Nothing Special   »   [go: up one dir, main page]

Secondary Forests in Peru: Differential Provision of Ecosystem Services Compared To Other Post-Deforestation Forest Transitions

Download as pdf or txt
Download as pdf or txt
You are on page 1of 34

Copyright © 2022 by the author(s). Published here under license by the Resilience Alliance.

Tito, R., N. Salinas, E. G. Cosio, T. E. Boza Espinoza, J. G. Muñiz, S. Aragón, A. Nina, and R. Roman-Cuesta. 2022. Secondary
forests in Peru: differential provision of ecosystem services compared to other post-deforestation forest transitions. Ecology and
Society 27(3):12. https://doi.org/10.5751/ES-13446-270312

Synthesis

Secondary forests in Peru: differential provision of ecosystem services


compared to other post-deforestation forest transitions
Richard Tito 1 , Norma Salinas 1, Eric G. Cosio 1, Tatiana E. Boza Espinoza 1, Julia G. Muñiz 2, Susan Aragón 1, Alex Nina 1 and
Rosa Maria Roman-Cuesta 3

ABSTRACT. While tropical forests are undergoing rapid transformation as a result of direct human impacts, many deforested areas
are reverting to forest through natural or human-assisted regeneration. This situation provides a window of opportunity to implement
forest management strategies to achieve environmental objectives while promoting social development and contributing to local
livelihoods. Successful forest management policy, however, depends on how well we can appraise environmental consequences as well
as on the value of ecosystem services that these regrowing forests provide. Here, we review the published literature to synthesize the
ecosystem services provided by three types of forest transitions: naturally-regenerated secondary forests, agroforestry systems, and tree
plantations, in the coastal, Andean, and Amazonian regions of Peru. We then discuss the potential of these regrowing forests as nature-
based solutions that can help in the adoption of policies that promote their sustainable use and conservation. Our literature analysis
reveals that forest transitions provide significant services in offsetting carbon emissions, providing habitats for biodiversity, and
regulating hydrological services. However, the amount and importance of ecosystem services vary depending on the forest transition
type. Secondary forests offer multiple services, representing a low-cost, immediate, and highly effective strategy in mitigating the climate
and biodiversity crises and ultimately providing vital ecosystem services to society, such as water provision. In contrast, exotic tree
plantations have negative effects on water regulation services. We highlight the potential of secondary forests for land management
that supports multiple and integrated environmental initiatives. This framework can guide policy decisions to choose appropriate
options on forest transition types most suitable to achieve specific end goals at local and regional scales, considering both ecosystem
services and disservices to avoid trade-offs in which the achievement of one goal is detrimental to another.
Key Words: climate mitigation, ecosystem-based adaptation, forest conservation, forest cover change, forest transition, land use change,
mitigation, nature-based solutions

INTRODUCTION “new forests” or “reforests” that recover their forest cover in an


Tropical mature forests store large amounts of carbon and host increasing trend, commonly following a period of deforestation
high biodiversity, but they are undergoing rapid transformation in line with socioeconomic changes, are known as “forest
as a result of direct human impacts and changing environmental transitions” (Wilson et al. 2017, MacDonald and McKenney
conditions (Hansen et al. 2013, Colorado Zuluaga and Rodewald 2020). Naturally regenerating forests on abandoned deforested
2015, FAO 2020). This context of forest degradation in Peru is lands (i.e., secondary forests) are increasingly expanding in many
not much different from that in other countries. In its recent report regions and are likely to be a dominant feature of tropical forests
on deforestation, the Peruvian National Forest and Wildlife in the near future (Poorter et al. 2016, Wilson et al. 2017). Recently,
Service (SERFOR) revealed that between 2017 and 2019, the rate it has been estimated that secondary forests represent half of the
of forest loss in the Peruvian Amazon averaged 128,069 ha/yr and remaining forest in tropical regions (McGee et al. 2020).
had increased compared to the previous 10 years (https://geo. Approximately 2.6–8 million ha have been reported as secondary
serfor.gob.pe/visor/). Similarly, other studies have shown vegetation in the Peruvian Amazon (MINAM 2015, Smith et al.
increasing forest disturbance rates in many areas of the Andes 2021). Published reports have shown that secondary forests often
and coastal regions (Aide et al. 2019, FAO 2020). The main causes rapidly accumulate aboveground biomass and thus sequester
of forest loss are related to the expansion of agriculture and carbon dioxide at even higher rates than mature forests (Asner et
pasture in response to growing demand for food and other basic al. 2010, Poorter et al. 2016, Chazdon et al. 2016). In addition to
products. In addition, deforestation by gold mining is also carbon sequestration, secondary forests also host high biological
responsible for a significant extent of forest loss (Tovar et al. 2013, diversity and generate critical provisioning ecosystem services
Caballero Espejo et al. 2018, Csillik and Asner 2020). Immediate such as water, timber, or food (Poorter et al. 2016, Jones et al.
and observable economic benefit provided by this change in land 2019). Despite these and other important benefits, secondary
use outweighs, in the near term, the loss of ecological benefits forests are still undervalued, both ecologically and economically,
from forests that are often intangible to human perception and are therefore largely neglected in forest management policies.
(D’Almeida et al. 2007, Giam 2017, Moomaw et al. 2019).
In addition to secondary forests, tropical landscapes are also
Many areas deforested for timber extraction, agriculture, or
increasingly being occupied by agroforestry systems and tree
pasture are reverting to forest through natural or human-assisted
plantations (Horgan 2009, Socolar et al. 2019). Although these
regeneration (i.e., by planting trees; Chazdon et al. 2020). These
sytems are not naturally regenerated forests, many studies

1
Institute for Nature, Earth and Energy (INTE), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, Lima 15088, Peru,
2
Escuela de Biología, Universidad Nacional San Antonio Abad del Cusco, Av. de la Cultura s/n, Cuzco 08003, Peru, 3Department of Environmental
Sciences, Laboratory of Geoinformation Science and Remote Sensing, University of Wageningen, P.O. Box 476700AA, Wageningen, The
Netherlands
Ecology and Society 27(3): 12
https://www.ecologyandsociety.org/vol27/iss3/art12/

advocate the potential for these human-managed tree-covered available literature concerning different tree-based approaches for
areas to deliver important services and benefits (Ehrenbergerová restoring degraded land. We focused only on forested transitions
et al. 2016, Zavala et al. 2018, Jezeer et al. 2019). However, they because the multiple services they provide are considered a win-
are ecologically distinct from each other and from the original win situation compared to other agricultural options under the
land cover (i.e., mature forest; Wilson et al. 2017), and the current challenges of climate change, biodiversity loss, and
environmental consequences, as well as the value of the ecosystem desertification. Here, we analyze three different forest transitions
services that they ultimately provide, are still poorly understood (secondary forests, agroforestry systems, and tree plantations) and
(Barbier et al. 2010, Wilson et al. 2017, MacDonald and their provision of three key ecosystem services (carbon
McKenney 2020). For example, the expansion of certain types of sequestration and storage, habitat for biodiversity, and water
forest plantations (e.g., exotic tree plantations) provides regulation) in Peru’s three main regions (coastal, Andean, and
important provisioning and supporting services, but can also Amazonian). We also provide information on the ecosystem
degrade other services such as water- and soil-related services services offered by mature native forests to provide a reference
(Raboin and Posner 2012, Vallet et al. 2016, Bonnesoeur et al. state for comparison with those provided by these forest
2019). When the real benefits of forests are unknown, it also leads transitions. More specifically, we address the following key
to unclear forest policy. In this sense, a simultaneous analysis of questions: What ecosystem services might we expect from
changes in forest cover type, structure, function, and services can secondary forests and other post-deforestation forest transitions?
provide valuable information for the design of appropriate land What is the relative importance of these systems in each region?
management strategies (MacDonald and McKenney 2020). And, how can this information help in designing effective social
Therefore, estimating the ecological and social benefits provided and environmental policies?
by distinct forest types is a necessary first step.
STUDY CONTEXT AND DATA SOURCES
Given the growing awareness about the impacts of climate and
land-cover change, a number of international and national Study context
initiatives have been proposed to protect intact forests, reduce Peru hosts an ample variety of ecological zones, with a total of
deforestation, and restore degraded lands through natural or 84 of the 104 ecological regions in the world, and 28 different
assisted forest regeneration (Shukla et al. 2019). The forest and climates (Escobal and Torero 2003, MINAM 2014). The
landscape restoration agenda that seeks to limit global climate heterogeneous habitats of Peruvian landscapes sustain high
change by removing carbon dioxide from the atmosphere through biodiversity and provide critical services to society.
the growth of trees is an example of such initiatives that are Approximately 22% of the Peruvian national economy is linked
currently being adopted (Shukla et al. 2019, Chausson et al. 2020, to biodiversity and the trade of biodiversity products, which
Soto-Navarro et al. 2020). One such activity is the Bonn represents > $200 million USD (MINAM 2014). At the same
Challenge, an international commitment to restore 350 million time, Peru is identified as the world’s most vulnerable country to
ha by 2030 (Holl and Brancalion 2020; https://www. climate change and is subject to high pressure of land-use change
bonnchallenge.org/). Under Initiative 20x20 (Buenos Aires (MINAM 2015, 2016, Gobierno del Perú 2020). Thus, because
Declaration 2019: https://initiative20x20.org/news/buenos-aires- of its varied geographical characteristics and nature-dependent
declaration-restoration), Peru has pledged to restore 3.2 million economic activities, Peru faces serious challenges from the effects
ha, targeting 2 million ha for commercial tree plantations and the of global change. In this context, forests will play crucial roles in
remaining 1.2 million ha aimed at land under different the efforts to preserve biodiversity and mitigate climate change
degradation modalities (overgrazing, salinity, water erosion, soil and its associated effects.
pollution, and soil compaction; Román et al. 2018, Cerrón et al. Amazonian forests: Peru’s vegetation covers 103 million ha, with
2019). However, these strategies face significant challenges. 72 million ha corresponding to forests, mostly in lowland Amazon
Afforestation and reforestation carry significant costs in time and (MINAM 2015) below 500 m elevation (Fig. 1A). This region is
money for both implementation and long-term monitoring. the least populated area of Peru but is responsible for the greatest
Indeed, long-term monitoring is often not in place, and short- amount of forest extraction. As of 2017, 17% of the original forest
term successes of afforestation and reforestation do not translate area in the total Amazon basin had been cleared (Bullock et al.
into durable and effective forest recovery (Cerrón et al. 2017, 2019, 2020), and 6.9% in the Peruvian amazon (Smith et al. 2021). The
SERFOR 2018). In contrast, naturally regenerating secondary average annual forest loss in the Peruvian lowland Amazon forest
forests could be a more suitable approach to optimize the was 128,764 ha/yr for the period 2000–2020 (FAO 2020).
provision of multiple ecosystem services because these forests are Agriculture and gold mining are expanding at an unprecedented
recovering in areas where environmental conditions allow it, rate in the Amazon, and these activities are the main trigger of
bypassing problems of water supply and changing climate that deforestation in Peru (Caballero Espejo et al. 2018, Manoli et al.
can affect the establishment of human-led afforestation and 2018, Csillik and Asner 2020). For example, the expansion of oil
reforestation efforts on degraded land (Chazdon and Guariguata palm plantations in the last two decades in the northeastern
2016). Deciding which forest transition types can provide multiple Peruvian Amazon increased dramatically, from 15,000 ha in 2000
and effective services in the short term is of extreme importance to > 108,000 ha in 2019, resulting in 2.8 Pg of carbon emissions
in the context of finding effective tools for mitigation and (Escobedo Grandez 2021). Oil palm plantations account for
adaptation to climate change and in supporting integrated, approximately 11% of the deforestation from agricultural
sustainable, land-use management (Chazdon and Guariguata expansion from 2007–2013 (Vijay et al. 2018). In contrast, gold
2018). mining was responsible for 1.12 Tg/yr of carbon emissions (Csillik
To help improve decision-making on naturally regrowing forests and Asner 2020), and its influence is largely growing in Peru,
and their management in Peruvian landscapes, we examined the particularly in Madre de Dios (Caballero Espejo et al. 2018,
Álvarez-Berríos et al. 2021).
Ecology and Society 27(3): 12
https://www.ecologyandsociety.org/vol27/iss3/art12/

Despite its water constraints, this region is home to ~55% of the


Fig. 1. (A) Map of Peru showing the coastal, Andean, and human population (MINAM 2016), with the Peruvian capital,
Amazonian regions. Photographs showing mature forest (B), Lima, settled in a western coastal desert. Although few studies
secondary forest regrowth following tea plantation (C), and a have estimated the rate of dry forest deforestation in Latin
tea agroforestry system (D), all located in the Huayopata America and Peru, deforestation is indeed a serious problem in
District, Cuzco region (indicated by an asterisk in panel A). (E) Peruvian coastal forests (Whaley et al. 2010, Pécastaing and
Photograph of coastal dry secondary forest located in the Chávez 2020). In the Piura region, for instance, it was estimated
Mangamanguilla Private Conservation Area, Piura region, in that between 15,000 and 40,000 ha of dry forest are lost annually
northwestern Peru (indicated by a triangle in panel A). (Pécastaing and Chávez 2020). Urban demand for firewood and
charcoal, combined with agriculture and livestock expansion, are
the main threats to the conservation of dry forests (Whaley et al.
2010, Bennett-Curry et al. 2013, SERFOR 2019). These human
activities potentiate impacts from enhanced climate variability,
such as El Niño–Southern Oscillation-related events (Pécastaing
and Chávez 2020), which, in northern Peru, manifest in the form
of increased coastal precipitation and flooding (El Niño-
Costero), and in the south, as severe drought (Bourrel et al. 2015).
Data sources
We ran the search string for both English and Spanish
publications in the Google Scholar database up to September
2020 and conducted a review and analysis of published peer-
reviewed articles, master’s dissertations, doctoral theses, and
research reports on the topic of ecosystem services for our three
selected forest transitions: secondary forest, tree plantations, and
agroforestry systems. In the tree plantation category, we included
commercial, monoculture, and exotic tree plantations. In the
Andean forests: The Andean region (27% of the country) agroforestry systems category, we included tree intercropping
comprises a longitudinal mountain range that crosses the region systems, tree-shaded perennial systems, windbreaks, and live
from north to south (Fig. 1A). It ranges from 2000 m above sea fence systems. We focused on ecosystem services that are essential
level in the dry western slopes and 500 m above sea level in the to nature and human well-being, considering current and future
humid eastern slopes to alpine regions with glaciers > 6000 m environmental change conditions. Thus, we reviewed publications
above sea level. With 12.2 million ha in 2011, forests in the Andes that assessed at least one of the following three ecosystem services:
represent ~21% of the total forested land in the country (MINAM carbon stocks and sequestration, habitat for biodiversity, and
2015, 2016). These forests hold a disproportionate importance in water regulation. We used a combination of different key words
providing hydrological services and supporting biodiversity, but (“secondary forests”, “second ground forests”, “agroforestry”,
rapid land-use change poses an increased threat to both “tree plantation”, “natural regeneration”, etc.) to identify
biodiversity and ecosystem services availability. Thus, coffee, literature related to our research interests. Despite initially
cocoa, and tea plantations (Fig. 1B–D), as well as fire and focusing on peer-reviewed journal articles, we extended our
afforestation and reforestation with exotic tree species, are literature search to “gray literature” (i.e., master’s or doctoral
increasing the pressure on Andean natural land cover (Tovar et theses, research reports) to identify all available data related to
al. 2013, FAO 2016, Oliveras et al. 2018). In 2018, shade coffee the review topic. Because of the large number of papers retrieved
agroforestry occupied approximately 5% (608,332 ha) of the total in the search, we performed a first round of screening based on
extent of the Andes (FAO 2020). By 2012, > 1 million ha of a review of titles and abstracts to select the articles most related
Andean nonforested areas (natural grasslands and degraded to our goals. A total of 163 abstracts were initially identified as
lands) were reforested with plantations (FAO 2016). Most of these meeting the inclusion criteria, but further screening resulted in a
plantations have tended to focus on exotic Eucalyptus and Pinus total of 76 papers that were included in this review. Only studies
species because of their fast growth and economic profitability in conducted in Peru were considered.
short periods (FAO 2016, Cerrón et al. 2017, SERFOR 2018). In
the Cajamarca region, for example, Eucalyptus and Pinus RESULTS AND DISCUSSION
plantations replacing natural grasslands increased by 12.3%/yr Forest ecosystem services
during the period 1987 to 2007 (Tovar et al. 2013). In addition to In forest transition theory (i.e., switch from deforestation to
human impacts, climate is rapidly changing in the Andes, with increasing forest cover), forests are often simply defined as forest
rising temperatures that lead to glacier melt, altered weather cover and, an increase in forest cover is assumed to improve
patterns, and associated long-term droughts (Vuille et al. 2008, ecosystem services (Barbier et al. 2010, Garcia et al. 2020).
2018). However, forests deliver unique sets of services with varying
Dry coastal region and seasonally deciduous forests: Covering quality and quantity depending upon their type, characteristics,
11.7% of Peru’s total area, this region is a narrow longitudinal and environmental conditions. This situation occurs because
strip that extends from the Pacific Ocean to 2000 m above sea different pathways and drivers of forest recovery combined with
level in the dry western Andean slopes (SERFOR 2019; Fig. 1A). different ecological characteristics, distributions, and trajectories
Ecology and Society 27(3): 12
https://www.ecologyandsociety.org/vol27/iss3/art12/

