply
1156514 St.1
+ ­ + ­ + ­ + ­ + ­ + ­

CONTROLLER
1 2 5 4 8 9 1 2 5 4 8 9

   1   2   4   5 3     8   9

1173893 St.1 1174645 St.1

1156514 St.1 1156514 St.1

+SCS­4B1.1/+SCS/23.6

+SCS­4B1.3/+SCS/23.6

+SCS­4B1.4/+SCS/23.6
+SCS­4A3.1

+SCS­4A3.2

+SCS­4A3.4

+SCS­4A3.5

+SCS­4A3.4.1

+SCS­4A3.5.1

+SCS­9A3.1

+SCS­9A3.2

+SCS­9A3.3

+SCS­9A3.4

+SCS­5A3.1

+SCS­5A3.2

+SCS­5A3.3

+SCS­5A3.4
1 3

­4B1
+SCS/21.3/

+SCS/21.3/

+SCS/21.3/

+SCS/21.4/

+SCS/29.6/

+SCS/29.6/

+SCS/29.6/

+SCS/29.6/

+SCS/27.5/

+SCS/27.6/

+SCS/27.6/

+SCS/27.6/
+SCS/21.4/

+SCS/21.4/

thrust direction pitch direction shaft speed


indicator hydraulic­ indicator indicator
near hydraulic pump RPM near pitch control lever
pump

Datum 06.Apr.2016 connection engine room = AZ1 2 / 3


Bearb. MSC
1216742 + EGR

Gepr. engine rom Bl. 83


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9
144 118
14 90

25
11

17

12,5
145
118

144 118
14 90
25

11
17

12,5
145
118

144 118
14 90
25

11
17

12,5
145
118

Datum 06.Apr.2016 connection engine room = AZ1 3 / 3


Bearb. MSC
1216742 + EGR

Gepr. engine rom Bl. 84


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

connection
clutch control

Datum 06.Apr.2016            = AZ1 1 / 2


Bearb. MSC
1216742 + CLU
connection clutch
Gepr. clutch Bl. 85
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

+SCS­5Y1.1/+SCS/28.1

+SCS­5Y1.2/+SCS/28.2

+SCS­5Y2.1/+SCS/28.3

+SCS­5Y2.2/+SCS/28.3

+SCS­5S1.1/+SCS/28.4

+SCS­5S1.2/+SCS/28.4

+SCS­5S2.1/+SCS/28.4

+SCS­5S2.2/+SCS/28.5
­X5 1 2 3 4 5 6 7 8

K A K A

­5S1 P ­5S2 P

­5Y1 ­5Y2

clutch clutch clutch air pressure


disengaging engaging engaged clutch min

Datum 06.Apr.2016 connection clutch = AZ1 2 / 2


Bearb. MSC
1216742 + CLU

Gepr. clutch Bl. 86


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

connection
SRP

Datum 06.Apr.2016            = AZ1 1 / 5


Bearb. MSC
1216742 + SRP
connection SRP
Gepr. SRP Bl. 87
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

not specially signed areas 0,75mm²

­2S10.1/=YARD+SWU/4.0

­2S10.2/=YARD+SWU/4.0

­2S11.1/=YARD+SWU/4.1

­2S11.2/=YARD+SWU/4.1

­2S12.1/=YARD+SWU/4.2

­2S12.2/=YARD+SWU/4.2

­2S13.1/=YARD+SWU/4.3

­2S13.2/=YARD+SWU/4.3

­2S14.1/=YARD+SWU/4.3

­2S14.2/=YARD+SWU/4.4

­2S15.1/=YARD+SWU/4.4

­2S15.2/=YARD+SWU/4.5

­2S16.1/=YARD+SWU/4.5

­2S16.2/=YARD+SWU/4.5
+W­840
TCX(C) 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 7.1 7.2

7x2x0,75²
K3*

­X2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 SB

­2S10 ­2S11 ­2S12 P ­2S13 P ­2S14 ­2S15 P ­2S16 P

lub oil lub oil CP oil CP oil hydraulic oil hydraulic oil hydraulic oil


level temperature filter pressure temperature filter dirty pressure max
SRP min SRP max dirty max max

Datum 06.Apr.2016 connection SRP = AZ1 2 / 5


Bearb. MSC
1216742 + SRP

Gepr. SRP Bl. 88


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

not specially signed areas 0,75mm²

+SCS­2S21.1/+SCS/26.5

+SCS­2S21.2/+SCS/26.5

+SCS­2S22.2/+SCS/26.6

+SCS­4Y1.1/+SCS/26.1

+SCS­4Y1.2/+SCS/26.1

+SCS­4Y2.1/+SCS/26.2

+SCS­4Y2.2/+SCS/26.2

+SCS­9S1.1/+SCS/38.2

+SCS­9S1.2/+SCS/38.3

+SCS­9Y1.1/+SCS/36.1

+SCS­9Y1.2/+SCS/36.2

+SCS­9Y1.3/+SCS/36.3
­X4 1 2 ­X4 3 4 ­X4 14 15 16 17 ­X9 3 4 ­X9 11 12 13

­2S21 ­2S22 P ­2S31 P

­4Y1 ­4Y2 ­9Y1

hydr.oil pressure
hydraulic oil hydraulic oil steering valve steering valve pump min control valve pitch
level min pressure min

Datum 06.Apr.2016 connection SRP = AZ1 3 / 5


Bearb. MSC
1216742 + SRP

Gepr. SRP Bl. 89


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
Änderung
0

Datum
Name
Norm
Gepr.
Bearb.
Datum
1

MSC

Aldorf
­4A4

06.Apr.2016
­B1
rot +SCS­4A4.1/+SCS/21.1

1
red
2

blau +SCS­4A4.2/+SCS/21.1

feed back
2
blue

gelb +SCS­4A4.3/+SCS/21.2

3
yellow

grün +SCS­4A4.4/+SCS/21.2

4
green

braun

thrust direction indicating
brouwn

weiß
white
3

grau
gree

rosa
pink
not specially signed areas 0,75mm²

violett
violet ­B2
4

rot +SCS­4A4.6/+SCS/10.8
6

red

blau +SCS­4A4.7/+SCS/10.8

feed back
7

blue

gelb +SCS­4A4.8/+SCS/10.8
8

yellow

grün +SCS­4A4.9/+SCS/10.8
9

green
thrust direction steering braun
5

brouwn
10

weiß
white

grau
gree

connection SRP
rosa
pink

violett
violet
6

SRP
7

1216742
­5B1

+SCS­5B1.1/+SCS/27.1
4
1

pick up
shaft speed

+SCS­5B1.3/+SCS/27.2
3

+SCS­5B1.4/+SCS/27.2
e.­diagram
8

= AZ1
+ SRP
9

Bl.
4 / 5

90
262 Bl.
0 1 2 3 4 5 6 7 8 9

not specially signed areas 0,75mm²

+SCS­9A4.10/+SCS/37.2

+SCS­9A4.11/+SCS/37.3

+SCS­9A4.12/+SCS/37.4

+SCS­9A4.13/+SCS/18.1

+SCS­9A4.14/+SCS/18.1

+SCS­9A4.15/+SCS/18.2
+SCS­9A4.1/+SCS/29.2

+SCS­9A4.2/+SCS/29.2

+SCS­9A4.3/+SCS/29.3

+SCS­9A4.4/+SCS/29.3

+SCS­9A4.5/+SCS/31.3

+SCS­9A4.6/+SCS/31.3

+SCS­9A4.7/+SCS/31.4

+SCS­9A4.8/+SCS/37.1

+SCS­9A4.9/+SCS/37.2
­9A4

   1      2     3     4 5 6 7 8 9 10 11 12 13 14 15

br bl br bl br bl

S1 S2 S3

sw sw sw

actual value actual value pitch max pitch  pitch max actual value


pitch direction pitch feed back forward neutral backward pitch feed back

Datum 06.Apr.2016 connection SRP = AZ1 5 / 5


Bearb. MSC
1216742 + SRP

Gepr. SRP Bl. 91


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

connection
CP standby
hydraulic pump

Datum 06.Apr.2016            = AZ1 1 / 2


Bearb. MSC
1216742 + HYCP
connection CP standby pump
Gepr. CP standby Bl. 92
Änderung Datum Name Norm Aldorf
pump
e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

+SCS­M1.W/+SCS/2.7
+SCS­M1.U/+SCS/2.6

+SCS­M1.V/+SCS/2.6
­M1 U V W

U V W

­M1
440V 60Hz
4,8KW

CP pump
auxiliary

Datum 06.Apr.2016 connection CP standby pump = AZ1 2 / 2


Bearb. MSC
1216742 + HYCP

Gepr. CP standby Bl. 93


Änderung Datum Name Norm Aldorf
pump
e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

terminal groups of component
unit   = AZ2 component   + SCS

terminal name function
=AZ1+SCS­X1 AC feed line earth connection
=AZ1+SCS­X2 DC feed line
=AZ1+SCS­X3 interface to propulsion motor
=AZ1+SCS­X4 connection to warning unit
=AZ1+SCS­X5 connection to Autopilot
connection to DP system
connection to Joystick system
=AZ1+SCS­X8 connection to switch box FIFI
=AZ1+SCS­X10 connection CP standby pump

=AZ1+SCS­X12 connection to steering desks
connection to warning panel
=AZ1+SCS­X41 CAN bus steering system to thruster
=AZ1+SCS­X42 connection to steering hydraulic
=AZ1+SCS­X44 connection to thrust direction indicator
=AZ1+SCS­X51 connection speed pick up thruster
=AZ1+SCS­X52 connection clutch control
=AZ1+SCS­X54 connection to shaft speed indicator
=AZ1+SCS­X91 connection CP feed back unit
=AZ1+SCS­X92 connection CP hydraulic
=AZ1+SCS­X94 connection to pitch direction indicator

Datum 06.Apr.2016            = AZ2 1 / 51


Bearb. MSC
1216742 + SCS
system switch box control system
Gepr. switch box Bl. 94
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

not signed areas 1,5mm²

2,5²
1 3 5 5 3 1

­F1 ­F2
5.5
L1 L2 L3 1.9A
7...10A
PE 8A 2 4 6 4 6 2
­S1
T1 T2 T3
1 3 5
­9K7
5.4
2 4 6
2,5²

­A1
3.3
­X1 1 2 3 PE SB ­X1 4 ­X1 5 6 PE SB ­X9 1 2 3 SB PE L3 L2 L1
+W­200 +W­202 +W­201 +W­620
MPRXCX MPRXCX MPRXCX· MPRXCX·
3X2,5mm² C4* BK BU BN 1X16mm² C3* 2X1,5mm² C3* BK BU 3X1,5mm² C4* 375V ­ 575V AC
N PE L
25V DC / 20A
­X1
­SB

­M1.U

­M1.V

­M1.W
+MSB

+HYCP/2.8/
+HYCP/2.8/

+HYCP/2.8/
­440VX1 4 5 6 ­115VX1 3 4

20A 6A

L1 L
L2 N
L3

main switchboard AC

AC DC
feed line switch box earth feed line switch box CP pump converter
440V  AC connection 115V  AC auxiliary

Datum 06.Apr.2016 power distribution = AZ2 2 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 95


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

not signed areas 1,5mm²

L+/4.0
L­/4.0
2,5mm² 2,5mm²

­P5/+MDP/10.0

­P6/+MDP/10.0
­A2 ­A1
5.2 L+ L­ 2.8 L+ L­

25V DC / 10A

24V DC 25V DC / 20A

375V ­ 575V AC +W­301
MPRXCX·
+ ­ 3X2,5mm² C2* BK BU

2,5mm² ­X12 5 6

1,5²
L1 L2
­S2
T1 T2 A+/21.0
A­/21.0
2,5mm²

+W­203 ­X2 1 2 SB +W­204 ­X2 3 4 SB


MPRXCX· MPRXCX·
2X6mm² C2* BK BU 3X2,5mm² C2* BK BU

=ESB
+24­X1 5 6 +24­X1 7 8

16A 2A

L+

24VDC +30% ­25% AC ripple < 1V

emergency switchboard 24V DC

feed line AC DC feed line


switch box 24V DC converter indicators

Datum 06.Apr.2016 power distribution = AZ2 3 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 96


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 1,5mm²
3.6/L­
3.6/L+

­1F1 ­1F2 ­1F3 ­1F4 ­1F5 ­1F6 ­4F1 ­5F1 ­9F1


B6A 1F1+ B6A B6A B6A B6A B6A B6A B6A B6A

1F1­

1F2+

1F3+

1F3­

1F4+

1F4­

1F5+

1F5­

4F1+

4F1­

5F1+

5F1­

9F1+

9F1­
8.0/

6.0/

5.0/

17.0/

22.0/

28.0/

30.0/
8.0/

6.0/

6.0/

5.0/

17.0/

22.0/

28.0/

30.0/
1,5²

­X12 1 2 3 4 SB
+W­300
MPRXCX
4x2,5mm²
M1
C2
­P1

­P2

­P3

­P4
+MDP/2.1/

+MDP/2.1/

+MDP/2.1/

+MDP/2.1/

control instrument feed line NFU systems SCHOTTEL interface fan FFU steering clutch FFU pitch
system light control panels control signals external systems switch box valve control control valve control

Datum 06.Apr.2016 power distribution = AZ2 4 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 97


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²
4.4/1F4+ 1F4+/8.0

­A1 ­A2
2.8 13 3.1 13

­F1
21
­9K6 2.6 13
14 14 33.1
B1
14 12 95 50°

14 96

FA.AUX/32.4

A1 A1 A1 A1 A1 A1 A1 A1
­K1 ­X4.K1 ­K2 ­X4.K2 ­9K7 ­X4.K16 ­X4.K17 ­X4.K18
A2 A2 A2 A2 A2 A2 A2 A2
4.4/1F4­ 1F4­/8.0

failure failure auxiliary failure overload switch box


AC / DC converter emergency feed line CP pump auxiliary auxiliary temperature
24V DC CP pump CP pump max

14 14 14 14 1  2   2.6 14 14 14
12 11  12.3 12 11  44.0 12 11  12.3 12 11  44.1 3  4   2.6 12 11  45.6 12 11  45.7 12 11  45.7
44 44 5  6   2.7
42 41 42 41 13 14  32.2
21 22

Datum 06.Apr.2016 power distribution = AZ2 5 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 98


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²
4.1/1F2+
4.3/1F3+ 1F3+/20.0

12 14 31 1
­1K2 ­1K2 ­1K5
.1 .1 .7
21 42 44 2

3 1 LOC/11.1
­1S1
4 2 A1 A2
­1V2 3
­1K5

­P11/+MDP/2.7

­P12/+MDP/2.7

­P13/+MDP/4.0

­P14/+MDP/3.1
K
.7
4

REM/7.0
REM.ON/11.3 +W­302
MPRXCX
19x1,5mm²
C2*

REM.AC/14.5 ­X12 7 8 9 10

1,5²

A1 A2
­1V1
K

A1 11 K K b A1 A1 A1
­1K2 1H1 ­1K4 ­1K5 ­X4.K4
A2 41 A A yellow a A2 A2 A2
4.3/1F3­ 1F3­/20.0

local control NFU control ON feed line NFU control failure


NFU control ON OFF NFU control

14 14 1 2 .5 14
12 21 .2 12 11  12.1 3 4 .8 12 11  44.3
44 24
42 31 .3 22 21  16.5
34
32 31  22.6
44
42 41  30.7

Datum 06.Apr.2016 NFU control ON = AZ2 6 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 99


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²

6.4/REM

­4A3 ­9A3
26.3 36.5

3 4 3 4

12 14 12 14
­3K1 ­9K2
16.5 30.8
12 14 11 11
­4K2
22.7
11 3K1.22/20.1 12 14 12 14
­9K3 ­9K5
37.5 37.8
12 14 11 11
­4K5 3K1.32/20.1
26.7
11

­X12 11 ­X12 12 ­X12 13 ­X12 14 ­X12 15 ­X12 16 ­X12 17 ­X12 18 ­X12 19 20 21 SB

+W­302 +W­302
C2* C2*
­P15

­P18

­P16

­P17

­P22

­P20

­P21

­P23

­P25

­P24
+MDP/4.5/

+MDP/3.2/

+MDP/4.2/

+MDP/4.3/

+MDP/3.1/

+MDP/4.2/

+MDP/4.1/

+MDP/3.2/

+MDP/4.4/

+MDP/4.3/
feed line indication thruster thruster NFU RPM increase decrease NFU pitch increase decrease
signals NFU steering turning turning control RPM RPM control pitch pitch
ON ccw cw in service in service

Datum 06.Apr.2016 local control = AZ2 7 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 100


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²
4.0/1F1+ 1F1+/10.0
5.9/1F4+ 1F4+/12.0

­P31/+MDP/5.1

­P32/+MDP/5.1

­P33/+MDP/5.1

­P34/+MDP/5.1
+W­303
TCX(C) 1.1 1.2 2.1 2.2

2x2x0,75mm²
C1*
­X12 22 23 24 25 SB

­XC
CAN

7 3 2

GN YE

GN YE CANG/9.0
CANH/9.0
CANL/9.0

­1A1.0 1 5 2 6 3 7 4 8
­1A1.1 2 1 6 4
1.5 1.4 1.3 1.2 1.1

24VDC 0V UL+ UL+. UL­ UL­. PE PE. N.C. CAN H DRAIN CAN L CAN GND
WAGO feed line
modul 750­626
WAGO Controller CANopen 750­837
ON modul    :1167520
software:1167521
1 2 3 4 5 6 7 8

7 8

5.9/1F4­ 1F4­/23.0
4.1/1F1­ 1F1­/10.0

power supply CAN BUS control system

Datum 06.Apr.2016 DATA BUS = AZ2 8 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 101


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²

­3A1 11 12 ­4A1 11 12 ­4A2 11 12


16.1 120 Ohm 22.1 120 Ohm 22.3 120 Ohm
ON ON ON

TXD

RXD

TXD

RXD

TXD

RXD
OFF OFF OFF

CAN_GND

CAN_GND

CAN_GND
CAN_H

CAN_H

CAN_H
CAN_L

CAN_L

CAN_L
2 3 4 2 3 4 2 3 4

GN YE GN YE GN YE

8.9/CANH CANH/10.0
8.9/CANL CANL/10.0
8.9/CANG CANG/10.0

DCM speed control DCM azimuth steering DPV azimuth steering

Datum 06.Apr.2016 DATA BUS = AZ2 9 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 102


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²

­9A1 11 12 ­9A2 11 12 ­A81


30.1 120 Ohm 30.3 120 Ohm 39.1 120 Ohm
ON ON ON

TXD

RXD

TXD

RXD
OFF OFF OFF

CAN_GND

CAN_GND

CAN_GND
CAN_H

CAN_H

CAN_H
CAN_L

CAN_L

CAN_L
2 3 4 2 3 4 2 3 4

GN YE GN YE GN YE

9.9/CANH
9.9/CANL
9.9/CANG
8.9/1F1­ 1F1­/14.0
8.9/1F1+ 1F1+/16.0
GN
YE
+W­210
TCX(C) ­X41 5 6 7 8 SB
2x2x0,75²
C1* 1.1 1.2 2.1 2.2

DCM pitch steering DPV pitch steering analoque values


external systems

­4A4.6

­4A4.7

­4A4.8

­4A4.9
+SRP/4.4/

+SRP/4.4/

+SRP/4.5/

+SRP/4.5/
feed back unit
steering

Datum 06.Apr.2016 DATA BUS = AZ2 10 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 103


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²

CL.AU/28.0

REM.ON/6.1
LOC/6.4

CL.EN/28.4

­1A1.2 1 5 2 6 3 7 4 8

DI 0 DI 1 DI 2 DI 3 DI 4 DI 5 DI 6 DI 7

not used not used not used not used not used not used


WAGO CANopen 750 ­ 430

local desk ECR desk send command reserve thruster thruster clutch in auto mode clutch engaged


ON ON retracted lowered

Datum 06.Apr.2016 desk control = AZ2 11 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 104


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²
8.9/1F4+ 1F4+/23.0

12 14 12 14
­1K4 ­K1
6.5 5.0
11 11

COLL.AL/45.8

ST.PRE/26.6
HY.MIN/26.5
12 14

PI.PRE/38.0

CL.AIR/28.5
­K2
5.2
11

­1A1.3 1 5 2 6 3 7 4 8

DI 0 DI 1 DI 2 DI 3 DI 4 DI 5 DI 6 DI 7

not used
WAGO CANopen 750 ­ 430

NFU fault unit fault power hy oil level min oil pressure oil pressure air pressure reserve


steering supply steering OK pitch control clutch
manual OK OK

Datum 06.Apr.2016 desk control = AZ2 12 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 105


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²

FIFI.ON/48.3

­1A1.4 1 5 2 6 3 7 4 8

DI 0 DI 1 DI 2 DI 3 DI 4 DI 5 DI 6 DI 7

not used WAGO CANopen 750 ­ 430

FiFi mode Generator mode reserve brake closed reserve reserve reserve reserve


ON ON

Datum 20.Mai.2016 desk control = AZ2 13 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 106


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²

­1A1.5
WAGO CANopen 750 ­ 530

not used not used not used

DO 0 DO 1 DO 2 DO 3 DO 4 DO 5 DO 6 DO 7

1 5 2 6 3 7 4 8

REM.AC
6.1/
A1 11 K K
­1K7
A2 41 A A
10.9/1F1­ 1F1­/15.0

ECR desk main desk reserve el. shaft el. shaft remote control clutch clutch OFF


in service in service in line healthy active auto mode

14
12 21  28.1
44
42 31

Datum 06.Apr.2016 desk control = AZ2 14 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 107


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²

­1A1.6 ­1A1.7
WAGO CANopen 750­530 WAGO
CANopen 750­600

DO 0 DO 1 DO 2 DO 3 DO 4 DO 5 DO 6 DO 7 END

1 5 2 6 3 7 4 8

A1 A1 A1
­X8.K1 ­1K6 ­X4.K3
A2 A2 A2
14.9/1F1­ 1F1­/16.0

send command buzzer cleaning mode hy­pump ON hy­pump OFF FIFI mode Generator mode failure control


to remote in service in service system

14 14 14
12 11  48.1 12 11 12 11  44.2
44
42 41

Datum 20.Mai.2016 desk control = AZ2 15 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 108


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
10.9/1F1+ 1F1+/19.0

­3A1
9.1 26 28 9 10
DCM
UB24V

UB24V

card    :1167522
programm:1167523
GND24

GND24

25 27

22 24
­1K4
6.5
21

A1 A1 A1
­3K1 ­3K2 ­X4.K5
A2 A2 A2
15.9/1F1­ 1F1­/19.0

failure FFU speed control

14 14 14
12 11   7.4 12 11  18.3 12 11  44.4
24 24
22 21  20.2 22 21  47.5
34 34
32 31  20.2 32 31  47.6
44 44
42 41 42 41

Datum 06.Apr.2016 FFU speed control = AZ2 16 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 109


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 1,5mm²

­PM1/=YARD+PM/3.0

­PM2/=YARD+PM/3.1

­PM3/=YARD+PM/3.2

­PM4/=YARD+PM/3.2

­PM5/=YARD+PM/3.3

FIFI.SER/48.3
+W­710
TCX(C) 1.1 1.2 2.1 2.2 3.1

10x2x0,75²
C2*

­X3 1 ­X3 2 ­X3 3 ­X3 4 ­X3 5

4.5/1F5+ 1F5+/18.0

SP1/27.0

­3A1
16.1 13 14 15 16 17 18 19 20
DCM
DI­0.0

DI­0.1

DI­0.2

DI­0.3

DI­1.0

DI­1.1

DI­1.2

DI­1.3
propulsion propulsion engine engine
S3 motor motor at ilde overload FIFI mode Generator speed Generator
ON OFF ON in service mode pick up at
OFF (clutch engaged) in service bus bar
1 2 3 4 5 6 7 8 (clutch engaged)

ON
OFF

A1
­3K5
A2
4.5/1F5­ 1F5­/18.0

feed line drive motor drive motor drive motor drive motor


signals OFF running idle overload

14
12 11  23.2
24
22 21  26.8
34
32 31  38.2
44
42 41

Datum 20.Mai.2016 FFU speed control = AZ2 17 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 110


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
17.9/1F5+ 1F5+/41.0
17.9/1F5­ 1F5­/41.0

9A4.13/+SRP/5.6

9A4.14/+SRP/5.6

9A4.15/+SRP/5.6

3A3.1/47.7

3A3.2/47.7

3A3.4/47.7

3A3.3/47.8
+W­255
TCX(C) 1.1 1.2 2.1

4x2x
0,75² C2*

­X91 13 14 15

­3A3
1 2 4 3
+ ­
3.FB/20.3 ­
4­20mA
0­10V +
+ ­
12 14 6 5 4 3
­3K2
16.6
11

3A1.29/20.3

­3A1
16.1 30 21 29 22 23 24
DCM
10V REF

AI­1

AGND

AI­2

AI­3

AI­4
setpiont speed feed back
analoque feed back signal
NFU RPM

actual value load feedback
pitch position drive motor

Datum 06.Apr.2016 FFU speed control = AZ2 18 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 111


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²

­3A1
16.1
DCM

actual lever open bypass decrease increase set point


in zero valve RPM RPM speed

AGND
DO­0

DO­1

DO­2

DO­3

AO­0

AO­1
5 6 7 8 31 29 32

3A1.32/47.4

RPM.DE

RPM.IN
20.1/
20.1/

A1
­X3.K3
A2
16.9/1F1­ 1F1­/22.0
16.9/1F1+ 1F1+/22.0

speed lever in zero

14
12 11  47.1

Datum 06.Apr.2016 FFU speed control = AZ2 19 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 112


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
6.9/1F3­ 1F3­/26.0
6.9/1F3+ 1F3+/26.0

18.7/3A1.29 3A4.2/47.4

18.4/3.FB 3A4.3/47.4

­3A4 15 16
J7
14 13 4 3 2
UB24V

GND24

0...10V

0­15V

AGND
1 2 3
> 4,5mA

DZ/GND
0..20mA
GND24

0..10V

DZ/24

DZ/IN
MF1

MF2
13 5 1 7 6 8
9 10 11 12

21 31
­3K1
16.5
24 22 34 32

19.5/RPM.IN
19.4/RPM.DE

7.5/3K1.22
7.5/3K1.32

Datum 06.Apr.2016 NFU speed control = AZ2 20 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 113


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²
3.6/A+ A+/27.0
3.6/A­ A­/27.0

GN GN
YE YE

YE GN YE GN

­X41 1 2 3 4 SB ­X44 1 2 3 4 5 6 SB ­X12 27 28 29 30 SB


+W­211 +W­242 +W­304
TCX(C) TCX(C) TCX(C) 1.1 1.2 2.1 2.2

2x2x0,75mm² C1* 1.1 1.2 2.1 2.2 4x2x0,75mm² C1* 1.1 1.2 2.1 2.2 3.1 3.2 2x2x0,75mm²
C1*
­4A4.1

­4A4.2

­4A4.3

­4A4.4

­P41

­P42

­P43

­P44
­4A3.1

­4A3.2

­4A3.4

­4A3.5

­4A3.4.1

­4A3.5.1

+MDP/10.1/

+MDP/10.1/

+MDP/10.1/

+MDP/10.2/
+SRP/4.2/

+SRP/4.2/

+SRP/4.2/

+SRP/4.2/

+EGR/2.0/

+EGR/2.1/

+EGR/2.1/

+EGR/2.1/

+EGR/2.2/

+EGR/2.2/

CAN BUS thrust direction CAN BUS


indicator indicator indicator
near hydraulic
pump

Datum 06.Apr.2016 thrust direction indicator = AZ2 21 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 114


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
4.7/4F1+
19.9/1F1+ 1F1+/30.0

­4A1 ­4A2
9.3 26 28 9 10 9.5 26 28 30 32 9 10
DCM DPV
UB24V

UB24V

UB24V

UB24V

UB24V

UB24V
card    :1167524 card    :1168411
GND24

GND24

GND24

GND24

GND24

GND24
programm:1167525 programm:1168412

25 27 25 27 29 31

32 34
­1K4
6.5
31

A1 A1 A1
­4K1 ­4K2 ­X4.K6
A2 A2 A2

19.9/1F1­ 1F1­/24.0
4.7/4F1­

failure
FFU steering

14 14 14
12 11  26.1 12 11  7.1 12 11  44.5
24 44
22 21  26.1 42 41
34
32 31  26.2
44
42 41  26.2

Datum 06.Apr.2016 FFU thrust direction steering = AZ2 22 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 115


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 1,5mm²

­4B1.1/+EGR/2.3

­4B1.3/+EGR/2.3

­4B1.4/+EGR/2.3
+W­241
TCX(C) 1.1 1.2 2.1

2x2x0,75mm²
C2*

­X42 5 6 7 SB

12.9/1F4+ 1F4+/26.0
8.9/1F4­ 1F4­/26.0
12 14
­3K5
17.8
11

­4A1
22.1 13 14 15 16 17 18 19 20
DCM
format encoder

DI­0.0

DI­0.1

DI­0.2

DI­0.3

DI­1.0

DI­1.1

DI­1.2

DI­1.3
S3 main back up overload speed input
ON power plant power plant power plant hy pump
OFF steering ON steering ON steering (puls)
1 2 3 4 5 6 7 8
ON
OFF
S4
drive direction
CP­unit

main power plant overload power plant hydraulic pump power plant


steering ON steering speed pick up steering in service

Datum 06.Apr.2016 FFU thrust direction steering = AZ2 23 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 116


