Nothing Special   »   [go: up one dir, main page]

Formula Sheet Numerical

Download as pdf or txt
Download as pdf or txt
You are on page 1of 3

ELEC 437/ ELEC 6421 Renewable Energy Systems Formula Sheet

𝑞𝑉𝑑
𝐼𝑑 = 𝐼𝑠 (𝑒 𝑘𝑇 − 1) , 𝑞 = 1.6 x 10-19 Coulomb  360(n − 80) 
 = 23.5o sin  
𝑘 = 1.38 x 10-23 Joule/K  365 
Kelvin = Celsius + 273
 = 12 − T  360o s = cos−1 (− tan  tan  )
24
cos −1 (− tan  tan  )
DH = 2  s = AM = AM (90o ) Cos  = AM (90o )Sec  z
15 7.5
(0.678)
I = 1.368(0.7) AM
sin  sin  − sin 
sin  = sin  sin  + cos  cos  cos  Cos =
cos  cos 
T
q=k
X
Th − Tc Th − Tc
q= Q = qA =
X 1 X g X 2 X 1 X g X 2
+ + + +
k1 kg k2 k1 A k g A k 2 A
W Tr − To
q = hT in Q=
m2 K Ro + R1 + Rg + R2 + Rr
   
Q=
( )
  Tp2 + Ta2 (TP + Ta ) 
 (TP − Ta ) 
( )
  TP2 + Ta2 (TP + Ta ) 
 = R −1
 1− P + 1 + 1− a   1− P + 1 + 1− a 
  P A FPa A  a A    P A FPa A  a A 
For Forced convection: h = 5.7 + 3.8u 𝜎 is Stefan-Boltzmann constant 5.67 × 10−8 W.m-2.K-4
Nu k g
For Natural convection: h =
distance between glass and absorber
Nu (Nusselt Number) for air = 5.572
𝑘 𝑈 𝑘−1 𝑈 𝑘
Weibull distribution function: 𝑝(𝑈) = ( ) ( ) 𝑒𝑥𝑝 [− ( ) ]
𝑐 𝑐 𝑐

Gamma function is Γ(𝑚 + 1) = 𝑚! = ∫𝑥=0 𝑥 𝑚 𝑒 −𝑥 𝑑𝑥
𝜋 𝑈 𝜋 𝑈 2
𝑝(𝑈) = ( 2 ) 𝑒𝑥𝑝 [− ( ) ]
𝑈 𝑘 2 𝑈 4 𝑈
𝐹(𝑈) = 1 − 𝑒𝑥𝑝 [− ( 𝑐 ) ]
𝜋 𝑈 2
𝐹(𝑈) = 1 − 𝑒𝑥𝑝 [− ( ) ]
4 𝑈
−1.086 1
𝜎 −𝑘
𝑘 = ( 𝑈𝑈 ) 𝑐
= (0.568 +
0.433
)
𝑈 𝑘
1 3 ∞
𝑃𝑤 = 𝜂𝜌𝐴𝑈𝑐 𝐶𝑃 ∫0
(𝑥)3 {2𝑥 exp[−(𝑥)2 ]} 𝑑𝑥
2
Note that the wind machine constants have been removed from the integral. The integral now be
3
evaluated over all wind speeds. Its value is (4) √𝜋 . Thus:
1 16 3
𝑃𝑤 = 𝜌 𝐴𝑈𝑐3 (27) (4) √𝜋
2
𝑅 ′
𝑗𝑋𝑀 (𝑗𝑋 ′ 𝐿𝑅 + 𝑅 )
𝑠
𝑅 + 𝑗𝑋 = ′
𝑅
[ 𝑅 + 𝑗(𝑋𝑀 + 𝑋𝐿𝑅
′ )]
𝑠

′ 2
′ 𝑅
2 𝑅𝑅 ′
𝑋𝑀 [( 𝑅 ) + 𝑋𝐿𝑅 ′
(𝑋𝐿𝑅 + 𝑋𝑀 )]
𝑋𝑀 𝑠
𝑠
𝑅= 2 𝑋=
𝑅′𝑅 ′ + 𝑋 )2 ] ′ 2
[( ) + (𝑋𝐿𝑅 𝑅 ′ + 𝑋 )2 ]
𝑠 𝑀 [( 𝑅 ) + (𝑋𝐿𝑅 𝑀
𝑠

𝑍̂ = (𝑅 + 𝑅𝑠 ) + 𝑗(𝑋 + 𝑋𝐿𝑆 )
𝑉̂ 𝑅+𝑗𝑋
𝐼̂𝑠 = 𝑍̂ 𝐼𝑅 = 𝑍𝑅′
𝐼𝑠
1−𝑠 𝑃𝑚
𝑃𝑔 = 3𝐼𝑅2 𝑅𝑅′ + 3𝐼𝑅2 𝑅𝑅′ 𝑃𝑔 =
𝑠 1−𝑠

𝑃𝑙𝑜𝑠𝑠 = 3𝐼𝑠2 𝑅𝑆 𝑃𝑜𝑢𝑡 = 𝑃𝑔 + 𝑃𝑙𝑜𝑠𝑠


1−𝑠
𝑃𝑚 = 3𝐼𝑅2 𝑅𝑅′ 𝑃𝑚 = −(𝑃𝑖𝑛 − 𝑃𝑚𝑒𝑐ℎ𝑙𝑜𝑠𝑠 )
𝑠
𝑃𝑜𝑢𝑡 𝑃𝑜𝑢𝑡
𝜂𝑔𝑒𝑛 = − 𝑃𝐹 = −
𝑃𝑖𝑛 𝑉𝐼
𝑛𝑠 −𝑛 120𝑓 Ω1 𝑁2
𝑆= where: 𝑛𝑠 = =
𝑛𝑠 𝑃 Ω2 𝑁1
𝑃𝑖𝑛 ′
𝑅𝑅 +𝑅𝑥
𝑇𝑚 = At rated current, = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝜔𝑔𝑒𝑛 𝑠