Fig. 2. (a) Carbon stocks and (b) biodiversity values in secondary forests and in two human-assisted post-deforestation
regrowth forests (tree plantations and agroforestry system) in the Amazon region. In Fig. 2b, percent of species
represents a percentage compared to a mature forest baseline. MF: mature forest. Data used for these figures are in the
Table A2.

lead to different suites of ecosystem functions and forest services forests’ uptake can be overestimated (Smith et al. 2020).
(Barbier et al. 2010, Vallet et al. 2017, Wilson et al. 2017, Garcia Compared to other forest pathways, studies suggest that carbon
et al. 2020, MacDonald and McKenney 2020). stocks in secondary forests recover at a faster rate than in tree
plantations and agroforestry systems (Box 1, Fig. 2A). Thirty-
Through the literature analyses, we found empirical evidence
year-old secondary forests in the Peruvian Amazon stored 50–
showing that regenerating forests provide important carbon
60% of mature forest values (Málaga et al. 2021), and 50-year-
sequestration sinks and habitats for a wide taxonomic range of
old secondary forests store comparable amounts of carbon to
wildlife (Box 1–3, Figs. 2 and 3). Forest cover recovery also has
mature forest (Chuquizuta et al. 2016; Box 1, Fig. 2A). Although
positive or negative effects on hydrology, depending on specific
agroforestry systems and tree plantations store important
characteristics of the forest type and region (Box 1–3). As
quantities of carbon, they still result in high proportions of
expected, the amounts and values of ecosystem services provided
carbon losses compared to mature forest conversion, particularly
by secondary forests, agroforestry systems, and tree plantations
when plantations are fast-growth, low wood-density exotic species
vary among the forest types and regions.
(Box 1, Fig. 2A). These findings support the claims made by
Amazonian forest ecosystem services previous studies (Wilson et al. 2017, Lewis et al. 2019).
Amazonian forests are the largest remaining terrestrial carbon In addition to the carbon sequestration potential, secondary
stock (e.g., Saatchi et al. 2007, 2011, Asner et al. 2010). Peruvian forests harbor a substantial amount of biodiversity (Box 1, Fig.
lowland Amazon forests, in particular, have the potential to store 2B). For example, 30- to 50-year-old secondary forests host 80–
> 150 Mg/ha of carbon in their aboveground biomass (Asner et 100% of the bird, mammal, and reptile species occurring in nearby
al. 2014). Across the Peruvian Amazon, a recent study reported mature forests (Whitworth et al. 2016) and are especially
2.6 million ha of secondary forest, and this forest recovery resulted important habitats for large-bodied animals (Tapirus terrestris,
in an accumulation of 73.8 Tg of carbon (Smith et al. 2021). large primates, Priodontes maximus) and for several threatened
Our literature review reveals that Amazonian secondary forests species (e.g., Puma concolor; Gavin 2004). In contrast,
are promising pathways to mitigating climate warming while agroforestry systems and tree plantations have much simpler
protecting biodiversity (Box 1, Fig. 2A). Higher productivity in structure than in secondary forests and provide habitats for
secondary forests suggests up to 11 times faster growth and carbon smaller species (Box 1, Fig. 2B). The recovery of dung beetle and
uptake in secondary forests than in mature forests (Poorter et al. termite species was higher in agroforestry systems than in
2016). Recent research, however, suggests that this enhanced secondary forests, and a high proportion of insect species recovery
growth is severely affected by repeated droughts, and secondary was also reported in agroforestry systems and tree plantations
Ecology and Society 27(3): 12
https://www.ecologyandsociety.org/vol27/iss3/art12/

Fig. 3. Carbon stocks and (b) biodiversity values in secondary forests and in two human-assisted post-deforestation
regrowth forests (tree plantations and agroforestry system) in the Andean region. In Fig. 3b, percent of species
represents a percentage compared to a mature forest baseline. MF: mature forest. Data used for these figures are in the
Table A2.

(Box 1, Fig. 2B). Some compositional and structural 2012, Sosa Castillo 2016). Total carbon stock ranges from 155.6–
characteristics of human-managed forests can improve the 632.4 Mg/ha (Barbarán 1998, Martel and Cairampoma 2012).
occurrence of some species. In the Brazilian Amazon, for example,
Secondary forest
high numbers of mature forest bat, epigeic arachnid, lizard, and
dung beetle species were found in areas of exotic tree plantations Studies report that both aboveground and total carbon stocks
with an understory of native shrubs, similar to those occurring increase with forest age (Fig. 2). For instance, aboveground
in secondary forests (Barlow et al. 2007). The value of conserving carbon stocks in early (1–5 years old), young (15 years old), and
the biodiversity is not only to maintain species and genetic old (50 years old) secondary forests are 2.4–42.1, 121–184.4, and
diversity, but also for the benefits and services they bring to ~282.8 Mg/ha, respectively (Alegre et al. 2003, Chuquizuta et al.
humans. Accordingly, many of these wild trees and animals 2016). Similarly, total carbon stock is 40.5–95.8, 153.3–239.1, and
occurring in naturally regenerating areas also provide important 396.8 Mg/ha in early, young, and old secondary forests,
food sources and additional income for local inhabitants (Gavin respectively (ICRAF 1998, Alegre et al. 2003, Chuquizuta et al.
2004, 2007, Fitts et al. 2020). 2016). On average, 30-year-old secondary forests store 50–60% of
the value of mature forests (Málaga et al. 2021), whereas 50-year-
old secondary forests store similar amounts of carbon as mature
Box 1: Amazonian region summary
forests (Chuquizuta et al. 2016).
Agroforestry systems
Here, we summarize the main findings for three key ecosystem
services provided by secondary forests and post-deforestation Many agroforestry systems in the lowland Amazon are
forest transitions (agroforestry systems and tree plantations) in Theobroma cacao or Coffea arabica shaded by two to six tree
the Amazonian region of Peru. For a complete list of studies species. The most common species used in agroforestry are Inga
reviewed and their carbon stock values and species occurrences edulis, Guazuna crinite, Calycophyllum spruceanum, C.
see Appendix 1 and 2. spruceanum, Cedrela odorata, Mariosousa willardiana, Cajanus
cajan, Schizolobium amazonicum, and Leucaena leucocephala.
Carbon stocks
Aboveground carbon stock ranges from 2.9–4.4 Mg/ha in 1-year-
Mature forest old agroforestry systems to 27–32.4 Mg/ha in 20-year-old
agroforestry systems, whereas total carbon content ranges from
The reported aboveground carbon stock in the lowland Amazon
33.4–37.2 to 168.9 Mg/ha in 1-year-old and 10-year-old
ranges between 107.6 and 335.1 Mg/ha (Martel and Cairampoma
agroforestry systems, respectively (Concha et al. 2007, Villogas
Ecology and Society 27(3): 12
https://www.ecologyandsociety.org/vol27/iss3/art12/

Ventura 2013, Timoteo et al. 2016). However, the amount of rainwater infiltration, preventing soil moisture loss and increasing
carbon stock in agroforestry systems depends on the tree species, soil water-holding capacity (Arévalo-Gardini et al. 2015).
so these values may vary (Appendix 1). However, plant-available water is significantly lower in
agroforestry soil (10.6–11.7%) than in 30-year-old secondary
Tree plantations
forest soil (12.3–13.4%; Arévalo-Gardini et al. 2015).
Aboveground carbon stocks in tree plantations vary from 9.5 Mg/
Water flow regulation and quality: Tropical mature forests provide
ha in 1-year-old Guazuma crinita plantations (Baltazar Peña 2011)
a high degree of water infiltration with little erosion or surface
to 66.6 Mg/ha in 30-year-old Hevea brasiliensis plantations
runoff and improve water quality by preventing some
(Alegre et al. 2003). Total carbon stock is 152.3–152.6 Mg/ha in
sedimentation and erosion (Marengo 2006, D’Almeida et al. 2007,
30-year-old Hevea brasiliensis plantations (ICRAF 1998, Alegre
Brandon 2014). Amazon mature forests use more water and have
et al. 2003).
higher evapotranspiration and infiltration than human-modified
While not forest, 6- and 30-year-old Bactris gasipaes plantations vegetation types (tree plantations or agriculture; Bruijnzeel 2004).
were reported to contain 72.2 and 90.9 Mg/ha of carbon in their Evapotranspiration is a key process in this humid Amazon region,
total biomass, respectively (Chuquizuta et al. 2016, Cuellar representing 28% of total local inputs to precipitation (Ellison et
Bautista and Salazar Hinostroza 2016). al. 2012). Contrastingly, young tree plantations have high
evapotranspiration (similar to mature forest) but lower
Habitats for biodiversity maintenance
infiltration, reducing groundwater recharge (Brandon 2014).
Secondary forest Similarly, timber plantations replacing mature forests lead to
increases in evaporative losses, resulting in decreases in annual
Several studies showed high biodiversity in naturally regenerating
stream flow (Scott et al. 2005).
forest, especially in old secondary forests; 30–50-year-old
secondary forests host 73–95% of amphibian, 81–98% of bird, Oil palm plantation expansion has boomed over the last decades,
79–81% of mammal, and 88–110% of reptile species found in generating ecosystem degradation (Butler and Laurance 2009,
nearby mature forest (Whitworth et al. 2016). In contrast, young Srinivas and Koh 2016). Young oil palm plantations significantly
secondary forests (9–15 years old) contain 74–83% of dung beetle, decrease ecosystem evapotranspiration (−40% without
36.8% of termite, and 47% of tree species found in surrounding understory, −20% with ground cover) and infiltration rates, and
mature forest (Horgan 2009, Culot et al. 2011, Gonzalez et al. strongly increase runoff (up to 40% without understory; Manoli
2014, Vebrova et al. 2014, Duran-Bautista et al. 2020; Fig. 2B, et al. 2018). These changes in water flow cause hotter and drier
Appendix 2). local climate (i.e., changes in water yield). Nevertheless, mature
tree plantations (> 8 years old) have higher gross primary
Agroforestry systems
productivity and transpire more water (up to 7.7% more water
In lowland Amazon, agroforestry systems contain a high diversity than the forests they replaced), and thus reduce water runoff
of dung beetles (87%) and insects (71–79%), but few tree (23– (Manoli et al. 2018).
24%), termite (47%), and bird (14–16%) species (Horgan 2009,
Lojka et al. 2011, Vebrova et al. 2014, Perry et al. 2016, Aerts et
al. 2017, Duran-Bautista et al. 2020; Fig. 2B, Appendix 2).
Deforestation in the lowland Amazonian region causes severe
Tree plantations impacts on the local water cycle by decreasing local precipitation
and increasing drought intensity (Marengo 2006, D’Almeida et
Tree plantations host less biodiversity than mature forests,
al. 2007). Forest regrowth can reverse these effects by providing
secondary forests, and agroforestry systems. Forest tree
important services in local and regional hydrological processes,
plantations host 66.7% of insects and 30–39% of dung beetle
improving infiltration, rainfall, and moisture (Box 1). Studies have
species compared to those occurring in mature forest (Horgan
shown that Amazonian secondary forests improve the quality,
2009, Lojka et al. 2011, Aerts et al. 2017; Fig. 2B, Appendix 2).
yield, and delivery of fresh water at multiple scales, from
While not true forest plantations, oil palm (Elaeis guineensis) groundwater to rivers and rainfall, and also sink atmospheric
plantations contain 60.5% of termite and 42.6% of bird species moisture and prevent floods (Box 1). Agroforestry also improves
found in nearby mature forest (Srinivas and Koh 2016, Duran- rainwater infiltration and thus increases water-holding capacity
Bautista et al. 2020). (Box 1). Tree plantations, in contrast, can have negative effects by
increasing water costs and reducing infiltration, lowering
Hydrological services
groundwater recharge and annual stream flow (Box 1). For
Water infiltration and soil moisture: While deforestation may example, timber plantations (e.g., Eucalyptus, Pinus, Hevea)
decrease local precipitation, inducing drier soils and decreases in replacing old-growth forests lead to an increase in evaporative
evapotranspiration (Marengo 2006, D’Almeida et al. 2007), demand, resulting in a decrease in annual stream flow (Scott et
natural regeneration by native tree species improves rainfall and al. 2005). In general, we highlight the potentially deleterious
infiltration and increases available moisture (Brandon 2014). consequences on hydrology of the large-scale monospecific
Natural regeneration can rapidly (in 5–10 years) reverse the effects commercial plantations that are expanding in this high-
on water regulation (Hölscher et al. 2005). In cacao agroforestry biodiversity region with vital ecosystem services for society and
systems, accumulation of plant litter produced by shade trees the environment (Box 1).
(Inga sp., Macrolobium acaciafolium, Calycophyllum spruceanum,
Cedrelinga cateaniformes, and Vitex pseudolia) allows greater
Ecology and Society 27(3): 12
https://www.ecologyandsociety.org/vol27/iss3/art12/