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²

­4A1
22.1
DCM

desk steering steering steering


take CCW CW locked
over

AGND
DO­0

DO­1

DO­2

DO­3

AO­0

AO­1
5 6 7 8 31 32 29

A1
X4.K7
A2
22.5/1F1­ 1F1­/30.0

steering
locked

14
12 11  44.6

Datum 06.Apr.2016 FFU thrust direction steering = AZ2 24 / 51


Bearb. MSC
1216742 + SCS
control signals
Gepr. switch box Bl. 117
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²

­4A2
22.3 23 21 22 24 17 18 19 20
DPV
AI­1

AGND

10VREF

AI­2

DI­1.0

DI­1.1

DI­1.2

DI­1.3
invers ext. +­180°
invers ext. +­45°

steering value amplifier additonal additonal


input ±10V ON steering steering
system system
S3 +­10V = +­45° +­10V = +­180°
ON ON
ON
OFF
1 2 3 4 5 6 7 8
ON
OFF
SWITCH HYDROMATIC LINDE PSL / PSV
S4 1 2 3 4 5 6 7 8 9 A B C D E F
valve char.
valve char.
valve char.
valve char.
dither
dither
DPV 2
Shaftspeed
overlap

S 4.1 ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON


S 4.2 OFF ON ON OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON
S 4.3 OFF OFF OFF ON ON ON ON OFF OFF OFF OFF ON ON ON ON
S 4.4 OFF OFF OFF OFF OFF OFF OFF ON ON ON ON ON ON ON ON

steering signal hy pump
remote control in service

Datum 06.Apr.2016 FFU thrust direction steering = AZ2 25 / 51


Bearb. MSC
1216742 + SCS
valve control hy pump
Gepr. switch box Bl. 118
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
20.9/1F3+ 1F3+/36.0
23.9/1F4+ 1F4+/37.0

­4A2
22.3
DPV

­4A3
7.2 1

AO­1COM

AO­2COM

ST.PRE/12.5
HY.MIN/12.4
22 24
AO­1

AO­2
­3K5
17.8
6 5 7 8 21

6 5 2 3 4

12 14 22 24 32 34 42 44
­4K1 ­4K1
22.6 22.6
11 21 31 41

­X42 1 2 3 4 ­X42 8 9 11 10
+W­240
MPRXCX +W­240
16x1,5mm² K3*
C2*

­4R1
­4Y1.1

­4Y1.2

­4Y2.1

­4Y2.2

­2S21.1

­2S21.2

­2S22.2
120Ohm
+SRP/3.2/

+SRP/3.3/

+SRP/3.4/

+SRP/3.4/

+SRP/3.0/

+SRP/3.1/

+SRP/3.2/
A1 A1 A1
­4K5 ­X4.K11 ­X4.K10
A2 A2 A2

20.9/1F3­ 1F3­/36.0
23.9/1F4­ 1F4­/37.0

steering valves steering valves
hy oil steering oil
level pressure
min min
14 14 14
12 11  7.1 12 11  45.1 12 11  45.0
44
42 41

Datum 06.Apr.2016 FFU thrust direction steering = AZ2 26 / 51


Bearb. MSC
1216742 + SCS
valve control hy pump
Gepr. switch box Bl. 119
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75²
21.9/A+ A+/29.0

­5A1 15 16
14
S 1
UB24V

1 2 Hz
ON
OFF OFF OFF 128
1 2 3 4 ON OFF 256
OFF ON 512
f
f
ramp gen

ON ON 1024

DZ/GND
GND24

0...10V

0...15V

AGND
DZ/24

DZ/IN
MF2

MF1

13 1 5 7 6 8 4 3 2 14 13
9 10 11 12

17.9/SP1

+W­213 ­X51 1 2 3 SB PE ­X12 31 32 ­X54 1 2 3 4 SB


TCX(C) +W­305 +W­243
2x2x0,75² C2* 1.1 1.2 2.1 TCX(C) 1.1 1.2 TCX(C) 1.1 1.2 2.1 2.2

2x2x0,75mm² 2x2x0,75² C2*
C2*
­5B1.1

­5B1.3

­5B1.4

­P45

­P46

­5A3.1

­5A3.2

­5A3.3

­5A3.4
+MDP/10.3/

+MDP/10.3/
+SRP/4.7/

+SRP/4.8/

+SRP/4.8/

+EGR/2.7/

+EGR/2.8/

+EGR/2.8/

+EGR/2.8/
A1
­X4.K9
A2
21.9/A­ A­/29.0

propeller propeller
RPM pick up RPM indicator

14
12 11  44.8

Datum 06.Apr.2016 shaft speed indication = AZ2 27 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 120


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²
4.8/5F1+

21
­1K7
14.7
12 14

11.8/CL.AU

CL.AIR/12.7
CL.EN/11.8
­X52 1 2 3 4 5 6 7 8 SB

+W­220
MPRXCX
10x1,5mm²
C2*
­5Y1.1

­5Y1.2

­5Y2.1

­5Y2.2

­5S1.1

­5S1.2

­5S2.1

­5S2.2
+CLU/2.2/

+CLU/2.2/

+CLU/2.3/

+CLU/2.3/

+CLU/2.4/

+CLU/2.4/

+CLU/2.6/

+CLU/2.6/
A1 A1
­X4.K12 ­X3.K12
A2 A2

4.8/5F1­

clutch clutch clutch clutch


disengaging engaging engaged control
air min

14 14
12 11  45.2 12 11  47.2

Datum 06.Apr.2016 clutch control = AZ2 28 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 121


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not signed areas 0,75mm²

­9A4
Meßumformer
ID.NR.:1131850

8 7 4 1 2 3 6 5 8 7

27.8/A+
27.8/A­

­X91 1 2 3 4 SB ­X12 33 34 SB ­X94 1 2 3 4 SB


+W­253 +W­244
TCX(C) 1.1 1.2 2.1 2.2 2.1 2.2 TCX(C) 1.1 1.2 2.1 2.2
+W­305
2x2x0,75² C2* C2* 2x2x0,75² C2*
9A4.1

9A4.2

9A4.3

9A4.4

­P47

­P48

­9A3.1

­9A3.2

­9A3.3

­9A3.4
+MDP/10.4/

+MDP/10.4/
+SRP/5.1/

+SRP/5.2/

+SRP/5.2/

+SRP/5.2/

+EGR/2.5/

+EGR/2.5/

+EGR/2.5/

+EGR/2.5/
actual value pitch indicator pitch direction indicator
pitch direction near pitch control lever

Datum 06.Apr.2016 pitch direction indicator = AZ2 29 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 122


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC
4.9/9F1+
22.5/1F1+ 1F1+/32.0

­9A1 ­9A2
10.0 26 28 9 10 10.2 26 28 30 32 9 10
DCM DPV
UB24V

UB24V

UB24V

UB24V

UB24V

UB24V
card    :1168413 card    :1168411
GND24

GND24

GND24

GND24

GND24

GND24
programm:1168415 programm:1168412

25 27 25 27 29 31

42 44
­1K4
6.5
41

A1 A1 A1
­9K1 ­9K2 ­X4.K13
A2 A2 A2

24.8/1F1­ 1F1­/33.1
4.9/9F1­

failure
FFU pitch
control

14 14 14
12 11  36.1 12 11  7.7 12 11  45.3
24 44
22 21  36.2 42 41
34
32 31  36.3
44
42 41  36.3

Datum 06.Apr.2016 pitch control system = AZ2 30 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 123


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC

9A4.5/+SRP/5.2

9A4.6/+SRP/5.3

9A4.7/+SRP/5.3
+W­254
TCX(C) 1.1 1.2 2.1

2x2x0,75² C2*

­X91 5 6 7 SB

­9A1
30.1 21 30 22 29 23 24
DCM
AI­1

10V REF

AI­2

AGND

AI­3

AI­4
setpiont feed back
analoque analoque

actual value
pitch feed back

Datum 06.Apr.2016 pitch control system = AZ2 31 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 124


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC
30.8/1F1+ 1F1+/39.0

13 12 14
­9K7 ­9K4
5.4 37.7
14 11

FA.AUX/5.6
­9A1
30.1 13 14 15 16 17 18 19 20
DCM
format encoder

DI­0.0

DI­0.1

DI­0.2

DI­0.3

DI­1.0

DI­1.1

DI­1.2

DI­1.3
S3
ON
OFF
1 2 3 4 5 6 7 8
ON
OFF
S4
drive direction
CP­unit

pitch pitch pump electrically


el.pump zero
local failure
running position
control pump

Datum 06.Apr.2016 pitch control system = AZ2 32 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 125


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC

­9A1
30.1
DCM

start stop not steering


pitch pitch used locked
el.pump el.pump
DO­0

DO­1

DO­2

DO­3
5 6 7 8

A1 11 K K A1
­9K6 X4.K14
A2 41 A A A2
30.6/1F1­ 1F1­/39.0

pitch
locked

14 14
12 21   5.4 12 11  45.4
44
42 31  38.2

Datum 06.Apr.2016 pitch control system = AZ2 33 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 126


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC

­9A1
30.1
DCM

analog analog
set point feed back
signal signal
0..10V 0..10V

AGND
AO­0

AO­1

31 32 29

Datum 06.Apr.2016 pitch control system = AZ2 34 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 127


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC

­9A2
30.3 23 21 22 24 17 18 19 20
DPV
AI­1

AGND

10VREF

AI­2

DI­1.0

DI­1.1

DI­1.2

DI­1.3
invers ext. +­180°
invers ext. +­45°

amplifier additonal additonal


ON steering steering
S3 system system
ON +­10V = +­45° +­10V = +­180°
ON ON
OFF
1 2 3 4 5 6 7 8
ON
OFF
SWITCH HYDROMATIC LINDE PSL / PSV
S4 1 2 3 4 5 6 7 8 9 A B C D E F
valve char.
valve char.
valve char.
valve char.
dither
dither
DPV 2
Shaftspeed
overlap

S 4.1 ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON


S 4.2 OFF ON ON OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON
S 4.3 OFF OFF OFF ON ON ON ON OFF OFF OFF OFF ON ON ON ON
S 4.4 OFF OFF OFF OFF OFF OFF OFF ON ON ON ON ON ON ON ON

Datum 06.Apr.2016 pitch control system = AZ2 35 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 128


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC
26.9/1F3+ 1F3+/47.0

­9A2
30.3
DPV

­9A3
7.8 1

AO­1COM

AO­2COM
AO­1

AO­2
6 5 7 8
5 6 2 3 4

12 14 22 24 32 34 42 44
­9K1 ­9K1
30.7 30.7
11 21 31 41

­X92 1 2 3 4
+W­250
MPRXCX
10x1,5mm²
C2*
­9Y1.1

­9Y1.2

­9Y1.3

­9R1
120Ohm
+SRP/3.7/

+SRP/3.8/

+SRP/3.8/

26.9/1F3­ 1F3­/47.0

steering valves steering valves

Datum 06.Apr.2016 pitch control system = AZ2 36 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 129


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC
26.9/1F4+ 1F4+/38.0

­X91 8 9 10 11 12 SB

2.2 3.1 3.2 4.1 4.2


+W­255
C2*

A1 A1 A1
­9K3 ­9K4 ­9K5
­9A4.8

­9A4.9

­9A4.10

­9A4.11

­9A4.12 A2 A2 A2
+SRP/5.3/

+SRP/5.3/

+SRP/5.4/

+SRP/5.5/

+SRP/5.5/

26.9/1F4­ 1F4­/38.0

pitch max pitch  pitch max pitch max pitch pitch max


forward neutral backward forward neutral backward

14 14 14
12 11  7.8 12 11  32.2 12 11  7.8
44 44 44
42 41 42 41 42 41

Datum 06.Apr.2016 pitch control system = AZ2 37 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 130


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC
37.9/1F4+

9S1.1/+SRP/3.5

9S1.2/+SRP/3.6
+W­250
C2*

­X92 5 ­X92 6 SB

12.6/PI.PRE

31
­3K5
A
17.8
32 34 ­9V1
K
31
­9K6
33.1
42 44

A1
X4.K15
A2
37.9/1F4­

oil pressure
CP pump
min

14
12 11  45.5

Datum 06.Apr.2016 pitch control system = AZ2 38 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 131


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
32.8/1F1+ 1F1+/40.0

­A81
10.4 26 28 9 10
DCM modul    :1167526
UB24V

UB24V

software:1167527

10VREF
GND24

GND24

AGND

25 27 30 29

A1
X4.K8
A2
33.8/1F1­ 1F1­/43.0

failure
external
systems

14
12 11  44.7

Datum 06.Apr.2016 interface external systems = AZ2 39 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 132


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
39.9/1F1+ 1F1+/47.0

46.0
APR

­A81
39.1 13 14 15 16 17 18 19 20
DCM
DI­0.0

DI­0.1

DI­0.2

DI­0.3

DI­1.0

DI­1.1

DI­1.2

DI­1.3
S3
ON Autopilot ready DP system DP system
OFF for service activated ready for service
1 2 3 4 5 6 7 8
ON
OFF J7
1 2 3
S4
extern 2

J8
1 2 3

Autopilot Autopilot ready DP system DP system


take control for service take control ready
for service

Datum 06.Apr.2016 interface external systems = AZ2 40 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 133


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
18.9/1F5+ 1F5+/45.0
18.9/1F5­

­A83
46.2 1 2 4 3
+ ­
0­20mA ­
0­10V +
+ ­
6 5 4 3

­A81
39.1 21 22 23 24 29
DCM
AI­1

AI­2

AI­3

AI­4

AGND
set point steering value set point speed value set point steering value set point pitch value
from AP system from DP system from DP system from DP system

Datum 06.Apr.2016 interface external systems = AZ2 41 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 134


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²

­A81
39.1
DCM AGND

AGND
AO­0

AO­1
31 29 32 29

speed feed back speed feed back feed back feed back


for DP system for Joystick system steering angle steering angle
DP system Joystick system

Datum 06.Apr.2016 interface external systems = AZ2 42 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 135


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²

­A81
39.1
DCM

Autopilot mode unit ready for DP mode in service


in service DP system

AGND
DO­0

DO­1

DO­2

DO­3

AO­0

AO­1
5 6 7 8 31 32 29

A1
­X5.K1
A2

39.9/1F1­

unit ready for Autopilot mode unit ready feed back


Autopilot in service for DP DP mode
not used system in service

14
12 11  46.2

Datum 06.Apr.2016 interface external systems = AZ2 43 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 136


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²

12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14
­X4.K1 ­X4.K2 ­X4.K3 ­X4.K4 ­X4.K5 ­X4.K6 ­X4.K7 ­X4.K8 ­X4.K9
5.1 5.3 15.8 6.8 16.7 22.8 24.4 39.7 27.3
11 11 11 11 11 11 11 11 11

+W­820
TCX(C) 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 7.1 7.2 8.1 8.2
­X4 SB
10x2x0,75²
C2*
­WU1

­WU2

­WU3

­WU4

­WU5

­WU6

­WU7

­WU8

­WU9

­WU10

­WU11

­WU12

­WU13

­WU14

­WU15

­WU16
=YARD+SWU/5.0/

=YARD+SWU/5.0/

=YARD+SWU/5.1/

=YARD+SWU/5.1/

=YARD+SWU/5.2/

=YARD+SWU/5.2/

=YARD+SWU/5.3/

=YARD+SWU/5.3/

=YARD+SWU/5.3/

=YARD+SWU/5.4/

=YARD+SWU/5.4/

=YARD+SWU/5.4/

=YARD+SWU/5.5/

=YARD+SWU/5.5/

=YARD+SWU/5.5/

=YARD+SWU/5.6/
failure failure failure failure failure failure steering failure OPTION
AC / DC emergency control NFU FFU RPM FFU locked external suppresing
converter feed line system control control steering systems lub oil
24V DC flow min

Datum 06.Apr.2016 interface to ship warining unit = AZ2 44 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 137


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
41.9/1F5+ 1F5+/46.0

COLL.AL/12.2
12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14
­X4.K10 ­X4.K11 ­X4.K12 ­X4.K13 ­X4.K14 ­X4.K15 ­X4.K16 ­X4.K17 ­X4.K18
26.9 26.8 28.6 30.9 33.5 38.3 5.5 5.6 5.8
11 11 11 11 11 11 11 11 11

­X4 1 2 SB
+W­821
TCX(C) 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 7.1 7.2 8.1 8.2 9.1 9.2 10.1 10.2

10x2x0,75²
C2*
­WU19

­WU20

­WU21

­WU22

­WU23

­WU24

­WU25

­WU26

­WU27

­WU28

­WU29

­WU30

­WU31

­WU32

­WU33

­WU34

­WU35

­WU36

­WU41

­WU42
=YARD+SWU/5.6/

=YARD+SWU/5.7/

=YARD+SWU/5.7/

=YARD+SWU/5.7/

=YARD+SWU/5.8/

=YARD+SWU/5.8/

=YARD+SWU/6.0/

=YARD+SWU/6.0/

=YARD+SWU/6.1/

=YARD+SWU/6.1/

=YARD+SWU/6.2/

=YARD+SWU/6.2/

=YARD+SWU/6.3/

=YARD+SWU/6.3/

=YARD+SWU/6.3/

=YARD+SWU/6.4/

=YARD+SWU/6.4/

=YARD+SWU/6.5/

=YARD+SWU/6.6/

=YARD+SWU/6.6/
steering oil hy oil clutch air failure pitch CP failure overload switch box collective
pressure level pressure FFU locked pump oil auxiliary auxiliary temperature alarm unit
min min min pitch control pressure CP pump CP pump max
min

Datum 06.Apr.2016 interface to ship warining unit = AZ2 45 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 138


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²

­A83
41.1 6 5 4 3
+ ­
0­10V ­
0­20mA +
+ ­
1 2 4 3

40.3/APR
45.8/1F5+ 1F5+/47.0

11
­X5.K1
43.2
12 14

+W­720 ­X5 1 2 ­X5 3 4 SB


TCX(C)
4x2x0,75mm² 1.1 1.2 2.1 2.2 3.1 3.2

C2*
­AP1

­AP2

­AP3

­AP4

­AP5

­AP6
=YARD+AP/2.4/

=YARD+AP/2.4/

=YARD+AP/2.5/

=YARD+AP/2.5/

=YARD+AP/2.6/

=YARD+AP/2.6/

Autopilot Autopilot set point


system ready mode steering value
for service in service from Autopilot

Datum 20.Mai.2016 interface to autopilot = AZ2 46 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 139


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
46.8/1F5+ 1F5+/48.1
40.9/1F1+
36.8/1F3+
36.8/1F3­

20.5/3A4.2

19.9/3A1.32

12 14 12 14 20.5/3A4.3
­X3.K3 ­X3.K12
19.1 28.7
11 11 22 24 32 34
­3K2
16.6
21 31

­3A2

­3A3.1/18.7

­3A3.2/18.7

­3A3.4/18.7

­3A3.3/18.7
1 2 4 3

0­10V
4­20mA

6 5

­X3 6 7 ­X3 13 14 ­X3 15 16 17 18 SB


+W­711
4.1 4.2 5.1 5.2 TCX(C) 1.1 1.2 2.1 2.2
+W­710
C2* 2x2x0,75mm² C2*
­PM31

­PM32

­PM33

­PM34

­PM41

­PM42

­PM43

­PM44
=YARD+PM/3.6/

=YARD+PM/3.6/

=YARD+PM/3.7/

=YARD+PM/3.7/

=YARD+PM/3.8/

=YARD+PM/3.8/

=YARD+PM/3.9/

=YARD+PM/3.9/
lever in clutch speed value engine load
idle pos. disengaged signal

Datum 20.Mai.2016 interface to drive motor = AZ2 47 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 140


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC not specially signed areas 0,75mm²
47.9/1F5+

FIFI.SER/17.5
FIFI.ON/13.1
12 14
­X8.K1
15.5
11

­X8 1 2 3 4 5 6 7 SB 8 9 10 SB
+W­770
TCX(C) 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 6.1 6.2 7.1
+W­710
4x2x0,75mm² C2*
C2*
­FIFI1

­FIFI2

­FIFI3

­FIFI5

­FIFI6

­FIFI7

­FIFI8

­FIFI9

­PM6

­PM7

­PM8
=YARD+PM/3.4/

=YARD+PM/3.4/

=YARD+PM/3.5/
=YARD+FIFI/3.1/

=YARD+FIFI/3.1/

=YARD+FIFI/3.4/

=YARD+FIFI/3.4/

=YARD+FIFI/3.5/

=YARD+FIFI/3.6/

=YARD+FIFI/3.6/

=YARD+FIFI/3.7/
FIFI mode feed FIFI FIFI feed line engine engine feed line engine engine
possible line mode pump signals load 80% load 100% signals load 80% load 100%
ON in service

Datum 20.Mai.2016 interface to = AZ2 48 / 51


Bearb. MSC
1216742 + SCS
FIFI pump / generator
Gepr. switch box Bl. 141
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

local
control
1H1

1S1

800
remote     local
control
1000

M1

1000 300
mounting holes

d=8

cable input
 holes must be drilled by the yard 
glands are yard supply

technical datas of switch box feed lines for power supply
AC voltage: 400V / 50Hz
mechanic colors AC voltage: 230V/50Hz

960
Protection class: IP 54 switch box housing: RAL 7035
weight:  approx. 200kg panel: black
DC voltage: 24V DC
internal wiring
NAXAF ( GL 47682 HH, no. 07/90 )
temperature: engine room temperature 45°C
screened cable type: LIYCY 95% humidity with out condensation
vibrtion. 0,7g

960 20
20

Datum 06.Apr.2016 switch box  = AZ2 49 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 142


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
Änderung
0

25
100 125 75 150 50 115 50 180

Datum
Name
X1

Norm
Gepr.
K1

Bearb.
Datum
XC SP
X2
1

K2

MSC
1K2

Aldorf
S1
1A1.0
1K4

06.Apr.2016
1A1.1 1K5 S2
X12 1A1.2
1A1.3 1K6
1A1.4 1K7
F1

X41 1A1.5
1A1.6 3K1
X42 1A1.7
F2

X44 3A1 3K2


2

X51 3K5
9K7

3A4
X52
4K1
X54 4A1
4K2
4R1

X91 A1
4K5
4A2
X92 9K1

X94 5A1 9K2


9K3
9A1
9K4
9R1
3

X3 9K5 A2
9A2
K1
K2 9K6
K3
K4
K5
K6 A81
K7
K8
K9
X4 K10 1F1
K11
4A3

K12
K13 1F2
K14
K15
K16 1F3
K16
1F4
K1
X5 1F5
K1 4F1
4

X8 5F1
9A3 9A4

9F1
1V1­3

3A2
3A3
A83
5

X10

switch box 
6

switch box
7

1216742
e.­diagram
8

= AZ2
+ SCS
9

Bl.
50 / 51

143
262 Bl.
0 1 2 3 4 5 6 7 8 9

Position ID NR Menge Benennung


­SCHRANK 1100501 1 Schrank

­FEST 1135768 2 Türfeststeller


­KANAL 1126577 1.0m Kabelkanal 25 x 75
­KANAL 1126579 3.0m Kabelkanal 50 x 75
­KANAL 1126580 1.0m Kabelkanal 75 x 75
­KANAL 1126581 1.0m Kabelkanal 100 x 75
­SCHIENE 1085605 4.0m Tragschiene
­END 1126844 4 Endwinkel
­FLAN 1169919 2 Kabeleinführungsflansch

Datum 06.Apr.2016 mounting parts switch box = AZ2 51 / 51


Bearb. MSC
1216742 + SCS

Gepr. switch box Bl. 144


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

terminal groups of component
unit   = AZ2 component   + MDP

terminal name function
=AZ2+MDP­AX1 connection socket feed line control panel
=AZ2+MDP­AX2 connection socket signals NFU systems control
=AZ2+MDP­AX3 connection socket control bus control panel
=AZ2+MDP­AX4 connection socket input signals desk selection
=AZ2+MDP­AX5 connection socket output signals desk selection
=AZ2+MDP­AX9 connection socket for indicator signals

Datum 06.Apr.2016            = AZ2 1 / 13


Bearb. MSC
1216742 + MDP
panel main desk
Gepr. main desk Bl. 145
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

­A1
3.1
control panel

1 2 3 4 5 6 7 8
­X1 ­X1 ­X1

­AX1
1 2 3 4 5 6 7 8
3.1

­AX1 1 2 3 4 ­AX1 1 2 3 4 ­AX1 5 6 ­AX1 5 6 ­AX1 7 8 X1 7 8

L­/7.7
+SCS­P1

+SCS­P2

+SCS­P3

+SCS­P4

+SCS­P11

+SCS­P12
+SCS/4.2/

+SCS/4.2/

+SCS/4.2/

+SCS/4.3/

+SCS/6.6/

+SCS/6.6/
feed line input instrument light feed line input
control panel indicators NFU sytems

Datum 06.Apr.2016 power supply = AZ2 2 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 146


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

­A1
2.0 ON speed steering pitch
control panel

9 10 11 12 13 14
­X1 ­X1

­AX1
9 10 11 12 13 14
2.0

­AX1 9 10 11 12 ­AX1 9 10 11 12 ­AX1 13 14


+SCS­P14

+SCS­P22

+SCS­P18

+SCS­P23
+SCS/6.7/

+SCS/7.4/

+SCS/7.1/

+SCS/7.7/

indication NFU systems

Datum 06.Apr.2016 power supply = AZ2 3 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 147


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

­A1
2.0
control panel

2 3 4 4 6 7 8 1
­X2 ­X2 ­X2 ­X2 ­X2 ­X2 ­X2 ­X2

­AX2
1 2 3 4 5 6 7 8 9

­AX2 14 ­AX2 24 ­AX2 34 ­AX2 44 ­AX2 54 ­AX2 64 ­AX2 74 ­AX2 84 ­AX2 13 ­AX2 14 24 34 44 54 64 74 84 13
+SCS­P13

+SCS­P21

+SCS­P20

+SCS­P16

+SCS­P17

+SCS­P24

+SCS­P25

+SCS­P15
+SCS/6.7/

+SCS/7.5/

+SCS/7.4/

+SCS/7.2/

+SCS/7.3/

+SCS/7.8/

+SCS/7.8/

+SCS/7.0/
NFU decrease increase thruster thruster decrease increase feed line NFU control
ON rpm rpm turning turning pitch pitch
ccw cw

Datum 06.Apr.2016 NFU signals = AZ2 4 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 148


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

­A1
2.0
control panel

CAN­GND

CAN­GND
CAN­H

CAN­H
CAN­L

CAN­L
7 2 3 9 4 5 1 2 3 4 5 6
­X3 ­X3 ­X6

­AX3
7 2 3 9 4 5
PE

CAN­SERVICE 120 Ohm
PLUG

ON
­AX3 1 2 3 4 ­AX3 5 6 7 8
+SCS­P31

+SCS­P32

+SCS­P33

+SCS­P34
+SCS/8.4/

+SCS/8.5/

+SCS/8.5/

+SCS/8.5/

control bus

Datum 06.Apr.2016 control bus = AZ2 5 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 149


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

­A1
2.0
control panel

1 2 3 4 5 6 7 8
­X4 ­X4 ­X4 ­X4 ­X4 ­X4 ­X4 ­X4

­AX4 ­AX1
1 2 3 4 5 6 7 8
2.0
send to main desk

send to Stbd wing
send to Ps wing
main desk ON

Stbd wing ON
aft desk ON

Ps wing ON
send to aft

­AX4 1 ­AX4 2 ­AX4 3 ­AX4 4 ­AX4 5 ­AX4 6 ­AX4 7 ­AX4 8 ­AX4 9 9 ­AX1 1

input desk selection
from other panels

Datum 06.Apr.2016 take over desk = AZ2 6 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 150


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

­A1
2.0
control panel

2 3 4 4 6 7 8 9 1
­X5 ­X5 ­X5 ­X5 ­X5 ­X5 ­X5 ­X5 ­X5

­AX5
1 2 3 4 5 6 7 8 9

­AX5 14 ­AX5 24 ­AX5 34 ­AX5 44 ­AX5 54 ­AX5 64 ­AX5 74 ­AX5 84 ­AX5 13 ­AX5 14 24 34 44 54 64 74 84 13

A1 A1
­K1 ­K2
A2 A2

2.3/L­

12 14 12 14
­K1 ­K2
.7 .8
11 11

main desk send to aft desk send to Ps wing send to Stbd wing send to feed line main desk aft desk
ON main desk ON aft desk ON Ps wing ON Stbd wing ON ON

14 14
12 11 .7 12 11 .8

Datum 06.Apr.2016 take over desk = AZ2 7 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 151


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

­A2
COPILOT
­B1 ­B2 ­S1
steering speed speed lever

violett

violett
braun

braun
in zero

weiß

weiß
grün

grau

grün

grau
rosa

rosa
blau

gelb

blau

gelb
rot

rot
+VCC 24V DC

lever in zero

CODE SWITCH CODE SWITCH
CAN GND

CAN GND

STEERING SPEED
CAN H

CAN H
CAN L

CAN L
GND

2 9
1 2 3 4 5 6 7 8 9
X1

­A1
1 2 3 4 5 6 7 8 9 1 2
2.0
X3.1 ­X7

control panel

connection COPILOT

Datum 06.Apr.2016 panel main desk = AZ2 9 / 13


Bearb. MSC
1216742 + MDP
connection control handle
Gepr. main desk Bl. 152
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Azimuth indication speed indication pitch indication