1 𝑉𝑜𝑝
=
2𝜋𝑓𝐶 𝐼𝑜𝑝

𝐸 = 𝜂𝐻𝑏 𝑉𝑏 𝐸 = 𝜂𝐻𝑚 𝑓𝑚 𝑉𝑏
𝑚0
𝑉𝑏 = 𝑐𝑚0 𝑉𝑓 = ; 𝑉𝑑 = 𝑉𝑓̇ 𝑡𝑡
𝜌𝑚

where:
𝜌𝑚 is the density of dry matter in the fluid ≈ 50 kg.m-3
𝑐 is the biogas yield per unit dry mass of whole input ≈ 0.24 m-3.kg-1
𝐻𝑏 is the heat of combustion per unit volume biogas = 20 MJm−3
The period of the motion is:
1
2𝜋𝑔
𝜆= where 𝑔 = 9.81 𝑚/𝑠 2 𝑇=
2𝜋
=
2𝜋
so 𝑇 =
2𝜋𝜆 2
( 𝑔 )
𝜔2 1
𝜔 2𝜋𝑔 2
( )
𝜆

The wave surface velocity in the x direction


1
The velocity of a particle at the crest of the 𝜔𝜆 𝑔 𝜆 2
1 𝑐= = 𝜔 = 𝑔 (2𝜋𝑔)
2𝜋𝑔 2 2𝜋
wave is: 𝑣 = 𝑎𝜔 = 𝑎 ( ) 1
𝜆 𝑔𝜆 2 𝑔𝑇
𝑐= (2𝜋) = 2𝜋
1 1/2
𝜌𝑔2 𝑎2 2𝜋𝜆 2 𝐾𝑔 (∑𝑛𝑖=1 ℎ2 )⁄
𝑃′ = ( ) , 𝜌 (𝑤𝑎𝑡𝑒𝑟) = 1000 𝐻𝑠 = 4 𝑎𝑟𝑚𝑠 = 4 [ 𝑛]
8𝜋 𝑔 𝑚3

𝑇 2 𝜌 𝑔2 𝐻𝑠2 𝑇𝑒
𝜀 2 = 1 − (𝑇𝐶 ) 𝑃′ =
𝑍 64𝜋
1 1
𝑢𝑗 2 = 2𝑔𝐻𝑎 𝑃𝑚 = 𝜂𝑚 𝑛𝑃𝑗 = 𝜂𝑚 𝑛 2 𝜌𝑄𝑗 𝑢𝑗2 = 𝜂𝑚 𝑛 2 𝜌(𝑎𝑢𝑗 )𝑢𝑗2
1
𝑄 = 𝑛𝑎𝑢𝑗 = 𝑛𝑄𝑗 = 2 𝜂𝑚 𝑛𝑎𝜌(2𝑔𝐻𝑎 )3/2
0.5(2𝑔𝐻𝑎 )1/2
𝑅= 𝜔
The nozzles usually give circular cross section jets of area a and a radius r. So 𝑎 = 𝜋𝑟 2
𝑃𝑚
𝑟2 = 3
𝜂𝑚 𝜌𝑛𝜋 (𝑔𝐻𝑎 )2 √2
1
1 2
𝑟 − 𝜔𝑃𝑚
= 0.68(𝜂𝑚 𝑛) 2 .ℒ ℒ= 1 5
𝑅
𝜌2 (𝑔𝐻𝑎 )4
1 1
𝑃0 = (𝜌𝐴1 𝑢0 )𝑢02 = 𝜌𝐴1 𝑢03
2 2
1
𝑃𝑇 = 2𝜌𝐴1 (1 − 𝑎)2 𝑢02 [𝑢0 − (1 − 𝑎)𝑢0 ] = [4𝑎(1 − 𝑎)2 ] (2 𝜌𝐴1 𝑢03 )
2
𝜌𝐴1 𝑢𝑜
𝐹𝐴 = (𝜌𝐴1 𝑢1 )(2𝑢0 𝑎) = 𝜌𝐴1 (1 − 𝑎)𝑢0 (2𝑢0 𝑎) = 4𝑎(1 − 𝑎)
2
1 𝑧 𝑏
𝑃𝑗 = 2
𝜌𝑄𝑗 𝑢𝑗2 𝑢𝑧 = 𝑢𝑠 (10𝑚)
Δ𝑐
ΔΓ = 𝑖𝑣 𝑅𝑔 𝑇 𝑀 𝐸𝑆𝐺𝑃 = ΔΓ𝑉𝐹
𝑊𝑆𝐺𝑃 = ΔΓ𝑄𝐹 𝑄𝑃 = 𝐴𝐴𝑚 (ΔΓ − ΔP)
ΔΓ 2
𝑊𝑃𝑅𝑂 = 𝑄𝑃 ΔP 𝑊𝑃𝑅𝑂,𝑚𝑎𝑥 = 𝐴𝐴𝑚 ( 2 )
𝑄𝑃
𝐴𝑚 = ΔΓ 𝑊𝑔𝑟𝑜𝑠𝑠 = 𝑊𝑃𝑅𝑂 𝜂𝑡𝑢𝑟𝑏𝑖𝑛𝑒 𝜂𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟
𝐴
2

𝑊𝑛𝑒𝑡 = 𝑊𝑔𝑟𝑜𝑠𝑠 − 𝑊𝑝𝑢𝑚𝑝𝑠

You might also like