Andean forest ecosystem services carbon, at 43.2 and 36.6–42.3 Mg/ha, respectively. On
The Andean region is exceptionally rich in biodiversity and has average, ~30-year-old secondary forests store only 32% of carbon
been highlighted as a hotspot of global biodiversity, with high in aboveground biomass compared to mature forest (Oliveras et
endemism (Myers et al. 2000). It offers significant carbon storage al. 2018, Aragón et al. 2021). Total carbon stock in these early,
in its soils, particularly water-logged ones (Román-Cuesta et al. young, and old secondary forests increases with forest age (116.6,
2011), and it is a fundamental regional water provider for both 161.1, and 295.3 Mg/ha carbon, respectively).
Andean slopes: the dry western Pacific coast (Beresford-Jones
Agroforestry systems
2004, Whaley et al. 2010) and the eastern coast, whose Amazon
river is sourced by Andean streams (Clark et al. 2014, Doornbos Aboveground carbon stock in coffee agroforestry shaded by Inga,
2015). Pinus, or Eucalyptus ranges from 19.3–62 Mg/ha, while total
carbon stock varies from 119.9–177.5 Mg/ha. Variation in carbon
Biomass in tropical Andean forests in Peru shows high variability
stocks are due to age and species used as shade (Lapeyre et al.
related to variable environmental and topographic conditions.
2004, Ehrenbergerová et al. 2016).
However, studies show that the aboveground biomass of the three
transitions displays relatively similar values during the first Tree plantations
decades of forest cover recovery, with tree plantations having the
Aboveground carbon stock increases with age in tree plantations,
highest stocks (Box 2, Fig. 3). For example, ~10-year-old
from 30.1 to 72–72.7 Mg/ha in 5- and 10-year-old Eucalyptus
secondary forests, agroforestry systems, and tree plantations,
globulus or Pinus radiata plantations. Similarly, total carbon
respectively, contain on average 43, 54, and 72 Mg/ha of carbon
stocks in these plantations are 129 and 136.2–142.3 Mg/ha,
in their aboveground biomass, representing approximately 20, 27,
respectively (Gamarra Ramos 2001, Cuellar Bautista and Salazar
and 33% of the stock in mature forest (Box 2, Fig. 3). In the high
Hinostroza 2016, Bernachea Jesus 2019). However, Raboin and
Andes, cloud montane forests have low growth rates, and ~30-
Posner (2012) report that a 28-year-old Pinus spp. plantation
year-old secondary forests store only 32% of the mature forest
stores only 35.7 Mg/ha of carbon.
carbon in their aboveground biomass (Oliveras et al. 2018).
Contrastingly, these montane cloud forests can have relatively Habitats for biodiversity maintenance
high rates of soil carbon accumulation due to the abundance of
Secondary forest
mosses (particularly Sphagnum) that store water and prevent litter
decomposition (Oliveras et al. 2018). Soil restoration in secondary Post-fire 10-year-old secondary forests in tropical montane cloud
forests in the Andes can occur more rapidly than in other human- forest contain 75–93% of plant species found in unburned areas,
managed forest systems (Oliveras et al. 2018, Walentowski et al. and old burned areas (10–28 years) contain 72% more diversity
2018). than nearby mature forest (Oliveras et al. 2014). Similarly,
secondary forests host 66.7% more dung beetle species than
surrounding mature forest (Vélez Quesquén and Saavedra Chávez
Box 2: Andean region summary
2019). In contrast, old secondary forests support 36–105.4% of
bird species occurring in mature forests (Colorado Zuluaga and
Here, we summarize the main findings for three key ecosystem Rodewald 2015, Hosner et al. 2015; Appendix 2).
services provided by secondary forests and post-deforestation
Agroforestry systems
forest transitions (agroforestry systems and tree plantations) in
the Andean region of Peru. For a complete list of studies reviewed Shaded coffee agroforestry hosts a greater diversity of bird species
and their carbon stock values and species occurrences see (120.3%) than nearby mature forest, but most of the species in
Appendix 1 and 2. agroforestry systems are generalists (Colorado Zuluaga and
Rodewald 2015; Appendix 2).
Carbon stocks
Tree plantations
Mature forest
Compared to mature forests, Eucalyptus and Alnus (alder)
The aboveground carbon stock in Peruvian montane forests is
plantations host 79–120.8% of shrub and 70.2–84.2% of soil
52.4–485.3 Mg/ha (Lapeyre et al. 2004, Oliveras et al. 2018), and
macrofauna species (de Valença et al. 2017). Information for other
the total carbon stock is 154.3–398.8 Mg/ha (Chuquizuta te al.
taxa was not found.
2016, Oliveras et al. 2018).
Hydrological services
In the high-elevation Andes, forest patches dominated by
Polylepis and Escallonia species store lower amounts of carbon Water yield and storage: Secondary forests have a slightly higher
than other montane forests, ranging from 4.8–40.1 Mg/ha in capacity to buffer peak flows and to store water in the soil than
aboveground biomass and from 23.8–148.7 Mg/ha of total carbon exotic tree plantations (estimated odds ratio: 2.22 vs. 2.37;
stock (Cuellar Bautista and Salazar Hinostroza 2016, Gurmendi Bonnesoeur et al. 2019). In contrast, water yield in agroforestry
Porras and Orihuela Izaguirre 2019). systems (shaded coffee) and forest tree plantations (in former
pasture) is 11% and 14% lower than in mature forests, respectively
Secondary forests
(Quintero et al. 2009). Other studies have shown similar
Aboveground carbon stock in early (1–5 years old) secondary hydrological patterns for tree plantations. Reforestation with
forests is 26.1 Mg/ha, while young (~10 years old) and old (~30 exotic trees (Pinus patula, Eucalyptus globulus, Cupressus
years old) secondary forests store roughly equivalent amounts of lusitanica) over 1% of the catchment area resulted in a decrease
Ecology and Society 27(3): 12
https://www.ecologyandsociety.org/vol27/iss3/art12/

of 20% and 40% water yield if they replaced grazed or natural Coastal forest ecosystem services
grassland, respectively (Bonnesoeur et al. 2019). Similarly, the Although there is little information about dry forests and their
oldest pine plantations on high Andean grassland retained up to ecosystem services in the coastal Peruvian region, it is well known
63% less water than natural grassland soils (Farley et al. 2004) that dry forests are extremely important sources of subsistence
and reduced water yields by ~50% or an average of 242 mm/yr and income for local communities (wood, firewood, and food
(Buytaert et al. 2007). In contrast, water regulation was only provided by Prosopis species). Coastal dry forests are threatened
slightly affected in agroforestry and silvopasture (Eucalyptus by deforestation despite their sparse tree presence (< 30% cover
viminalis and Caesalpinia spinosa) on the western slope of the in most of the coastal region) and the dominance of algarrobo
Andes (Villar Cabeza et al. 2014). species (Prosopis pallida; León Caceres 2019). Although dry
forests contain lower carbon stocks than Andean and Amazonian
Water infiltration and soil moisture: A 14–20-year-old forestation
forests (Box 3), native vegetation regeneration in this ecosystem,
on degraded soils improves infiltration rates by eight times, but it
particularly Prosopis species, plays an important role in providing
was three times lower than in mature native forests (Bonnesoeur
crucial ecosystem services such as water provision services and
et al. 2019). Soil moisture content in Polylepis secondary forest
habitats for biodiversity. For example, dry secondary forests
(in a former potato field) was slightly lower (45–53%) compared
support high endemicity that results in a relatively high diversity
to nearby natural grasslands (50–74%), whereas soil in a 20-year-
of trees and mammals such as insectivorous bats (Box 3). Prosopis
old pine plantation had significantly lower moisture content (13–
trees increase soil humidity by up to 28%, absorbing water from
22%) than in natural grassland (Harden et al. 2013).
deep soil horizons and capturing a significant volume of water
Water flow regulation: Afforestation with pine and Eucalyptus from atmospheric humidity (Box 3). Because rainfall is almost
species reduces surface runoff by 9–11% and flow volume by 6– nonexistent on the coast during the long dry season, vegetation
8% in the western Andes caused by higher water use (Krois and provides a significant annual water supply through fog capture
Schulte 2013). Water mean daily flows in Eucalyptus afforested and condensation (Whaley et al. 2010). Coastal dry forest plants
areas are 4–10 times lower than in neighboring natural catchments have evolved adaptations (Box 3) to survive these environmental
(Ochoa-Tocachi et al. 2016, Ochoa-Tocachi 2019). conditions. Adaptations such as stomatal regulation regulate
water consumption and allow the species to endure drought stress
Air humidity interception: Relative canopy water intercept is 25%
(Time et al. 2018); small and lignified leaf branches, or
of bulk rainfall in agroforestry, similar to secondary forests and
“brachyblats”, capture atmospheric humidity (Whaley et al.
tree plantations, regardless of tree density (Bonnesoeur et al.
2010); and “inverse hydraulic lift” provides the ability to absorb
2019).
atmospheric water at night (Bereford-Jones 2004). A recent study
Water quality: Pine plantations change water quality minimally shows how important these forests are in reducing the
(van Dijk and Keenan 2007). vulnerability of human populations to El Niño, as the loss of dry
forest cover magnifies the negative effects of drought and
increases local temperatures (Pécastaing and Chávez 2020).
Similar to secondary forests in the Amazonian region, secondary
forests in the Andes host a high diversity of birds, trees, and dung Box 3: Coastal region summary
beetles (Box 2, Appendix 2). In tropical montane cloud forests,
fires occur with relative frequency and cause severe impacts on
biodiversity (Young and León 2007, Oliveras et al. 2014), but rapid Here, we summarize the main findings for three key ecosystem
and vigorous resprouting in burned areas can occur (Román- services provided by secondary forests and post-deforestation
Cuesta et al. 2011, Oliveras et al. 2014, 2018), allowing for rapid forest transitions (agroforestry systems and tree plantations) in
ex-ante species recovery (Oliveras et al. 2014; Box 2, Fig. 3). In the coastal region of Peru. For a complete list of studies reviewed
agroforestry systems and tree plantations, managers often employ and their carbon stock values and species occurrences see
techniques to control tree density and diversity and to control Appendix 1 and 2.
pests and weeds, which affect other species. In addition, some Carbon stocks
exotic tree plantations (e.g., Eucalyptus, widely planted in the
Andes) release allelopathic compounds that prevent the Mature forest
establishment of native species. These are probably some of the Aboveground carbon stocks in coastal dry forest are reported to
reasons why agroforestry systems and tree plantations contain be on average 27.6 Mg/ha, and total carbon stocks averaged 44.1
fewer or mainly generalist insect species (Box 2). Mg/ha (Cuellar Bautista and Salazar Hinostroza 2016).
Our literature review reveals that forests in the Andes have either Secondary forest
positive or negative effects on hydrological services, depending on
the forest type (Box 2). Natural forest regeneration and The 25-year-old secondary forests store 4.23 Mg/ha of carbon in
reforestation with native species improve water supply and aboveground biomass (~15% with respect to mature forest) and
regulation services, whereas exotic tree plantations have negative 46.9 Mg/ha of total carbon stock (similar to mature forest; Chávez
effects on hydrological regulation, especially when they replace Suazo 2018).
natural grasslands (Box 2). These exotic tree plantations reduce Tree plantation
stream flow and groundwater recharge because they consume
large quantities of water and release it through transpiration. This Aboveground carbon stock in Mangifera indica plantations is 8.2
situation implies a reduction in water availability for downstream Mg/ha, and total carbon stock is 14.3/ha (Cuellar Bautista and
users, especially during the dry season (Box 2). Salazar Hinostroza 2016).
Ecology and Society 27(3): 12
https://www.ecologyandsociety.org/vol27/iss3/art12/

Agroforestry systems Overall, Prosopis generates “islands of humidity” around the


plant and can provide important benefits in water provision,
We found no data on carbon stocks for agroforestry systems,
both in natural and human-modified forest transitions
suggesting the need for more study in this region.
(Beresford-Jones 2004).
Aboveground carbon content estimation using LiDAR remote
sensing and including all forest types indicates that coastal
Peruvian dry forests store on average 1–8 ± 2 Mg/ha of carbon
Overall, our synthesis shows that all forest transition types
(Asner et al. 2014).
provide valuable services. However, it is important to consider
Habitats for biodiversity maintenance the amount and importance of the ecosystem services provided.
Although agroforestry systems and tree plantations provide
Secondary forests
carbon stocks and wildlife habitat services, they still result in
Peruvian coastal dry secondary forests support 52.2–70% of tree high proportions of ecosystem services losses. Moreover, exotic
species (Rasal Sánchez et al. 2011, Delgado Paredes et al. 2020) tree plantations have negative effects on hydrological services,
and 166.7% of insectivorous bat species found in nearby mature with a consequent reduction in water availability. In contrast,
forest (Ruiz Romero 2015). However, secondary forests in we found that secondary forest is a more effective and immediate
northwestern Peru contain only 22.7% of bird species compared forest type to optimize the provision of various ecosystem
to those in mature forest (León Cáceres 2019; Appendix 2). services, which we explore further below.
Agroforestry systems
Secondary forests as nature-based solutions
Gossypium and Musa agroforestry systems host 79.6% of bird
species found in mature dry forest (Chávez-Villavicencio 2013). Role of secondary forests in mitigating climate change
Hydrological services Compared to the immense effect of the human footprint on the
Earth’s ecosystems, climate change has so far played a relatively
In the arid Peruvian coastal region, Prosopis species are the most smaller role. However, the Anthropocene and its human
representative and common species that play an essential interference has increased the uncertainty of climate patterns
ecological role in water ecosystem services. This function is (e.g., changing rainfall patterns, extreme temperature
mediated by following mechanisms: fluctuations, higher frequency of extreme events), making it
. Deep dimorphic root systems (up to 60 m) of Prosopis obtain more difficult to mitigate and adapt to climate change, protect
water from deep soil horizons and deposit part of that water biodiversity, and secure human well-being (Malhi et al. 2020).
along with their dense superficial root network, increasing Immediate and ambitious climate change mitigation action is
the upper soil (< 35 cm) moisture by up to 28% (Beresford- necessary to reduce the severity of the impacts that societies and
Jones 2004, Whaley et al. 2010). This mechanism in which ecosystems must face. To achieve this goal, nature-based
water absorbed by deep roots moves through the roots and solutions are emerging as integrated approaches that can help
is released into the upper soil profile at night (called to reduce and protect humans from climate change impacts
‘hydraulic lift’) was demonstrated for several other species while slowing global warming, supporting biodiversity, and
growing in arid habitats (Caldwell and Richards 1989, securing ecosystem service provision (Griscom et al. 2017,
Caldwell et al. 1998, Time et al. 2018). The hydraulically Chausson et al. 2020, Seddon et al. 2020). Secondary tropical
lifted water in arid environments forms a buffer supply to forests play essential roles in nature-based solutions such as
even out water stress during the day for neighboring species natural climate solutions (mitigation potential associated with
and for the lifting plant itself (Beresford-Jones 2004). secondary forests’ higher sequestration rates compared to more
mature forests), green infrastructure (secondary forests help
. Tiny leaflets in dense clusters of brachyblasts (smallest prevent erosion and reduce storm impacts), and ecosystem-
lignified leaf branches) of Prosopis are adapted to condense based adaptation (water storage due to better soil infiltration
atmospheric humidity and precipitate it beneath the canopy rates and water storing options such as mosses in Andean
(Beresford-Jones 2004, Whaley et al. 2010). For example, a forests).
small P. pallida tree (3 m in height with a crown of 4 m)
captures up to 9 L of water each night (Whaley et al. 2010). Peru has at least two direct ways to put secondary forests under
Prosopis also absorbs atmospheric water through its leaves nature-based solutions for the United Framework Convention
at night and fixes moisture into the soil (by a mechanism on Climate Change (UNFCCC). One would be to place
called “inverse hydraulic lift”; Beresford-Jones 2004). This secondary forests’ mitigation potential as a clearly defined
mechanism is essential because precipitation is basically component of the country’s intended nationally determined
nonexistent in many parts of Peruvian coastal regions, and contributions. A second way is under Peru’s commitment to
fog can represent up to 50% of water flow (Brandon 2014). restore 1.2 million ha of degraded land (out of 3.2 million ha
total committed under Initiative 20x20). In September 2015, the
. Prosopis is an efficient user of available water in hyper-arid Peruvian government submitted its first intended nationally
areas. For example, P. juliflora uses approximately 235 mm/ determined contributions document to the UNFCCC,
yr of water, which represents only 20% of Eucalyptus committing to an emissions reduction equivalent to 30% below
camaldulensis water consumption under the same conditions the projected business-as-usual level by 2030 (Gobierno del Perú
(Mahmood et al. 2001, Beresford-Jones 2004). 2016). Peru has displayed greater ambition in its recently revised
resubmission, committing to reduce emissions by 40% in the
Ecology and Society 27(3): 12
https://www.ecologyandsociety.org/vol27/iss3/art12/

