R V S/ (S + K) : Computer Methods and Programs in Biomedicine 65, 191-200
R V S/ (S + K) : Computer Methods and Programs in Biomedicine 65, 191-200
R V S/ (S + K) : Computer Methods and Programs in Biomedicine 65, 191-200
Falconer, University of C
Vmax= 0.3767
Km= 544.92 r= Vmax*S/(S + Km)
Solver minimizes sum of squares (SS, yellow cell) by changing V max and Km
S X matrix Xt*Xinv
25 0.04387 -2.8995E-05 0.4969 2172.06
50 0.08405 -5.3219E-05 2172.1 18938261
100 0.15506 -9.0574E-05
250 0.31450 -0.00014904 S e2 8.833E-05
500 0.47851 -0.00017251 SVmax 0.006625
1000 0.64728 -0.00015783 SKm 40.90
2500 0.82104 -0.00010 alpha 5%
5000 0.90173 -6.1262E-05 tval 2.306
7500 0.93227 -4.3655E-05
10000 0.94832 -3.3879E-05 parameter value +/- 95% confidence intervals
¶r/¶Vmax ¶r/¶Km Vmax 0.377 +/-
Km 545 +/-
confidence interval for Vmax = tval*Svmax
confidence interval for Km = tval*SKm
Svmax= SQRT (x11 element in Xt*Xinv matrix * Se2)
SKm= SQRT (x22 element in Xt*Xinv matrix * Se2)
John L. Falconer, University of Colorado Boulder
r (micromol/s)
P number of parameters
0.2
R2 Coefficient of determination
rexp-rcalc residual
rmean mean of rexp
0.1
S.E. standard error of rates (standard deviation of the residuals)=SQRT(SS/df)
Se2 =(S.E.)^2
SS sum of squares of (rexp -rcalc) 0.0
SSmean sum of squares of (rexp -rmean) 0 1000 2000 3000
tval inverse of 2-tailed Student t distribution
Vmax maximum rate
X matrix matrix of partial derivatives where each column is the partial derivation of the independent variable (r in this case)
Xt*Xinv the transpose of the X matrix multiplied by the inverse of the X matrix
0.025
0.020
rexp-rcalc (micromol/s)
0.015
0.010
0.005
0.000
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-0.005
-0.010
% confidence intervals S (micromol)
0.015
94
Xt*Xinv matrix * Se2)
Xt*Xinv matrix * Se2)
0.4
0.3
0.2
0.1
0.0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
S (micromol)
ndent variable (r in this case) w.r.t. one of the paramters (V max and Km in this case)
9000 10000
Vmax= 0.3765
Km= 543.47
S X matrix Xt*Xinv
25 0.04398 -2.912513E-05 0.4961 2163.97
50 0.08425 -5.344606E-05 2164.0 18846139
100 0.15541 -9.092579E-05
250 0.31507 -0.000149494 S e2 8.834E-05
500 0.47917 -0.000172884 SVmax 0.006620
1000 0.64789 -0.000158034 SKm 40.80
2500 0.82143 -0.00010 alpha 5%
5000 0.90196 -6.125696E-05 tval 2.306
7500 0.93243 -4.364388E-05
10000 0.94845 -3.386741E-05 parameter value +/- 95% confidence intervals
¶r/¶Vmax ¶r/¶Km Vmax 0.376
Km 543
confidence interval for Vmax = tval*Svmax
confidence interval for Km = tval*SKm
Svmax= SQRT (x11 element in Xt*Xinv matrix * Se2)
SKm= SQRT (x22 element in Xt*Xinv matrix * Se2)
r= Vmax*S/(S + Km) Michaelis-Menten kinetics
0.4
Notation
df degrees of freedom
0.3
Km Michaelis constant
N number of data points
r (micromol/s)
P number of parameters
R2 Coefficient of determination
0.2
rexp-rcalc residual
rmean mean of rexp
0.1
S.E. standard error of rates (standard deviation of the residuals)=SQRT(SS/df)
S e2 =(S.E.)^2
SS sum of squares of (rexp -rcalc) 0.0
SSmean sum of squares of (rexp -rmean) 0 1000 2
tval inverse of 2-tailed Student t distribution
Vmax maximum rate
X matrix matrix of partial derivatives where each column is the partial derivation of the independent variable (r in
Xt*Xinv the transpose of the X matrix multiplied by the inverse of the X matrix
0.025
0.020
rexp-rcalc (micromol/s)
0.015
0.010
0.005
0.000
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-0.005
-0.010
+/- 95% confidence intervals S (micromol)
+/- 0.015
+/- 94
v matrix * Se2)
matrix * Se2)
0.4
0.3
r (micromol/s)
0.2
0.1
0.0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
S (micromol)
the independent variable (r in this case) w.r.t. one of the paramters (V max and Km in this case)