­P41 ­P51 ­P91
120 Ohm
power supply ON
OFF

CONTROLLER CONTROLLER CONTROLLER

1 2 4 5 8 9 6 7 3 3 1 2 5 4 8 9 3 1 2 5 4 8 9
P41 P51 P91

­AX9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7
­X91 120 Ohm ­X92
ON
OFF

­AX9 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 1 2 8 9 6 7 5 13 14 15 16 17 18

­AX1
2.0 5 6
+SCS­P5

+SCS­P6

+SCS­P41

+SCS­P42

+SCS­P43

+SCS­P44

+SCS­P45

+SCS­P46

+SCS­P47

+SCS­P48
+SCS/3.4/

+SCS/3.4/

+SCS/21.6/

+SCS/21.6/

+SCS/21.6/

+SCS/21.7/

+SCS/27.4/

+SCS/27.5/

+SCS/29.4/

+SCS/29.4/

feed line CAN BUS instrument light propeller pitch feed line instrument light CAN BUS propeller pitch
indicator RPM indicator indicator indicator RPM indicator indicator

Datum 06.Apr.2016 indicator  = AZ2 10 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 153


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

340 4
stay bolt M5x20

BACKUP CONTROL
AZIMUTH PITCH RPM

STATUS

EXTERN SYSTEMS DESK SELECTION CLUTCH CONTROL


490

MODES LIGHT CONTROL MODES

panel top view

200 175

Datum 06.Apr.2016 panel main desk = AZ2 11 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 154


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

desk cut out for control panel
10 160 160

panel

115
20

120
300

120

450
hole d= 6

length of cable 1200mm

115
80 4 500

10

20
hole d= 6
K1
K2

300

270
AX1 AX2 AX3 AX4 AX5 AX9

wiring duct for ship cables

Technical datas panel
15 470
mounting plate

15
earth connection M8x20 mechanic
mounting holes
Protection class top side: IP 54
Protection class back side: IP 20

colors
control panel : black

Datum 06.Apr.2016 panel main desk = AZ2 12 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 155


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

control panel

PE LED
RUN

1 6 1 8 1 9 1 8 PWR

X6 X4 X5 X2 RES

1
PE
X8 S1

1 14

X1 PROG. RUN 8
1
S2

8
OFF ON
X3.1 X3

1 2

X7 ON OFF OFF ON
ON OFF

Datum 06.Apr.2016 panel main desk = AZ2 13 / 13


Bearb. MSC
1216742 + MDP

Gepr. main desk Bl. 156


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

SCHOTTEL  components
engine room

Datum 06.Apr.2016            = AZ2 1 / 3


Bearb. MSC
1216742 + EGR
connection engine room
Gepr. engine rom Bl. 157
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

­4A3 ­9A3 ­5A3


­9A3 ­5A3
­4A3
120 Ohm 0..300Upm
1 2 RPM
ON PITCH
OFF 1156410 St.1 0..10V
power supply
1156514 St.1
+ ­ + ­ + ­ + ­ + ­ + ­

CONTROLLER
1 2 5 4 8 9 1 2 5 4 8 9

   1   2   4   5 3     8   9

1173893 St.1 1174645 St.1

1156514 St.1 1156514 St.1

+SCS­4B1.1/+SCS/23.6

+SCS­4B1.3/+SCS/23.6

+SCS­4B1.4/+SCS/23.6
+SCS­4A3.1

+SCS­4A3.2

+SCS­4A3.4

+SCS­4A3.5

+SCS­4A3.4.1

+SCS­4A3.5.1

+SCS­9A3.1

+SCS­9A3.2

+SCS­9A3.3

+SCS­9A3.4

+SCS­5A3.1

+SCS­5A3.2

+SCS­5A3.3

+SCS­5A3.4
1 3

­4B1
+SCS/21.3/

+SCS/21.3/

+SCS/21.3/

+SCS/21.4/

+SCS/29.6/

+SCS/29.6/

+SCS/29.6/

+SCS/29.6/

+SCS/27.5/

+SCS/27.6/

+SCS/27.6/

+SCS/27.6/
+SCS/21.4/

+SCS/21.4/

thrust direction pitch direction shaft speed


indicator hydraulic­ indicator indicator
near hydraulic pump RPM near pitch control lever
pump

Datum 06.Apr.2016 connection engine room = AZ2 2 / 3


Bearb. MSC
1216742 + EGR

Gepr. engine rom Bl. 158


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9
144 118
14 90

25
11

17

12,5
145
118

144 118
14 90
25

11
17

12,5
145
118

144 118
14 90
25

11
17

12,5
145
118

Datum 06.Apr.2016 connection engine room = AZ2 3 / 3


Bearb. MSC
1216742 + EGR

Gepr. engine rom Bl. 159


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

connection
clutch control

Datum 06.Apr.2016            = AZ2 1 / 2


Bearb. MSC
1216742 + CLU
connection clutch
Gepr. clutch Bl. 160
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

+SCS­5Y1.1/+SCS/28.1

+SCS­5Y1.2/+SCS/28.2

+SCS­5Y2.1/+SCS/28.3

+SCS­5Y2.2/+SCS/28.3

+SCS­5S1.1/+SCS/28.4

+SCS­5S1.2/+SCS/28.4

+SCS­5S2.1/+SCS/28.4

+SCS­5S2.2/+SCS/28.5
­X5 1 2 3 4 5 6 7 8

K A K A

­5S1 P ­5S2 P

­5Y1 ­5Y2

clutch clutch clutch air pressure


disengaging engaging engaged clutch min

Datum 06.Apr.2016 connection clutch = AZ2 2 / 2


Bearb. MSC
1216742 + CLU

Gepr. clutch Bl. 161


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

connection
SRP

Datum 06.Apr.2016            = AZ2 1 / 5


Bearb. MSC
1216742 + SRP
connection SRP
Gepr. SRP Bl. 162
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

not specially signed areas 0,75mm²

­2S10.1/=YARD+SWU/7.0

­2S10.2/=YARD+SWU/7.0

­2S11.1/=YARD+SWU/7.1

­2S11.2/=YARD+SWU/7.1

­2S12.1/=YARD+SWU/7.2

­2S12.2/=YARD+SWU/7.2

­2S13.1/=YARD+SWU/7.3

­2S13.2/=YARD+SWU/7.3

­2S14.1/=YARD+SWU/7.3

­2S14.2/=YARD+SWU/7.4

­2S15.1/=YARD+SWU/7.4

­2S15.2/=YARD+SWU/7.5

­2S16.1/=YARD+SWU/7.5

­2S16.2/=YARD+SWU/7.5
+W­840
TCX(C) 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 7.1 7.2

7x2x0,75²
K3*

­X2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 SB

­2S10 ­2S11 ­2S12 P ­2S13 P ­2S14 ­2S15 P ­2S16 P

lub oil lub oil CP oil CP oil hydraulic oil hydraulic oil hydraulic oil


level temperature filter pressure temperature filter dirty pressure max
SRP min SRP max dirty max max

Datum 06.Apr.2016 connection SRP = AZ2 2 / 5


Bearb. MSC
1216742 + SRP

Gepr. SRP Bl. 163


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

not specially signed areas 0,75mm²

+SCS­2S21.1/+SCS/26.5

+SCS­2S21.2/+SCS/26.5

+SCS­2S22.2/+SCS/26.6

+SCS­4Y1.1/+SCS/26.1

+SCS­4Y1.2/+SCS/26.1

+SCS­4Y2.1/+SCS/26.2

+SCS­4Y2.2/+SCS/26.2

+SCS­9S1.1/+SCS/38.2

+SCS­9S1.2/+SCS/38.3

+SCS­9Y1.1/+SCS/36.1

+SCS­9Y1.2/+SCS/36.2

+SCS­9Y1.3/+SCS/36.3
­X4 1 2 ­X4 3 4 ­X4 14 15 16 17 ­X9 3 4 ­X9 11 12 13

­2S21 ­2S22 P ­2S31 P

­4Y1 ­4Y2 ­9Y1

hydr.oil pressure
hydraulic oil hydraulic oil steering valve steering valve pump min control valve pitch
level min pressure min

Datum 06.Apr.2016 connection SRP = AZ2 3 / 5


Bearb. MSC
1216742 + SRP

Gepr. SRP Bl. 164


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
Änderung
0

Datum
Name
Norm
Gepr.
Bearb.
Datum
1

MSC

Aldorf
­4A4

06.Apr.2016
­B1
rot +SCS­4A4.1/+SCS/21.1

1
red
2

blau +SCS­4A4.2/+SCS/21.1

feed back
2
blue

gelb +SCS­4A4.3/+SCS/21.2

3
yellow

grün +SCS­4A4.4/+SCS/21.2

4
green

braun

thrust direction indicating
brouwn

weiß
white
3

grau
gree

rosa
pink
not specially signed areas 0,75mm²

violett
violet ­B2
4

rot +SCS­4A4.6/+SCS/10.8
6

red

blau +SCS­4A4.7/+SCS/10.8

feed back
7

blue

gelb +SCS­4A4.8/+SCS/10.8
8

yellow

grün +SCS­4A4.9/+SCS/10.8
9

green
thrust direction steering braun
5

brouwn
10

weiß
white

grau
gree

connection SRP
rosa
pink

violett
violet
6

SRP
7

1216742
­5B1

+SCS­5B1.1/+SCS/27.1
4
1

pick up
shaft speed

+SCS­5B1.3/+SCS/27.2
3

+SCS­5B1.4/+SCS/27.2
e.­diagram
8

= AZ2
+ SRP
9

Bl.
4 / 5

165
262 Bl.
0 1 2 3 4 5 6 7 8 9

not specially signed areas 0,75mm²

+SCS­9A4.10/+SCS/37.2

+SCS­9A4.11/+SCS/37.3

+SCS­9A4.12/+SCS/37.4

+SCS­9A4.13/+SCS/18.1

+SCS­9A4.14/+SCS/18.1

+SCS­9A4.15/+SCS/18.2
+SCS­9A4.1/+SCS/29.2

+SCS­9A4.2/+SCS/29.2

+SCS­9A4.3/+SCS/29.3

+SCS­9A4.4/+SCS/29.3

+SCS­9A4.5/+SCS/31.3

+SCS­9A4.6/+SCS/31.3

+SCS­9A4.7/+SCS/31.4

+SCS­9A4.8/+SCS/37.1

+SCS­9A4.9/+SCS/37.2
­9A4

   1      2     3     4 5 6 7 8 9 10 11 12 13 14 15

br bl br bl br bl

S1 S2 S3

sw sw sw

actual value actual value pitch max pitch  pitch max actual value


pitch direction pitch feed back forward neutral backward pitch feed back

Datum 06.Apr.2016 connection SRP = AZ2 5 / 5


Bearb. MSC
1216742 + SRP

Gepr. SRP Bl. 166


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

connection
CP standby
hydraulic pump

Datum 06.Apr.2016            = AZ2 1 / 2


Bearb. MSC
1216742 + HYCP
connection CP standby pump
Gepr. CP standby Bl. 167
Änderung Datum Name Norm Aldorf
pump
e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

+SCS­M1.W/+SCS/2.7
+SCS­M1.U/+SCS/2.6

+SCS­M1.V/+SCS/2.6
­M1 U V W

U V W

­M1
440V 60Hz
4,8KW

CP pump
auxiliary

Datum 06.Apr.2016 connection CP standby pump = AZ2 2 / 2


Bearb. MSC
1216742 + HYCP

Gepr. CP standby Bl. 168


Änderung Datum Name Norm Aldorf
pump
e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

switch box
drive motor unit

Datum 06.Apr.2016             = YARD 1 / 3


Bearb. MSC
1216742 + PM
drive motor unit AZ
Gepr. PM Bl. 169
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

*
switch box drive motor
! ATTENTION ! interlock start
for correct terminal drive motor
numbers look at the drive motor drawings
+ ­ + ­
­ ­
DI DI
4­20mA + 4­20mA +

feed line

feed line
+ ­ + ­
S S

­AZ1 1 2 3 4 5 6 7 8 ­AZ1­X2 1 2 3 4 ­AZ1­X3 1 2 3 4


­X1
=AZ1+SCS­PM1

=AZ1+SCS­PM2

=AZ1+SCS­PM3

=AZ1+SCS­PM4

=AZ1+SCS­PM5

=AZ1+SCS­PM6

=AZ1+SCS­PM7

=AZ1+SCS­PM8

=AZ1+SCS­PM31

=AZ1+SCS­PM32

=AZ1+SCS­PM33

=AZ1+SCS­PM34

=AZ1+SCS­PM41

=AZ1+SCS­PM42

=AZ1+SCS­PM43

=AZ1+SCS­PM44
=AZ1+SCS/17.1/

=AZ1+SCS/17.2/

=AZ1+SCS/17.3/

=AZ1+SCS/17.4/

=AZ1+SCS/17.4/

=AZ1+SCS/48.6/

=AZ1+SCS/48.7/

=AZ1+SCS/48.8/

=AZ1+SCS/47.1/

=AZ1+SCS/47.1/

=AZ1+SCS/47.2/

=AZ1+SCS/47.2/

=AZ1+SCS/47.5/

=AZ1+SCS/47.5/

=AZ1+SCS/47.7/

=AZ1+SCS/47.7/
feed line drive motor drive motor drive motor drive motor feed line engine engine lever in clutch set point engine load
signals OFF running idle overload signals load 80% load 100% zero pos. disengaged RPM control signal

Datum 20.Mai.2016 connections to = YARD 2 / 3


Bearb. MSC
1216742 + PM
drive motor AZ1
Gepr. PM Bl. 170
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

*
switch box drive motor
! ATTENTION ! interlock start
for correct terminal drive motor
numbers look at the drive motor drawings
+ ­ + ­
­ ­
DI DI
4­20mA + 4­20mA +

feed line

feed line
+ ­ + ­
S S

­AZ2 1 2 3 4 5 6 7 8 ­AZ2­X2 1 2 3 4 ­AZ2­X3 1 2 3 4


­X1
=AZ2+SCS­PM1

=AZ2+SCS­PM2

=AZ2+SCS­PM3

=AZ2+SCS­PM4

=AZ2+SCS­PM5

=AZ2+SCS­PM6

=AZ2+SCS­PM7

=AZ2+SCS­PM8

=AZ2+SCS­PM31

=AZ2+SCS­PM32

=AZ2+SCS­PM33

=AZ2+SCS­PM34

=AZ2+SCS­PM41

=AZ2+SCS­PM42

=AZ2+SCS­PM43

=AZ2+SCS­PM44
=AZ2+SCS/17.1/

=AZ2+SCS/17.2/

=AZ2+SCS/17.3/

=AZ2+SCS/17.4/

=AZ2+SCS/17.4/

=AZ2+SCS/48.7/

=AZ2+SCS/48.7/

=AZ2+SCS/48.8/

=AZ2+SCS/47.1/

=AZ2+SCS/47.1/

=AZ2+SCS/47.2/

=AZ2+SCS/47.2/

=AZ2+SCS/47.5/

=AZ2+SCS/47.5/

=AZ2+SCS/47.7/

=AZ2+SCS/47.7/
feed line drive motor drive motor drive motor drive motor feed line engine engine lever in clutch set point engine load
signals OFF running idle overload signals load 80% load 100% zero pos. disengaged RPM control signal

Datum 20.Mai.2016 connections to = YARD 3 / 3


Bearb. MSC
1216742 + PM
drive motor AZ2
Gepr. PM Bl. 171
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

switch box
ship warning unit
connection unit

Datum 06.Apr.2016                = YARD 1 / 7


Bearb. MSC
1216742 + SWU
ship warning unit connection unit
Gepr. warning unit Bl. 172
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC +­20% not specially signed areas 0,75mm²

*
ship warning unit
Alarm indicating in the wheel house according to the classification rules!
! ATTENTION ! for correct terminal
numbers look warning unit drawings
delay time delay time

2s 2s 2s 2s 2s 2s 2s 2s 3s 10s 5s

­X1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
=AZ1+SCS­WU1

=AZ1+SCS­WU2

=AZ1+SCS­WU3

=AZ1+SCS­WU4

=AZ1+SCS­WU5

=AZ1+SCS­WU6

=AZ1+SCS­WU7

=AZ1+SCS­WU8

=AZ1+SCS­WU9

=AZ1+SCS­WU10

=AZ1+SCS­WU11

=AZ1+SCS­WU12

=AZ1+SCS­WU13

=AZ1+SCS­WU14

=AZ1+SCS­WU15

=AZ1+SCS­WU16

=AZ1+SCS­WU19

=AZ1+SCS­WU20

=AZ1+SCS­WU21

=AZ1+SCS­WU22

=AZ1+SCS­WU23

=AZ1+SCS­WU24
=AZ1+SCS/44.0/

=AZ1+SCS/44.1/

=AZ1+SCS/44.1/

=AZ1+SCS/44.2/

=AZ1+SCS/44.2/

=AZ1+SCS/44.3/

=AZ1+SCS/44.3/

=AZ1+SCS/44.3/

=AZ1+SCS/44.4/

=AZ1+SCS/44.4/

=AZ1+SCS/44.5/

=AZ1+SCS/44.5/

=AZ1+SCS/44.6/

=AZ1+SCS/44.6/

=AZ1+SCS/44.7/

=AZ1+SCS/44.7/

=AZ1+SCS/45.0/

=AZ1+SCS/45.1/

=AZ1+SCS/45.1/

=AZ1+SCS/45.2/

=AZ1+SCS/45.2/

=AZ1+SCS/45.3/
failure failure failure failure failure failure steering failure steering oil hy oil clutch air
AC / DC emergency control FFU RPM FFU NFU locked external pressure level pressure
converter feed line system control steering control systems min min min
24V DC

Datum 06.Apr.2016 ship warning unit connection unit = YARD 2 / 7


Bearb. MSC
1216742 + SWU
unit AZ1
Gepr. warning unit Bl. 173
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC +­20% not specially signed areas 0,75mm²

*
ship warning unit
Alarm indicating in the wheel house according to the classification rules!
! ATTENTION ! for correct terminal
numbers look warning unit drawings
delay time delay time

2s 5s 3s 2s 2s 2s

­X1 23 24 25 26 27 28 29 30 31 32 33 34 35 36
=AZ1+SCS­WU25

=AZ1+SCS­WU26

=AZ1+SCS­WU27

=AZ1+SCS­WU28

=AZ1+SCS­WU29

=AZ1+SCS­WU30

=AZ1+SCS­WU31

=AZ1+SCS­WU32

=AZ1+SCS­WU33

=AZ1+SCS­WU34

=AZ1+SCS­WU35

=AZ1+SCS­WU36

=AZ1+SCS­WU41

=AZ1+SCS­WU42
=AZ1+SCS/45.3/

=AZ1+SCS/45.3/

=AZ1+SCS/45.4/

=AZ1+SCS/45.4/

=AZ1+SCS/45.5/

=AZ1+SCS/45.5/

=AZ1+SCS/45.6/

=AZ1+SCS/45.6/

=AZ1+SCS/45.7/

=AZ1+SCS/45.7/

=AZ1+SCS/45.7/

=AZ1+SCS/45.8/

=AZ1+SCS/45.8/

=AZ1+SCS/45.8/
failure pitch CP pump oil failure overload switch box collective
FFU locked pressure auxiliary auxiliary temperature alarm unit
pitch control min CP pump CP pump max

Datum 06.Apr.2016 ship warning unit connection unit = YARD 3 / 7


Bearb. MSC
1216742 + SWU
UNIT AZ1
Gepr. warning unit Bl. 174
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC +­20% not specially signed areas 0,75mm²

*
ship warning unit
Alarm indicating in the wheel house according to the classification rules!
! ATTENTION ! for correct terminal
numbers look warning unit drawings
delay time delay time

10s 5s 5s 5s 5s 5s 5s

­X1 37 38 39 40 41 42 43 44 45 46 47 48 49 50
=AZ1+SRP­2S10.1

=AZ1+SRP­2S10.2

=AZ1+SRP­2S11.1

=AZ1+SRP­2S11.2

=AZ1+SRP­2S12.1

=AZ1+SRP­2S12.2

=AZ1+SRP­2S13.1

=AZ1+SRP­2S13.2

=AZ1+SRP­2S14.1

=AZ1+SRP­2S14.2

=AZ1+SRP­2S15.1

=AZ1+SRP­2S15.2

=AZ1+SRP­2S16.1

=AZ1+SRP­2S16.2
=AZ1+SRP/2.1/

=AZ1+SRP/2.1/

=AZ1+SRP/2.2/

=AZ1+SRP/2.2/

=AZ1+SRP/2.3/

=AZ1+SRP/2.3/

=AZ1+SRP/2.4/

=AZ1+SRP/2.4/

=AZ1+SRP/2.5/

=AZ1+SRP/2.5/

=AZ1+SRP/2.6/

=AZ1+SRP/2.6/

=AZ1+SRP/2.7/

=AZ1+SRP/2.7/
lub oil lub oil CP oil CP oil hydraulic oil hydraulic oil hydraulic oil
level temperature filter pressure temperature filter dirty pressure max
SRP min SRP max dirty max max

Datum 06.Apr.2016 ship warning unit connection unit = YARD 4 / 7


Bearb. MSC
1216742 + SWU
UNIT AZ1
Gepr. warning unit Bl. 175
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC +­20% not specially signed areas 0,75mm²

*
ship warning unit
Alarm indicating in the wheel house according to the classification rules!
! ATTENTION ! for correct terminal
numbers look warning unit drawings
delay time delay time

2s 2s 2s 2s 2s 2s 5s 2s 3s 10s 5s

­X2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
=AZ2+SCS­WU1

=AZ2+SCS­WU2

=AZ2+SCS­WU3

=AZ2+SCS­WU4

=AZ2+SCS­WU5

=AZ2+SCS­WU6

=AZ2+SCS­WU7

=AZ2+SCS­WU8

=AZ2+SCS­WU9

=AZ2+SCS­WU10

=AZ2+SCS­WU11

=AZ2+SCS­WU12

=AZ2+SCS­WU13

=AZ2+SCS­WU14

=AZ2+SCS­WU15

=AZ2+SCS­WU16

=AZ2+SCS­WU19

=AZ2+SCS­WU20

=AZ2+SCS­WU21

=AZ2+SCS­WU22

=AZ2+SCS­WU23

=AZ2+SCS­WU24
=AZ2+SCS/44.0/

=AZ2+SCS/44.1/

=AZ2+SCS/44.1/

=AZ2+SCS/44.2/

=AZ2+SCS/44.2/

=AZ2+SCS/44.3/

=AZ2+SCS/44.3/

=AZ2+SCS/44.3/

=AZ2+SCS/44.4/

=AZ2+SCS/44.4/

=AZ2+SCS/44.5/

=AZ2+SCS/44.5/

=AZ2+SCS/44.6/

=AZ2+SCS/44.6/

=AZ2+SCS/44.7/

=AZ2+SCS/44.7/

=AZ2+SCS/45.0/

=AZ2+SCS/45.1/

=AZ2+SCS/45.1/

=AZ2+SCS/45.2/

=AZ2+SCS/45.2/

=AZ2+SCS/45.3/
failure failure failure failure failure failure steering failure steering oil hy oil clutch air
AC / DC emergency control FFU RPM FFU NFU locked external pressure level pressure
converter feed line system control steering control systems min min min
24V DC

Datum 06.Apr.2016 ship warning unit connection unit = YARD 5 / 7


Bearb. MSC
1216742 + SWU
unit AZ2
Gepr. warning unit Bl. 176
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC +­20% not specially signed areas 0,75mm²

*
ship warning unit
Alarm indicating in the wheel house according to the classification rules!
! ATTENTION ! for correct terminal
numbers look warning unit drawings
delay time delay time

2s 2s 3s 2s 2s 2s

­X2 23 24 25 26 27 28 29 30 31 32 33 34 35 36
=AZ2+SCS­WU25

=AZ2+SCS­WU26

=AZ2+SCS­WU27

=AZ2+SCS­WU28

=AZ2+SCS­WU29

=AZ2+SCS­WU30

=AZ2+SCS­WU31

=AZ2+SCS­WU32

=AZ2+SCS­WU33

=AZ2+SCS­WU34

=AZ2+SCS­WU35

=AZ2+SCS­WU36

=AZ2+SCS­WU41

=AZ2+SCS­WU42
=AZ2+SCS/45.3/

=AZ2+SCS/45.3/

=AZ2+SCS/45.4/

=AZ2+SCS/45.4/

=AZ2+SCS/45.5/

=AZ2+SCS/45.5/

=AZ2+SCS/45.6/

=AZ2+SCS/45.6/

=AZ2+SCS/45.7/

=AZ2+SCS/45.7/

=AZ2+SCS/45.7/

=AZ2+SCS/45.8/

=AZ2+SCS/45.8/

=AZ2+SCS/45.8/
failure pitch CP pump oil failure overload switch box collective
FFU locked pressure auxiliary auxiliary temperature alarm unit
pitch control min CP pump CP pump max

Datum 06.Apr.2016 ship warning unit connection unit = YARD 6 / 7


Bearb. MSC
1216742 + SWU
UNIT AZ2
Gepr. warning unit Bl. 177
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC +­20% not specially signed areas 0,75mm²

*
ship warning unit
Alarm indicating in the wheel house according to the classification rules!
! ATTENTION ! for correct terminal
numbers look warning unit drawings
delay time delay time

10s 5s 5s 5s 5s 5s 5s

­X2 37 38 39 40 41 42 43 44 45 46 47 48 49 50
=AZ2+SRP­2S10.1

=AZ2+SRP­2S10.2

=AZ2+SRP­2S11.1

=AZ2+SRP­2S11.2

=AZ2+SRP­2S12.1

=AZ2+SRP­2S12.2

=AZ2+SRP­2S13.1

=AZ2+SRP­2S13.2

=AZ2+SRP­2S14.1

=AZ2+SRP­2S14.2

=AZ2+SRP­2S15.1

=AZ2+SRP­2S15.2

=AZ2+SRP­2S16.1

=AZ2+SRP­2S16.2
=AZ2+SRP/2.1/

=AZ2+SRP/2.1/

=AZ2+SRP/2.2/

=AZ2+SRP/2.2/

=AZ2+SRP/2.3/

=AZ2+SRP/2.3/

=AZ2+SRP/2.4/

=AZ2+SRP/2.4/

=AZ2+SRP/2.5/

=AZ2+SRP/2.5/

=AZ2+SRP/2.6/

=AZ2+SRP/2.6/

=AZ2+SRP/2.7/

=AZ2+SRP/2.7/
lub oil lub oil CP oil CP oil hydraulic oil hydraulic oil hydraulic oil
level temperature filter pressure temperature filter dirty pressure max
SRP min SRP max dirty max max

Datum 06.Apr.2016 ship warning unit connection unit = YARD 7 / 7


Bearb. MSC
1216742 + SWU
UNIT AZ2
Gepr. warning unit Bl. 178
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

switch box
Autopilot

Datum 06.Apr.2016                     Autopilot = YARD 1 / 2


Bearb. MSC
1216742 + AP

Gepr. Autopilot Bl. 179


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

24V DC +­20% not specially signed areas 0,75mm²

! ATTENTION ! for correct terminal
numbers look autopilot drawings
DI DI

feed line

feed line
+ ­ + ­
­ ­
S S
4­20mA + 4­20mA +

+ ­ + ­

­X1 1 2 3 4 5 6 ­X1 7 8 9 10 11 12
=AZ1+SCS­AP1

=AZ1+SCS­AP2

=AZ1+SCS­AP3

=AZ1+SCS­AP4

=AZ1+SCS­AP5

=AZ1+SCS­AP6

=AZ2+SCS­AP1

=AZ2+SCS­AP2

=AZ2+SCS­AP3

=AZ2+SCS­AP4

=AZ2+SCS­AP5

=AZ2+SCS­AP6
=AZ1+SCS/46.1/

=AZ1+SCS/46.1/

=AZ1+SCS/46.2/

=AZ1+SCS/46.2/

=AZ1+SCS/46.3/

=AZ1+SCS/46.3/

=AZ2+SCS/46.1/

=AZ2+SCS/46.1/

=AZ2+SCS/46.2/

=AZ2+SCS/46.2/

=AZ2+SCS/46.3/

=AZ2+SCS/46.3/
Autopilot autopilot mode setpoint Autopilot autopilot mode setpoint
ready for service in service AP control ready for service in service AP control
unit AZ1 unit AZ1 unit AZ1 unit AZ2 unit AZ2 unit AZ2

Datum 06.Apr.2016 connections to Autopilot = YARD 2 / 2


Bearb. MSC
1216742 + AP

Gepr. Autopilot Bl. 180


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

FIFI PUMP

Datum 06.Apr.2016                 = YARD 1 / 3


Bearb. MSC
1216742 + FIFI
FIFI pump
Gepr. FIFI pump Bl. 181
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

! ATTENTION ! for correct terminal
numbers look Fifi pump
Fifi Mode switch box fire switch box drawings
ON
fighting pump  *
closed when closed when
Fifi Mode Fifi Pump
K1 K1 P switching ON in service