next decade (Gobierno del Perú 2020). Approximately 70% of the frequent droughts, insect pests, and diseases can
mitigation efforts to achieve this commitment consider changes compromise the successful establishment of tree plantations
in land use and improvements to the forestry sector (including and agroforestry enterprises and their associated benefits.
afforestation and agricultural efficiency; Gobierno del Perú 2016,
2. Tree plantations and agroforestry systems are mostly
Gonzales-Zuñiga 2018, Gallice et al. 2019). However, the
planted with commercial purposes and are not designed to
Peruvian government is still not adopting this strategy (Climate
result in permanent forest cover. Consequently, these forests
Action Tracker 2019) and it does not explicitly consider the
could compromise long-term carbon sequestration because
potential of secondary forests (Gobierno del Perú 2020). As a
trees are harvested after a few decades (Farley et al. 2005,
result, Peru’s current climate policy actions are labelled as
Luzar 2007, Raboin and Posner 2012). In fact, we have not
“insufficient” and are not consistent with the Paris Agreement’s
found any study reporting plantations or agroforestry
limit to 1.5°C (Climate Action Tracker 2019). Estimates suggest
systems older than 30 years. Conflicts between
that improving forest management would lead to achieving 32%
socioeconomic and environmental aspects also influence the
of Peru’s current conditional target (Climate Action Tracker
persistence of human-managed forests. For example, in a
2019). At this time, Peru lacks national policies on secondary
rural community of Cusco (Piñapampa), approximately 80–
forest management. Secondary forests in the Andean and coastal
90 trucks each week deliver Eucalyptus wood to the town for
region are even more neglected in terms of study, protection, and
use as fuel (thus releasing the carbon dioxide into the
sustainable use than Amazonian forests. This lack may be
atmosphere), and local inhabitants earn, on average,
attributed, in part, to the Peruvian Ministry of the Environment,
$60,000–81,000 USD during a typical logging season (Luzar
which is still locating and quantifying the carbon storage and
2007). Considering the costs and benefits, these values are
mitigation potential of secondary forests across the country. We
much higher than the potential market based on carbon
highlight the urgent need to make a greater effort to accelerate
sequestration (Luzar 2007, Raboin and Posner 2012).
the adoption of policies that promote secondary forest
management, standing forest preservation, and inclusion of old- 3. Vast land areas are frequently needed to optimize
growth and regrowth forests under payment for ecosystem afforestation and reforestation benefits, which could
services to stimulate their permanence. One of the common potentially result in the destruction of natural habitats and
problems with including secondary forests under both nationally competition with food production, urban space, and other
determined contributions and Initiative 20x20 commitments is land uses. For example, large areas of natural grasslands in
that secondary forests are seen only as carbon. However, these the Peruvian Andes have been forested with exotic
forests offer many more services than only carbon, as shown here Eucalyptus and Pinus species, which are having negative
and in other studies (Lewis et al. 2019). effects on hydrological services and biodiversity
conservation (Krois and Schulte 2013, Tovar et al. 2013,
Mitigation activities in Peru and elsewhere in Latin America are
Bonnesoeur et al. 2019).
encouraging low-biodiversity afforestation and reforestation
commercial practices with non-native monocultures (Zamorano-
Elgueta et al. 2015, Moomaw et al. 2019, Heilmayr et al. 2020,
Seddon et al. 2020). This approach can result in a maladaptive Secondary forests as habitat for biodiversity conservation
practice, especially considering rapid shifts to strategies in which Secondary forests are not only effective and cost-effective natural
biodiversity-based resilience is key. The carbon-centric approach absorbers of carbon, but they also provide essential habitat for
is also detrimental to the preservation of standing forests, many plants and animals, including threatened species that are
particularly mature old-growth, and places less effort into often absent from human-managed forests. This function is
promoting forest permanence (Lewis et al. 2019). particularly important in ecosystems with high endemicity, such
as the Andes and the semideciduous dry forests on the coast. A
We highlight that secondary forests are an important cost- naturally regenerating forest is undergoing self-organization and
effective option for land management that supports multiple an increase in structural complexity and diversity over time,
environmental commitments that are currently underrepresented whereas tree plantations and agroforestry systems experience
in Latin America (Chazdon and Guariguata 2016, 2018). We offer continuous human intervention. Although better than bare land,
three reasons: managed forests can have their conservation goals compromised
1. Trees in secondary forests are already growing and compared with secondary forests. Biodiversity, in turn, offers
sequestering and storing carbon at high rates (Asner et al. fundamental human services, including reduced risk of zoonosis
2010, Chazdon et al. 2016, Poorter et al. 2016), whereas (Gibb et al. 2020). Peru has achieved various objectives of its
newly planted forests require many years before they strategic plan for biodiversity (2011–2020), linked to the Aichi
sequester carbon dioxide in significant quantities (Box 1–3; biodiversity conservation targets under the Convention on
Fig. 2A). Furthermore, secondary forests have greater tree Biological Diversity: for example, target 11, which states that at
species diversity and higher rates of carbon sequestration, least 17% of terrestrial areas must be protected by 2020 (MINAM
whereas plantations are often monocultures and stock and 2015, Maxwell et al. 2020). The complexity of climate change,
sequester less carbon more slowly than secondary forests, however, requires new perspectives on conservation strategies
particularly in the Amazonian region. Because carbon involving not only permanent protected areas but also in
dioxide removal rate needs to increase rapidly to meet combination with corridors and temporary conservation areas to
temperature limitation goals (IPCC 2018), secondary forests create flexible networks that provide critical transitional areas to
are a fast route to sequestering atmospheric carbon. More biodiversity redistributions (D’Aloia et al. 2019). In current
landscapes with mosaics of heterogeneous habitats, secondary
Ecology and Society 27(3): 12
https://www.ecologyandsociety.org/vol27/iss3/art12/

Fig. 4. (A) Framework showing the relationship between the forest transitions, their relative
ecological outcomes, and their drivers, linking the environmental and socioeconomic systems.
Forest transition is defined as a long period of decline in forest area, superseded by forest recovery.
The “+” and “−” represent the potential amount of each service that would be expected to return
depending on the forest transition type. (B) The relative importance of key ecosystem services
provided by secondary forests in Amazonian, Andean, and coastal regions.

forests can be fundamental in connecting conservation areas and Role of secondary forests in hydrological services
may also provide regional habitat heterogeneity and vegetation Water supply is one of the critical issues facing society in the 21st
structural complexity. Along this line, Horváth et al. (2019) century. As deforestation and climate change alter weather
highlight that the loss in species richness is exacerbated by habitat patterns and their variability, severe water deficits and floods are
loss via connectivity loss, thus reinforcing the importance of likely to become more frequent. In this context, vegetation
habitat connectivity in biodiversity conservation policy. The recovery can positively or negatively influence local and regional
persistence of secondary forests is fundamental to long-term water supply and regulation. In the case of Peru, secondary forests
biodiversity conservation, which in turn helps preserve the influence local and regional water supplies, which are particularly
multiple services that biodiversity provides to human beings, important in the Andes. The Andean region is the main water
starting by prevention of pandemics and zoonotic diseases. provider (from rainwater and glacier melt) not only to local
communities, but also to the dry region along the Pacific coast
(Beresford-Jones 2004, Whaley et al. 2010) and the eastern
Ecology and Society 27(3): 12
https://www.ecologyandsociety.org/vol27/iss3/art12/

Amazonian region (Clark et al. 2014, Doornbos 2015). Our findings highlight the missed opportunity of relying on
Consequently, biodiversity and the livelihoods of millions of secondary forests to implement more ambitious and integrated
people depend directly on water services provided by Andean environmental initiatives such as the Convention on Biodiversity-
ecosystems (Doornbos 2015). In addition, water is vital to Aichi biodiversity targets, UNFCCC-NDC-REDD+, and
economically important activities such as agriculture, energy, Initiative 20x20 for land restoration. Current commitments
fishing, and tourism. In Peru, 70% of the water for hydroelectricity include high-cost strategies, including potential disservices (e.g.,
generation comes from Andean rivers (Doornbos 2015). two million commercial tree plantations under Initiative 20x20).
Temperatures in the tropical Andes have been increasing, melting In contrast, secondary forests are a low-cost, near-term, highly
glaciers and increasing downstream water supply (Vuille et al. effective strategy for mitigating the crises in climate and
2008, 2018). Nevertheless, this water increase is temporary and is biodiversity and ultimately providing vital ecosystem services to
not sustainable. In contrast, future reductions in water availability society, such as water provision. We urge considering both
for both human consumption and other economically important ecosystem services and disservices, as well as valuing the relative
activities is expected (Vuille et al. 2018). The imminent impacts importance of different land options for each specific region (Fig.
of climate change on water supply motivated the Peruvian 4) to avoid trade-offs in which the achievement of one goal is
government and nongovernmental organizations to implement a detrimental to another. Policy-makers and practitioners can use
variety of rainwater harvesting techniques, including forestation our synthesis to support decisions on which transitions types are
(Somers et al. 2018, Locatelli et al. 2020). Exotic trees (Eucalyptus best to achieve specific end goals at local and regional scales in
and Pinus) planted in large areas of the Andes have negative effects Peru. Our synthesis can serve to enhance the visibility and
on hydrological services, reducing stream flow and groundwater underscore the usefulness of strategies to preserve secondary
recharge, and thus reducing water availability for downstream forests, as well as mature standing forests. Finally, it is also
users (Luzar 2007, Ochoa-Tocachi et al. 2016, Ochoa-Tocachi important to consider that the persistence of secondary forests is
2019). Furthermore, fast-growing exotic Eucalyptus and Pinus closely linked to costs and benefits in which the interests of local
plantations are established in wetlands or on the margins of people in conserving the forest areas can be decisive (Fig. 4A).
Andean catchments, resulting in the aforementioned negative
effects (Luzar 2007, Ochoa-Tocachi et al. 2016). Thus, redirecting
the national restoration strategies is necessary to achieve the Responses to this article can be read online at:
desired goals. Exotic tree plantations on natural grasslands must https://www.ecologyandsociety.org/issues/responses.
be avoided, and secondary forest persistence and restoration with php/13446
native species and mature forest conservation should be favored
to promote their excellent hydrological control in the Andes (Box
2).
Author Contributions:
Although we tend to highlight the negative effects of exotic tree
species on water yields, if well managed (e.g., implemented in RT, NS, and RMRC conceived the idea; RT performed the review;
adequate areas such as degraded land far from watersheds), they RT, NS, EGC, TEBE, and RMRC wrote the draft; and all authors
can play an important economic role and help to control erosion discussed and contributed to the final version of the manuscript.
and to stabilize soils against landslides (Guns and Vanacker 2013,
Bonnesoeur et al. 2019). In addition, plantations can indirectly Acknowledgments:
enhance some ecosystem services by avoiding further logging of
This work was supported by CONCYTEC (Peru), World Bank
native forests (Bonnesoeur et al. 2019). Finally, it is important to
grant (contract 011-2019-FONDECYT-BM-INC-INV). We
consider that the improvement of hydrological regulation is a slow
thank Dr. José C. Silva and three anonymous reviewers for useful
process that may take decades, making outcomes for society and
suggestions made on earlier drafts of the manuscript.
the environment slow to realize (Bonnesoeur et al. 2019).

CONCLUDING REMARKS Data Availability:


We provide a robust synthesis of published evidence regarding
the ecosystem services and disservices of forest transitions to All data used in this manuscript are available in Appendixes 1 and
encourage the adoption of policies that promote the sustainable 2.
use and conservation of secondary forests in Peruvian landscapes.
In this review, we compiled empirical evidence to provide a
LITERATURE CITED
framework for future research and policy decision-making (Fig.
Aerts, R., S. Spranghers, and Ç. H. Şekercioğlu. 2017.
4A). We found that forest transitions provide significant services
Conservation of ecosystem services does not secure the
in offsetting carbon emissions, regulating hydrological services,
conservation of birds in a Peruvian shade coffee landscape. Bird
and providing habitats for biodiversity. However, the amount and
Conservation International 27(1):71-82. https://doi.org/10.1017/
importance of ecosystem services vary depending on the forest
S0959270916000149
transition type. Secondary forests offer multiple cost-effective
services from climate change mitigation and water regulation to Aide, T. M., H. R. Grau, J. Graesser, M. J. Andrade-Nuñez, E.
species conservation through the maintenance of landscape Aráoz, A. P. Barros, M. Campos-Cerqueira, E. Chacon-Moreno,
connectivity, regional heterogeneity, and vegetation structural F. Cuesta, R. Espinoza, M. Peralvo, M. H. Polk, X. Rueda, A.
complexity. Sanchez, K. R. Young, L. Zarbá, and K. S. Zimmerer. 2019.
Ecology and Society 27(3): 12
https://www.ecologyandsociety.org/vol27/iss3/art12/

Woody vegetation dynamics in the tropical and subtropical Andes Barlow, J., T. A. Gardner, I. S. Araujo, T. C. Ávila-Pires, A. B.
from 2001 to 2014: satellite image interpretation and expert Bonaldo, J. E. Costa, M. C. Esposito, L. V. Ferreira, J. Hawes, M.
validation. Global Change Biology 25(6):2112-2126. https://doi. I. M. Hernandez, M. S. Hoogmoed, R. N. Leite, N. F. Lo-Man-
org/10.1111/gcb.14618 Hung, J. R. Malcolm, M. B. Martins, L. A. M. Mestre, R.
Miranda-Santos, A. L. Nunes-Gutjahr, W. L. Overal, L. Parry, S.
Alegre, J., L. Arévalo, and A. Ricse. 2003. Reservas de carbono
L. Peters, M. A. Ribeiro-Junior, M. N. F. da Silva, C. da Silva
según el uso de la tierra en dos sitios de la Amazonia Peruana. In
Motta, and C. A. Peres. 2007. Quantifying the biodiversity value
M. D. Sánchez an M. R. Méndez, editors. Agroforestería para la
of tropical primary, secondary, and plantation forests.
producción animal en América Latina - II - memorias de la
Proceedings of the National Academy of Sciences 104
segunda conferencia electrónica (Agosto de 2000–Marzo de
(47):18555-18560. https://doi.org/10.1073/pnas.0703333104
2001). Food and Agriculture Organization, Rome, Italy. https://
www.fao.org/3/Y4435S/Y4435S00.htm Bennett-Curry, A., Y. Malhi, and M. Menton. 2013. Leakage
effects in natural resource supply chains: a case study from the
Álvarez-Berríos, N., J. L’Roe, and L. Naughton-Treves. 2021.
Peruvian commercial charcoal market. International Journal of
Does formalizing artisanal gold mining mitigate environmental
Sustainable Development and World Ecology 20(4):336-348.
impacts? Deforestation evidence from the Peruvian Amazon.
https://doi.org/10.1080/13504509.2013.804892
Environmental Research Letters 16(6):064052. https://doi.
org/10.1088/1748-9326/abede9 Beresford-Jones, D. G. 2004. Pre-Hispanic Prosopis-human
relationships on the south coast of Peru: riparian forests in the
Aragón, S., N. Salinas, A. Nina-Quispe, V. H. Qquellon, G. R.
context of environmental and cultural trajectories of the lower
Paucar, W. Huaman, P. C. Porroa, J. C. Olarte, R. Cruz, J. G.
Ica valley. Dissertation. University of Cambridge, Cambridge,
Muñiz, C. S. Yupayccana, T. E. B. Espinoza, R. Tito, E. G. Cosio,
UK.
and R. M. Roman-Cuesta. 2021. Aboveground biomass in
secondary montane forests in Peru: slow carbon recovery in Bernachea Jesus, N. 2019. Valoración económica y secuestro de
agroforestry legacies. Global Ecology and Conservation 28: CO2 en bosques plantados de eucalipto (Eucalyptus globulus labil)
e01696. https://doi.org/10.1016/j.gecco.2021.e01696 y pino (Pinus radiata) de 11 años de edad en Cochatama, distrito
Huacar, provincia Ambo departamento Huánuco – Setiembre,
Arévalo-Gardini, E., M. Canto, J. Alegre, O. Loli, A. Julca, and
2018 – Febrero, 2019. Thesis. Universidad de Huánuco, Huánuco,
V. Baligar. 2015. Changes in soil physical and chemical properties
Perú. http://repositorio.udh.edu.pe/123456789/1776
in long term improved natural and traditional agroforestry
management systems of cacao genotypes in Peruvian Amazon. Bonnesoeur, V., B. Locatelli, M. R. Guariguata, B. F. Ochoa-
Plos One 10(7):e0132147. https://doi.org/10.1371/journal. Tocachi, V. Vanacker, Z. Mao, A. Stokes, and S.-L. Mathez-
pone.0132147 Stiefel. 2019. Impacts of forests and forestation on hydrological
services in the Andes: a systematic review. Forest Ecology and
Asner, G. P., D. E. Knapp, R. E. Martin, R. Tupayachi, C. B.
Management 433:569-584. https://doi.org/10.1016/j.foreco.2018.11.033
Anderson, J. Mascaro, F. Sinca, K. D. Chadwick, S. Sousan, M.
Higgins, W. Farfan, M. R. Silman, W. A. Llactayo León, and A.
Bourrel, L., P. Rau, B. Dewitte, D. Labat, W. Lavado, A. Coutaud,
F. Neyra Palomino. 2014. La geografía del carbono en alta
A. Vera, A. Alvarado, and J. Ordoñez. 2015. Low-frequency
resolución del Perú. Carnegie Institution for Science,
modulation and trend of the relationship between ENSO and
Washington, D.C., USA. https://geoservidorperu.minam.gob.pe/
precipitation along the northern to centre Peruvian Pacific coast.
geoservidor/Archivos/Documentos/CarnegiePeruCarbonReport-
Hydrological Processes 29(6):1252-1266. https://doi.org/10.1002/
Spanish.pdf
hyp.10247
Asner, G. P., G. V. N. Powell, J. Mascaro, D. E. Knapp, J. K. Clark,
Brandon, K. 2014. Ecosystem services from tropical forests:
J. Jacobson, T. Kennedy-Bowdoin, A. Balaji, G. Paez-Acosta, E.
review of current science. Center for Global Development
Victoria, L. Secada, M. Valqui, and R. F. Hughes. 2010. High-
Working Paper 380. Center for Global Development,
resolution forest carbon stocks and emissions in the Amazon.
Washington, D.C., USA. https://doi.org/10.2139/ssrn.2622749
Proceedings of the National Academy of Sciences 107
(38):16738-16742. https://doi.org/10.1073/pnas.1004875107 Bruijnzeel, L. A. 2004. Hydrological functions of tropical forests:
not seeing the soil for the trees? Agriculture, Ecosystems and
Baltazar Peña, A. L. 2011. Carbono aéreo almacenado en una
Environment 104(1):185-228. https://doi.org/10.1016/j.agee.2004.01.015
plantación de bolaina blanca (Guazuma crinita Martius) de un
año de edad, en el centro poblado Nuevo Edén, alto Madre de
Bullock, E. L., C. E. Woodcock, and P. Olofsson. 2020.
Dios. Thesis. Universidad Nacional Agraria De La Selva, Tingo
Monitoring tropical forest degradation using spectral unmixing
María, Perú. http://repositorio.unas.edu.pe/handle/UNAS/563
and Landsat time series analysis. Remote Sensing of Environment
Barbarán, G. 1998. Determinación de biomasa y carbono en los 238:110968. https://doi.org/10.1016/j.rse.2018.11.011
principales sistemas de uso del suelo en la zona de Campo Verde.
Butler, R. A., and W. F. Laurance. 2009. Is oil palm the next
Thesis. Universidad Nacional de Ucayali, Pucallpa, Perú.
emerging threat to the Amazon? Tropical Conservation Science
Barbier, E. B., J. C. Burgess, and A. Grainger. 2010. The forest 2(1):1-10. https://doi.org/10.1177%2F194008290900200102
transition: towards a more comprehensive theoretical framework.
Buytaert, W., V. Iñiguez, and B. De Bièvre. 2007. The effects of
Land Use Policy 27(2):98-107. https://doi.org/10.1016/j.
afforestation and cultivation on water yield in the Andean
landusepol.2009.02.001
páramo. Forest Ecology and Management 251(1-2):22-30. https://
doi.org/10.1016/j.foreco.2007.06.035
Ecology and Society 27(3): 12
https://www.ecologyandsociety.org/vol27/iss3/art12/

Caballero Espejo, J., M. Messinger, F. Román-Dañobeytia, C. Chazdon, R. L., and M. R. Guariguata. 2016. Natural
Ascorra, L. E. Fernandez, and M. Silman. 2018. Deforestation regeneration as a tool for large-scale forest restoration in the
and forest degradation due to gold mining in the Peruvian tropics: prospects and challenges. Biotropica 48(6):716-730.
Amazon: a 34-year perspective. Remote Sensing 10(12):1903. https://doi.org/10.1111/btp.12381
https://doi.org/10.3390/rs10121903
Chazdon, R. L., and M. R. Guariguata. 2018. Decision support
Caldwell, M. M., T. E. Dawson, and J. H. Richards. 1998. tools for forest landscape restoration: current status and future
Hydraulic lift: consequences of water efflux from the roots of outlook. Occasional Paper 183. Center for International Forestry
plants. Oecologia 113(2):151-161. https://doi.org/10.1007/ Research, Bogor, Indonesia. https://doi.org/10.17528/cifor/006792
s004420050363
Chazdon, R. L., D. Lindenmayer, M. R. Guariguata, R.
Caldwell, M. M., and J. H. Richards. 1989. Hydraulic lift: water
Crouzeilles, J. M. Rey Benayas, and E. Lazos Chavero. 2020.
efflux from upper roots improves effectiveness of water uptake
Fostering natural forest regeneration on former agricultural land
by deep roots. Oecologia 79(1):1-5. https://doi.org/10.1007/
through economic and policy interventions. Environmental
BF00378231
Research Letters 15(4):043002. https://doi.org/10.1088/1748-9326/
Cerrón, J., J. del Castillo, S. L. Mathez-Stiefel, and E. Thomas. ab79e6
2017. Lecciones aprendidas de experiencias de restauración en el
Chuquizuta, P. D., G. F. Ruiz, C. T. Salas, and L. A. López. 2016.
Perú. Biodiversity International, Lima, Peru. https://www.
Carbono almacenado en cinco sistemas de uso de tierra, en la
bioversityinternational.org/e-library/publications/detail/lecciones-
región San Martín Perú. Rinderesu 1(2):57-67. http://rinderesu.
aprendidas-de-experiencias-de-restauracion-en-el-peru/
com/index.php/rinderesu/article/view/22
Cerrón, J., T. Fremout, R. Atkinson, E. Thomas, and J. Cornelius.
Clark, K. E., M. A. Torres, A. J. West, R. G. Hilton, M. New, A.
2019. Experiencias de restauración y fuentes semilleras en el
B. Horwath, J. B. Fisher, J. M. Rapp, A. Robles Caceres, and Y.
bosque seco tropical del norte del Perú: estado actual y lecciones
Malhi. 2014. The hydrological regime of a forested tropical
aprendidas. Biodiversity International, Lima, Peru. https://www.
Andean catchment. Hydrology and Earth System Sciences 18
bioversityinternational.org/e-library/publications/detail/experiencias-
(12):5377-5397. https://doi.org/10.5194/hess-18-5377-2014
de-restauracion-y-fuentes-semilleras-en-el-bosque-seco-tropical-
del-norte-del-peru-est/ Climate Action Tracker. 2019. Peru nationally determined
contribution (NDC) assessment. Climate Action Network, Bonn,
Chausson, A., B. Turner, D. Seddon, N. Chabaneix, C. A. J.
Germany. https://climateactiontracker.org/countries/peru/2019-09-19/
Girardin, V. Kapos, I. Key, D. Roe, A. Smith, S. Woroniecki, and
N. Seddon. 2020. Mapping the effectiveness of nature-based
Colorado Zuluaga, G. J., and A. D. Rodewald. 2015. Response
solutions for climate change adaptation. Global Change Biology
of mixed-species flocks to habitat alteration and deforestation in
26(11):6134-6155. https://doi.org/10.1111/gcb.15310
the Andes. Biological Conservation 188:72-81. https://doi.
Chávez Suazo, J. P. 2018. Captura y almacenamiento de carbono org/10.1016/j.biocon.2015.02.008
de los bosque estacionalmente secos de la costa norte
Concha, J. Y., J. C. Alegre, and V. Pocomucha. 2007.
(Lambayeque), como mitigación frente al cambio climático.
Determinación de las reservas de carbono en la biomasa aérea de
Thesis. Universidad Nacional Agraria la Molina, Lima, Peru.
sistemas agroforestales de Theobroma cacao L. en el
https://hdl.handle.net/20.500.12996/3346
departamento de San Martin, Perú. Ecología Aplicada 6
Chávez-Villavicencio, C. 2013. Las aves de la ciudad de Piura, (1-2):75-82. http://www.scielo.org.pe/scielo.php?pid=
Perú y sus alrededores: ocho años mirando al cielo. Biologist 11 S1726-22162007000100009&script=sci_abstract
(2):193-204. https://doi.org/10.24039/rtb2013112398
Csillik, O., and G. P. Asner. 2020. Aboveground carbon emissions
Chazdon, R. L., E. N. Broadbent, D. M. A. Rozendaal, F. from gold mining in the Peruvian Amazon. Environmental
Bongers, A. M. A. Zambrano, T. M. Aide, P. Balvanera, J. M. Research Letters 15(1):014006. https://doi.org/10.1088/1748-9326/
Becknell, V. Boukili, P. H. S. Brancalion, D. Craven, J. S. Almeida- ab639c
Cortez, G. A. L. Cabral, B. de Jong, J. S. Denslow, D. H. Dent,
Cuellar Bautista, J. E., and E. J. Salazar Hinostroza. 2016.
S. J. DeWalt, J. M. Dupuy, S. M. Durán, M. M. Espírito-Santo,
Dinámica del carbono almacenado en los diferentes sistemas de
M. C. Fandino, R. G. César, J. S. Hall, J. L. Hernández-Stefanoni,
uso de la tierra del Perú, base para una estrategia de mitigación
C. C. Jakovac, A. B. Junqueira, D. Kennard, S. G. Letcher, M.
ante el cambio climático. Instituto Nacional de Innovación
Lohbeck, M. Martínez-Ramos, P. Massoca, J. A. Meave, R.
Agraria, Lima, Peru. http://repositorio.inia.gob.pe/
Mesquita, F. Mora, R. Muñoz, R. Muscarella, Y. R. F. Nunes, S.
handle/20.500.12955/363
Ochoa-Gaona, E. Orihuela-Belmonte, M. Peña-Claros, E. A.
Pérez-García, D. Piotto, J. S. Powers, J. Rodríguez-Velazquez, I. Culot, L., D. J. Mann, F. J. J. Muñoz Lazo, M.-C. Huynen, and
E. Romero-Pérez, J. Ruíz, J. G. Saldarriaga, A. Sanchez-Azofeifa, E. W. Heymann. 2011. Tamarins and dung beetles: an efficient
N. B. Schwartz, M. K. Steininger, N. G. Swenson, M. Uriarte, M. diplochorous dispersal system in the Peruvian Amazonia.
van Breugel, H. van der Wal, M. D. M. Veloso, H. Vester, I. C. Biotropica 43(1):84-92. https://doi.org/10.1111/j.1744-7429.2010.00655.
G. Vieira, T. V. Bentos, G. B. Williamson, and L. Poorter. 2016. x
Carbon sequestration potential of second-growth forest
D’Almeida, C., C. J. Vörösmarty, G. C. Hurtt, J. A. Marengo, S.
regeneration in the Latin American tropics. Science Advances 2
L. Dingman, and B. D. Keim. 2007. The effects of deforestation
(5):e1501639. https://doi.org/10.1126/sciadv.1501639
Ecology and Society 27(3): 12
https://www.ecologyandsociety.org/vol27/iss3/art12/