K1 K2 K1 K2

FIFI FIFI FIFI Mode


­X1 1 2 Mode clutch in service 3 4 5 6 7 8 9
ON valve
=AZ1+SCS­FIFI1

=AZ1+SCS­FIFI2

=AZ1+SCS­FIFI3

=AZ1+SCS­FIFI5

=AZ1+SCS­FIFI6

=AZ1+SCS­FIFI7

=AZ1+SCS­FIFI8

=AZ1+SCS­FIFI9
=AZ1+SCS/48.1/

=AZ1+SCS/48.2/

=AZ1+SCS/48.2/

=AZ1+SCS/48.3/

=AZ1+SCS/48.3/

=AZ1+SCS/48.4/

=AZ1+SCS/48.5/

=AZ1+SCS/48.5/
FIFI mode feed FIFI FIFI feed line engine engine
possible line mode pump signals load 80% load 100%
ON in service

Datum 20.Mai.2016 unit AZ1 connection = YARD 2 / 3


Bearb. MSC
1216742 + FIFI
 to FIFI pump system
Gepr. FIFI pump Bl. 182
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

! ATTENTION ! for correct terminal
numbers look Fifi pump
Fifi Mode switch box fire switch box drawings
ON
fighting pump  *
closed when closed when
Fifi Mode Fifi Pump
K1 K1 P switching ON in service

K1 K2 K1 K2

FIFI FIFI FIFI Mode


­X2 1 2 Mode clutch in service 3 4 5 6 7 8 9
ON valve
=AZ2+SCS­FIFI1

=AZ2+SCS­FIFI2

=AZ2+SCS­FIFI3

=AZ2+SCS­FIFI5

=AZ2+SCS­FIFI6

=AZ2+SCS­FIFI7

=AZ2+SCS­FIFI8

=AZ2+SCS­FIFI9
=AZ2+SCS/48.1/

=AZ2+SCS/48.2/

=AZ2+SCS/48.2/

=AZ2+SCS/48.3/

=AZ2+SCS/48.3/

=AZ2+SCS/48.4/

=AZ2+SCS/48.5/

=AZ2+SCS/48.5/
FIFI mode feed FIFI FIFI feed line engine engine
possible line mode pump signals load 80% load 100%
ON in service

Datum 20.Mai.2016 unit AZ2 connection = YARD 3 / 3


Bearb. MSC
1216742 + FIFI
 to FIFI pump system
Gepr. FIFI pump Bl. 183
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

parts list

Datum 06.Apr.2016                parts list = PARTS 1 / 14


Bearb. MSC
1216742 +

Gepr. Bl. 184


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Pos. Stück SCHOTTEL Bezeichnung Denomination Typen Nummer Lieferant Seite


Pos. piece IDNR Type NO.: maker Page

=AZ1+SCS­S1 1 1121638 Hauptschalter 32A main switch 32A 3LD2230­OTK01 Siemens =AZ1+SCS/2.1


=AZ1+SCS­S1 2 1121639 Klemmenabdeckung für 1121638 cover plate for 1121638 3LD9221­1A Siemens =AZ1+SCS/2.1
=AZ1+SCS­X1 5 1121723 Durchgangsklemme ZDU 2,5 terminal ZDU 2,5 ZDU 2,5 Weidmüller =AZ1+SCS/2.1
=AZ1+SCS­X1 2 1121724 Abschlußplatte für 1121723 cover plate for 1121723 ZAP Weidmüller =AZ1+SCS/2.1
=AZ1+SCS­X1 2 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ1+SCS/2.1
=AZ1+SCS­X1 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ1+SCS/2.1
=AZ1+SCS­X1 2 1126365 PE­Klemme ZDU 2,5 terminal PE­2,5 Weidmüller =AZ1+SCS/2.1
=AZ1+SCS­X1 1 1126367 Schutzleiterklemme 16mm² earth terminal 16mm² ZPE 16 Weidmüller =AZ1+SCS/2.1
PE 2 1126365 PE­Klemme ZDU 2,5 terminal PE­2,5 Weidmüller =AZ1+SCS/2.2
=AZ1+SCS­X1 1 1103169 Einbausteckdose 220V socket BBC =AZ1+SCS/2.5
=AZ1+SCS­F1 1 1172740 Leistungsschalter 7 ­10A / M/T getrennt power switch  7 ­ 10A 3RV11 21 1JA10 Siemens =AZ1+SCS/2.6
=AZ1+SCS­F1 1 1121644 Hilfsschalter Leistungsschalter switch for power switch 3RV1901­1E Siemens =AZ1+SCS/2.6
=AZ1+SCS­A1 1 1126105 Netzgerät power supply 3X400­500VAC/24VDC/20F Phoenix Contact =AZ1+SCS/2.8
=AZ1+SCS­F2 1 1121651 Leistungsschalter 1,8­2,5 power switch 1,8­2,5A 3RV10 11­1CA10 Siemens =AZ1+SCS/2.9
=AZ1+SCS­A2 1 1153340 Netzgerät  24V DC / 24V DC / 10A DC DC converter 2320092 Phoenix Contact =AZ1+SCS/3.1
=AZ1+SCS­S2 1 1121638 Hauptschalter 32A main switch 32A 3LD2230­OTK01 Siemens =AZ1+SCS/3.2
=AZ1+SCS­S2 2 1121639 Klemmenabdeckung für 1121638 cover plate for 1121638 3LD9221­1A Siemens =AZ1+SCS/3.2
=AZ1+SCS­X2 2 1121721 Durchgangsklemme ZDU 6 terminal ZDU 6 ZDU 6 Weidmüller =AZ1+SCS/3.2
=AZ1+SCS­X2 1 1121722 Abschlußplatte für 1121721 cover plate for 1121721 ZAP Weidmüller =AZ1+SCS/3.2
=AZ1+SCS­X2 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ1+SCS/3.2
=AZ1+SCS­X2 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ1+SCS/3.2
=AZ1+SCS­X2 2 1121723 Durchgangsklemme ZDU 2,5 terminal ZDU 2,5 ZDU 2,5 Weidmüller =AZ1+SCS/3.2
=AZ1+SCS­X2 1 1121724 Abschlußplatte für 1121723 cover plate for 1121723 ZAP Weidmüller =AZ1+SCS/3.2
=AZ1+SCS­X12 9 1121725 Doppelklemme ZDK 2,5/1,5 terminal ZDK 2,5/1,5 ZDK 2,5/1,5 Weidmüller =AZ1+SCS/3.4
=AZ1+SCS­X12 4 1121721 Durchgangsklemme ZDU 6 terminal ZDU 6 ZDU 6 Weidmüller =AZ1+SCS/3.4
=AZ1+SCS­X12 1 1121722 Abschlußplatte für 1121721 cover plate for 1121721 ZAP Weidmüller =AZ1+SCS/3.4
=AZ1+SCS­X12 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ1+SCS/3.4
=AZ1+SCS­X12 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ1+SCS/3.4
=AZ1+SCS­X12 9 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ1+SCS/3.4
=AZ1+SCS­X12 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ1+SCS/3.4
=AZ1+SCS­1F1 1 1109851 Sicherungsautom, 1pol B6A automatic fuse 24049 Merlin Gerin =AZ1+SCS/4.0
=AZ1+SCS­1F2 1 1109851 Sicherungsautom, 1pol B6A automatic fuse 24049 Merlin Gerin =AZ1+SCS/4.1
=AZ1+SCS­1F3 1 1109851 Sicherungsautom, 1pol B6A automatic fuse 24049 Merlin Gerin =AZ1+SCS/4.3
=AZ1+SCS­1F4 1 1109851 Sicherungsautom, 1pol B6A automatic fuse 24049 Merlin Gerin =AZ1+SCS/4.4
=AZ1+SCS­1F5 1 1109851 Sicherungsautom, 1pol B6A automatic fuse 24049 Merlin Gerin =AZ1+SCS/4.5
=AZ1+SCS­1F6 1 1109851 Sicherungsautom, 1pol B6A automatic fuse 24049 Merlin Gerin =AZ1+SCS/4.6
=AZ1+SCS­M1 1 1196880 =AZ1+SCS/4.6
=AZ1+SCS­M1 1 1196881 =AZ1+SCS/4.6
=AZ1+SCS­4F1 1 1109851 Sicherungsautom, 1pol B6A automatic fuse 24049 Merlin Gerin =AZ1+SCS/4.7
=AZ1+SCS­5F1 1 1109851 Sicherungsautom, 1pol B6A automatic fuse 24049 Merlin Gerin =AZ1+SCS/4.8
=AZ1+SCS­9F1 1 1109851 Sicherungsautom, 1pol B6A automatic fuse 24049 Merlin Gerin =AZ1+SCS/4.9
=AZ1+SCS­K1 1 1151646 Relais relay MY2 IN1 24V DC OMRON =AZ1+SCS/5.0
=AZ1+SCS­K1 1 1151647 Stecksockel plug socket PYF 08S OMRON =AZ1+SCS/5.0
=AZ1+SCS­K1 1 1151648 Haltebügel zu MY clip PYCM 08S OMRON =AZ1+SCS/5.0
=AZ1+SCS­K1 1 1151649 Sockelbrücke throwover relay PYDM­08SB OMRON =AZ1+SCS/5.0

Datum 06.Apr.2016 parts list = PARTS 2 / 14


Bearb. MSC
1216742 +

Gepr. Bl. 185


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Pos. Stück SCHOTTEL Bezeichnung Denomination Typen Nummer Lieferant Seite


Pos. piece IDNR Type NO.: maker Page

=AZ1+SCS­X4.K1 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/5.1


=AZ1+SCS­K2 1 1151646 Relais relay MY2 IN1 24V DC OMRON =AZ1+SCS/5.2
=AZ1+SCS­K2 1 1151647 Stecksockel plug socket PYF 08S OMRON =AZ1+SCS/5.2
=AZ1+SCS­K2 1 1151648 Haltebügel zu MY clip PYCM 08S OMRON =AZ1+SCS/5.2
=AZ1+SCS­K2 1 1151649 Sockelbrücke throwover relay PYDM­08SB OMRON =AZ1+SCS/5.2
=AZ1+SCS­X4.K2 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/5.3
=AZ1+SCS­9K7 1 1141997 Schütz 24V DC relay LC1­D09 BD Telemecanique =AZ1+SCS/5.4
=AZ1+SCS­X4.K16 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/5.5
=AZ1+SCS­X4.K17 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/5.6
=AZ1+SCS­B1 1 1196882 Temperaturschalter temperature switch TRO 60 RÜBSAMEN & HERR =AZ1+SCS/5.8
=AZ1+SCS­X4.K18 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/5.8
=AZ1+SCS­1S1 1 1168996 Schlüsselschalter key switch EAO 14­235.022 Lumitas =AZ1+SCS/6.1
=AZ1+SCS­1K2 1 1150425 Relais, Kipp throwover relay MY2K 24VDC OMRON =AZ1+SCS/6.1
=AZ1+SCS­1K2 1 1150430 Stecksockel plug socket PYF 14S OMRON =AZ1+SCS/6.1
=AZ1+SCS­1K2 1 1150432 Haltebügel zu MY clip PYCM 14S OMRON =AZ1+SCS/6.1
=AZ1+SCS­1K2 1 1150435 Sockelbrücke throwover relay PYDM­14SB OMRON =AZ1+SCS/6.1
=AZ1+SCS­1V1 1 1133067 Diodenklemme doppelt diode terminal ZDK 2.5/1.5/D/6 Weidmüller =AZ1+SCS/6.1
=AZ1+SCS­1V1 0 1126292 Diodenklemme diode terminal ZDK 2.5/1.5/D/2 Weidmüller =AZ1+SCS/6.1
=AZ1+SCS­1K2 1 1047533 Diode diode 1 N 4007 Motorola =AZ1+SCS/6.1
=AZ1+SCS­1H1 1 1168974 Leuchtmelder pilot lamp EAO 14.04.002 Lumitas =AZ1+SCS/6.2
=AZ1+SCS­1H1 1 1168992 Textplatte Front Part EAO 704.609.9 Lumitas =AZ1+SCS/6.2
=AZ1+SCS­1H1 1 1168991 Frontring Front Part EAO 704.600.0 Lumitas =AZ1+SCS/6.2
=AZ1+SCS­1H1 1 1168985 Glühlampe 30V 40mA Bulb EAO 10­1114.1249 Lumitas =AZ1+SCS/6.2
=AZ1+SCS­1H1 1 1168977 Druckhaube Gelb Front Part EAO 704.602.4 Lumitas =AZ1+SCS/6.2
=AZ1+SCS­1V2 1 1133067 Diodenklemme doppelt diode terminal ZDK 2.5/1.5/D/6 Weidmüller =AZ1+SCS/6.4
=AZ1+SCS­1V2 0 1126292 Diodenklemme diode terminal ZDK 2.5/1.5/D/2 Weidmüller =AZ1+SCS/6.4
=AZ1+SCS­1K4 1 1150424 Relais relay MY4 IN1 24V DC OMRON =AZ1+SCS/6.5
=AZ1+SCS­1K4 1 1150430 Stecksockel plug socket PYF 14S OMRON =AZ1+SCS/6.5
=AZ1+SCS­1K4 1 1150432 Haltebügel zu MY clip PYCM 14S OMRON =AZ1+SCS/6.5
=AZ1+SCS­1K4 1 1150435 Sockelbrücke throwover relay PYDM­14SB OMRON =AZ1+SCS/6.5
=AZ1+SCS­1K5 1 1166167 Stromstoßrelais inpuls relay 15522 Merlin Gerin =AZ1+SCS/6.7
=AZ1+SCS­X4.K4 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/6.8
=AZ1+SCS­1A1.0 1 1167520 WAGO Fahrstandswahl 1BUS system desk control DIO modul 1 Bus SCHOTTEL =AZ1+SCS/8.1
=AZ1+SCS­1A1.1 0 1167823 Netzfilter feed line filter 750­626 WAGO =AZ1+SCS/8.6
=AZ1+SCS­XC 1 1128985 Übergabeelement connector D­SUB 9 Weidmüller =AZ1+SCS/8.8
=AZ1+SCS­X41 2 1121725 Doppelklemme ZDK 2,5/1,5 terminal ZDK 2,5/1,5 ZDK 2,5/1,5 Weidmüller =AZ1+SCS/10.8
=AZ1+SCS­X41 3 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ1+SCS/10.8
=AZ1+SCS­X41 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ1+SCS/10.8
=AZ1+SCS­X41 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ1+SCS/10.8
=AZ1+SCS­X41 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ1+SCS/10.8
=AZ1+SCS­1A1.2 0 1155226 Digitaleingang 8xDI digital input 8xDI 750­430 WAGO =AZ1+SCS/11.0
=AZ1+SCS­1A1.3 0 1155226 Digitaleingang 8xDI digital input 8xDI 750­430 WAGO =AZ1+SCS/12.0
=AZ1+SCS­1A1.4 0 1155226 Digitaleingang 8xDI digital input 8xDI 750­430 WAGO =AZ1+SCS/13.0
=AZ1+SCS­1A1.5 0 1155228 Digitalausgang 8xDO 0,5A digital output 8xDO 0,5A 750­530 WAGO =AZ1+SCS/14.0
=AZ1+SCS­1K7 1 1150425 Relais, Kipp throwover relay MY2K 24VDC OMRON =AZ1+SCS/14.7

Datum 06.Apr.2016 parts list = PARTS 3 / 14


Bearb. MSC
1216742 +

Gepr. Bl. 186


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Pos. Stück SCHOTTEL Bezeichnung Denomination Typen Nummer Lieferant Seite


Pos. piece IDNR Type NO.: maker Page

=AZ1+SCS­1K7 1 1150430 Stecksockel plug socket PYF 14S OMRON =AZ1+SCS/14.7


=AZ1+SCS­1K7 1 1150432 Haltebügel zu MY clip PYCM 14S OMRON =AZ1+SCS/14.7
=AZ1+SCS­1K7 1 1150435 Sockelbrücke throwover relay PYDM­14SB OMRON =AZ1+SCS/14.7
=AZ1+SCS­1K7 1 1047533 Diode diode 1 N 4007 Motorola =AZ1+SCS/14.7
=AZ1+SCS­1A1.6 0 1155228 Digitalausgang 8xDO 0,5A digital output 8xDO 0,5A 750­530 WAGO =AZ1+SCS/15.0
=AZ1+SCS­X8.K1 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/15.5
=AZ1+SCS­1K6 1 1151646 Relais relay MY2 IN1 24V DC OMRON =AZ1+SCS/15.7
=AZ1+SCS­1K6 1 1151647 Stecksockel plug socket PYF 08S OMRON =AZ1+SCS/15.7
=AZ1+SCS­1K6 1 1151648 Haltebügel zu MY clip PYCM 08S OMRON =AZ1+SCS/15.7
=AZ1+SCS­1K6 1 1151649 Sockelbrücke throwover relay PYDM­08SB OMRON =AZ1+SCS/15.7
=AZ1+SCS­X4.K3 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/15.8
=AZ1+SCS­1A1.7 0 1155225 Busendklemme bus terminal 750­600 WAGO =AZ1+SCS/15.8
=AZ1+SCS­3A1 1 1167522 DCM RPM control DCM RPM control DCM RPM 1BUS SYSTEM GESAS =AZ1+SCS/16.1
=AZ1+SCS­3K1 1 1150424 Relais relay MY4 IN1 24V DC OMRON =AZ1+SCS/16.5
=AZ1+SCS­3K1 1 1150430 Stecksockel plug socket PYF 14S OMRON =AZ1+SCS/16.5
=AZ1+SCS­3K1 1 1150432 Haltebügel zu MY clip PYCM 14S OMRON =AZ1+SCS/16.5
=AZ1+SCS­3K1 1 1150435 Sockelbrücke throwover relay PYDM­14SB OMRON =AZ1+SCS/16.5
=AZ1+SCS­3K2 1 1150424 Relais relay MY4 IN1 24V DC OMRON =AZ1+SCS/16.6
=AZ1+SCS­3K2 1 1150430 Stecksockel plug socket PYF 14S OMRON =AZ1+SCS/16.6
=AZ1+SCS­3K2 1 1150432 Haltebügel zu MY clip PYCM 14S OMRON =AZ1+SCS/16.6
=AZ1+SCS­3K2 1 1150435 Sockelbrücke throwover relay PYDM­14SB OMRON =AZ1+SCS/16.6
=AZ1+SCS­X4.K5 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/16.7
=AZ1+SCS­X3 6 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ1+SCS/17.1
=AZ1+SCS­X3 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ1+SCS/17.1
=AZ1+SCS­X3 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ1+SCS/17.1
=AZ1+SCS­X3 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ1+SCS/17.1
=AZ1+SCS­3K5 1 1150424 Relais relay MY4 IN1 24V DC OMRON =AZ1+SCS/17.8
=AZ1+SCS­3K5 1 1150430 Stecksockel plug socket PYF 14S OMRON =AZ1+SCS/17.8
=AZ1+SCS­3K5 1 1150432 Haltebügel zu MY clip PYCM 14S OMRON =AZ1+SCS/17.8
=AZ1+SCS­3K5 1 1150435 Sockelbrücke throwover relay PYDM­14SB OMRON =AZ1+SCS/17.8
=AZ1+SCS­X91 8 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ1+SCS/18.1
=AZ1+SCS­X91 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ1+SCS/18.1
=AZ1+SCS­X91 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ1+SCS/18.1
=AZ1+SCS­X91 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ1+SCS/18.1
=AZ1+SCS­3A3 1 1148645 Trennverstärker Programmierbar galvanic isolated output MAZ DC / DC SELECT Weidmüller =AZ1+SCS/18.7
=AZ1+SCS­X3.K3 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/19.1
=AZ1+SCS­3A4 1 1172147 Rampengenerator ramp generator 113640000 GESAS =AZ1+SCS/20.1
=AZ1+SCS­X44 5 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ1+SCS/21.3
=AZ1+SCS­X44 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ1+SCS/21.3
=AZ1+SCS­X44 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ1+SCS/21.3
=AZ1+SCS­X44 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ1+SCS/21.3
=AZ1+SCS­4A1 1 1167524 DCM steering DCM steering DCM STEUERUNG 1BUS SYSTEM GESAS =AZ1+SCS/22.1
=AZ1+SCS­4A2 1 1168411 DPV DPV DPV 1BUS SYSTEM GESAS =AZ1+SCS/22.3
=AZ1+SCS­4K1 1 1150424 Relais relay MY4 IN1 24V DC OMRON =AZ1+SCS/22.6
=AZ1+SCS­4K1 1 1150430 Stecksockel plug socket PYF 14S OMRON =AZ1+SCS/22.6

Datum 06.Apr.2016 parts list = PARTS 4 / 14


Bearb. MSC
1216742 +

Gepr. Bl. 187


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Pos. Stück SCHOTTEL Bezeichnung Denomination Typen Nummer Lieferant Seite


Pos. piece IDNR Type NO.: maker Page

=AZ1+SCS­4K1 1 1150432 Haltebügel zu MY clip PYCM 14S OMRON =AZ1+SCS/22.6


=AZ1+SCS­4K1 1 1150435 Sockelbrücke throwover relay PYDM­14SB OMRON =AZ1+SCS/22.6
=AZ1+SCS­4K2 1 1151646 Relais relay MY2 IN1 24V DC OMRON =AZ1+SCS/22.7
=AZ1+SCS­4K2 1 1151647 Stecksockel plug socket PYF 08S OMRON =AZ1+SCS/22.7
=AZ1+SCS­4K2 1 1151648 Haltebügel zu MY clip PYCM 08S OMRON =AZ1+SCS/22.7
=AZ1+SCS­4K2 1 1151649 Sockelbrücke throwover relay PYDM­08SB OMRON =AZ1+SCS/22.7
=AZ1+SCS­X4.K6 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/22.8
=AZ1+SCS­X4.K7 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/24.4
=AZ1+SCS­X42 5 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ1+SCS/26.1
=AZ1+SCS­X42 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ1+SCS/26.1
=AZ1+SCS­X42 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ1+SCS/26.1
=AZ1+SCS­X42 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ1+SCS/26.1
=AZ1+SCS­X42 1 1121725 Doppelklemme ZDK 2,5/1,5 terminal ZDK 2,5/1,5 ZDK 2,5/1,5 Weidmüller =AZ1+SCS/26.1
=AZ1+SCS­4R1 1 1093148 Widerstand 120 Ohm 35 Watt resistor 12OHM 35WATT =AZ1+SCS/26.3
=AZ1+SCS­4A3 1 1115903 Motoransteuerung amplifier MSV 1.0 SPEEDRONIC SCHOTTEL =AZ1+SCS/26.3
=AZ1+SCS­4K5 1 1151646 Relais relay MY2 IN1 24V DC OMRON =AZ1+SCS/26.7
=AZ1+SCS­4K5 1 1151647 Stecksockel plug socket PYF 08S OMRON =AZ1+SCS/26.7
=AZ1+SCS­4K5 1 1151648 Haltebügel zu MY clip PYCM 08S OMRON =AZ1+SCS/26.7
=AZ1+SCS­4K5 1 1151649 Sockelbrücke throwover relay PYDM­08SB OMRON =AZ1+SCS/26.7
=AZ1+SCS­X4.K11 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/26.8
=AZ1+SCS­X4.K10 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/26.9
=AZ1+SCS­5A1 1 1144745 Frequenz Messumformer frequency transducer DZE 4 SCHOTTEL =AZ1+SCS/27.0
=AZ1+SCS­X51 2 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ1+SCS/27.1
=AZ1+SCS­X51 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ1+SCS/27.1
=AZ1+SCS­X51 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ1+SCS/27.1
=AZ1+SCS­X51 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ1+SCS/27.1
=AZ1+SCS­X4.K9 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/27.3
=AZ1+SCS­X54 3 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ1+SCS/27.5
=AZ1+SCS­X54 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ1+SCS/27.5
=AZ1+SCS­X54 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ1+SCS/27.5
=AZ1+SCS­X54 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ1+SCS/27.5
=AZ1+SCS­X52 4 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ1+SCS/28.1
=AZ1+SCS­X52 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ1+SCS/28.1
=AZ1+SCS­X52 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ1+SCS/28.1
=AZ1+SCS­X52 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ1+SCS/28.1
=AZ1+SCS­X4.K12 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/28.6
=AZ1+SCS­X3.K12 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/28.7
=AZ1+SCS­9A4 1 1131850 Spannungswandler für CP­Anzeige Power supply for CP­Indicator 24 V DC / +­12V Ingenieurbüro OTT =AZ1+SCS/29.1
=AZ1+SCS­X94 5 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ1+SCS/29.6
=AZ1+SCS­X94 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ1+SCS/29.6
=AZ1+SCS­X94 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ1+SCS/29.6
=AZ1+SCS­X94 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ1+SCS/29.6
=AZ1+SCS­9A1 1 1168413 DCM CP control DCM CP control DCM CP 1BUS SYSTEM GESAS =AZ1+SCS/30.1
=AZ1+SCS­9A2 1 1168411 DPV DPV DPV 1BUS SYSTEM GESAS =AZ1+SCS/30.3
=AZ1+SCS­9K1 1 1150424 Relais relay MY4 IN1 24V DC OMRON =AZ1+SCS/30.7

Datum 06.Apr.2016 parts list = PARTS 5 / 14


Bearb. MSC
1216742 +

Gepr. Bl. 188


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Pos. Stück SCHOTTEL Bezeichnung Denomination Typen Nummer Lieferant Seite


Pos. piece IDNR Type NO.: maker Page

=AZ1+SCS­9K1 1 1150430 Stecksockel plug socket PYF 14S OMRON =AZ1+SCS/30.7


=AZ1+SCS­9K1 1 1150432 Haltebügel zu MY clip PYCM 14S OMRON =AZ1+SCS/30.7
=AZ1+SCS­9K1 1 1150435 Sockelbrücke throwover relay PYDM­14SB OMRON =AZ1+SCS/30.7
=AZ1+SCS­9K2 1 1151646 Relais relay MY2 IN1 24V DC OMRON =AZ1+SCS/30.8
=AZ1+SCS­9K2 1 1151647 Stecksockel plug socket PYF 08S OMRON =AZ1+SCS/30.8
=AZ1+SCS­9K2 1 1151648 Haltebügel zu MY clip PYCM 08S OMRON =AZ1+SCS/30.8
=AZ1+SCS­9K2 1 1151649 Sockelbrücke throwover relay PYDM­08SB OMRON =AZ1+SCS/30.8
=AZ1+SCS­X4.K13 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/30.9
=AZ1+SCS­9K6 1 1150425 Relais, Kipp throwover relay MY2K 24VDC OMRON =AZ1+SCS/33.1
=AZ1+SCS­9K6 1 1150430 Stecksockel plug socket PYF 14S OMRON =AZ1+SCS/33.1
=AZ1+SCS­9K6 1 1150432 Haltebügel zu MY clip PYCM 14S OMRON =AZ1+SCS/33.1
=AZ1+SCS­9K6 1 1150435 Sockelbrücke throwover relay PYDM­14SB OMRON =AZ1+SCS/33.1
=AZ1+SCS­9K6 1 1047533 Diode diode 1 N 4007 Motorola =AZ1+SCS/33.2
=AZ1+SCS­X4.K14 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/33.5
=AZ1+SCS­X92 3 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ1+SCS/36.1
=AZ1+SCS­X92 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ1+SCS/36.1
=AZ1+SCS­X92 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ1+SCS/36.1
=AZ1+SCS­X92 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ1+SCS/36.1
=AZ1+SCS­9R1 1 1093148 Widerstand 120 Ohm 35 Watt resistor 12OHM 35WATT =AZ1+SCS/36.4
=AZ1+SCS­9A3 1 1115903 Motoransteuerung amplifier MSV 1.0 SPEEDRONIC SCHOTTEL =AZ1+SCS/36.5
=AZ1+SCS­9K3 1 1151646 Relais relay MY2 IN1 24V DC OMRON =AZ1+SCS/37.5
=AZ1+SCS­9K3 1 1151647 Stecksockel plug socket PYF 08S OMRON =AZ1+SCS/37.5
=AZ1+SCS­9K3 1 1151648 Haltebügel zu MY clip PYCM 08S OMRON =AZ1+SCS/37.5
=AZ1+SCS­9K3 1 1151649 Sockelbrücke throwover relay PYDM­08SB OMRON =AZ1+SCS/37.5
=AZ1+SCS­9K4 1 1151646 Relais relay MY2 IN1 24V DC OMRON =AZ1+SCS/37.7
=AZ1+SCS­9K4 1 1151647 Stecksockel plug socket PYF 08S OMRON =AZ1+SCS/37.7
=AZ1+SCS­9K4 1 1151648 Haltebügel zu MY clip PYCM 08S OMRON =AZ1+SCS/37.7
=AZ1+SCS­9K4 1 1151649 Sockelbrücke throwover relay PYDM­08SB OMRON =AZ1+SCS/37.7
=AZ1+SCS­9K5 1 1151646 Relais relay MY2 IN1 24V DC OMRON =AZ1+SCS/37.8
=AZ1+SCS­9K5 1 1151647 Stecksockel plug socket PYF 08S OMRON =AZ1+SCS/37.8
=AZ1+SCS­9K5 1 1151648 Haltebügel zu MY clip PYCM 08S OMRON =AZ1+SCS/37.8
=AZ1+SCS­9K5 1 1151649 Sockelbrücke throwover relay PYDM­08SB OMRON =AZ1+SCS/37.8
=AZ1+SCS­9V1 1 1126292 Diodenklemme diode terminal ZDK 2.5/1.5/D/2 Weidmüller =AZ1+SCS/38.3
=AZ1+SCS­X4.K15 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/38.3
=AZ1+SCS­A81 1 1167526 DCM EXTERNE SYSTEME DCM EXTERNE SYSTEME DCM EXTERNESYSTEME 1BUS SYSTEM GESAS =AZ1+SCS/39.1
=AZ1+SCS­X4.K8 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/39.7
=AZ1+SCS­A83 1 1148645 Trennverstärker Programmierbar galvanic isolated output MAZ DC / DC SELECT Weidmüller =AZ1+SCS/41.1
=AZ1+SCS­X5.K1 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ1+SCS/43.2
=AZ1+SCS­X5 2 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ1+SCS/46.1
=AZ1+SCS­X5 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ1+SCS/46.1
=AZ1+SCS­X5 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ1+SCS/46.1
=AZ1+SCS­X5 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ1+SCS/46.1
=AZ1+SCS­3A2 1 1148645 Trennverstärker Programmierbar galvanic isolated output MAZ DC / DC SELECT Weidmüller =AZ1+SCS/47.5
=AZ1+SCS­X8 2 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ1+SCS/48.2
=AZ1+SCS­X8 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ1+SCS/48.2