on the hydrological cycle in Amazonia: a review on scale and Farley, K. A., E. F. Kelly, and R. G. M. Hofstede. 2004. Soil
resolution. International Journal of Climatology 27(5):633-647. organic carbon and water retention after conversion of grasslands
https://doi.org/10.1002/joc.1475 to pine plantations in the Ecuadorian Andes. Ecosystems 7
(7):729-739. https://doi.org/10.1007/s10021-004-0047-5
D’Aloia, C. C., I. Naujokaitis-Lewis, C. Blackford, C. Chu, J. M.
R. Curtis, E. Darling, F. Guichard, S. J. Leroux, A. C. Martensen, Fitts, L. A., Z. A. Cruz-Burga, and M. La Torre-Cuadros. 2020.
B. Rayfield, J. M. Sunday, A. Xuereb, and M.-J. Fortin. 2019. Wild rubber extraction in the Peruvian Amazon: local perception
Coupled networks of permanent protected areas and dynamic and socioeconomic indicators as tools for decision-making.
conservation areas for biodiversity conservation under climate Ethnobiology and Conservation 9:24. https://doi.org/10.15451/
change. Frontiers in Ecology and Evolution 7:27. https://doi. ec2020-06-9.24-1-26
org/10.3389/fevo.2019.00027
Food and Agriculture Organization (FAO). 2016. Bosques y el
de Valença, A. W., S. J. Vanek, K. Meza, R. Ccanto, E. Olivera, cambio climático: documento de trabajo 14. FAO, Rome, Italy.
M. Scurrah, E. A. Lantinga, and S. J. Fonte. 2017. Land use as a https://www.fao.org/documents/card/en/c/50d7476c-8ac1-40d8-a704-
driver of soil fertility and biodiversity across an agricultural db7ed0281662/
landscape in the central Peruvian Andes. Ecological Applications
Food and Agriculture Organization (FAO). 2020. Global forest
27(4):1138-1154. https://doi.org/10.1002/eap.1508
resources assessment 2020: main report. FAO, Rome, Italy. https://
Delgado Paredes, G. E., C. Vásquez-Díaz, F. Tesén-Núñez, B. www.fao.org/documents/card/en/c/ca9825en
Esquerre-Ibañez, F. Z. Da-Silva, and C. Rojas-Idrogo. 2020.
Gallice, G. R., G. Larrea-Gallegos, and I. Vázquez-Rowe. 2019.
Vegetación arbórea del Cerro Tres Puntas de Pilasca, (Salas-
The threat of road expansion in the Peruvian Amazon. Oryx 53
Motupe), Lambayeque, Perú. Revista Mexicana de Ciencias
(2):284-292. https://doi.org/10.1017/S0030605317000412
Forestales 11(58):154-181. https://doi.org/10.29298/rmcf.v11i58.549
Gamarra Ramos, J. 2001. Estimación del contenido de carbono
Doornbos, B. 2015. El valor de los bosques andinos en asegurar en plantaciones de Eucalyptus globulus Labill, en Junin, Perú. In
agua y suelo en un contexto de creciente riesgo climático: ¿(re) Simposio internacional medición y monitoreo de la captura de
conocemos lo imperdible? Opinion Article 3. Programa Bosques carbono en ecosistemas forestales. Universidad Autónoma de
Andinos, Lima, Peru. https://www.bosquesandinos.org/wp- Chihuahua, Chihuahua, Mexico.
content/uploads/2015/12/061115_articulo_n3.pdf
Garcia, C. A., S. Savilaakso, R. W. Verburg, V. Gutierrez, S. J.
Duran-Bautista, E. H., I. Armbrecht, A. N. Serrão Acioli, J. C. Wilson, C. B. Krug, M. Sassen, B. E. Robinson, H. Moersberger,
Suárez, M. Romero, M. Quintero, and P. Lavelle. 2020. Termites B. Naimi, J. M. Rhemtulla, H. Dessard, V. Gond, C. Vermeulen,
as indicators of soil ecosystem services in transformed amazon F. Trolliet, J. Oszwald, F. Quétier, S. A. Pietsch, J.-F. Bastin, A.
landscapes. Ecological Indicators 117:106550. https://doi. Dray, M. B. Araújo, J. Ghazoul, and P. O. Waeber. 2020. The
org/10.1016/j.ecolind.2020.106550 global forest transition as a human affair. One Earth 2(5):417-428.
https://doi.org/10.1016/j.oneear.2020.05.002
Ehrenbergerová, L., E. Cienciala, A. Kučera, L. Guy, and H.
Habrová. 2016. Carbon stock in agroforestry coffee plantations Gavin, M. C. 2004. Changes in forest use value through ecological
with different shade trees in Villa Rica, Peru. Agroforestry succession and their implications for land management in the
Systems 90(3):433-445. https://doi.org/10.1007/s10457-015-9865- Peruvian Amazon. Conservation Biology 18(6):1562-1570.
z https://doi.org/10.1111/j.1523-1739.2004.00241.x
Ellison, D., M. N. Futter, and K. Bishop. 2012. On the forest Gavin, M. C. 2007. Foraging in the fallows: hunting patterns
cover–water yield debate: from demand- to supply-side thinking. across a successional continuum in the Peruvian Amazon.
Global Change Biology 18(3):806-820. https://doi.org/10.1111/ Biological Conservation 134(1):64-72. https://doi.org/10.1016/j.
j.1365-2486.2011.02589.x biocon.2006.07.011
Escobal, J., and M. Torero. 2003. Adverse geography and Giam, X. 2017. Global biodiversity loss from tropical
differences in welfare in Peru. Pages 77-121 in R. Kanbur and A. deforestation. Proceedings of the National Academy of Sciences
J. Venables, editors. Spatial inequality and development. Oxford 114(23):5775-5777. https://doi.org/10.1073/pnas.1706264114
University Press, Oxford, UK. https://doi.org/10.1093/0199278­
Gibb, R., D. W. Redding, K. Q. Chin, C. A. Donnelly, T. M.
636.003.0005
Blackburn, T. Newbold, and K. E. Jones. 2020. Zoonotic host
Escobedo Grandez, A. 2021. Agronegocios y crisis climática en diversity increases in human-dominated ecosystems. Nature 584
el Perú: monocultivos, deforestación y emisiones de carbono en (7821):398-402. https://doi.org/10.1038/s41586-020-2562-8
la amazonía peruana. Oxfam América, Lima, Peru. https://peru.
Gobierno del Perú. 2016. La contribución nacional del Perú -
oxfam.org/latest/policy-paper/agronegocios-y-crisis-climatica-en-
iNDC: agenda para un desarrollo climáticamente responsable.
peru
Government of Peru, Lima, Peru. https://www.minam.gob.pe/
Farley, K. A., E. G. Jobbágy, and R. B. Jackson. 2005. Effects of cambioclimatico/wp-content/uploads/sites/11/2015/12/LA-
afforestation on water yield: a global synthesis with implications CONTRIBUCI%c3%93N-NACIONAL-DEL-PER%c3%9a1.pdf
for policy. Global Change Biology 11(10):1565-1576. https://doi.
org/10.1111/j.1365-2486.2005.01011.x Gobierno del Perú. 2020. Contribuciones determinadas a nivel
nacional del Perú: reporte de actualización periodo 2021–2030.
Ecology and Society 27(3): 12
https://www.ecologyandsociety.org/vol27/iss3/art12/

Government of Peru, Lima, Peru. https://cdn.www.gob.pe/ for integrated land and water management. Cambridge
uploads/document/file/1675213/Reporte%20de%20 University Press, Cambridge, UK. https://doi.org/10.1017/
Actualizaci%C3%B3n%20de%20las%20NDC%20del%20Per%C3% CBO9780511535666.031
BA%20al%202030.pdf
Horgan, F. G. 2009. Invasion and retreat: shifting assemblages of
Gonzalez, P., B. Kroll, and C. R. Vargas. 2014. Tropical rainforest dung beetles amidst changing agricultural landscapes in central
biodiversity and aboveground carbon changes and uncertainties Peru. Biodiversity and Conservation 18(13):3519. https://doi.
in the Selva Central, Peru. Forest Ecology and Management org/10.1007/s10531-009-9658-7
312:78-91. https://doi.org/10.1016/j.foreco.2013.10.019
Horváth, Z., R. Ptacnik, C. F. Vad, and J. M. Chase. 2019. Habitat
Gonzales-Zuñiga, S. 2018. Implementation of nationally loss over six decades accelerates regional and local biodiversity
determined contributions: Peru country report. Umweltbundesamt, loss via changing landscape connectance. Ecology Letters 22
Dessau-Roßlau, Germany. https://www.umweltbundesamt.de/ (6):1019-1027. https://doi.org/10.1111/ele.13260
sites/default/files/medien/1410/publikationen/2018-11-30_climate-
Hosner, P. A., M. J. Andersen, M. B. Robbins, A. Urbay-Tello, L.
change_31-2018_country-report-peru.pdf
Cueto-Aparicio, K. Verde-Guerra, L. A. Sánchez-González, A.
Griscom, B. W., J. Adams, P. W. Ellis, R. A. Houghton, G. Lomax, G. Navarro-Sigüenza, R. L. Boyd, J. Núñez, J. Tiravanti, M.
D. A. Miteva, W. H. Schlesinger, D. Shoch, J. V. Siikamäki, P. Combe, H. L. Owens, and A. Townsend Peterson. 2015. Avifaunal
Smith, P. Woodbury, C. Zganjar, A. Blackman, J. Campari, R. T. surveys of the upper Apurímac River valley, Ayacucho and Cuzco
Conant, C. Delgado, P. Elias, T. Gopalakrishna, M. R. Hamsik, Departments, Peru: new distributional records and biogeographic,
M. Herrero, J. Kiesecker, E. Landis, L. Laestadius, S. M. Leavitt, taxonomic, and conservation implications. Wilson Journal of
S. Minnemeyer, S. Polasky, P. Potapov, F. E. Putz, J. Sanderman, Ornithology 127(4):563-581. https://doi.org/10.1676/14-178.1
M. Silvius, E. Wollenberg, and J. Fargione. 2017. Natural climate
International Centre for Research in Agroforestry (ICRAF).
solutions. Proceedings of the National Academy of Sciences 114
1998. Respuesta a nuevas demandas tecnológicas, fortalecimiento
(44):11645-11650. https://doi.org/10.1073/pnas.1710465114
de la investigación en agroindustria y el manejo de recursos
Guns, M., and V. Vanacker. 2013. Forest cover change trajectories naturales. Reporte final enero 1996 a junio 1998. Banco
and their impact on landslide occurrence in the tropical Andes. Interamericano de Desarrollo and International Centre for
Environmental Earth Sciences 70(7):2941-2952. https://doi. Research in Agroforestry, Lima, Peru.
org/10.1007/s12665-013-2352-9
Intergovernmental Panel on Climate Change (IPCC). 2018.
Gurmendi Porras, C. G., and W. B. Orihuela Izaguirre. 2019. Sumary for policymakers. Pages 3-24 in V. Masson-Delmotte, P.
Valoración económica de la reserva de carbono de Escallonia Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani,
resinosa (Ruiz & Pav.) Pers. en San Pedro de Saños y Pucará. W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R.
Universidad Nacional del Centro del Perú, Huancayo, Peru. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T.
http://hdl.handle.net/20.500.12894/5320 Maycock, M. Tignor, and T. Waterfield, editors. Global warming
of 1.5°C. An IPCC special report on the impacts of global
Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A.
warming of 1.5°C above pre-industrial levels and related global
Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz,
greenhouse gas emission pathways, in the context of
T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O.
strengthening the global response to the threat of climate change,
Justice, and J. R. G. Townshend. 2013. High-resolution global
sustainable development, and efforts to eradicate poverty.
maps of 21st-century forest cover change. Science 342
Cambridge University Press, Cambridge, UK. https://doi.
(6160):850-853. https://doi.org/10.1126/science.1244693
org/10.1017/9781009157940.001
Harden, C. P., J. Hartsig, K. A. Farley, J. Lee, and L. L. Bremer.
Jezeer, R. E., M. J. Santos, P. A. Verweij, R. G. A. Boot, and Y.
2013. Effects of land-use change on water in Andean páramo
Clough. 2019. Benefits for multiple ecosystem services in Peruvian
grassland soils. Annals of the Association of American
coffee agroforestry systems without reducing yield. Ecosystem
Geographers 103(2):375-384. https://doi.org/10.1080/00045608.­
Services 40:101033. https://doi.org/10.1016/j.ecoser.2019.101033
2013.754655
Jones, I. L., S. J. DeWalt, O. R. Lopez, L. Bunnefeld, Z. Pattison,
Heilmayr, R., C. Echeverría, and E. F. Lambin. 2020. Impacts of
and D. H. Dent. 2019. Above- and belowground carbon stocks
Chilean forest subsidies on forest cover, carbon and biodiversity.
are decoupled in secondary tropical forests and are positively
Nature Sustainability 3(9):701-709. https://doi.org/10.1038/
related to forest age and soil nutrients respectively. Science of the
s41893-020-0547-0
Total Environment 697:133987. https://doi.org/10.1016/j.
Holl, K. D., and P. H. S. Brancalion. 2020. Tree planting is not a scitotenv.2019.133987
simple solution. Science 368(6491):580-581. https://doi.
Krois, J., and A. Schulte. 2013. Modeling the hydrological
org/10.1126/science.aba8232
response of soil and water conservation measures in the Ronquillo
Hölscher, D., J. Mackensen, and J.-M. Roberts. 2005. Forest watershed in the northern Andes of Peru. Pages 147-184 in Water
recovery in the humid tropics: changes in vegetation structure, and environmental dynamics: 6th international conference on
nutrient pools and the hydrological cycle. Pages 598-621 in M. water resources and environment research: proceedings. World
Bonell and L. A. Bruijnzeel, editors. Forests, water and people in Meteorological Organization, Koblenz, Germany. https://doi.
the humid tropics: past, present and future hydrological research bafg.de/BfG/2014/ICWRER_2013.pdf
Ecology and Society 27(3): 12
https://www.ecologyandsociety.org/vol27/iss3/art12/

Lapeyre, T., J. Alegre, and L. Arévalo. 2004. Determinación de Martel, C., and L. Cairampoma. 2012. Cuantificación del
las reservas de carbono de la biomasa aérea, en diferentes sistemas carbono almacenado en formaciones vegetales amazónicas en
de uso de la tierra en San Martín, Perú. Ecología Aplicada 3 “cicra”, Madre de Dios (Perú). Ecología Aplicada 11(1-2):59-65.
(1-2):35-44. https://doi.org/10.21704/rea.v3i1-2.269 https://doi.org/10.21704/rea.v11i1-2.426
León Cáceres, F. J. 2019. Efectos ambientales por deforestación Maxwell, S. L., V. Cazalis, N. Dudley, M. Hoffmann, A. S. L.
del bosque seco “El Algarrobal” de Conache -Laredo, 2016. Rodrigues, S. Stolton, P. Visconti, S. Woodley, N. Kingston, E.
Thesis. Universidad Nacional de Trujillo, Trujillo, Peru. http:// Lewis, M. Maron, B. B. N. Strassburg, A. Wenger, H. D. Jonas,
dspace.unitru.edu.pe/handle/UNITRU/12919 O. Venter, and J. E. M. Watson. 2020. Area-based conservation
in the twenty-first century. Nature 586(7828):217-227. https://doi.
Lewis, S. L., C. E. Wheeler, E. T. A. Mitchard, and A. Koch. 2019.
org/10.1038/s41586-020-2773-z
Restoring natural forests is the best way to remove atmospheric
carbon. Nature 568(7750):25-28. https://doi.org/10.1038/ McGee, K. M., T. M. Porter, M. Wright, and M. Hajibabaei. 2020.
d41586-019-01026-8 Drivers of tropical soil invertebrate community composition and
richness across tropical secondary forests using DNA
Locatelli, B., J.-M. Homberger, B. F. Ochoa-Tocachi, V.
metasystematics. Scientific Reports 10:18429. https://doi.
Bonnesoeur, F. Román, F. Drenkhan, and W. Buytaert. 2020.
org/10.1038/s41598-020-75452-4
Impactos de las zanjas de infiltración en el agua y los suelos: ¿Qué
sabemos? Forest Trends, Lima, Peru. https://www.forest-trends. Ministerio del Ambiente (MINAM). 2014. Estrategia nacional
org/wp-content/uploads/2020/05/Impactos-de-las-zanjas-de-infiltraci% de diversidad biológica al 2021: plan de acción 2014–2018.
C3%B3n-en-el-agua-y-los-suelos.pdf Ministerio del Ambiente, Lima, Peru. https://sinia.minam.gob.
pe/documentos/estrategia-nacional-diversidad-biologica-2021-plan-
Lojka, B., J. Krausová, Š. Kubík, and Z. Polesný. 2011.
accion-2014-2018
Assessment of insect biological diversity in various land use
systems in the Peruvian Amazon. Pages 103-121 in N. Rojas and Ministerio del Ambiente (MINAM). 2015. Mapa nacional de
R. Prieto, editors. Amazon basin: plant life, wildlife and cobertura vegetal: memoria descriptiva. Ministerio del Ambiente,
environment. Nova Science Publishers, New York, New York, Lima, Peru. https://repositoriodigital.minam.gob.pe/handle/123456789/178
USA.
Ministerio del Ambiente (MINAM). 2016. El Perú y el cambio
Luzar, J. 2007. The political-ecology of a “forest transition”:
climático: tercera comunicación nacional del Perú a la
Eucalyptus forestry in the southern Peruvian Andes.
Convención Marco de las Naciones Unidas sobre el Cambio
Ethnobotany Research and Applications 5:85-93. https://doi.
Climático. Ministerio del Ambiente, Lima, Peru. https://sinia.
org/10.17348/era.5.0.85-93
minam.gob.pe/documentos/tercera-comunicacion-nacional-peru-
MacDonald, H., and D. McKenney. 2020. Envisioning a global convencion-marco-las-naciones
forest transition: status, role, and implications. Land Use Policy
Moomaw, W. R., S. A. Masino, and E. K. Faison. 2019. Intact
99:104808. https://doi.org/10.1016/j.landusepol.2020.104808
forests in the United States: proforestation mitigates climate
Mahmood, K., J. Morris, J. Collopy, and P. Slavich. 2001. change and serves the greatest good. Frontiers in Forests and
Groundwater uptake and sustainability of farm plantations on Global Change 2:27. https://doi.org/10.3389/ffgc.2019.00027
saline sites in Punjab province, Pakistan. Agricultural Water
Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da
Management 48(1):1-20. https://doi.org/10.1016/S0378-3774(00)
Fonseca, and J. Kent. 2000. Biodiversity hotspots for conservation
00114-1
priorities. Nature 403(6772):853-858. https://doi.org/10.1038/35002501
Málaga, N., K. Hergoualc’h, G. Kapp, and C. Martius. 2021.
Variation in vegetation and ecosystem carbon stock due to the Ochoa-Tocachi, B. F. 2019. Participatory hydrological
conversion of disturbed forest to oil palm plantation in Peruvian monitoring to support sustainable water resources management.
Amazonia. Ecosystems 24(2):351-369. https://doi.org/10.1007/ Dissertation. Imperial College London, London, UK. https://doi.
s10021-020-00521-8 org/10.25560/75557
Malhi, Y., J. Franklin, N. Seddon, M. Solan, M. G. Turner, C. B. Ochoa-Tocachi, B. F., W. Buytaert, B. De Bièvre, R. Célleri, P.
Field, and N. Knowlton. 2020. Climate change and ecosystems: Crespo, M. Villacís, C. A. Llerena, L. Acosta, M. Villazón, M.
threats, opportunities and solutions. Philosophical Transactions Guallpa, J. Gil-Ríos, P. Fuentes, D. Olaya, P. Viñas, G. Rojas, and
of the Royal Society B 375:20190104. https://doi.org/10.1098/ S. Arias. 2016. Impacts of land use on the hydrological response
rstb.2019.0104 of tropical Andean catchments. Hydrological Processes 30
(22):4074-4089. https://doi.org/10.1002/hyp.10980
Manoli, G., A. Meijide, N. Huth, A. Knohl, Y. Kosugi, P.
Burlando, J. Ghazoul, and S. Fatichi. 2018. Ecohydrological Oliveras, I., Y. Malhi, N. Salinas, V. Huaman, E. Urquiaga-Flores,
changes after tropical forest conversion to oil palm. J. Kala-Mamani, J. A. Quintano-Loaiza, I. Cuba-Torres, N.
Environmental Research Letters 13(6):064035. https://doi. Lizarraga-Morales, and R.-M. Román-Cuesta. 2014. Changes in
org/10.1088/1748-9326/aac54e forest structure and composition after fire in tropical montane
cloud forests near the Andean treeline. Plant Ecology and
Marengo, J. A. 2006. On the hydrological cycle of the Amazon
Diversity 7(1-2):329-340. https://doi.org/10.1080/17550874.2013.816800
basin: a historical review and current state-of-the-art. Revista
Brasileira de Meteorologia 21(3):1-19.
Ecology and Society 27(3): 12
https://www.ecologyandsociety.org/vol27/iss3/art12/

Oliveras, I., R. M. Román-Cuesta, E. Urquiaga-Flores, J. A. R. Astete, D. Y. Jordán, M. Silman, R. Mosandl, M. Weber, B.


Quintano Loayza, J. Kala, V. Huamán, N. Lizárraga, G. Sans, K. Stimm, S. Günter, T. Knoke, and Y. Malhi. 2011. Implications of
Quispe, E. Lopez, D. Lopez, I. Cuba Torres, B. J. Enquist, and Y. fires on carbon budgets in Andean cloud montane forest: the
Malhi. 2018. Fire effects and ecological recovery pathways of importance of peat soils and tree resprouting. Forest Ecology and
tropical montane cloud forests along a time chronosequence. Management 261(11):1987-1997. https://doi.org/10.1016/j.
Global Change Biology 24(2):758-772. https://doi.org/10.1111/ foreco.2011.02.025
gcb.13951
Ruiz Romero, N. O. 2015. Ensamblaje y dieta de murciélagos
Pécastaing, N., and C. Chávez. 2020. The impact of El Niño (Chiroptera) en la zona noroccidental del Área de Conservación
phenomenon on dry forest-dependent communities’ welfare in Regional Bosque Seco Salitral - Huarmaca, Piura - Perú. Thesis
the northern coast of Peru. Ecological Economics 178:106820. Universidad Nacional de Piura, Piura, Peru. http://repositorio.
https://doi.org/10.1016/j.ecolecon.2020.106820 unp.edu.pe/handle/UNP/272
Perry, J., B. Lojka, L. G. Quinones Ruiz, P. Van Damme, J. Saatchi, S. S., N. L. Harris, S. Brown, M. Lefsky, E. T. A. Mitchard,
Houška, and E. Fernandez Cusimamani. 2016. How natural W. Salas, B. R. Zutta, W. Buermann, S. L. Lewis, S. Hagen, S.
forest conversion affects insect biodiversity in the Peruvian Petrova, L. White, M. Silman, and A. Morel. 2011. Benchmark
Amazon: Can agroforestry help? Forests 7(4):82. https://doi. map of forest carbon stocks in tropical regions across three
org/10.3390/f7040082 continents. Proceedings of the National Academy of Sciences 108
(24):9899-9904. https://doi.org/10.1073/pnas.1019576108
Poorter, L., F. Bongers, T. M. Aide, A. M. Almeyda Zambrano,
P. Balvanera, J. M. Becknell, V. Boukili, P. H. S. Brancalion, E. Saatchi, S. S., R. A. Houghton, R. C. Dos Santos Alvalá, J. V.
N. Broadbent, R. L. Chazdon, D. Craven, J. S. de Almeida-Cortez, Soares, and Y. Yu. 2007. Distribution of aboveground live
G. A. L. Cabral, B. H. J. de Jong, J. S. Denslow, D. H. Dent, S. J. biomass in the Amazon basin. Global Change Biology 13
DeWalt, J. M. Dupuy, S. M. Durán, M. M. Espírito-Santo, M. (4):816-837. https://doi.org/10.1111/j.1365-2486.2007.01323.x
C. Fandino, R. G. César, J. S. Hall, J. L. Hernandez-Stefanoni, C.
Scott, D. F., L. A. Bruijnzeel, and J. Mackensen. 2005. The
C. Jakovac, A. B. Junqueira, D. Kennard, S. G. Letcher, J.-C.
hydrological and soil impacts of forestation in the tropics. Pages
Licona, M. Lohbeck, E. Marín-Spiotta, M. Martínez-Ramos, P.
622-651 in M. Bonell and L. A. Bruijnzeel, editors. Forests, water
Massoca, J. A. Meave, R. Mesquita, F. Mora, R. Muñoz, R.
and people in the humid tropics: past, present and future
Muscarella, Y. R. F. Nunes, S. Ochoa-Gaona, A. A. de Oliveira,
hydrological research for integrated land and water management.
E. Orihuela-Belmonte, M. Peña-Claros, E. A. Pérez-García, D.
Cambridge University Press, Cambridge, UK. https://doi.
Piotto, J. S. Powers, J. Rodríguez-Velázquez, I. E. Romero-Pérez,
org/10.1017/CBO9780511535666.032
J. Ruíz, J. G. Saldarriaga, A. Sanchez-Azofeifa, N. B. Schwartz,
M. K. Steininger, N. G. Swenson, M. Toledo, M. Uriarte, M. van Seddon, N., A. Chausson, P. Berry, C. A. J. Girardin, A. Smith,
Breugel, H. van der Wal, M. D. M. Veloso, H. F. M. Vester, A. and B. Turner. 2020. Understanding the value and limits of
Vicentini, I. C. G. Vieira, T. V. Bentos, G. B. Williamson, and D. nature-based solutions to climate change and other global
M. A. Rozendaal. 2016. Biomass resilience of Neotropical challenges. Philosophical Transactions of the Royal Society B
secondary forests. Nature 530(7589):211-214. https://doi. 375:20190120. https://doi.org/10.1098/rstb.2019.0120
org/10.1038/nature16512
Servicio Nacional Forestal y de Fauna Silvestre (SERFOR). 2018.
Quintero, M., S. Wunder, and R. D. Estrada. 2009. For services Experiencias de restauración en el Perú: lecciones aprendidas.
rendered? Modeling hydrology and livelihoods in Andean SERFOR, Lima, Peru. https://www.serfor.gob.pe/portal/wp-
payments for environmental services schemes. Forest Ecology and content/uploads/2019/01/Experiencias-de-Restauraci%C3%B3n-
Management 258(9):1871-1880. https://doi.org/10.1016/j. en-el-Per%C3%BA-Lecciones-aprendidas.pdf
foreco.2009.04.032
Servicio Nacional Forestal y de Fauna Silvestre (SERFOR). 2019.
Raboin, M. L., and J. L. Posner. 2012. Pine or pasture? Estimated Informe del inventario nacional forestal y de fauna silvestre del
costs and benefits of land use change in the Peruvian Andes. Perú. SERFOR, Lima, Peru. https://www.serfor.gob.pe/portal/
Mountain Research and Development 32(2):158-168. https://doi. wp-content/uploads/2020/03/INFORME-DEL-INFFS-PANEL-1.
org/10.1659/MRD-JOURNAL-D-10-00099.1 pdf
Rasal Sánchez, M., J. Troncos Castro, C. Lizano Durán, O. Shukla, P. R., J. Skea, R. Slade, R. van Diemen, E. Haughey, J.
Parihuamán Granda, D. Quevedo Calle, C. Rojas Idrogo, and G. Malley, M. Pathak, and J. P. Portugal Pereira, editors. 2019.
E. Delgado Paredes. 2011. Características edáficas y composición Technical summary. Pages 35-74 in P. R. Shukla, J. Skea, E. Calvo
florística del bosque estacionalmente seco La Menta y Timbes, Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P.
región Piura, Perú. Ecología Aplicada 10(1-2):61. https://doi. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E.
org/10.21704/rea.v10i1-2.414 Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal
Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, and J.
Román, F., A. Mamani, A. D. Cruz, C. Sandoval, and F. Cuesta.
Malley, editors. Climate change and land: an IPCC special report
2018. Orientaciones para la restauración de ecosistemas forestales
on climate change, desertification, land degradation, sustainable
y otros ecosistemas de vegetación silvestre. Servicio Nacional
land management, food security, and greenhouse gas fluxes in
Forestal y de Fauna Silvestre, Lima, Peru. http://repositorio.
terrestrial ecosystems. Intergovernmental Panel on Climate
serfor.gob.pe/handle/SERFOR/524
Change, Geneva, Switzerland. https://www.ipcc.ch/site/assets/
Román-Cuesta, R. M., N. Salinas, H. Asbjornsen, I. Oliveras, V. uploads/sites/4/2020/07/03_Technical-Summary-TS_V2.pdf
Huaman, Y. Gutiérrez, L. Puelles, J. Kala, D. Yabar, M. Rojas,
Ecology and Society 27(3): 12
https://www.ecologyandsociety.org/vol27/iss3/art12/