Datum 06.Apr.2016 parts list = PARTS 6 / 14


Bearb. MSC
1216742 +

Gepr. Bl. 189


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Pos. Stück SCHOTTEL Bezeichnung Denomination Typen Nummer Lieferant Seite


Pos. piece IDNR Type NO.: maker Page

=AZ1+SCS­X8 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ1+SCS/48.2


=AZ1+SCS­X8 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ1+SCS/48.2
=AZ1+SCS­SCHRANK 1 1100501 Schaltschrank 1000x1000x300 switch box AE1110 Rittal­Werk =AZ1+SCS/51.1
=AZ1+SCS­FEST 2 1135768 Türfeststeller switch box door holder 2519.000 Rittal­Werk =AZ1+SCS/51.1
=AZ1+SCS­KANAL 2 1126577 Verdrahtungskanal 25x75 wiring duct BVK­DR 25X75 BAUKULIT =AZ1+SCS/51.1
=AZ1+SCS­KANAL 3 1126579 Verdrahtungskanal 50x75 wiring duct BVK­DR 50X75 BAUKULIT =AZ1+SCS/51.1
=AZ1+SCS­KANAL 1 1126580 Verdrahtungskanal 75x75 wiring duct BVK­DR 75X75 BAUKULIT =AZ1+SCS/51.1
=AZ1+SCS­KANAL 1 1126581 Verdrahtungskanal 100x75 wiring duct BVD­DR 100X75 BAUKULIT =AZ1+SCS/51.1
=AZ1+SCS­SCHIENE 4 1085605 Tragschiene supporting bar TS35X15 Weidmüller =AZ1+SCS/51.1
=AZ1+SCS­END 4 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ1+SCS/51.1
=AZ1+SCS­FLAN 2 1161919 Kabeleinführungsflansch switch box cable entre Rittal­Werk =AZ1+SCS/51.1
=AZ1+MDP­A1 1 1168807 Bedienpanel  CP PS control panel CP PS FSP­CP PS BRIDGE SRP GESAS =AZ1+MDP/2.0
=AZ1+MDP­A1 1 1171890 Platine gebohrt panel drilled Halmer =AZ1+MDP/2.0
=AZ1+MDP­A1 1 1170943 Montageplatte MAIN mounted plate main Montageplatten =AZ1+MDP/2.0
=AZ1+MDP­A1 8 1025675 Sechskantmutter M4 nut DIN 934 M4 A4­80 DIN =AZ1+MDP/2.0
=AZ1+MDP­A1 8 1066247 Federscheibe 4,2 SCHOTTEL =AZ1+MDP/2.0
=AZ1+MDP­A1 8 1130139 Scheibe 4,3 disc B 4,3 DIN 125 A2 DIN =AZ1+MDP/2.0
=AZ1+MDP­A1 1.20 1101795 Geflechtschlauch NS 29 Hellermann =AZ1+MDP/2.0
=AZ1+MDP­A1 1 1171571 Winkel Kabelbefestigung groß angle cable fixing Halmer =AZ1+MDP/2.0
=AZ1+MDP­AX1 1 1169693 Uebergabeelement X1 control panel interface module X1 Weidmüller =AZ1+MDP/2.0
=AZ1+MDP­AX1 1 1169698 Kabelsatz X1 control panel cable set X1 Weidmüller =AZ1+MDP/2.0
=AZ1+MDP­AX2 1 1169694 Uebergabeelement X2 control panel interface module X2 Weidmüller =AZ1+MDP/4.0
=AZ1+MDP­AX2 1 1169699 Kabelsatz X2 control panel cable set X2 Weidmüller =AZ1+MDP/4.0
=AZ1+MDP­AX4 1 1169696 Uebergabeelement X4 control panel interface module X4 Weidmüller =AZ1+MDP/5.0
=AZ1+MDP­AX4 1 1169703 Kabelsatz X4 control panel cable set X4 Weidmüller =AZ1+MDP/5.0
=AZ1+MDP­AX5 1 1169850 Uebergabeelement X5 control panel interface module X5 Weidmüller =AZ1+MDP/6.0
=AZ1+MDP­AX5 1 1169704 Kabelsatz X5 control panel cable set X5 Weidmüller =AZ1+MDP/6.0
=AZ1+MDP­AX3 1 1169695 Uebergabeelement X3 control panel interface module X3 Weidmüller =AZ1+MDP/8.0
=AZ1+MDP­AX3 1 1169700 Kabelsatz X3 control panel cable set X3 Weidmüller =AZ1+MDP/8.0
=AZ1+MDP­A2 1 1171150 Copilot Standard CP 1BUS Copilot Standard CP 1BUS 1XCAN RPM 1XCAN 360° 1XEND Stork ­ Kwant =AZ1+MDP/9.0
=AZ1+MDP­A2 1 1169701 Kabelsatz X3.1 control panel cable set X3.1 Weidmüller =AZ1+MDP/9.0
=AZ1+MDP­P41 1 1155994 Schubrichtungsanzeige thrust direction indicator CAN   S/G   H/G  BELEUCHTET Dr. Horn =AZ1+MDP/10.0
=AZ1+MDP­AX9 1 1169697 Uebergabeelement X9 control panel interface module X9 Weidmüller =AZ1+MDP/10.0
=AZ1+MDP­AX9 1 1169705 Kabelsatz X91 Anzeige Azimut/RPM cable set X91 Weidmüller =AZ1+MDP/10.0
=AZ1+MDP­AX9 1 1169706 Kabelsatz X92 Anzeige Pitch/Power cable set X92 Weidmüller =AZ1+MDP/10.0
=AZ1+MDP­P51 1 1156004 Drehzahlanzeige sw/gl speed indicator EAD96X96 S5­40 004 B O A Dr. Horn =AZ1+MDP/10.4
=AZ1+MDP­P91 1 1156000 CP Anzeige SRP pitch indicator EAD96X96 S2­40 001 C 0 A Dr. Horn =AZ1+MDP/10.7
=AZ1+EGR­4A3 0 1156410 BEFESTIGUNGSWINKEL holder for 1 indicator BEFESTIGUNGSWINKEL Dr. Horn =AZ1+EGR/2.0
=AZ1+EGR­4A3 0 1156514 Schubrichtungsanzeige kompl. IP 56 thrust dir. indicator compl. IP 56 ANZEIGE MIT ABDECKUNG Dr. Horn =AZ1+EGR/2.0
=AZ1+EGR­4B1 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ1+EGR/2.3
=AZ1+EGR­9A3 0 1173893 Pitchanzeige kompl. IP 56 Pitch indicator compl. IP 56 ANZEIGE MIT ABDECKUNG Dr. Horn =AZ1+EGR/2.4
=AZ1+EGR­9A3 0 1156514 Schubrichtungsanzeige kompl. IP 56 thrust dir. indicator compl. IP 56 ANZEIGE MIT ABDECKUNG Dr. Horn =AZ1+EGR/2.4
=AZ1+EGR­9A3­9A3 1 1156000 CP Anzeige SRP pitch indicator EAD96X96 S2­40 001 C 0 A Dr. Horn =AZ1+EGR/2.5
=AZ1+EGR­5A3 0 1174645 Drehzahlanzeige kompl. IP 56 RPM indicator compl. IP 56 ANZEIGE MIT ABDECKUNG 0­300 Dr. Horn =AZ1+EGR/2.7
=AZ1+EGR­5A3 0 1156514 Schubrichtungsanzeige kompl. IP 56 thrust dir. indicator compl. IP 56 ANZEIGE MIT ABDECKUNG Dr. Horn =AZ1+EGR/2.7

Datum 06.Apr.2016 parts list = PARTS 7 / 14


Bearb. MSC
1216742 +

Gepr. Bl. 190


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Pos. Stück SCHOTTEL Bezeichnung Denomination Typen Nummer Lieferant Seite


Pos. piece IDNR Type NO.: maker Page

=AZ1+CLU­5Y1 1 KUPPLUNG im Kupplungslieferumfang extend of delivery, clutch SCHOTTEL =AZ1+CLU/2.2


=AZ1+CLU­5Y2 1 KUPPLUNG im Kupplungslieferumfang extend of delivery, clutch SCHOTTEL =AZ1+CLU/2.3
=AZ1+CLU­5S1 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ1+CLU/2.4
=AZ1+CLU­5S2 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ1+CLU/2.6
=AZ1+SRP­2S10 1 SRP in Antriebs Stückliste in propulsor parts list SCHOTTEL =AZ1+SRP/2.1
=AZ1+SRP­2S11 1 SRP in Antriebs Stückliste in propulsor parts list SCHOTTEL =AZ1+SRP/2.2
=AZ1+SRP­2S12 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ1+SRP/2.3
=AZ1+SRP­2S13 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ1+SRP/2.4
=AZ1+SRP­2S14 1 SRP in Antriebs Stückliste in propulsor parts list SCHOTTEL =AZ1+SRP/2.5
=AZ1+SRP­2S15 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ1+SRP/2.6
=AZ1+SRP­2S16 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ1+SRP/2.7
=AZ1+SRP­X2 1 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ1+SRP/2.8
=AZ1+SRP­2S21 1 SRP in Antriebs Stückliste in propulsor parts list SCHOTTEL =AZ1+SRP/3.0
=AZ1+SRP­2S31 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ1+SRP/3.5
=AZ1+SRP­9Y1 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ1+SRP/3.7
=AZ1+SRP­5B1 1 SRP in Antriebs Stückliste in propulsor parts list SCHOTTEL =AZ1+SRP/4.7
=AZ1+SRP­9A4 1 AUFTRAG in Auftragsstückliste in order parts list SCHOTTEL =AZ1+SRP/5.1
=AZ1+HYCP­M1 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ1+HYCP/2.7
=AZ2+SCS­S1 1 1121638 Hauptschalter 32A main switch 32A 3LD2230­OTK01 Siemens =AZ2+SCS/2.1
=AZ2+SCS­S1 2 1121639 Klemmenabdeckung für 1121638 cover plate for 1121638 3LD9221­1A Siemens =AZ2+SCS/2.1
=AZ2+SCS­X1 5 1121723 Durchgangsklemme ZDU 2,5 terminal ZDU 2,5 ZDU 2,5 Weidmüller =AZ2+SCS/2.1
=AZ2+SCS­X1 2 1121724 Abschlußplatte für 1121723 cover plate for 1121723 ZAP Weidmüller =AZ2+SCS/2.1
=AZ2+SCS­X1 2 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ2+SCS/2.1
=AZ2+SCS­X1 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ2+SCS/2.1
=AZ2+SCS­X1 2 1126365 PE­Klemme ZDU 2,5 terminal PE­2,5 Weidmüller =AZ2+SCS/2.1
=AZ2+SCS­X1 1 1126367 Schutzleiterklemme 16mm² earth terminal 16mm² ZPE 16 Weidmüller =AZ2+SCS/2.1
=AZ2+SCS­X1 1 1103169 Einbausteckdose 220V socket BBC =AZ2+SCS/2.5
=AZ2+SCS­F1 1 1172740 Leistungsschalter 7 ­10A / M/T getrennt power switch  7 ­ 10A 3RV11 21 1JA10 Siemens =AZ2+SCS/2.6
=AZ2+SCS­F1 1 1121644 Hilfsschalter Leistungsschalter switch for power switch 3RV1901­1E Siemens =AZ2+SCS/2.6
=AZ2+SCS­A1 1 1126105 Netzgerät power supply 3X400­500VAC/24VDC/20F Phoenix Contact =AZ2+SCS/2.8
=AZ2+SCS­F2 1 1121651 Leistungsschalter 1,8­2,5 power switch 1,8­2,5A 3RV10 11­1CA10 Siemens =AZ2+SCS/2.9
=AZ2+SCS­A2 1 1153340 Netzgerät  24V DC / 24V DC / 10A DC DC converter 2320092 Phoenix Contact =AZ2+SCS/3.1
=AZ2+SCS­S2 1 1121638 Hauptschalter 32A main switch 32A 3LD2230­OTK01 Siemens =AZ2+SCS/3.2
=AZ2+SCS­S2 2 1121639 Klemmenabdeckung für 1121638 cover plate for 1121638 3LD9221­1A Siemens =AZ2+SCS/3.2
=AZ2+SCS­X2 2 1121721 Durchgangsklemme ZDU 6 terminal ZDU 6 ZDU 6 Weidmüller =AZ2+SCS/3.2
=AZ2+SCS­X2 1 1121722 Abschlußplatte für 1121721 cover plate for 1121721 ZAP Weidmüller =AZ2+SCS/3.2
=AZ2+SCS­X2 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ2+SCS/3.2
=AZ2+SCS­X2 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ2+SCS/3.2
=AZ2+SCS­X2 2 1121723 Durchgangsklemme ZDU 2,5 terminal ZDU 2,5 ZDU 2,5 Weidmüller =AZ2+SCS/3.2
=AZ2+SCS­X2 1 1121724 Abschlußplatte für 1121723 cover plate for 1121723 ZAP Weidmüller =AZ2+SCS/3.2
=AZ2+SCS­X12 9 1121725 Doppelklemme ZDK 2,5/1,5 terminal ZDK 2,5/1,5 ZDK 2,5/1,5 Weidmüller =AZ2+SCS/3.4
=AZ2+SCS­X12 4 1121721 Durchgangsklemme ZDU 6 terminal ZDU 6 ZDU 6 Weidmüller =AZ2+SCS/3.4
=AZ2+SCS­X12 1 1121722 Abschlußplatte für 1121721 cover plate for 1121721 ZAP Weidmüller =AZ2+SCS/3.4
=AZ2+SCS­X12 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ2+SCS/3.4
=AZ2+SCS­X12 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ2+SCS/3.4

Datum 06.Apr.2016 parts list = PARTS 8 / 14


Bearb. MSC
1216742 +

Gepr. Bl. 191


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Pos. Stück SCHOTTEL Bezeichnung Denomination Typen Nummer Lieferant Seite


Pos. piece IDNR Type NO.: maker Page

=AZ2+SCS­X12 9 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ2+SCS/3.4


=AZ2+SCS­X12 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ2+SCS/3.4
=AZ2+SCS­1F1 1 1109851 Sicherungsautom, 1pol B6A automatic fuse 24049 Merlin Gerin =AZ2+SCS/4.0
=AZ2+SCS­1F2 1 1109851 Sicherungsautom, 1pol B6A automatic fuse 24049 Merlin Gerin =AZ2+SCS/4.1
=AZ2+SCS­1F3 1 1109851 Sicherungsautom, 1pol B6A automatic fuse 24049 Merlin Gerin =AZ2+SCS/4.3
=AZ2+SCS­1F4 1 1109851 Sicherungsautom, 1pol B6A automatic fuse 24049 Merlin Gerin =AZ2+SCS/4.4
=AZ2+SCS­1F5 1 1109851 Sicherungsautom, 1pol B6A automatic fuse 24049 Merlin Gerin =AZ2+SCS/4.5
=AZ2+SCS­1F6 1 1109851 Sicherungsautom, 1pol B6A automatic fuse 24049 Merlin Gerin =AZ2+SCS/4.6
=AZ2+SCS­M1 1 1196880 =AZ2+SCS/4.6
=AZ2+SCS­M1 1 1196881 =AZ2+SCS/4.6
=AZ2+SCS­4F1 1 1109851 Sicherungsautom, 1pol B6A automatic fuse 24049 Merlin Gerin =AZ2+SCS/4.7
=AZ2+SCS­5F1 1 1109851 Sicherungsautom, 1pol B6A automatic fuse 24049 Merlin Gerin =AZ2+SCS/4.8
=AZ2+SCS­9F1 1 1109851 Sicherungsautom, 1pol B6A automatic fuse 24049 Merlin Gerin =AZ2+SCS/4.9
=AZ2+SCS­K1 1 1151646 Relais relay MY2 IN1 24V DC OMRON =AZ2+SCS/5.0
=AZ2+SCS­K1 1 1151647 Stecksockel plug socket PYF 08S OMRON =AZ2+SCS/5.0
=AZ2+SCS­K1 1 1151648 Haltebügel zu MY clip PYCM 08S OMRON =AZ2+SCS/5.0
=AZ2+SCS­K1 1 1151649 Sockelbrücke throwover relay PYDM­08SB OMRON =AZ2+SCS/5.0
=AZ2+SCS­X4.K1 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/5.1
=AZ2+SCS­K2 1 1151646 Relais relay MY2 IN1 24V DC OMRON =AZ2+SCS/5.2
=AZ2+SCS­K2 1 1151647 Stecksockel plug socket PYF 08S OMRON =AZ2+SCS/5.2
=AZ2+SCS­K2 1 1151648 Haltebügel zu MY clip PYCM 08S OMRON =AZ2+SCS/5.2
=AZ2+SCS­K2 1 1151649 Sockelbrücke throwover relay PYDM­08SB OMRON =AZ2+SCS/5.2
=AZ2+SCS­X4.K2 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/5.3
=AZ2+SCS­9K7 1 1141997 Schütz 24V DC relay LC1­D09 BD Telemecanique =AZ2+SCS/5.4
=AZ2+SCS­X4.K16 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/5.5
=AZ2+SCS­X4.K17 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/5.6
=AZ2+SCS­B1 1 1196882 Temperaturschalter temperature switch TRO 60 RÜBSAMEN & HERR =AZ2+SCS/5.8
=AZ2+SCS­X4.K18 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/5.8
=AZ2+SCS­1S1 1 1168996 Schlüsselschalter key switch EAO 14­235.022 Lumitas =AZ2+SCS/6.1
=AZ2+SCS­1K2 1 1150425 Relais, Kipp throwover relay MY2K 24VDC OMRON =AZ2+SCS/6.1
=AZ2+SCS­1K2 1 1150430 Stecksockel plug socket PYF 14S OMRON =AZ2+SCS/6.1
=AZ2+SCS­1K2 1 1150432 Haltebügel zu MY clip PYCM 14S OMRON =AZ2+SCS/6.1
=AZ2+SCS­1K2 1 1150435 Sockelbrücke throwover relay PYDM­14SB OMRON =AZ2+SCS/6.1
=AZ2+SCS­1V1 1 1133067 Diodenklemme doppelt diode terminal ZDK 2.5/1.5/D/6 Weidmüller =AZ2+SCS/6.1
=AZ2+SCS­1V1 0 1126292 Diodenklemme diode terminal ZDK 2.5/1.5/D/2 Weidmüller =AZ2+SCS/6.1
=AZ2+SCS­1K2 1 1047533 Diode diode 1 N 4007 Motorola =AZ2+SCS/6.1
=AZ2+SCS­1H1 1 1168974 Leuchtmelder pilot lamp EAO 14.04.002 Lumitas =AZ2+SCS/6.2
=AZ2+SCS­1H1 1 1168992 Textplatte Front Part EAO 704.609.9 Lumitas =AZ2+SCS/6.2
=AZ2+SCS­1H1 1 1168991 Frontring Front Part EAO 704.600.0 Lumitas =AZ2+SCS/6.2
=AZ2+SCS­1H1 1 1168985 Glühlampe 30V 40mA Bulb EAO 10­1114.1249 Lumitas =AZ2+SCS/6.2
=AZ2+SCS­1H1 1 1168977 Druckhaube Gelb Front Part EAO 704.602.4 Lumitas =AZ2+SCS/6.2
=AZ2+SCS­1V2 1 1133067 Diodenklemme doppelt diode terminal ZDK 2.5/1.5/D/6 Weidmüller =AZ2+SCS/6.4
=AZ2+SCS­1V2 0 1126292 Diodenklemme diode terminal ZDK 2.5/1.5/D/2 Weidmüller =AZ2+SCS/6.4
=AZ2+SCS­1K4 1 1150424 Relais relay MY4 IN1 24V DC OMRON =AZ2+SCS/6.5
=AZ2+SCS­1K4 1 1150430 Stecksockel plug socket PYF 14S OMRON =AZ2+SCS/6.5

Datum 06.Apr.2016 parts list = PARTS 9 / 14


Bearb. MSC
1216742 +

Gepr. Bl. 192


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Pos. Stück SCHOTTEL Bezeichnung Denomination Typen Nummer Lieferant Seite


Pos. piece IDNR Type NO.: maker Page

=AZ2+SCS­1K4 1 1150432 Haltebügel zu MY clip PYCM 14S OMRON =AZ2+SCS/6.5


=AZ2+SCS­1K4 1 1150435 Sockelbrücke throwover relay PYDM­14SB OMRON =AZ2+SCS/6.5
=AZ2+SCS­1K5 1 1166167 Stromstoßrelais inpuls relay 15522 Merlin Gerin =AZ2+SCS/6.7
=AZ2+SCS­X4.K4 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/6.8
=AZ2+SCS­1A1.0 1 1167520 WAGO Fahrstandswahl 1BUS system desk control DIO modul 1 Bus SCHOTTEL =AZ2+SCS/8.1
=AZ2+SCS­1A1.1 0 1167823 Netzfilter feed line filter 750­626 WAGO =AZ2+SCS/8.6
=AZ2+SCS­XC 1 1128985 Übergabeelement connector D­SUB 9 Weidmüller =AZ2+SCS/8.8
=AZ2+SCS­X41 2 1121725 Doppelklemme ZDK 2,5/1,5 terminal ZDK 2,5/1,5 ZDK 2,5/1,5 Weidmüller =AZ2+SCS/10.8
=AZ2+SCS­X41 3 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ2+SCS/10.8
=AZ2+SCS­X41 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ2+SCS/10.8
=AZ2+SCS­X41 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ2+SCS/10.8
=AZ2+SCS­X41 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ2+SCS/10.8
=AZ2+SCS­1A1.2 0 1155226 Digitaleingang 8xDI digital input 8xDI 750­430 WAGO =AZ2+SCS/11.0
=AZ2+SCS­1A1.3 0 1155226 Digitaleingang 8xDI digital input 8xDI 750­430 WAGO =AZ2+SCS/12.0
=AZ2+SCS­1A1.4 0 1155226 Digitaleingang 8xDI digital input 8xDI 750­430 WAGO =AZ2+SCS/13.0
=AZ2+SCS­1A1.5 0 1155228 Digitalausgang 8xDO 0,5A digital output 8xDO 0,5A 750­530 WAGO =AZ2+SCS/14.0
=AZ2+SCS­1K7 1 1150425 Relais, Kipp throwover relay MY2K 24VDC OMRON =AZ2+SCS/14.7
=AZ2+SCS­1K7 1 1150430 Stecksockel plug socket PYF 14S OMRON =AZ2+SCS/14.7
=AZ2+SCS­1K7 1 1150432 Haltebügel zu MY clip PYCM 14S OMRON =AZ2+SCS/14.7
=AZ2+SCS­1K7 1 1150435 Sockelbrücke throwover relay PYDM­14SB OMRON =AZ2+SCS/14.7
=AZ2+SCS­1K7 1 1047533 Diode diode 1 N 4007 Motorola =AZ2+SCS/14.7
=AZ2+SCS­1A1.6 0 1155228 Digitalausgang 8xDO 0,5A digital output 8xDO 0,5A 750­530 WAGO =AZ2+SCS/15.0
=AZ2+SCS­X8.K1 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/15.5
=AZ2+SCS­1K6 1 1151646 Relais relay MY2 IN1 24V DC OMRON =AZ2+SCS/15.7
=AZ2+SCS­1K6 1 1151647 Stecksockel plug socket PYF 08S OMRON =AZ2+SCS/15.7
=AZ2+SCS­1K6 1 1151648 Haltebügel zu MY clip PYCM 08S OMRON =AZ2+SCS/15.7
=AZ2+SCS­1K6 1 1151649 Sockelbrücke throwover relay PYDM­08SB OMRON =AZ2+SCS/15.7
=AZ2+SCS­X4.K3 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/15.8
=AZ2+SCS­1A1.7 0 1155225 Busendklemme bus terminal 750­600 WAGO =AZ2+SCS/15.8
=AZ2+SCS­3A1 1 1167522 DCM RPM control DCM RPM control DCM RPM 1BUS SYSTEM GESAS =AZ2+SCS/16.1
=AZ2+SCS­3K1 1 1150424 Relais relay MY4 IN1 24V DC OMRON =AZ2+SCS/16.5
=AZ2+SCS­3K1 1 1150430 Stecksockel plug socket PYF 14S OMRON =AZ2+SCS/16.5
=AZ2+SCS­3K1 1 1150432 Haltebügel zu MY clip PYCM 14S OMRON =AZ2+SCS/16.5
=AZ2+SCS­3K1 1 1150435 Sockelbrücke throwover relay PYDM­14SB OMRON =AZ2+SCS/16.5
=AZ2+SCS­3K2 1 1150424 Relais relay MY4 IN1 24V DC OMRON =AZ2+SCS/16.6
=AZ2+SCS­3K2 1 1150430 Stecksockel plug socket PYF 14S OMRON =AZ2+SCS/16.6
=AZ2+SCS­3K2 1 1150432 Haltebügel zu MY clip PYCM 14S OMRON =AZ2+SCS/16.6
=AZ2+SCS­3K2 1 1150435 Sockelbrücke throwover relay PYDM­14SB OMRON =AZ2+SCS/16.6
=AZ2+SCS­X4.K5 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/16.7
=AZ2+SCS­X3 6 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ2+SCS/17.1
=AZ2+SCS­X3 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ2+SCS/17.1
=AZ2+SCS­X3 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ2+SCS/17.1
=AZ2+SCS­X3 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ2+SCS/17.1
=AZ2+SCS­3K5 1 1150424 Relais relay MY4 IN1 24V DC OMRON =AZ2+SCS/17.8
=AZ2+SCS­3K5 1 1150430 Stecksockel plug socket PYF 14S OMRON =AZ2+SCS/17.8

Datum 06.Apr.2016 parts list = PARTS 10 / 14


Bearb. MSC
1216742 +

Gepr. Bl. 193


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Pos. Stück SCHOTTEL Bezeichnung Denomination Typen Nummer Lieferant Seite


Pos. piece IDNR Type NO.: maker Page

=AZ2+SCS­3K5 1 1150432 Haltebügel zu MY clip PYCM 14S OMRON =AZ2+SCS/17.8


=AZ2+SCS­3K5 1 1150435 Sockelbrücke throwover relay PYDM­14SB OMRON =AZ2+SCS/17.8
=AZ2+SCS­X91 8 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ2+SCS/18.1
=AZ2+SCS­X91 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ2+SCS/18.1
=AZ2+SCS­X91 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ2+SCS/18.1
=AZ2+SCS­X91 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ2+SCS/18.1
=AZ2+SCS­3A3 1 1148645 Trennverstärker Programmierbar galvanic isolated output MAZ DC / DC SELECT Weidmüller =AZ2+SCS/18.7
=AZ2+SCS­X3.K3 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/19.1
=AZ2+SCS­3A4 1 1172147 Rampengenerator ramp generator 113640000 GESAS =AZ2+SCS/20.1
=AZ2+SCS­X44 5 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ2+SCS/21.3
=AZ2+SCS­X44 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ2+SCS/21.3
=AZ2+SCS­X44 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ2+SCS/21.3
=AZ2+SCS­X44 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ2+SCS/21.3
=AZ2+SCS­4A1 1 1167524 DCM steering DCM steering DCM STEUERUNG 1BUS SYSTEM GESAS =AZ2+SCS/22.1
=AZ2+SCS­4A2 1 1168411 DPV DPV DPV 1BUS SYSTEM GESAS =AZ2+SCS/22.3
=AZ2+SCS­4K1 1 1150424 Relais relay MY4 IN1 24V DC OMRON =AZ2+SCS/22.6
=AZ2+SCS­4K1 1 1150430 Stecksockel plug socket PYF 14S OMRON =AZ2+SCS/22.6
=AZ2+SCS­4K1 1 1150432 Haltebügel zu MY clip PYCM 14S OMRON =AZ2+SCS/22.6
=AZ2+SCS­4K1 1 1150435 Sockelbrücke throwover relay PYDM­14SB OMRON =AZ2+SCS/22.6
=AZ2+SCS­4K2 1 1151646 Relais relay MY2 IN1 24V DC OMRON =AZ2+SCS/22.7
=AZ2+SCS­4K2 1 1151647 Stecksockel plug socket PYF 08S OMRON =AZ2+SCS/22.7
=AZ2+SCS­4K2 1 1151648 Haltebügel zu MY clip PYCM 08S OMRON =AZ2+SCS/22.7
=AZ2+SCS­4K2 1 1151649 Sockelbrücke throwover relay PYDM­08SB OMRON =AZ2+SCS/22.7
=AZ2+SCS­X4.K6 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/22.8
=AZ2+SCS­X4.K7 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/24.4
=AZ2+SCS­X42 5 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ2+SCS/26.1
=AZ2+SCS­X42 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ2+SCS/26.1
=AZ2+SCS­X42 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ2+SCS/26.1
=AZ2+SCS­X42 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ2+SCS/26.1
=AZ2+SCS­X42 1 1121725 Doppelklemme ZDK 2,5/1,5 terminal ZDK 2,5/1,5 ZDK 2,5/1,5 Weidmüller =AZ2+SCS/26.1
=AZ2+SCS­4R1 1 1093148 Widerstand 120 Ohm 35 Watt resistor 12OHM 35WATT =AZ2+SCS/26.3
=AZ2+SCS­4A3 1 1115903 Motoransteuerung amplifier MSV 1.0 SPEEDRONIC SCHOTTEL =AZ2+SCS/26.3
=AZ2+SCS­4K5 1 1151646 Relais relay MY2 IN1 24V DC OMRON =AZ2+SCS/26.7
=AZ2+SCS­4K5 1 1151647 Stecksockel plug socket PYF 08S OMRON =AZ2+SCS/26.7
=AZ2+SCS­4K5 1 1151648 Haltebügel zu MY clip PYCM 08S OMRON =AZ2+SCS/26.7
=AZ2+SCS­4K5 1 1151649 Sockelbrücke throwover relay PYDM­08SB OMRON =AZ2+SCS/26.7
=AZ2+SCS­X4.K11 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/26.8
=AZ2+SCS­X4.K10 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/26.9
=AZ2+SCS­5A1 1 1144745 Frequenz Messumformer frequency transducer DZE 4 SCHOTTEL =AZ2+SCS/27.0
=AZ2+SCS­X51 2 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ2+SCS/27.1
=AZ2+SCS­X51 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ2+SCS/27.1
=AZ2+SCS­X51 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ2+SCS/27.1
=AZ2+SCS­X51 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ2+SCS/27.1
=AZ2+SCS­X4.K9 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/27.3
=AZ2+SCS­X54 3 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ2+SCS/27.5

Datum 06.Apr.2016 parts list = PARTS 11 / 14


Bearb. MSC
1216742 +

Gepr. Bl. 194


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Pos. Stück SCHOTTEL Bezeichnung Denomination Typen Nummer Lieferant Seite


Pos. piece IDNR Type NO.: maker Page

=AZ2+SCS­X54 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ2+SCS/27.5


=AZ2+SCS­X54 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ2+SCS/27.5
=AZ2+SCS­X54 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ2+SCS/27.5
=AZ2+SCS­X52 4 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ2+SCS/28.1
=AZ2+SCS­X52 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ2+SCS/28.1
=AZ2+SCS­X52 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ2+SCS/28.1
=AZ2+SCS­X52 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ2+SCS/28.1
=AZ2+SCS­X4.K12 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/28.6
=AZ2+SCS­X3.K12 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/28.7
=AZ2+SCS­9A4 1 1131850 Spannungswandler für CP­Anzeige Power supply for CP­Indicator 24 V DC / +­12V Ingenieurbüro OTT =AZ2+SCS/29.1
=AZ2+SCS­X94 5 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ2+SCS/29.6
=AZ2+SCS­X94 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ2+SCS/29.6
=AZ2+SCS­X94 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ2+SCS/29.6
=AZ2+SCS­X94 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ2+SCS/29.6
=AZ2+SCS­9A1 1 1168413 DCM CP control DCM CP control DCM CP 1BUS SYSTEM GESAS =AZ2+SCS/30.1
=AZ2+SCS­9A2 1 1168411 DPV DPV DPV 1BUS SYSTEM GESAS =AZ2+SCS/30.3
=AZ2+SCS­9K1 1 1150424 Relais relay MY4 IN1 24V DC OMRON =AZ2+SCS/30.7
=AZ2+SCS­9K1 1 1150430 Stecksockel plug socket PYF 14S OMRON =AZ2+SCS/30.7
=AZ2+SCS­9K1 1 1150432 Haltebügel zu MY clip PYCM 14S OMRON =AZ2+SCS/30.7
=AZ2+SCS­9K1 1 1150435 Sockelbrücke throwover relay PYDM­14SB OMRON =AZ2+SCS/30.7
=AZ2+SCS­9K2 1 1151646 Relais relay MY2 IN1 24V DC OMRON =AZ2+SCS/30.8
=AZ2+SCS­9K2 1 1151647 Stecksockel plug socket PYF 08S OMRON =AZ2+SCS/30.8
=AZ2+SCS­9K2 1 1151648 Haltebügel zu MY clip PYCM 08S OMRON =AZ2+SCS/30.8
=AZ2+SCS­9K2 1 1151649 Sockelbrücke throwover relay PYDM­08SB OMRON =AZ2+SCS/30.8
=AZ2+SCS­X4.K13 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/30.9
=AZ2+SCS­9K6 1 1150425 Relais, Kipp throwover relay MY2K 24VDC OMRON =AZ2+SCS/33.1
=AZ2+SCS­9K6 1 1150430 Stecksockel plug socket PYF 14S OMRON =AZ2+SCS/33.1
=AZ2+SCS­9K6 1 1150432 Haltebügel zu MY clip PYCM 14S OMRON =AZ2+SCS/33.1
=AZ2+SCS­9K6 1 1150435 Sockelbrücke throwover relay PYDM­14SB OMRON =AZ2+SCS/33.1
=AZ2+SCS­9K6 1 1047533 Diode diode 1 N 4007 Motorola =AZ2+SCS/33.2
=AZ2+SCS­X4.K14 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/33.5
=AZ2+SCS­X92 3 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ2+SCS/36.1
=AZ2+SCS­X92 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ2+SCS/36.1
=AZ2+SCS­X92 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ2+SCS/36.1
=AZ2+SCS­X92 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ2+SCS/36.1
=AZ2+SCS­9R1 1 1093148 Widerstand 120 Ohm 35 Watt resistor 12OHM 35WATT =AZ2+SCS/36.4
=AZ2+SCS­9A3 1 1115903 Motoransteuerung amplifier MSV 1.0 SPEEDRONIC SCHOTTEL =AZ2+SCS/36.5
=AZ2+SCS­9K3 1 1151646 Relais relay MY2 IN1 24V DC OMRON =AZ2+SCS/37.5
=AZ2+SCS­9K3 1 1151647 Stecksockel plug socket PYF 08S OMRON =AZ2+SCS/37.5
=AZ2+SCS­9K3 1 1151648 Haltebügel zu MY clip PYCM 08S OMRON =AZ2+SCS/37.5
=AZ2+SCS­9K3 1 1151649 Sockelbrücke throwover relay PYDM­08SB OMRON =AZ2+SCS/37.5
=AZ2+SCS­9K4 1 1151646 Relais relay MY2 IN1 24V DC OMRON =AZ2+SCS/37.7
=AZ2+SCS­9K4 1 1151647 Stecksockel plug socket PYF 08S OMRON =AZ2+SCS/37.7
=AZ2+SCS­9K4 1 1151648 Haltebügel zu MY clip PYCM 08S OMRON =AZ2+SCS/37.7
=AZ2+SCS­9K4 1 1151649 Sockelbrücke throwover relay PYDM­08SB OMRON =AZ2+SCS/37.7

Datum 06.Apr.2016 parts list = PARTS 12 / 14


Bearb. MSC
1216742 +

Gepr. Bl. 195


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Pos. Stück SCHOTTEL Bezeichnung Denomination Typen Nummer Lieferant Seite


Pos. piece IDNR Type NO.: maker Page

=AZ2+SCS­9K5 1 1151646 Relais relay MY2 IN1 24V DC OMRON =AZ2+SCS/37.8


=AZ2+SCS­9K5 1 1151647 Stecksockel plug socket PYF 08S OMRON =AZ2+SCS/37.8
=AZ2+SCS­9K5 1 1151648 Haltebügel zu MY clip PYCM 08S OMRON =AZ2+SCS/37.8
=AZ2+SCS­9K5 1 1151649 Sockelbrücke throwover relay PYDM­08SB OMRON =AZ2+SCS/37.8
=AZ2+SCS­9V1 1 1126292 Diodenklemme diode terminal ZDK 2.5/1.5/D/2 Weidmüller =AZ2+SCS/38.3
=AZ2+SCS­X4.K15 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/38.3
=AZ2+SCS­A81 1 1167526 DCM EXTERNE SYSTEME DCM EXTERNE SYSTEME DCM EXTERNESYSTEME 1BUS SYSTEM GESAS =AZ2+SCS/39.1
=AZ2+SCS­X4.K8 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/39.7
=AZ2+SCS­A83 1 1148645 Trennverstärker Programmierbar galvanic isolated output MAZ DC / DC SELECT Weidmüller =AZ2+SCS/41.1
=AZ2+SCS­X5.K1 1 1170790 Relais relay G2RV­SL500­24VDC OMRON =AZ2+SCS/43.2
=AZ2+SCS­X5 2 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ2+SCS/46.1
=AZ2+SCS­X5 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ2+SCS/46.1
=AZ2+SCS­X5 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ2+SCS/46.1
=AZ2+SCS­X5 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ2+SCS/46.1
=AZ2+SCS­3A2 1 1148645 Trennverstärker Programmierbar galvanic isolated output MAZ DC / DC SELECT Weidmüller =AZ2+SCS/47.5
=AZ2+SCS­X8 2 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ2+SCS/48.2
=AZ2+SCS­X8 1 1161798 Abschlußplatte für 1161797 cover plate for 1161797 ZAP Weidmüller =AZ2+SCS/48.2
=AZ2+SCS­X8 1 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ2+SCS/48.2
=AZ2+SCS­X8 1 1069768 Gruppenbezeichnung name plate for terminal row WGB 5 Weidmüller =AZ2+SCS/48.2
=AZ2+SCS­SCHRANK 1 1100501 Schaltschrank 1000x1000x300 switch box AE1110 Rittal­Werk =AZ2+SCS/51.1
=AZ2+SCS­FEST 2 1135768 Türfeststeller switch box door holder 2519.000 Rittal­Werk =AZ2+SCS/51.1
=AZ2+SCS­KANAL 2 1126577 Verdrahtungskanal 25x75 wiring duct BVK­DR 25X75 BAUKULIT =AZ2+SCS/51.1
=AZ2+SCS­KANAL 3 1126579 Verdrahtungskanal 50x75 wiring duct BVK­DR 50X75 BAUKULIT =AZ2+SCS/51.1
=AZ2+SCS­KANAL 1 1126580 Verdrahtungskanal 75x75 wiring duct BVK­DR 75X75 BAUKULIT =AZ2+SCS/51.1
=AZ2+SCS­KANAL 1 1126581 Verdrahtungskanal 100x75 wiring duct BVD­DR 100X75 BAUKULIT =AZ2+SCS/51.1
=AZ2+SCS­SCHIENE 4 1085605 Tragschiene supporting bar TS35X15 Weidmüller =AZ2+SCS/51.1
=AZ2+SCS­END 4 1126844 Endwinkel safety angle ZEW 35/2 Weidmüller =AZ2+SCS/51.1
=AZ2+SCS­FLAN 2 1161919 Kabeleinführungsflansch switch box cable entre Rittal­Werk =AZ2+SCS/51.1
=AZ2+MDP­A1 1 1168808 Bedienpanel  CP STP control panel CP STP FSP­CP STB BRIDGE SRP GESAS =AZ2+MDP/2.0
=AZ2+MDP­A1 1 1171890 Platine gebohrt panel drilled Halmer =AZ2+MDP/2.0
=AZ2+MDP­A1 1 1170943 Montageplatte MAIN mounted plate main Montageplatten =AZ2+MDP/2.0
=AZ2+MDP­A1 8 1025675 Sechskantmutter M4 nut DIN 934 M4 A4­80 DIN =AZ2+MDP/2.0
=AZ2+MDP­A1 8 1066247 Federscheibe 4,2 SCHOTTEL =AZ2+MDP/2.0
=AZ2+MDP­A1 8 1130139 Scheibe 4,3 disc B 4,3 DIN 125 A2 DIN =AZ2+MDP/2.0
=AZ2+MDP­A1 1.20 1101795 Geflechtschlauch NS 29 Hellermann =AZ2+MDP/2.0
=AZ2+MDP­A1 1 1171571 Winkel Kabelbefestigung groß angle cable fixing Halmer =AZ2+MDP/2.0
=AZ2+MDP­AX1 1 1169693 Uebergabeelement X1 control panel interface module X1 Weidmüller =AZ2+MDP/2.0
=AZ2+MDP­AX1 1 1169698 Kabelsatz X1 control panel cable set X1 Weidmüller =AZ2+MDP/2.0
=AZ2+MDP­AX2 1 1169694 Uebergabeelement X2 control panel interface module X2 Weidmüller =AZ2+MDP/4.0
=AZ2+MDP­AX2 1 1169699 Kabelsatz X2 control panel cable set X2 Weidmüller =AZ2+MDP/4.0
=AZ2+MDP­AX3 1 1169695 Uebergabeelement X3 control panel interface module X3 Weidmüller =AZ2+MDP/5.0
=AZ2+MDP­AX3 1 1169700 Kabelsatz X3 control panel cable set X3 Weidmüller =AZ2+MDP/5.0
=AZ2+MDP­AX4 1 1169696 Uebergabeelement X4 control panel interface module X4 Weidmüller =AZ2+MDP/6.0
=AZ2+MDP­AX4 1 1169703 Kabelsatz X4 control panel cable set X4 Weidmüller =AZ2+MDP/6.0
=AZ2+MDP­AX5 1 1169850 Uebergabeelement X5 control panel interface module X5 Weidmüller =AZ2+MDP/7.0

Datum 06.Apr.2016 parts list = PARTS 13 / 14


Bearb. MSC
1216742 +

Gepr. Bl. 196


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Pos. Stück SCHOTTEL Bezeichnung Denomination Typen Nummer Lieferant Seite


Pos. piece IDNR Type NO.: maker Page

=AZ2+MDP­AX5 1 1169704 Kabelsatz X5 control panel cable set X5 Weidmüller =AZ2+MDP/7.0


=AZ2+MDP­A2 1 1171150 Copilot Standard CP 1BUS Copilot Standard CP 1BUS 1XCAN RPM 1XCAN 360° 1XEND Stork ­ Kwant =AZ2+MDP/9.0
=AZ2+MDP­A2 1 1169701 Kabelsatz X3.1 control panel cable set X3.1 Weidmüller =AZ2+MDP/9.0
=AZ2+MDP­P41 1 1155994 Schubrichtungsanzeige thrust direction indicator CAN   S/G   H/G  BELEUCHTET Dr. Horn =AZ2+MDP/10.0
=AZ2+MDP­AX9 1 1169697 Uebergabeelement X9 control panel interface module X9 Weidmüller =AZ2+MDP/10.0
=AZ2+MDP­AX9 1 1169705 Kabelsatz X91 Anzeige Azimut/RPM cable set X91 Weidmüller =AZ2+MDP/10.0
=AZ2+MDP­AX9 1 1169706 Kabelsatz X92 Anzeige Pitch/Power cable set X92 Weidmüller =AZ2+MDP/10.0
=AZ2+MDP­P51 1 1156004 Drehzahlanzeige sw/gl speed indicator EAD96X96 S5­40 004 B O A Dr. Horn =AZ2+MDP/10.4
=AZ2+MDP­P91 1 1156000 CP Anzeige SRP pitch indicator EAD96X96 S2­40 001 C 0 A Dr. Horn =AZ2+MDP/10.7
=AZ2+EGR­4A3 0 1156410 BEFESTIGUNGSWINKEL holder for 1 indicator BEFESTIGUNGSWINKEL Dr. Horn =AZ2+EGR/2.0
=AZ2+EGR­4A3 0 1156514 Schubrichtungsanzeige kompl. IP 56 thrust dir. indicator compl. IP 56 ANZEIGE MIT ABDECKUNG Dr. Horn =AZ2+EGR/2.0
=AZ2+EGR­4B1 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ2+EGR/2.3
=AZ2+EGR­9A3 0 1173893 Pitchanzeige kompl. IP 56 Pitch indicator compl. IP 56 ANZEIGE MIT ABDECKUNG Dr. Horn =AZ2+EGR/2.4
=AZ2+EGR­9A3 0 1156514 Schubrichtungsanzeige kompl. IP 56 thrust dir. indicator compl. IP 56 ANZEIGE MIT ABDECKUNG Dr. Horn =AZ2+EGR/2.4
=AZ2+EGR­9A3­9A3 1 1156000 CP Anzeige SRP pitch indicator EAD96X96 S2­40 001 C 0 A Dr. Horn =AZ2+EGR/2.5
=AZ2+EGR­5A3 0 1174645 Drehzahlanzeige kompl. IP 56 RPM indicator compl. IP 56 ANZEIGE MIT ABDECKUNG 0­300 Dr. Horn =AZ2+EGR/2.7
=AZ2+EGR­5A3 0 1156514 Schubrichtungsanzeige kompl. IP 56 thrust dir. indicator compl. IP 56 ANZEIGE MIT ABDECKUNG Dr. Horn =AZ2+EGR/2.7
=AZ2+CLU­5Y1 1 KUPPLUNG im Kupplungslieferumfang extend of delivery, clutch SCHOTTEL =AZ2+CLU/2.2
=AZ2+CLU­5Y2 1 KUPPLUNG im Kupplungslieferumfang extend of delivery, clutch SCHOTTEL =AZ2+CLU/2.3
=AZ2+CLU­5S1 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ2+CLU/2.4
=AZ2+CLU­5S2 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ2+CLU/2.6
=AZ2+SRP­2S10 1 SRP in Antriebs Stückliste in propulsor parts list SCHOTTEL =AZ2+SRP/2.1
=AZ2+SRP­2S11 1 SRP in Antriebs Stückliste in propulsor parts list SCHOTTEL =AZ2+SRP/2.2
=AZ2+SRP­2S12 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ2+SRP/2.3
=AZ2+SRP­2S13 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ2+SRP/2.4
=AZ2+SRP­2S14 1 SRP in Antriebs Stückliste in propulsor parts list SCHOTTEL =AZ2+SRP/2.5
=AZ2+SRP­2S15 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ2+SRP/2.6
=AZ2+SRP­2S16 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ2+SRP/2.7
=AZ2+SRP­X2 1 1161797 Mehrstockklemme ZDLD 2,5/1,5 terminal ZDLD 2,5/1,5 Weidmüller =AZ2+SRP/2.7
=AZ2+SRP­2S21 1 SRP in Antriebs Stückliste in propulsor parts list SCHOTTEL =AZ2+SRP/3.0
=AZ2+SRP­2S31 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ2+SRP/3.5
=AZ2+SRP­9Y1 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ2+SRP/3.7
=AZ2+SRP­5B1 1 SRP in Antriebs Stückliste in propulsor parts list SCHOTTEL =AZ2+SRP/4.7
=AZ2+SRP­9A4 1 AUFTRAG in Auftragsstückliste in order parts list SCHOTTEL =AZ2+SRP/5.1
=AZ2+HYCP­M1 1 HY in Hydraulikstückliste in hydr. parts list SCHOTTEL =AZ2+HYCP/2.8

Datum 06.Apr.2016 parts list = PARTS 14 / 14


Bearb. MSC
1216742 +

Gepr. Bl. 197


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

cables

Datum 06.Apr.2016                  CABLE  = CABLE 1 / 65


Bearb. MSC
1216742 +

Gepr. Bl. 198


Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­200 MPRXCX
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C4* 3+screen 2.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

feed line switch box 440V  AC =AZ1+SCS/2.1 =AZ1+SCS­X1 1 BK =AZ1+MSB­440VX1 1


feed line switch box 440V  AC =AZ1+SCS/2.1 =AZ1+SCS­X1 2 BU =AZ1+MSB­440VX1 2
feed line switch box 440V  AC =AZ1+SCS/2.1 =AZ1+SCS­X1 3 BN =AZ1+MSB­440VX1 3
feed line switch box 440V  AC =AZ1+SCS/2.2 =AZ1+SCS­X1 SB screen =AZ1+W­200 screen

Datum 20.Mai.2016 =AZ1+W­200 = CABLE 2 / 65


Bearb. MSC
1216742 +
C4*
Gepr. Bl. 199
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­201 MPRXCX·
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C3* 2+screen 1.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

feed line switch box 115V  AC =AZ1+SCS/2.4 =AZ1+SCS­X1 5 BK =AZ1+MSB­115VX1 1


feed line switch box 115V  AC =AZ1+SCS/2.4 =AZ1+SCS­X1 6 BU =AZ1+MSB­115VX1 2
feed line switch box 115V  AC =AZ1+SCS/2.4 =AZ1+SCS­X1 SB screen =AZ1+W­201 screen

Datum 20.Mai.2016 =AZ1+W­201 = CABLE 3 / 65


Bearb. MSC
1216742 +
C3*
Gepr. Bl. 200
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­202 MPRXCX
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C3* 1+screen 16 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

earth connection =AZ1+SCS/2.3 =AZ1+SCS­X1 4 BK =AZ1+SCS­SB


screen

Datum 20.Mai.2016 =AZ1+W­202 = CABLE 4 / 65


Bearb. MSC
1216742 +
C3*
Gepr. Bl. 201
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­203 MPRXCX·
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 2+screen 6 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

feed line switch box 24V DC =AZ1+SCS/3.2 =AZ1+SCS­X2 1 BK =ESB+24­X1 1


feed line switch box 24V DC =AZ1+SCS/3.2 =AZ1+SCS­X2 2 BU =ESB+24­X1 2
feed line switch box 24V DC =AZ1+SCS/3.2 =AZ1+SCS­X2 SB screen =AZ1+W­203 screen

Datum 20.Mai.2016 =AZ1+W­203 = CABLE 5 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 202
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­204 MPRXCX·
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 3+screen 2.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

feed line indicators =AZ1+SCS/3.4 =AZ1+SCS­X2 3 BK =ESB+24­X1 3


feed line indicators =AZ1+SCS/3.4 =AZ1+SCS­X2 4 BU =ESB+24­X1 4
BN
feed line indicators =AZ1+SCS/3.5 =AZ1+SCS­X2 SB screen =AZ1+W­204 screen

Datum 20.Mai.2016 =AZ1+W­204 = CABLE 6 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 203
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­210 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C1* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

feed back unit steering =AZ1+SCS/10.8 =AZ1+SCS­X41 5 1.1 =AZ1+SRP­4A4 6


feed back unit steering =AZ1+SCS/10.8 =AZ1+SCS­X41 6 1.2 =AZ1+SRP­4A4 7
feed back unit steering =AZ1+SCS/10.8 =AZ1+SCS­X41 7 2.1 =AZ1+SRP­4A4 8
feed back unit steering =AZ1+SCS/10.8 =AZ1+SCS­X41 8 2.2 =AZ1+SRP­4A4 9
feed back unit steering =AZ1+SCS/10.9 =AZ1+SCS­X41 SB screen =AZ1+W­210 screen

Datum 20.Mai.2016 =AZ1+W­210 = CABLE 7 / 65


Bearb. MSC
1216742 +
C1*
Gepr. Bl. 204
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­211 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C1* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

CAN BUS indicator =AZ1+SCS/21.1 =AZ1+SCS­X41 1 1.1 =AZ1+SRP­4A4 1


CAN BUS indicator =AZ1+SCS/21.1 =AZ1+SCS­X41 2 1.2 =AZ1+SRP­4A4 2
CAN BUS indicator =AZ1+SCS/21.2 =AZ1+SCS­X41 3 2.1 =AZ1+SRP­4A4 3
CAN BUS indicator =AZ1+SCS/21.2 =AZ1+SCS­X41 4 2.2 =AZ1+SRP­4A4 4
CAN BUS indicator =AZ1+SCS/21.2 =AZ1+SCS­X41 SB screen =AZ1+W­211 screen

Datum 20.Mai.2016 =AZ1+W­211 = CABLE 8 / 65


Bearb. MSC
1216742 +
C1*
Gepr. Bl. 205
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­213 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

propeller RPM pick up =AZ1+SCS/27.1 =AZ1+SCS­X51 1 1.1 =AZ1+SRP­5B1 1


propeller RPM pick up =AZ1+SCS/27.2 =AZ1+SCS­X51 2 1.2 =AZ1+SRP­5B1 3
propeller RPM pick up =AZ1+SCS/27.2 =AZ1+SCS­X51 3 2.1 =AZ1+SRP­5B1 4
2.2
propeller RPM pick up =AZ1+SCS/27.2 =AZ1+SCS­X51 SB screen =AZ1+W­213 screen

Datum 20.Mai.2016 =AZ1+W­213 = CABLE 9 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 206
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­220 MPRXCX
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 10+screen 1.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

clutch disengaging =AZ1+SCS/28.1 =AZ1+SCS­X52 1 1 =AZ1+CLU­X5 1


clutch disengaging =AZ1+SCS/28.2 =AZ1+SCS­X52 2 2 =AZ1+CLU­X5 2
clutch engaging =AZ1+SCS/28.3 =AZ1+SCS­X52 3 3 =AZ1+CLU­X5 3
clutch engaging =AZ1+SCS/28.3 =AZ1+SCS­X52 4 4 =AZ1+CLU­X5 4
clutch engaged =AZ1+SCS/28.4 =AZ1+SCS­X52 5 5 =AZ1+CLU­X5 5
clutch engaged =AZ1+SCS/28.4 =AZ1+SCS­X52 6 6 =AZ1+CLU­X5 6
clutch control air min =AZ1+SCS/28.4 =AZ1+SCS­X52 7 7 =AZ1+CLU­X5 7
clutch control air min =AZ1+SCS/28.5 =AZ1+SCS­X52 8 8 =AZ1+CLU­X5 8
9
10
clutch control air min =AZ1+SCS/28.5 =AZ1+SCS­X52 SB screen =AZ1+W­220 screen

Datum 20.Mai.2016 =AZ1+W­220 = CABLE 10 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 207
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­240 MPRXCX
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 16+screen 1.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

steering valves =AZ1+SCS/26.1 =AZ1+SCS­X42 1 1 =AZ1+SRP­X4 14


steering valves =AZ1+SCS/26.1 =AZ1+SCS­X42 2 2 =AZ1+SRP­X4 15
steering valves =AZ1+SCS/26.2 =AZ1+SCS­X42 3 3 =AZ1+SRP­X4 16
steering valves =AZ1+SCS/26.2 =AZ1+SCS­X42 4 4 =AZ1+SRP­X4 17
hy oil level min =AZ1+SCS/26.5 =AZ1+SCS­X42 8 5 =AZ1+SRP­X4 1
hy oil level min =AZ1+SCS/26.5 =AZ1+SCS­X42 9 6 =AZ1+SRP­X4 2
steering oil pressure min =AZ1+SCS/26.6 =AZ1+SCS­X42 10 7 =AZ1+SRP­X4 4
8
9
10
11
12
13
14
15
16
screen

Datum 20.Mai.2016 =AZ1+W­240 = CABLE 11 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 208
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­241 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

hydraulic pump speed pick up =AZ1+SCS/23.6 =AZ1+SCS­X42 5 1.1 =AZ1+EGR­4B1 1


hydraulic pump speed pick up =AZ1+SCS/23.6 =AZ1+SCS­X42 6 1.2 =AZ1+EGR­4B1 3
hydraulic pump speed pick up =AZ1+SCS/23.6 =AZ1+SCS­X42 7 2.1 =AZ1+EGR­4B1 4
2.2
hydraulic pump speed pick up =AZ1+SCS/23.7 =AZ1+SCS­X42 SB screen =AZ1+W­241 screen

Datum 20.Mai.2016 =AZ1+W­241 = CABLE 12 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 209
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­242 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C1* 4x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

thrust direction indicator near hydraulic pump =AZ1+SCS/21.3 =AZ1+SCS­X44 1 1.1 =AZ1+EGR­4A3­4A3 1


thrust direction indicator near hydraulic pump =AZ1+SCS/21.3 =AZ1+SCS­X44 2 1.2 =AZ1+EGR­4A3­4A3 2
thrust direction indicator near hydraulic pump =AZ1+SCS/21.3 =AZ1+SCS­X44 3 2.1 =AZ1+EGR­4A3­4A3 4
thrust direction indicator near hydraulic pump =AZ1+SCS/21.4 =AZ1+SCS­X44 4 2.2 =AZ1+EGR­4A3­4A3 5
thrust direction indicator near hydraulic pump =AZ1+SCS/21.4 =AZ1+SCS­X44 5 3.1 =AZ1+EGR­4A3­4A3 4
thrust direction indicator near hydraulic pump =AZ1+SCS/21.4 =AZ1+SCS­X44 6 3.2 =AZ1+EGR­4A3­4A3 5
4.1
4.2
thrust direction indicator near hydraulic pump =AZ1+SCS/21.4 =AZ1+SCS­X44 SB screen =AZ1+W­242 screen

Datum 20.Mai.2016 =AZ1+W­242 = CABLE 13 / 65


Bearb. MSC
1216742 +
C1*
Gepr. Bl. 210
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­243 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

propeller RPM indicator =AZ1+SCS/27.5 =AZ1+SCS­X54 1 1.1 =AZ1+EGR­5A3­5A3 1


propeller RPM indicator =AZ1+SCS/27.6 =AZ1+SCS­X54 2 1.2 =AZ1+EGR­5A3­5A3 2
propeller RPM indicator =AZ1+SCS/27.6 =AZ1+SCS­X54 3 2.1 =AZ1+EGR­5A3­5A3 5
propeller RPM indicator =AZ1+SCS/27.6 =AZ1+SCS­X54 4 2.2 =AZ1+EGR­5A3­5A3 4
propeller RPM indicator =AZ1+SCS/27.6 =AZ1+SCS­X54 SB screen =AZ1+W­243 screen

Datum 20.Mai.2016 =AZ1+W­243 = CABLE 14 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 211
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­244 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

pitch direction indicator near pitch control lever =AZ1+SCS/29.6 =AZ1+SCS­X94 1 1.1 =AZ1+EGR­9A3­9A3 1


pitch direction indicator near pitch control lever =AZ1+SCS/29.6 =AZ1+SCS­X94 2 1.2 =AZ1+EGR­9A3­9A3 2
pitch direction indicator near pitch control lever =AZ1+SCS/29.6 =AZ1+SCS­X94 3 2.1 =AZ1+EGR­9A3­9A3 5
pitch direction indicator near pitch control lever =AZ1+SCS/29.6 =AZ1+SCS­X94 4 2.2 =AZ1+EGR­9A3­9A3 4
pitch direction indicator near pitch control lever =AZ1+SCS/29.7 =AZ1+SCS­X94 SB screen =AZ1+W­244 screen

Datum 20.Mai.2016 =AZ1+W­244 = CABLE 15 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 212
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­250 MPRXCX
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 10+screen 1.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

steering valves =AZ1+SCS/36.1 =AZ1+SCS­X92 1 1 =AZ1+SRP­X9 11


steering valves =AZ1+SCS/36.2 =AZ1+SCS­X92 2 2 =AZ1+SRP­X9 12
steering valves =AZ1+SCS/36.3 =AZ1+SCS­X92 3 3 =AZ1+SRP­X9 13
oil pressure CP pump min =AZ1+SCS/38.2 =AZ1+SCS­X92 5 4 =AZ1+SRP­X9 3
oil pressure CP pump min =AZ1+SCS/38.3 =AZ1+SCS­X92 6 5 =AZ1+SRP­X9 4
6
7
8
9
10
oil pressure CP pump min =AZ1+SCS/38.3 =AZ1+SCS­X92 SB screen =AZ1+W­250 screen

Datum 20.Mai.2016 =AZ1+W­250 = CABLE 16 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 213
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­253 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

actual value pitch direction =AZ1+SCS/29.2 =AZ1+SCS­X91 1 1.1 =AZ1+SRP­9A4 1


actual value pitch direction =AZ1+SCS/29.2 =AZ1+SCS­X91 2 1.2 =AZ1+SRP­9A4 2
actual value pitch direction =AZ1+SCS/29.3 =AZ1+SCS­X91 3 2.1 =AZ1+SRP­9A4 3
actual value pitch direction =AZ1+SCS/29.3 =AZ1+SCS­X91 4 2.2 =AZ1+SRP­9A4 4
actual value pitch direction =AZ1+SCS/29.3 =AZ1+SCS­X91 SB screen =AZ1+W­253 screen

Datum 20.Mai.2016 =AZ1+W­253 = CABLE 17 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 214
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­254 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

actual value pitch feed back =AZ1+SCS/31.3 =AZ1+SCS­X91 5 1.1 =AZ1+SRP­9A4 5


actual value pitch feed back =AZ1+SCS/31.3 =AZ1+SCS­X91 6 1.2 =AZ1+SRP­9A4 6
actual value pitch feed back =AZ1+SCS/31.4 =AZ1+SCS­X91 7 2.1 =AZ1+SRP­9A4 7
2.2
actual value pitch feed back =AZ1+SCS/31.4 =AZ1+SCS­X91 SB screen =AZ1+W­254 screen

Datum 20.Mai.2016 =AZ1+W­254 = CABLE 18 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 215
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­255 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 4x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

actual value pitch position =AZ1+SCS/18.1 =AZ1+SCS­X91 13 1.1 =AZ1+SRP­9A4 13


actual value pitch position =AZ1+SCS/18.1 =AZ1+SCS­X91 14 1.2 =AZ1+SRP­9A4 14
actual value pitch position =AZ1+SCS/18.2 =AZ1+SCS­X91 15 2.1 =AZ1+SRP­9A4 15
pitch max forward =AZ1+SCS/37.1 =AZ1+SCS­X91 8 2.2 =AZ1+SRP­9A4 8
pitch max forward =AZ1+SCS/37.2 =AZ1+SCS­X91 9 3.1 =AZ1+SRP­9A4 9
pitch max forward =AZ1+SCS/37.2 =AZ1+SCS­X91 10 3.2 =AZ1+SRP­9A4 10
pitch  neutral =AZ1+SCS/37.3 =AZ1+SCS­X91 11 4.1 =AZ1+SRP­9A4 11
pitch max backward =AZ1+SCS/37.4 =AZ1+SCS­X91 12 4.2 =AZ1+SRP­9A4 12
pitch max backward =AZ1+SCS/37.4 =AZ1+SCS­X91 SB screen =AZ1+W­255 screen

Datum 20.Mai.2016 =AZ1+W­255 = CABLE 19 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 216
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­300 MPRXCX
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2 4+screen 2.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

feed line control panels =AZ1+SCS/4.2 =AZ1+SCS­X12 1 BK =AZ1+MDP­AX1 1


feed line control panels =AZ1+SCS/4.2 =AZ1+SCS­X12 2 BU =AZ1+MDP­AX1 2
feed line control panels =AZ1+SCS/4.2 =AZ1+SCS­X12 3 BN =AZ1+MDP­AX1 3
feed line control panels =AZ1+SCS/4.3 =AZ1+SCS­X12 4 WH =AZ1+MDP­AX1 4
screen

Datum 20.Mai.2016 =AZ1+W­300 = CABLE 20 / 65


Bearb. MSC
1216742 +
C2
Gepr. Bl. 217
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­301 MPRXCX·
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 3+screen 2.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

feed line indicators =AZ1+SCS/3.4 =AZ1+SCS­X12 5 BK =AZ1+MDP­AX9 1


feed line indicators =AZ1+SCS/3.4 =AZ1+SCS­X12 6 BU =AZ1+MDP­AX9 2
BN
screen

Datum 20.Mai.2016 =AZ1+W­301 = CABLE 21 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 218
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­302 MPRXCX
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 19+screen 1.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

feed line NFU control =AZ1+SCS/6.6 =AZ1+SCS­X12 7 1 =AZ1+MDP­AX1 7


feed line NFU control =AZ1+SCS/6.6 =AZ1+SCS­X12 8 2 =AZ1+MDP­AX1 8
NFU control ON OFF =AZ1+SCS/6.7 =AZ1+SCS­X12 9 3 =AZ1+MDP­AX2 14
NFU control ON OFF =AZ1+SCS/6.7 =AZ1+SCS­X12 10 4 =AZ1+MDP­AX1 9
feed line signals =AZ1+SCS/7.0 =AZ1+SCS­X12 11 5 =AZ1+MDP­AX2 13
indication NFU steering ON =AZ1+SCS/7.1 =AZ1+SCS­X12 12 6 =AZ1+MDP­AX1 11
thruster turning ccw =AZ1+SCS/7.2 =AZ1+SCS­X12 13 7 =AZ1+MDP­AX2 44
thruster turning cw =AZ1+SCS/7.3 =AZ1+SCS­X12 14 8 =AZ1+MDP­AX2 54
NFU RPM control in service =AZ1+SCS/7.4 =AZ1+SCS­X12 16 9 =AZ1+MDP­AX1 10
increase RPM =AZ1+SCS/7.4 =AZ1+SCS­X12 17 10 =AZ1+MDP­AX2 34
decrease RPM =AZ1+SCS/7.5 =AZ1+SCS­X12 18 11 =AZ1+MDP­AX2 24
NFU pitch control in service =AZ1+SCS/7.7 =AZ1+SCS­X12 19 12 =AZ1+MDP­AX1 12
increase pitch =AZ1+SCS/7.8 =AZ1+SCS­X12 20 13 =AZ1+MDP­AX2 74
decrease pitch =AZ1+SCS/7.8 =AZ1+SCS­X12 21 14 =AZ1+MDP­AX2 64
15
16
17
18
19
decrease pitch =AZ1+SCS/7.9 =AZ1+SCS­X12 SB screen =AZ1+W­302 screen

Datum 20.Mai.2016 =AZ1+W­302 = CABLE 22 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 219
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­303 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C1* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

CAN BUS control system =AZ1+SCS/8.4 =AZ1+SCS­X12 22 1.1 =AZ1+MDP­AX3 1


CAN BUS control system =AZ1+SCS/8.5 =AZ1+SCS­X12 23 1.2 =AZ1+MDP­AX3 2
CAN BUS control system =AZ1+SCS/8.5 =AZ1+SCS­X12 24 2.1 =AZ1+MDP­AX3 3
CAN BUS control system =AZ1+SCS/8.5 =AZ1+SCS­X12 25 2.2 =AZ1+MDP­AX3 4
screen

Datum 20.Mai.2016 =AZ1+W­303 = CABLE 23 / 65


Bearb. MSC
1216742 +
C1*
Gepr. Bl. 220
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­304 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C1* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

CAN BUS indicator =AZ1+SCS/21.6 =AZ1+SCS­X12 27 1.1 =AZ1+MDP­AX9 3


CAN BUS indicator =AZ1+SCS/21.6 =AZ1+SCS­X12 28 1.2 =AZ1+MDP­AX9 4
CAN BUS indicator =AZ1+SCS/21.6 =AZ1+SCS­X12 29 2.1 =AZ1+MDP­AX9 5
CAN BUS indicator =AZ1+SCS/21.7 =AZ1+SCS­X12 30 2.2 =AZ1+MDP­AX9 10
screen

Datum 20.Mai.2016 =AZ1+W­304 = CABLE 24 / 65


Bearb. MSC
1216742 +
C1*
Gepr. Bl. 221
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­305 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

propeller RPM indicator =AZ1+SCS/27.4 =AZ1+SCS­X12 31 1.1 =AZ1+MDP­AX9 13


propeller RPM indicator =AZ1+SCS/27.5 =AZ1+SCS­X12 32 1.2 =AZ1+MDP­AX9 14
pitch indicator =AZ1+SCS/29.4 =AZ1+SCS­X12 33 2.1 =AZ1+MDP­AX9 16
pitch indicator =AZ1+SCS/29.4 =AZ1+SCS­X12 34 2.2 =AZ1+MDP­AX9 17
pitch indicator =AZ1+SCS/29.5 =AZ1+SCS­X12 SB screen =AZ1+W­305 screen

Datum 20.Mai.2016 =AZ1+W­305 = CABLE 25 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 222
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­620 MPRXCX·
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C4* 3+screen 1.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

CP pump auxiliary =AZ1+SCS/2.6 =AZ1+SCS­X9 1 BK =AZ1+HYCP­M1 U


CP pump auxiliary =AZ1+SCS/2.6 =AZ1+SCS­X9 2 BU =AZ1+HYCP­M1 V
CP pump auxiliary =AZ1+SCS/2.7 =AZ1+SCS­X9 3 BN =AZ1+HYCP­M1 W
CP pump auxiliary =AZ1+SCS/2.7 =AZ1+SCS­X9 SB screen =AZ1+W­620 screen

Datum 20.Mai.2016 =AZ1+W­620 = CABLE 26 / 65


Bearb. MSC
1216742 +
C4*
Gepr. Bl. 223
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­710 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 10x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

feed line signals =AZ1+SCS/17.1 =AZ1+SCS­X3 1 1.1 =YARD+PM­AZ1­X1 1


drive motor OFF =AZ1+SCS/17.2 =AZ1+SCS­X3 2 1.2 =YARD+PM­AZ1­X1 2
drive motor running =AZ1+SCS/17.3 =AZ1+SCS­X3 3 2.1 =YARD+PM­AZ1­X1 3
drive motor idle =AZ1+SCS/17.4 =AZ1+SCS­X3 4 2.2 =YARD+PM­AZ1­X1 4
drive motor overload =AZ1+SCS/17.4 =AZ1+SCS­X3 5 3.1 =YARD+PM­AZ1­X1 5
3.2
=AZ1+SCS/47.1 =AZ1+SCS­X3.K3 11 4.1 =YARD+PM­AZ1­X2 1
=AZ1+SCS/47.1 =AZ1+SCS­X3.K3 14 4.2 =YARD+PM­AZ1­X2 2
clutch disengaged =AZ1+SCS/47.2 =AZ1+SCS­X3 6 5.1 =YARD+PM­AZ1­X2 3
clutch disengaged =AZ1+SCS/47.2 =AZ1+SCS­X3 7 5.2 =YARD+PM­AZ1­X2 4
feed line signals =AZ1+SCS/48.6 =AZ1+SCS­X8 8 6.1 =YARD+PM­AZ1­X1 6
engine load 80% =AZ1+SCS/48.7 =AZ1+SCS­X8 9 6.2 =YARD+PM­AZ1­X1 7
engine load 100% =AZ1+SCS/48.8 =AZ1+SCS­X8 10 7.1 =YARD+PM­AZ1­X1 8
7.2
8.1
8.2
9.1
9.2
10.1
10.2
screen

Datum 20.Mai.2016 =AZ1+W­710 = CABLE 27 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 224
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­711 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

speed value =AZ1+SCS/47.5 =AZ1+SCS­X3 13 1.1 =YARD+PM­AZ1­X3 1


speed value =AZ1+SCS/47.5 =AZ1+SCS­X3 14 1.2 =YARD+PM­AZ1­X3 2
engine load signal =AZ1+SCS/47.7 =AZ1+SCS­X3 15 2.1 =YARD+PM­AZ1­X3 3
engine load signal =AZ1+SCS/47.7 =AZ1+SCS­X3 16 2.2 =YARD+PM­AZ1­X3 4
screen

Datum 20.Mai.2016 =AZ1+W­711 = CABLE 28 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 225
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­720 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 4x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

Autopilot system ready for service =AZ1+SCS/46.1 =AZ1+SCS­X5 1 1.1 =YARD+AP­X1 1


Autopilot system ready for service =AZ1+SCS/46.1 =AZ1+SCS­X5 2 1.2 =YARD+AP­X1 2
=AZ1+SCS/46.2 =AZ1+SCS­X5.K1 14 2.1 =YARD+AP­X1 3
=AZ1+SCS/46.2 =AZ1+SCS­X5.K1 11 2.2 =YARD+AP­X1 4
set point steering value from Autopilot =AZ1+SCS/46.3 =AZ1+SCS­X5 3 3.1 =YARD+AP­X1 5
set point steering value from Autopilot =AZ1+SCS/46.3 =AZ1+SCS­X5 4 3.2 =YARD+AP­X1 6
4.1
4.2
set point steering value from Autopilot =AZ1+SCS/46.3 =AZ1+SCS­X5 SB screen =AZ1+W­720 screen

Datum 20.Mai.2016 =AZ1+W­720 = CABLE 29 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 226
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­770 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 4x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

FIFI mode possible =YARD+FIFI/2.1 =YARD+FIFI­X1 1 1.1 =AZ1+SCS­X8.K1 11


FIFI mode possible =YARD+FIFI/2.1 =YARD+FIFI­X1 2 1.2 =AZ1+SCS­X8.K1 14
feed line =YARD+FIFI/2.4 =YARD+FIFI­X1 3 2.1 =AZ1+SCS­X8 1
FIFI mode ON =YARD+FIFI/2.4 =YARD+FIFI­X1 5 2.2 =AZ1+SCS­X8 3
FIFI pump in service =YARD+FIFI/2.5 =YARD+FIFI­X1 6 3.1 =AZ1+SCS­X8 4
feed line signals =YARD+FIFI/2.6 =YARD+FIFI­X1 7 3.2 =AZ1+SCS­X8 5
engine load 80% =YARD+FIFI/2.6 =YARD+FIFI­X1 8 4.1 =AZ1+SCS­X8 6
engine load 100% =YARD+FIFI/2.7 =YARD+FIFI­X1 9 4.2 =AZ1+SCS­X8 7
screen

Datum 20.Mai.2016 =AZ1+W­770 = CABLE 30 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 227
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­820 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 10x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

failure AC / DC converter =YARD+SWU/2.0 =YARD+SWU­X1 1 1.1 =AZ1+SCS­X4.K1 11


failure AC / DC converter =YARD+SWU/2.0 =YARD+SWU­X1 2 1.2 =AZ1+SCS­X4.K1 14
failure emergency feed line 24V DC =YARD+SWU/2.1 =YARD+SWU­X1 3 2.1 =AZ1+SCS­X4.K2 11
failure emergency feed line 24V DC =YARD+SWU/2.1 =YARD+SWU­X1 4 2.2 =AZ1+SCS­X4.K2 14
failure control system =YARD+SWU/2.2 =YARD+SWU­X1 5 3.1 =AZ1+SCS­X4.K3 11
failure control system =YARD+SWU/2.2 =YARD+SWU­X1 6 3.2 =AZ1+SCS­X4.K3 14
failure FFU RPM control =YARD+SWU/2.3 =YARD+SWU­X1 7 4.1 =AZ1+SCS­X4.K4 11
failure FFU RPM control =YARD+SWU/2.3 =YARD+SWU­X1 8 4.2 =AZ1+SCS­X4.K4 14
failure FFU steering =YARD+SWU/2.3 =YARD+SWU­X1 9 5.1 =AZ1+SCS­X4.K5 11
failure FFU steering =YARD+SWU/2.4 =YARD+SWU­X1 10 5.2 =AZ1+SCS­X4.K5 14
failure NFU control =YARD+SWU/2.4 =YARD+SWU­X1 11 6.1 =AZ1+SCS­X4.K6 11
failure NFU control =YARD+SWU/2.4 =YARD+SWU­X1 12 6.2 =AZ1+SCS­X4.K6 14
steering locked =YARD+SWU/2.5 =YARD+SWU­X1 13 7.1 =AZ1+SCS­X4.K7 11
steering locked =YARD+SWU/2.5 =YARD+SWU­X1 14 7.2 =AZ1+SCS­X4.K7 12
failure external systems =YARD+SWU/2.5 =YARD+SWU­X1 15 8.1 =AZ1+SCS­X4.K8 11
failure external systems =YARD+SWU/2.6 =YARD+SWU­X1 16 8.2 =AZ1+SCS­X4.K8 14
9.1
9.2
10.1
10.2
=YARD+SWU­X1 screen =AZ1+SCS­X4.K1

Datum 20.Mai.2016 =AZ1+W­820 = CABLE 31 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 228
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­821 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 10x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

failure external systems =YARD+SWU/2.6 =YARD+SWU­X1 17 1.1 =AZ1+SCS­X4.K10 11


steering oil pressure min =YARD+SWU/2.7 =YARD+SWU­X1 18 1.2 =AZ1+SCS­X4.K10 14
hy oil level min =YARD+SWU/2.7 =YARD+SWU­X1 19 2.1 =AZ1+SCS­X4.K11 11
hy oil level min =YARD+SWU/2.7 =YARD+SWU­X1 20 2.2 =AZ1+SCS­X4.K11 14
clutch air pressure min =YARD+SWU/2.8 =YARD+SWU­X1 21 3.1 =AZ1+SCS­X4.K12 11
clutch air pressure min =YARD+SWU/2.8 =YARD+SWU­X1 22 3.2 =AZ1+SCS­X4.K12 14
failure FFU pitch control =YARD+SWU/3.0 =YARD+SWU­X1 23 4.1 =AZ1+SCS­X4.K13 11
failure FFU pitch control =YARD+SWU/3.0 =YARD+SWU­X1 24 4.2 =AZ1+SCS­X4.K13 14
pitch locked =YARD+SWU/3.1 =YARD+SWU­X1 25 5.1 =AZ1+SCS­X4.K14 11
pitch locked =YARD+SWU/3.1 =YARD+SWU­X1 26 5.2 =AZ1+SCS­X4.K14 12
CP pump oil pressure min =YARD+SWU/3.2 =YARD+SWU­X1 27 6.1 =AZ1+SCS­X4.K15 11
CP pump oil pressure min =YARD+SWU/3.2 =YARD+SWU­X1 28 6.2 =AZ1+SCS­X4.K15 14
CP pump oil pressure min =YARD+SWU/3.3 =YARD+SWU­X1 29 7.1 =AZ1+SCS­X4.K16 11
failure auxiliary CP pump =YARD+SWU/3.3 =YARD+SWU­X1 30 7.2 =AZ1+SCS­X4.K16 14
overload auxiliary CP pump =YARD+SWU/3.3 =YARD+SWU­X1 31 8.1 =AZ1+SCS­X4.K17 11
overload auxiliary CP pump =YARD+SWU/3.4 =YARD+SWU­X1 32 8.2 =AZ1+SCS­X4.K17 14
switch box temperature max =YARD+SWU/3.4 =YARD+SWU­X1 33 9.1 =AZ1+SCS­X4.K18 11
switch box temperature max =YARD+SWU/3.5 =YARD+SWU­X1 34 9.2 =AZ1+SCS­X4.K18 14
collective alarm unit =YARD+SWU/3.6 =YARD+SWU­X1 35 10.1 =AZ1+SCS­X4 1
collective alarm unit =YARD+SWU/3.6 =YARD+SWU­X1 36 10.2 =AZ1+SCS­X4 2
=AZ1+W­821 screen screen =AZ1+SCS­X4 SB

Datum 20.Mai.2016 =AZ1+W­821 = CABLE 32 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 229
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ1+W­840 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
K3* 7x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

lub oil level SRP min =AZ1+SRP/2.1 =AZ1+SRP­X2 1 1.1 =YARD+SWU­X1 37


lub oil level SRP min =AZ1+SRP/2.1 =AZ1+SRP­X2 2 1.2 =YARD+SWU­X1 38
lub oil temperature SRP max =AZ1+SRP/2.2 =AZ1+SRP­X2 3 2.1 =YARD+SWU­X1 39
lub oil temperature SRP max =AZ1+SRP/2.2 =AZ1+SRP­X2 4 2.2 =YARD+SWU­X1 40
CP oil filter dirty =AZ1+SRP/2.3 =AZ1+SRP­X2 5 3.1 =YARD+SWU­X1 41
CP oil filter dirty =AZ1+SRP/2.3 =AZ1+SRP­X2 6 3.2 =YARD+SWU­X1 42
CP oil pressure max =AZ1+SRP/2.4 =AZ1+SRP­X2 7 4.1 =YARD+SWU­X1 43
CP oil pressure max =AZ1+SRP/2.4 =AZ1+SRP­X2 8 4.2 =YARD+SWU­X1 44
hydraulic oil temperature max =AZ1+SRP/2.5 =AZ1+SRP­X2 9 5.1 =YARD+SWU­X1 45
hydraulic oil temperature max =AZ1+SRP/2.5 =AZ1+SRP­X2 10 5.2 =YARD+SWU­X1 46
hydraulic oil filter dirty =AZ1+SRP/2.6 =AZ1+SRP­X2 11 6.1 =YARD+SWU­X1 47
hydraulic oil filter dirty =AZ1+SRP/2.6 =AZ1+SRP­X2 12 6.2 =YARD+SWU­X1 48
hydraulic oil pressure max =AZ1+SRP/2.7 =AZ1+SRP­X2 13 7.1 =YARD+SWU­X1 49
hydraulic oil pressure max =AZ1+SRP/2.7 =AZ1+SRP­X2 14 7.2 =YARD+SWU­X1 50
hydraulic oil pressure max =AZ1+SRP/2.8 =AZ1+SRP­X2 SB screen =AZ1+W­840 screen

Datum 20.Mai.2016 =AZ1+W­840 = CABLE 33 / 65


Bearb. MSC
1216742 +
K3*
Gepr. Bl. 230
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­200 MPRXCX
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C4* 3+screen 2.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

feed line switch box 440V  AC =AZ2+SCS/2.1 =AZ2+SCS­X1 1 BK =AZ2+MSB­440VX1 4


feed line switch box 440V  AC =AZ2+SCS/2.1 =AZ2+SCS­X1 2 BU =AZ2+MSB­440VX1 5
feed line switch box 440V  AC =AZ2+SCS/2.1 =AZ2+SCS­X1 3 BN =AZ2+MSB­440VX1 6
feed line switch box 440V  AC =AZ2+SCS/2.2 =AZ2+SCS­X1 SB screen =AZ2+W­200 screen

Datum 20.Mai.2016 =AZ2+W­200 = CABLE 34 / 65


Bearb. MSC
1216742 +
C4*
Gepr. Bl. 231
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­201 MPRXCX·
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C3* 2+screen 1.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

feed line switch box 115V  AC =AZ2+SCS/2.4 =AZ2+SCS­X1 5 BK =AZ2+MSB­115VX1 3


feed line switch box 115V  AC =AZ2+SCS/2.4 =AZ2+SCS­X1 6 BU =AZ2+MSB­115VX1 4
feed line switch box 115V  AC =AZ2+SCS/2.4 =AZ2+SCS­X1 SB screen =AZ2+W­201 screen

Datum 20.Mai.2016 =AZ2+W­201 = CABLE 35 / 65


Bearb. MSC
1216742 +
C3*
Gepr. Bl. 232
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­202 MPRXCX
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C3* 1+screen 16 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

earth connection =AZ2+SCS/2.3 =AZ2+SCS­X1 4 BK =AZ2+SCS­SB


screen

Datum 20.Mai.2016 =AZ2+W­202 = CABLE 36 / 65


Bearb. MSC
1216742 +
C3*
Gepr. Bl. 233
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­203 MPRXCX·
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 2+screen 6 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

feed line switch box 24V DC =AZ2+SCS/3.2 =AZ2+SCS­X2 1 BK =ESB+24­X1 5


feed line switch box 24V DC =AZ2+SCS/3.2 =AZ2+SCS­X2 2 BU =ESB+24­X1 6
feed line switch box 24V DC =AZ2+SCS/3.2 =AZ2+SCS­X2 SB screen =AZ2+W­203 screen

Datum 20.Mai.2016 =AZ2+W­203 = CABLE 37 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 234
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­204 MPRXCX·
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 3+screen 2.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

feed line indicators =AZ2+SCS/3.4 =AZ2+SCS­X2 3 BK =ESB+24­X1 7


feed line indicators =AZ2+SCS/3.4 =AZ2+SCS­X2 4 BU =ESB+24­X1 8
BN
feed line indicators =AZ2+SCS/3.5 =AZ2+SCS­X2 SB screen =AZ2+W­204 screen

Datum 20.Mai.2016 =AZ2+W­204 = CABLE 38 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 235
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­210 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C1* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

feed back unit steering =AZ2+SCS/10.8 =AZ2+SCS­X41 5 1.1 =AZ2+SRP­4A4 6


feed back unit steering =AZ2+SCS/10.8 =AZ2+SCS­X41 6 1.2 =AZ2+SRP­4A4 7
feed back unit steering =AZ2+SCS/10.8 =AZ2+SCS­X41 7 2.1 =AZ2+SRP­4A4 8
feed back unit steering =AZ2+SCS/10.8 =AZ2+SCS­X41 8 2.2 =AZ2+SRP­4A4 9
feed back unit steering =AZ2+SCS/10.9 =AZ2+SCS­X41 SB screen =AZ2+W­210 screen

Datum 20.Mai.2016 =AZ2+W­210 = CABLE 39 / 65


Bearb. MSC
1216742 +
C1*
Gepr. Bl. 236
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­211 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C1* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

CAN BUS indicator =AZ2+SCS/21.1 =AZ2+SCS­X41 1 1.1 =AZ2+SRP­4A4 1


CAN BUS indicator =AZ2+SCS/21.1 =AZ2+SCS­X41 2 1.2 =AZ2+SRP­4A4 2
CAN BUS indicator =AZ2+SCS/21.2 =AZ2+SCS­X41 3 2.1 =AZ2+SRP­4A4 3
CAN BUS indicator =AZ2+SCS/21.2 =AZ2+SCS­X41 4 2.2 =AZ2+SRP­4A4 4
CAN BUS indicator =AZ2+SCS/21.2 =AZ2+SCS­X41 SB screen =AZ2+W­211 screen

Datum 20.Mai.2016 =AZ2+W­211 = CABLE 40 / 65


Bearb. MSC
1216742 +
C1*
Gepr. Bl. 237
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­213 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

propeller RPM pick up =AZ2+SCS/27.1 =AZ2+SCS­X51 1 1.1 =AZ2+SRP­5B1 1


propeller RPM pick up =AZ2+SCS/27.2 =AZ2+SCS­X51 2 1.2 =AZ2+SRP­5B1 3
propeller RPM pick up =AZ2+SCS/27.2 =AZ2+SCS­X51 3 2.1 =AZ2+SRP­5B1 4
2.2
propeller RPM pick up =AZ2+SCS/27.2 =AZ2+SCS­X51 SB screen =AZ2+W­213 screen

Datum 20.Mai.2016 =AZ2+W­213 = CABLE 41 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 238
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­220 MPRXCX
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 10+screen 1.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

clutch disengaging =AZ2+SCS/28.1 =AZ2+SCS­X52 1 1 =AZ2+CLU­X5 1


clutch disengaging =AZ2+SCS/28.2 =AZ2+SCS­X52 2 2 =AZ2+CLU­X5 2
clutch engaging =AZ2+SCS/28.3 =AZ2+SCS­X52 3 3 =AZ2+CLU­X5 3
clutch engaging =AZ2+SCS/28.3 =AZ2+SCS­X52 4 4 =AZ2+CLU­X5 4
clutch engaged =AZ2+SCS/28.4 =AZ2+SCS­X52 5 5 =AZ2+CLU­X5 5
clutch engaged =AZ2+SCS/28.4 =AZ2+SCS­X52 6 6 =AZ2+CLU­X5 6
clutch control air min =AZ2+SCS/28.4 =AZ2+SCS­X52 7 7 =AZ2+CLU­X5 7
clutch control air min =AZ2+SCS/28.5 =AZ2+SCS­X52 8 8 =AZ2+CLU­X5 8
9
10
clutch control air min =AZ2+SCS/28.5 =AZ2+SCS­X52 SB screen =AZ2+W­220 screen

Datum 20.Mai.2016 =AZ2+W­220 = CABLE 42 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 239
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­240 MPRXCX
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 16+screen 1.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

steering valves =AZ2+SCS/26.1 =AZ2+SCS­X42 1 1 =AZ2+SRP­X4 14


steering valves =AZ2+SCS/26.1 =AZ2+SCS­X42 2 2 =AZ2+SRP­X4 15
steering valves =AZ2+SCS/26.2 =AZ2+SCS­X42 3 3 =AZ2+SRP­X4 16
steering valves =AZ2+SCS/26.2 =AZ2+SCS­X42 4 4 =AZ2+SRP­X4 17
hy oil level min =AZ2+SCS/26.5 =AZ2+SCS­X42 8 5 =AZ2+SRP­X4 1
hy oil level min =AZ2+SCS/26.5 =AZ2+SCS­X42 9 6 =AZ2+SRP­X4 2
steering oil pressure min =AZ2+SCS/26.6 =AZ2+SCS­X42 10 7 =AZ2+SRP­X4 4
8
9
10
11
12
13
14
15
16
screen

Datum 20.Mai.2016 =AZ2+W­240 = CABLE 43 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 240
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­241 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

hydraulic pump speed pick up =AZ2+SCS/23.6 =AZ2+SCS­X42 5 1.1 =AZ2+EGR­4B1 1


hydraulic pump speed pick up =AZ2+SCS/23.6 =AZ2+SCS­X42 6 1.2 =AZ2+EGR­4B1 3
hydraulic pump speed pick up =AZ2+SCS/23.6 =AZ2+SCS­X42 7 2.1 =AZ2+EGR­4B1 4
2.2
hydraulic pump speed pick up =AZ2+SCS/23.7 =AZ2+SCS­X42 SB screen =AZ2+W­241 screen

Datum 20.Mai.2016 =AZ2+W­241 = CABLE 44 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 241
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­242 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C1* 4x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

thrust direction indicator near hydraulic pump =AZ2+SCS/21.3 =AZ2+SCS­X44 1 1.1 =AZ2+EGR­4A3­4A3 1


thrust direction indicator near hydraulic pump =AZ2+SCS/21.3 =AZ2+SCS­X44 2 1.2 =AZ2+EGR­4A3­4A3 2
thrust direction indicator near hydraulic pump =AZ2+SCS/21.3 =AZ2+SCS­X44 3 2.1 =AZ2+EGR­4A3­4A3 4
thrust direction indicator near hydraulic pump =AZ2+SCS/21.4 =AZ2+SCS­X44 4 2.2 =AZ2+EGR­4A3­4A3 5
thrust direction indicator near hydraulic pump =AZ2+SCS/21.4 =AZ2+SCS­X44 5 3.1 =AZ2+EGR­4A3­4A3 4
thrust direction indicator near hydraulic pump =AZ2+SCS/21.4 =AZ2+SCS­X44 6 3.2 =AZ2+EGR­4A3­4A3 5
4.1
4.2
thrust direction indicator near hydraulic pump =AZ2+SCS/21.4 =AZ2+SCS­X44 SB screen =AZ2+W­242 screen

Datum 20.Mai.2016 =AZ2+W­242 = CABLE 45 / 65


Bearb. MSC
1216742 +
C1*
Gepr. Bl. 242
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­243 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

propeller RPM indicator =AZ2+SCS/27.5 =AZ2+SCS­X54 1 1.1 =AZ2+EGR­5A3­5A3 1


propeller RPM indicator =AZ2+SCS/27.6 =AZ2+SCS­X54 2 1.2 =AZ2+EGR­5A3­5A3 2
propeller RPM indicator =AZ2+SCS/27.6 =AZ2+SCS­X54 3 2.1 =AZ2+EGR­5A3­5A3 5
propeller RPM indicator =AZ2+SCS/27.6 =AZ2+SCS­X54 4 2.2 =AZ2+EGR­5A3­5A3 4
propeller RPM indicator =AZ2+SCS/27.6 =AZ2+SCS­X54 SB screen =AZ2+W­243 screen

Datum 20.Mai.2016 =AZ2+W­243 = CABLE 46 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 243
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­244 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

pitch direction indicator near pitch control lever =AZ2+SCS/29.6 =AZ2+SCS­X94 1 1.1 =AZ2+EGR­9A3­9A3 1


pitch direction indicator near pitch control lever =AZ2+SCS/29.6 =AZ2+SCS­X94 2 1.2 =AZ2+EGR­9A3­9A3 2
pitch direction indicator near pitch control lever =AZ2+SCS/29.6 =AZ2+SCS­X94 3 2.1 =AZ2+EGR­9A3­9A3 5
pitch direction indicator near pitch control lever =AZ2+SCS/29.6 =AZ2+SCS­X94 4 2.2 =AZ2+EGR­9A3­9A3 4
pitch direction indicator near pitch control lever =AZ2+SCS/29.7 =AZ2+SCS­X94 SB screen =AZ2+W­244 screen

Datum 20.Mai.2016 =AZ2+W­244 = CABLE 47 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 244
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­250 MPRXCX
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 10+screen 1.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

steering valves =AZ2+SCS/36.1 =AZ2+SCS­X92 1 1 =AZ2+SRP­X9 11


steering valves =AZ2+SCS/36.2 =AZ2+SCS­X92 2 2 =AZ2+SRP­X9 12
steering valves =AZ2+SCS/36.3 =AZ2+SCS­X92 3 3 =AZ2+SRP­X9 13
oil pressure CP pump min =AZ2+SCS/38.2 =AZ2+SCS­X92 5 4 =AZ2+SRP­X9 3
oil pressure CP pump min =AZ2+SCS/38.3 =AZ2+SCS­X92 6 5 =AZ2+SRP­X9 4
6
7
8
9
10
oil pressure CP pump min =AZ2+SCS/38.3 =AZ2+SCS­X92 SB screen =AZ2+W­250 screen

Datum 20.Mai.2016 =AZ2+W­250 = CABLE 48 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 245
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­253 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

actual value pitch direction =AZ2+SCS/29.2 =AZ2+SCS­X91 1 1.1 =AZ2+SRP­9A4 1


actual value pitch direction =AZ2+SCS/29.2 =AZ2+SCS­X91 2 1.2 =AZ2+SRP­9A4 2
actual value pitch direction =AZ2+SCS/29.3 =AZ2+SCS­X91 3 2.1 =AZ2+SRP­9A4 3
actual value pitch direction =AZ2+SCS/29.3 =AZ2+SCS­X91 4 2.2 =AZ2+SRP­9A4 4
actual value pitch direction =AZ2+SCS/29.3 =AZ2+SCS­X91 SB screen =AZ2+W­253 screen

Datum 20.Mai.2016 =AZ2+W­253 = CABLE 49 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 246
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­254 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

actual value pitch feed back =AZ2+SCS/31.3 =AZ2+SCS­X91 5 1.1 =AZ2+SRP­9A4 5


actual value pitch feed back =AZ2+SCS/31.3 =AZ2+SCS­X91 6 1.2 =AZ2+SRP­9A4 6
actual value pitch feed back =AZ2+SCS/31.4 =AZ2+SCS­X91 7 2.1 =AZ2+SRP­9A4 7
2.2
actual value pitch feed back =AZ2+SCS/31.4 =AZ2+SCS­X91 SB screen =AZ2+W­254 screen

Datum 20.Mai.2016 =AZ2+W­254 = CABLE 50 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 247
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­255 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 4x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

actual value pitch position =AZ2+SCS/18.1 =AZ2+SCS­X91 13 1.1 =AZ2+SRP­9A4 13


actual value pitch position =AZ2+SCS/18.1 =AZ2+SCS­X91 14 1.2 =AZ2+SRP­9A4 14
actual value pitch position =AZ2+SCS/18.2 =AZ2+SCS­X91 15 2.1 =AZ2+SRP­9A4 15
pitch max forward =AZ2+SCS/37.1 =AZ2+SCS­X91 8 2.2 =AZ2+SRP­9A4 8
pitch max forward =AZ2+SCS/37.2 =AZ2+SCS­X91 9 3.1 =AZ2+SRP­9A4 9
pitch max forward =AZ2+SCS/37.2 =AZ2+SCS­X91 10 3.2 =AZ2+SRP­9A4 10
pitch  neutral =AZ2+SCS/37.3 =AZ2+SCS­X91 11 4.1 =AZ2+SRP­9A4 11
pitch max backward =AZ2+SCS/37.4 =AZ2+SCS­X91 12 4.2 =AZ2+SRP­9A4 12
pitch max backward =AZ2+SCS/37.4 =AZ2+SCS­X91 SB screen =AZ2+W­255 screen

Datum 20.Mai.2016 =AZ2+W­255 = CABLE 51 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 248
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­300 MPRXCX
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2 4+screen 2.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

feed line control panels =AZ2+SCS/4.2 =AZ2+SCS­X12 1 BK =AZ2+MDP­AX1 1


feed line control panels =AZ2+SCS/4.2 =AZ2+SCS­X12 2 BU =AZ2+MDP­AX1 2
feed line control panels =AZ2+SCS/4.2 =AZ2+SCS­X12 3 BN =AZ2+MDP­AX1 3
feed line control panels =AZ2+SCS/4.3 =AZ2+SCS­X12 4 WH =AZ2+MDP­AX1 4
screen

Datum 20.Mai.2016 =AZ2+W­300 = CABLE 52 / 65


Bearb. MSC
1216742 +
C2
Gepr. Bl. 249
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­301 MPRXCX·
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 3+screen 2.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

feed line indicators =AZ2+SCS/3.4 =AZ2+SCS­X12 5 BK =AZ2+MDP­AX9 1


feed line indicators =AZ2+SCS/3.4 =AZ2+SCS­X12 6 BU =AZ2+MDP­AX9 2
BN
screen

Datum 20.Mai.2016 =AZ2+W­301 = CABLE 53 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 250
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­302 MPRXCX
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 19+screen 1.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

feed line NFU control =AZ2+SCS/6.6 =AZ2+SCS­X12 7 1 =AZ2+MDP­AX1 7


feed line NFU control =AZ2+SCS/6.6 =AZ2+SCS­X12 8 2 =AZ2+MDP­AX1 8
NFU control ON OFF =AZ2+SCS/6.7 =AZ2+SCS­X12 9 3 =AZ2+MDP­AX2 14
NFU control ON OFF =AZ2+SCS/6.7 =AZ2+SCS­X12 10 4 =AZ2+MDP­AX1 9
feed line signals =AZ2+SCS/7.0 =AZ2+SCS­X12 11 5 =AZ2+MDP­AX2 13
indication NFU steering ON =AZ2+SCS/7.1 =AZ2+SCS­X12 12 6 =AZ2+MDP­AX1 11
thruster turning ccw =AZ2+SCS/7.2 =AZ2+SCS­X12 13 7 =AZ2+MDP­AX2 44
thruster turning cw =AZ2+SCS/7.3 =AZ2+SCS­X12 14 8 =AZ2+MDP­AX2 54
NFU RPM control in service =AZ2+SCS/7.4 =AZ2+SCS­X12 16 9 =AZ2+MDP­AX1 10
increase RPM =AZ2+SCS/7.4 =AZ2+SCS­X12 17 10 =AZ2+MDP­AX2 34
decrease RPM =AZ2+SCS/7.5 =AZ2+SCS­X12 18 11 =AZ2+MDP­AX2 24
NFU pitch control in service =AZ2+SCS/7.7 =AZ2+SCS­X12 19 12 =AZ2+MDP­AX1 12
increase pitch =AZ2+SCS/7.8 =AZ2+SCS­X12 20 13 =AZ2+MDP­AX2 74
decrease pitch =AZ2+SCS/7.8 =AZ2+SCS­X12 21 14 =AZ2+MDP­AX2 64
15
16
17
18
19
decrease pitch =AZ2+SCS/7.9 =AZ2+SCS­X12 SB screen =AZ2+W­302 screen

Datum 20.Mai.2016 =AZ2+W­302 = CABLE 54 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 251
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­303 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C1* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

CAN BUS control system =AZ2+SCS/8.4 =AZ2+SCS­X12 22 1.1 =AZ2+MDP­AX3 1


CAN BUS control system =AZ2+SCS/8.5 =AZ2+SCS­X12 23 1.2 =AZ2+MDP­AX3 2
CAN BUS control system =AZ2+SCS/8.5 =AZ2+SCS­X12 24 2.1 =AZ2+MDP­AX3 3
CAN BUS control system =AZ2+SCS/8.5 =AZ2+SCS­X12 25 2.2 =AZ2+MDP­AX3 4
screen

Datum 20.Mai.2016 =AZ2+W­303 = CABLE 55 / 65


Bearb. MSC
1216742 +
C1*
Gepr. Bl. 252
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­304 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C1* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

CAN BUS indicator =AZ2+SCS/21.6 =AZ2+SCS­X12 27 1.1 =AZ2+MDP­AX9 3


CAN BUS indicator =AZ2+SCS/21.6 =AZ2+SCS­X12 28 1.2 =AZ2+MDP­AX9 4
CAN BUS indicator =AZ2+SCS/21.6 =AZ2+SCS­X12 29 2.1 =AZ2+MDP­AX9 5
CAN BUS indicator =AZ2+SCS/21.7 =AZ2+SCS­X12 30 2.2 =AZ2+MDP­AX9 10
screen

Datum 20.Mai.2016 =AZ2+W­304 = CABLE 56 / 65


Bearb. MSC
1216742 +
C1*
Gepr. Bl. 253
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­305 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

propeller RPM indicator =AZ2+SCS/27.4 =AZ2+SCS­X12 31 1.1 =AZ2+MDP­AX9 13


propeller RPM indicator =AZ2+SCS/27.5 =AZ2+SCS­X12 32 1.2 =AZ2+MDP­AX9 14
pitch indicator =AZ2+SCS/29.4 =AZ2+SCS­X12 33 2.1 =AZ2+MDP­AX9 16
pitch indicator =AZ2+SCS/29.4 =AZ2+SCS­X12 34 2.2 =AZ2+MDP­AX9 17
pitch indicator =AZ2+SCS/29.5 =AZ2+SCS­X12 SB screen =AZ2+W­305 screen

Datum 20.Mai.2016 =AZ2+W­305 = CABLE 57 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 254
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­620 MPRXCX·
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C4* 3+screen 1.5 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

CP pump auxiliary =AZ2+SCS/2.6 =AZ2+SCS­X9 1 BK =AZ2+HYCP­M1 U


CP pump auxiliary =AZ2+SCS/2.6 =AZ2+SCS­X9 2 BU =AZ2+HYCP­M1 V
CP pump auxiliary =AZ2+SCS/2.7 =AZ2+SCS­X9 3 BN =AZ2+HYCP­M1 W
CP pump auxiliary =AZ2+SCS/2.7 =AZ2+SCS­X9 SB screen =AZ2+W­620 screen

Datum 20.Mai.2016 =AZ2+W­620 = CABLE 58 / 65


Bearb. MSC
1216742 +
C4*
Gepr. Bl. 255
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­710 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 10x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

feed line signals =AZ2+SCS/17.1 =AZ2+SCS­X3 1 1.1 =YARD+PM­AZ2­X1 1


drive motor OFF =AZ2+SCS/17.2 =AZ2+SCS­X3 2 1.2 =YARD+PM­AZ2­X1 2
drive motor running =AZ2+SCS/17.3 =AZ2+SCS­X3 3 2.1 =YARD+PM­AZ2­X1 3
drive motor idle =AZ2+SCS/17.4 =AZ2+SCS­X3 4 2.2 =YARD+PM­AZ2­X1 4
drive motor overload =AZ2+SCS/17.4 =AZ2+SCS­X3 5 3.1 =YARD+PM­AZ2­X1 5
3.2
=AZ2+SCS/47.1 =AZ2+SCS­X3.K3 11 4.1 =YARD+PM­AZ2­X2 1
=AZ2+SCS/47.1 =AZ2+SCS­X3.K3 14 4.2 =YARD+PM­AZ2­X2 2
clutch disengaged =AZ2+SCS/47.2 =AZ2+SCS­X3 6 5.1 =YARD+PM­AZ2­X2 3
clutch disengaged =AZ2+SCS/47.2 =AZ2+SCS­X3 7 5.2 =YARD+PM­AZ2­X2 4
feed line signals =AZ2+SCS/48.7 =AZ2+SCS­X8 8 6.1 =YARD+PM­AZ2­X1 6
engine load 80% =AZ2+SCS/48.7 =AZ2+SCS­X8 9 6.2 =YARD+PM­AZ2­X1 7
engine load 100% =AZ2+SCS/48.8 =AZ2+SCS­X8 10 7.1 =YARD+PM­AZ2­X1 8
7.2
8.1
8.2
9.1
9.2
10.1
10.2
screen

Datum 20.Mai.2016 =AZ2+W­710 = CABLE 59 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 256
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­711 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 2x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

speed value =AZ2+SCS/47.5 =AZ2+SCS­X3 13 1.1 =YARD+PM­AZ2­X3 1


speed value =AZ2+SCS/47.5 =AZ2+SCS­X3 14 1.2 =YARD+PM­AZ2­X3 2
engine load signal =AZ2+SCS/47.7 =AZ2+SCS­X3 15 2.1 =YARD+PM­AZ2­X3 3
engine load signal =AZ2+SCS/47.7 =AZ2+SCS­X3 16 2.2 =YARD+PM­AZ2­X3 4
screen

Datum 20.Mai.2016 =AZ2+W­711 = CABLE 60 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 257
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­720 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 4x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

Autopilot system ready for service =AZ2+SCS/46.1 =AZ2+SCS­X5 1 1.1 =YARD+AP­X1 7


Autopilot system ready for service =AZ2+SCS/46.1 =AZ2+SCS­X5 2 1.2 =YARD+AP­X1 8
=AZ2+SCS/46.2 =AZ2+SCS­X5.K1 14 2.1 =YARD+AP­X1 9
=AZ2+SCS/46.2 =AZ2+SCS­X5.K1 11 2.2 =YARD+AP­X1 10
set point steering value from Autopilot =AZ2+SCS/46.3 =AZ2+SCS­X5 3 3.1 =YARD+AP­X1 11
set point steering value from Autopilot =AZ2+SCS/46.3 =AZ2+SCS­X5 4 3.2 =YARD+AP­X1 12
4.1
4.2
set point steering value from Autopilot =AZ2+SCS/46.3 =AZ2+SCS­X5 SB screen =AZ2+W­720 screen

Datum 20.Mai.2016 =AZ2+W­720 = CABLE 61 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 258
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­770 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 4x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

FIFI mode possible =YARD+FIFI/3.1 =YARD+FIFI­X2 1 1.1 =AZ2+SCS­X8.K1 11


FIFI mode possible =YARD+FIFI/3.1 =YARD+FIFI­X2 2 1.2 =AZ2+SCS­X8.K1 14
feed line =YARD+FIFI/3.4 =YARD+FIFI­X2 3 2.1 =AZ2+SCS­X8 1
FIFI mode ON =YARD+FIFI/3.4 =YARD+FIFI­X2 5 2.2 =AZ2+SCS­X8 3
FIFI pump in service =YARD+FIFI/3.5 =YARD+FIFI­X2 6 3.1 =AZ2+SCS­X8 4
feed line signals =YARD+FIFI/3.6 =YARD+FIFI­X2 7 3.2 =AZ2+SCS­X8 5
engine load 80% =YARD+FIFI/3.6 =YARD+FIFI­X2 8 4.1 =AZ2+SCS­X8 6
engine load 100% =YARD+FIFI/3.7 =YARD+FIFI­X2 9 4.2 =AZ2+SCS­X8 7
screen

Datum 20.Mai.2016 =AZ2+W­770 = CABLE 62 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 259
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­820 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 10x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

failure AC / DC converter =YARD+SWU/5.0 =YARD+SWU­X2 1 1.1 =AZ2+SCS­X4.K1 11


failure AC / DC converter =YARD+SWU/5.0 =YARD+SWU­X2 2 1.2 =AZ2+SCS­X4.K1 14
failure emergency feed line 24V DC =YARD+SWU/5.1 =YARD+SWU­X2 3 2.1 =AZ2+SCS­X4.K2 11
failure emergency feed line 24V DC =YARD+SWU/5.1 =YARD+SWU­X2 4 2.2 =AZ2+SCS­X4.K2 14
failure control system =YARD+SWU/5.2 =YARD+SWU­X2 5 3.1 =AZ2+SCS­X4.K3 11
failure control system =YARD+SWU/5.2 =YARD+SWU­X2 6 3.2 =AZ2+SCS­X4.K3 14
failure FFU RPM control =YARD+SWU/5.3 =YARD+SWU­X2 7 4.1 =AZ2+SCS­X4.K4 11
failure FFU RPM control =YARD+SWU/5.3 =YARD+SWU­X2 8 4.2 =AZ2+SCS­X4.K4 14
failure FFU steering =YARD+SWU/5.3 =YARD+SWU­X2 9 5.1 =AZ2+SCS­X4.K5 11
failure FFU steering =YARD+SWU/5.4 =YARD+SWU­X2 10 5.2 =AZ2+SCS­X4.K5 14
failure NFU control =YARD+SWU/5.4 =YARD+SWU­X2 11 6.1 =AZ2+SCS­X4.K6 11
failure NFU control =YARD+SWU/5.4 =YARD+SWU­X2 12 6.2 =AZ2+SCS­X4.K6 14
steering locked =YARD+SWU/5.5 =YARD+SWU­X2 13 7.1 =AZ2+SCS­X4.K7 11
steering locked =YARD+SWU/5.5 =YARD+SWU­X2 14 7.2 =AZ2+SCS­X4.K7 12
failure external systems =YARD+SWU/5.5 =YARD+SWU­X2 15 8.1 =AZ2+SCS­X4.K8 11
failure external systems =YARD+SWU/5.6 =YARD+SWU­X2 16 8.2 =AZ2+SCS­X4.K8 14
9.1
9.2
10.1
10.2
=YARD+SWU­X2 screen =AZ2+SCS­X4.K1

Datum 20.Mai.2016 =AZ2+W­820 = CABLE 63 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 260
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­821 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
C2* 10x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

failure external systems =YARD+SWU/5.6 =YARD+SWU­X2 17 1.1 =AZ2+SCS­X4.K10 11


steering oil pressure min =YARD+SWU/5.7 =YARD+SWU­X2 18 1.2 =AZ2+SCS­X4.K10 14
hy oil level min =YARD+SWU/5.7 =YARD+SWU­X2 19 2.1 =AZ2+SCS­X4.K11 11
hy oil level min =YARD+SWU/5.7 =YARD+SWU­X2 20 2.2 =AZ2+SCS­X4.K11 14
clutch air pressure min =YARD+SWU/5.8 =YARD+SWU­X2 21 3.1 =AZ2+SCS­X4.K12 11
clutch air pressure min =YARD+SWU/5.8 =YARD+SWU­X2 22 3.2 =AZ2+SCS­X4.K12 14
failure FFU pitch control =YARD+SWU/6.0 =YARD+SWU­X2 23 4.1 =AZ2+SCS­X4.K13 11
failure FFU pitch control =YARD+SWU/6.0 =YARD+SWU­X2 24 4.2 =AZ2+SCS­X4.K13 14
pitch locked =YARD+SWU/6.1 =YARD+SWU­X2 25 5.1 =AZ2+SCS­X4.K14 11
pitch locked =YARD+SWU/6.1 =YARD+SWU­X2 26 5.2 =AZ2+SCS­X4.K14 12
CP pump oil pressure min =YARD+SWU/6.2 =YARD+SWU­X2 27 6.1 =AZ2+SCS­X4.K15 11
CP pump oil pressure min =YARD+SWU/6.2 =YARD+SWU­X2 28 6.2 =AZ2+SCS­X4.K15 14
CP pump oil pressure min =YARD+SWU/6.3 =YARD+SWU­X2 29 7.1 =AZ2+SCS­X4.K16 11
failure auxiliary CP pump =YARD+SWU/6.3 =YARD+SWU­X2 30 7.2 =AZ2+SCS­X4.K16 14
overload auxiliary CP pump =YARD+SWU/6.3 =YARD+SWU­X2 31 8.1 =AZ2+SCS­X4.K17 11
overload auxiliary CP pump =YARD+SWU/6.4 =YARD+SWU­X2 32 8.2 =AZ2+SCS­X4.K17 14
switch box temperature max =YARD+SWU/6.4 =YARD+SWU­X2 33 9.1 =AZ2+SCS­X4.K18 11
switch box temperature max =YARD+SWU/6.5 =YARD+SWU­X2 34 9.2 =AZ2+SCS­X4.K18 14
collective alarm unit =YARD+SWU/6.6 =YARD+SWU­X2 35 10.1 =AZ2+SCS­X4 1
collective alarm unit =YARD+SWU/6.6 =YARD+SWU­X2 36 10.2 =AZ2+SCS­X4 2
=AZ2+W­821 screen screen =AZ2+SCS­X4 SB

Datum 20.Mai.2016 =AZ2+W­821 = CABLE 64 / 65


Bearb. MSC
1216742 +
C2*
Gepr. Bl. 261
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.
0 1 2 3 4 5 6 7 8 9

Kabelbezeichnung Kabeltyp
=AZ2+W­840 TCX(C)
name of cable type of cables
Bemerkung Aderzahl Kabelquerschnitt Kabellänge
K3* 7x2+screen 0.75 ­
remarks number of wires cross section area lenght of cables
Zielbez. von /target item from Zielbez. nach / target item to
Funktionstext Seite / Pfad Kennzeichen Anschluß Ader Nr.: Kennzeichen Anschluß
description page / path mark connect. wirre NO.: mark connect

lub oil level SRP min =AZ2+SRP/2.1 =AZ2+SRP­X2 1 1.1 =YARD+SWU­X2 37


lub oil level SRP min =AZ2+SRP/2.1 =AZ2+SRP­X2 2 1.2 =YARD+SWU­X2 38
lub oil temperature SRP max =AZ2+SRP/2.2 =AZ2+SRP­X2 3 2.1 =YARD+SWU­X2 39
lub oil temperature SRP max =AZ2+SRP/2.2 =AZ2+SRP­X2 4 2.2 =YARD+SWU­X2 40
CP oil filter dirty =AZ2+SRP/2.3 =AZ2+SRP­X2 5 3.1 =YARD+SWU­X2 41
CP oil filter dirty =AZ2+SRP/2.3 =AZ2+SRP­X2 6 3.2 =YARD+SWU­X2 42
CP oil pressure max =AZ2+SRP/2.4 =AZ2+SRP­X2 7 4.1 =YARD+SWU­X2 43
CP oil pressure max =AZ2+SRP/2.4 =AZ2+SRP­X2 8 4.2 =YARD+SWU­X2 44
hydraulic oil temperature max =AZ2+SRP/2.5 =AZ2+SRP­X2 9 5.1 =YARD+SWU­X2 45
hydraulic oil temperature max =AZ2+SRP/2.5 =AZ2+SRP­X2 10 5.2 =YARD+SWU­X2 46
hydraulic oil filter dirty =AZ2+SRP/2.6 =AZ2+SRP­X2 11 6.1 =YARD+SWU­X2 47
hydraulic oil filter dirty =AZ2+SRP/2.6 =AZ2+SRP­X2 12 6.2 =YARD+SWU­X2 48
hydraulic oil pressure max =AZ2+SRP/2.7 =AZ2+SRP­X2 13 7.1 =YARD+SWU­X2 49
hydraulic oil pressure max =AZ2+SRP/2.7 =AZ2+SRP­X2 14 7.2 =YARD+SWU­X2 50
hydraulic oil pressure max =AZ2+SRP/2.7 =AZ2+SRP­X2 SB screen =AZ2+W­840 screen

Datum 20.Mai.2016 =AZ2+W­840 = CABLE 65 / 65


Bearb. MSC
1216742 +
K3*
Gepr. Bl. 262
Änderung Datum Name Norm Aldorf e.­diagram 262 Bl.

You might also like