Smith, C. C., F. D. B. Espírito-Santo, J. R. Healey, P. J. Young, van Dijk, A. I. J. M., and R. J. Keenan. 2007. Planted forests and
G. D. Lennox, J. Ferreira, and J. Barlow. 2020. Secondary forests water in perspective. Forest Ecology and Management 251
offset less than 10% of deforestation-mediated carbon emissions (1-2):1-9. https://doi.org/10.1016/j.foreco.2007.06.010
in the Brazilian Amazon. Global Change Biology 26
Vebrova, H., B. Lojka, T. P. Husband, M. E. C. Zans, P. Van
(12):7006-7020. https://doi.org/10.1111/gcb.15352
Damme, A. Rollo, and M. Kalousova. 2014. Tree diversity in
Smith, C. C., J. R. Healey, E. Berenguer, P. J. Young, B. Taylor, F. cacao agroforests in San Alejandro, Peruvian Amazon.
Elias, F. Espírito-Santo, and J. Barlow. 2021. Old-growth forest Agroforestry Systems 88(6):1101-1115. https://doi.org/10.1007/
loss and secondary forest recovery across Amazonian countries. s10457-013-9654-5
Environmental Research Letters 16(8):085009. https://doi.
Vélez Quesquén, M. A. M., and J. I. Saavedra Chávez. 2019.
org/10.1088/1748-9326/ac1701
Estructura del ensamblaje de escarabajos coprófagos
Socolar, J. B., E. H. Valderrama Sandoval, and D. S. Wilcove. (Coleoptera: Scarabaeidae: Scarabaeinae) en un bosque primario
2019. Overlooked biodiversity loss in tropical smallholder y secundario del Bosque de Protección Pagaibamba, Querocoto,
agriculture. Conservation Biology 33(6):1338-1349. https://doi. Chota, Cajamarca, Perú, 2018. Thesis. Universidad Nacional
org/10.1111/cobi.13344 Pedro Ruiz Gallo, Lambayeque, Peru. https://hdl.handle.
net/20.500.12893/5511
Somers, L. D., J. M. McKenzie, S. C. Zipper, B. G. Mark, P. Lagos,
and M. Baraer. 2018. Does hillslope trenching enhance Vijay, V., C. D. Reid, M. Finer, C. N. Jenkins, and S. L. Pimm.
groundwater recharge and baseflow in the Peruvian Andes? 2018. Deforestation risks posed by oil palm expansion in the
Hydrological Processes 32(3):318-331. https://doi.org/10.1002/ Peruvian Amazon. Environmental Research Letters 13
hyp.11423 (11):114010. https://doi.org/10.1088/1748-9326/aae540
Sosa Castillo, J. O. 2016. Valoración económica del secuestro de Villar Cabeza, M. Á., J. E. Cuellar Bautista, and S. L. Valentin
CO2 en tres tipos de bosque en el distrito del Alto Nanay, Loreto- Castañeda. 2014. Valoración técnica, económica y ambiental de
Perú-2014. Thesis. Universidad Nacional de la Amazonía tres sistemas de silvopasturas en la región Cajamarca. Instituto
Peruana, Iquitos, Peru. http://repositorio.unapiquitos.edu.pe/ Nacional de Innovación Agraria, Lima, Peru. http://repositorio.
handle/20.500.12737/4283 inia.gob.pe/handle/20.500.12955/376
Soto-Navarro, C., C. Ravilious, A. Arnell, X. de Lamo, M. Villogas Ventura, K. E. 2013. Almacenamiento de carbono en
Harfoot, S. L. L. Hill, O. R. Wearn, M. Santoro, A. Bouvet, S. sistemas agroforestales (SAF) con cacao (Theobroma cacao L.)
Mermoz, T. Le Toan, J. Xia, S. Liu, W. Yuan, S. A. Spawn, H. K. en producción. Thesis. Universidad Nacional Agraria de la Selva,
Gibbs, S. Ferrier, T. Harwood, R. Alkemade, A. M. Schipper, G. Tingo María, Peru. http://repositorio.unas.edu.pe/handle/
Schmidt-Traub, B. Strassburg, L. Miles, N. D. Burgess, and V. UNAS/163
Kapos. 2020. Mapping co-benefits for carbon storage and
Vuille, M., M. Carey, C. Huggel, W. Buytaert, A. Rabatel, D.
biodiversity to inform conservation policy and action.
Jacobsen, A. Soruco, M. Villacis, C. Yarleque, O. E. Timm, T.
Philosophical Transactions of the Royal Society B 375
Condom, N. Salzmann, and J.-E. Sicart. 2018. Rapid decline of
(1794):20190128. https://doi.org/10.1098/rstb.2019.0128
snow and ice in the tropical Andes – impacts, uncertainties and
Srinivas, A., and L. P. Koh. 2016. Oil palm expansion drives challenges ahead. Earth-Science Reviews 176:195-213. https://
avifaunal decline in the Pucallpa region of Peruvian Amazonia. doi.org/10.1016/j.earscirev.2017.09.019
Global Ecology and Conservation 7:183-200. https://doi.
Vuille, M., B. Francou, P. Wagnon, I. Juen, G. Kaser, B. G. Mark,
org/10.1016/j.gecco.2016.06.005
and R. S. Bradley. 2008. Climate change and tropical Andean
Time, A., M. Garrido, and E. Acevedo. 2018. Water relations and glaciers: past, present and future. Earth-Science Reviews 89
growth response to drought stress of Prosopis tamarugo Phil. A (3-4):79-96. https://doi.org/10.1016/j.earscirev.2008.04.002
review. Journal of Soil Science and Plant Nutrition 18(2):329-343.
Walentowski, H., S. Heinrichs, S. Hohnwald, A. Wiegand, H.
https://doi.org/10.4067/S0718-95162018005001103
Heinen, M. Thren, O. A. Gamarra Torres, A. B. Sabogal, and S.
Timoteo, K., J. Remuzgo, L. Valdivia, F. Sales-Dávila, D. García- Zerbe. 2018. Vegetation succession on degraded sites in the
Soria, and C. Abanto-Rodriguez. 2016. Estimación del carbono Pomacochas basin (Amazonas, N Peru)—ecological options for
almacenado en tres sistemas agroforestales durante el primer año forest restoration. Sustainability 10(3):609. https://doi.org/10.3390/
de instalación en el departamento de Huánuco. Folia Amazónica su10030609
25(1):45-54. https://doi.org/10.24841/fa.v25i1.382
Whaley, O. Q., D. G. Beresford-Jones, W. Milliken, A. Orellana,
Tovar, C., A. C. Seijmonsbergen, and J. F. Duivenvoorden. 2013. A. Smyk, and J. Leguía. 2010. An ecosystem approach to
Monitoring land use and land cover change in mountain regions: restoration and sustainable management of dry forest in southern
an example in the Jalca grasslands of the Peruvian Andes. Peru. Kew Bulletin 65(4):613-641. https://doi.org/10.1007/
Landscape and Urban Planning 112:40-49. https://doi. s12225-010-9235-y
org/10.1016/j.landurbplan.2012.12.003
Whitworth, A., R. Downie, R. von May, J. Villacampa, and R.
Vallet, A., B. Locatelli, H. Levrel, C. B. Pérez, P. Imbach, N. E. MacLeod. 2016. How much potential biodiversity and
Carmona, R. Manlay, and J. Oszwald. 2016. Dynamics of conservation value can a regenerating rainforest provide? A ‘best-
ecosystem services during forest transitions in Reventazón, Costa case scenario’ approach from the Peruvian Amazon. Tropical
Rica. Plos One 11(7):e0158615. https://doi.org/10.1371/journal. Conservation Science 9(1):224-245. https://doi.org/10.1177/194­
pone.0158615 008291600900112
Ecology and Society 27(3): 12
https://www.ecologyandsociety.org/vol27/iss3/art12/

Wilson, S. J., J. Schelhas, R. Grau, A. S. Nanni, and S. Sloan.


2017. Forest ecosystem-service transitions: the ecological
dimensions of the forest transition. Ecology and Society 22(4):38.
https://doi.org/10.5751/ES-09615-220438
Young, K. R., and B. León. 2007. Tree-line changes along the
Andes: implications of spatial patterns and dynamics.
Philosophical Transactions of the Royal Society B 362
(1478):263-272. https://doi.org/10.1098/rstb.2006.1986
Zamorano-Elgueta, C., J. M. R. Benayas, L. Cayuela, S. Hantson,
and D. Armenteras. 2015. Native forest replacement by exotic
plantations in southern Chile (1985–2011) and partial
compensation by natural regeneration. Forest Ecology and
Management 345:10-20. https://doi.org/10.1016/j.foreco.2015.02.025

Zavala, W., E. Merino, and P. Peláez. 2018. Influencia de tres


sistemas agroforestales del cultivo de cacao en la captura y
almacenamiento de carbono. Scientia Agropecuaria 9
(4):493-501. https://doi.org/10.17268/sci.agropecu.2018.04.04
APPENDIX
Table A1. Above ground (AG) and below ground (BG) carbon stock reported in different forest types and regions.
Forest AG + BG - C
Region Forest transition Elevation Species AG C stok Reference
age stock
Amazon Mature forest 250 160.1 360.3 Alegre et al. 2002
Amazon Mature forest <500? 121.5 232.4 Cuellar and Salazar 2016
Amazon Mature forest 180 - 250 402.8 ICRAF 1998
Amazon Mature forest 190 - 230 155.6 Barbaran-Garcia 2000
Amazon Mature forest 190 - 236 135.5 Hinostroza 2012
Amazon Mature forest 230 - 270 335.1 632.4 Martel and Cairampoma 2012
Amazon Mature forest 400-1600 196.1 465.8 Callo-Concha et al. 2001
Amazon Mature forest 127.4 Saatchi et al., 2007*
Amazon Mature forest 107.6 Sosa Castillo 2016
Amazon Mature forest 158.7 Sosa Castillo 2016
Amazon Mature forest 161.31 Sosa Castillo 2016
Amazon Secondary forest 180 40 241.1 290 Alegre et al. 2002
Amazon Secondary forest 180 3 2.4 40.8 Alegre et al. 2002
Amazon Secondary forest 180 15 184.4 239.1 Alegre et al. 2002
Amazon Secondary forest 250 3 13.2 54.6 Alegre et al. 2002
Amazon Secondary forest 250 5 42.1 95.8 Alegre et al. 2002
Amazon Secondary forest 250 15 121 172.3 Alegre et al. 2002
Amazon Secondary forest 500 <50 282.8 396.8 Chuquizuta et al. 2016
Amazon Secondary forest <500? 15 59.8 150.1 Cuellar and Salazar 2016
Amazon Secondary forest <500? 8--10 5 91.9 Cuellar and Salazar 2016
Amazon Secondary forest 160–192 30 71.3 140.9 Málaga et al. 2021
Amazon Secondary forest 180 - 250 15 310.8 ICRAF 1998
Amazon Secondary forest 180 - 250 3 40.5 ICRAF 1998
Amazon Secondary forest 190 - 230 15 153.3 Barbaran 2000
Amazon Secondary forest 190 - 230 3 48.3 Barbaran 2000
Amazon Secondary forest 400-1600 8 67.9 181 Callo-Concha et al. 2001
Amazon Secondary forest 5 27 65.5 Viena Vela 2010
Amazon Secondary forest ? 26.45 Saatchi et al., 2007*
Amazon Secondary forest 9 27.7 Bringas 2010
Amazon Secondary forest 10 74.8 Bringas 2010
Amazon Secondary forest 11 102.1 Bringas 2010
Amazon Secondary forest 2 10.9 Baldoceda 2001
Amazon Secondary forest 4 23.14 Baldoceda 2001
Amazon Secondary forest 6 48.7 Baldoceda 2001
Amazon Secondary forest 8 79.5 Baldoceda 2001
Amazon Secondary forest 10 92.61 Baldoceda 2001
Amazon Agroforestry system Teobroma cacao, Inga 5 94.7 125.7 Viena Vela 2010
Amazon Agroforestry system 448 Teobroma cacao 7 17.5 72.9 Chuquizuta et al. 2016
Amazon Agroforestry system 610 Arazá, Sangre de grado 4.5 45.9 122.8 Gonzales Andia 2011
Amazon Agroforestry system 610 Boiaina, Pijuayo, cítrico 4.5 52.9 138.9 Gonzales Andia 2011
Amazon Agroforestry system 610 Capirona, Aguaje 4.5 14.3 94.6 Gonzales Andia 2011
Amazon Agroforestry system 928 Coffea arabica, Inga spp. 7 17.9 74.5 Chuquizuta et al. 2016
Amazon Agroforestry system 400 - 1600 Coffea arabica, spps. ? 45.4 193.7 Callo-Concha et al. 2001
Amazon Agroforestry system Inga, Cedrela odorata, Mariosousa willardiana ? 31 ± 81 Jezeer et al. 2019
Amazon Agroforestry system Theobroma cacao, Inga edulis, Guazuna crinita 4 4.9 ± 1.9 Angulo Avalos 2017
Amazon Agroforestry system Theobroma cacao, laurel 9 50.3 Bringas 2010
Amazon Agroforestry system Theobroma cacao, laurel 10 69.5 Bringas 2010
Amazon Agroforestry system Theobroma cacao, laurel 11 83.6 Bringas 2010
Theobroma cacao, 6 tree Spp, including Inga
Amazon Agroforestry system 7--25 65 ± 56.5 131 ± 63.18 Pocomucha et al. 2016
edulis, Bolaina
Amazon Agroforestry system Theobroma cacao >16 92.4 Zavala et al. 2018
Amazon Agroforestry system Theobroma cacao + spps >16 274.2 Zavala et al. 2018
Amazon Agroforestry system Theobroma cacao + spps 8--16 31.7 Zavala et al. 2018
Amazon Agroforestry system Theobroma cacao + spps 8--16 101.3 Zavala et al. 2018
Amazon Agroforestry system Theobroma cacao + spps <8 36.5 Zavala et al. 2018
Amazon Agroforestry system Theobroma cacao + spps <8 76.6 Zavala et al. 2018
Theobroma cacao, G. crinite, Calycophyllum
Amazon Agroforestry system 3 2.1 Lucano et al. 2019
spruceanum
Theobroma cacao, G. crinite, Calycophyllum
Amazon Agroforestry system 4 4.69 Lucano et al. 2019
spruceanum
Amazon Agroforestry system 20 32.4 Concha et al. 2007
Amazon Agroforestry system 20 27 Concha et al. 2007
Amazon Agroforestry system 12 31.2 Concha et al. 2007
Amazon Agroforestry system 12 35.5 Concha et al. 2007
Amazon Agroforestry system 5 12.1 Concha et al. 2007
Amazon Agroforestry system 5 14.2 Concha et al. 2007
Theobroma cacao, Inga sp. Eucalyptus sp.
Amazon Agroforestry system 10 104 168.9 Villogas Ventura 2014
Calycophyllum spruceanum
Theobroma cacao, Inga sp. Eucalyptus sp.
Amazon Agroforestry system 8 69.8 143.5 Villogas Ventura 2014
Calycophyllum spruceanum
Theobroma cacao, Inga sp. Eucalyptus sp.
Amazon Agroforestry system 6 68.4 130.9 Villogas Ventura 2014
Calycophyllum spruceanum
Theobroma cacao, Guazuma crinite, Inga edulis,
Amazon Agroforestry system 1 2.9 33.4 Timoteo del Aguila 2014
Cajanus cajan
Theobroma cacao, Schizolobium amazonicum,
Amazon Agroforestry system 1 4.4 36.8 Timoteo del Aguila 2014
Leucaena leucocephala
Amazon Agroforestry system Theobroma cacao, Cajanus cajan 1 3.4 37.2 Timoteo del Aguila 2014
Amazon Tree plantation 160 - 192 Oil palm 1--28 28.6 78.2 Málaga et al. 2021
Amazon Tree plantation 180 Bractris, Cedrelinga, Inga, Columbrina ? 57.3 114.3 Alegre et al. 2002
Amazon Tree plantation 180 Bactris gasipaes 16 0.4 148.8 Alegre et al. 2002
Amazon Tree plantation 250 Hevea braziliensis 30 66.6 152.6 Alegre et al. 2002
Amazon Tree plantation 250 Bactris gasipaes ? 99.2 Alegre et al. 2002
Amazon Tree plantation 272 Bactris gasipaes (oil palm) 6 22.7 72.2 Chuquizuta et al. 2016
Amazon Tree plantation <500? Eiaeis guineensis (oil palm) 30 7.8 90.9 Cuellar and Salazar 2016
Amazon Tree plantation 180 - 250 Hevea brasiliensis 30 152.3 ICRAF 1998
Amazon Tree plantation 190 - 236 Eiaeis guineensis (oil palm) 10 14.7 Hinostroza 2012
Amazon Tree plantation Guazuma crinite (Bolaina) 1 9.5 Baltazar Peña 2011
Amazon Tree plantation Ormosia coccinea 27 64.1 Gonzales 2013
Amazon Tree plantation Parkia igneiflora 27 68.3 Gonzales 2013
Amazon Tree plantation Simarouba amara 27 91.97 Gonzales 2013
Amazon Tree plantation Mytciaria dubia 13 102.02 Lopez-Lavajos et al. 2015
Andes Mature forest 600 221.1 Miyamoto et al. 2018
Andes Mature forest 1038 305.7 398.8 Chuquizuta et al. 2016
Andes Mature forest 1193 485.3 Lapeyre et al. 2004
Andes Mature forest 3500 Polylepis incana 24.2 Miyamoto et al. 2018
Andes Mature forest 3419 - 3792 Polylepis incana 40.1 148.73 Cuellar and Salazar 2016
Andes Mature forest 93 ± 39 Gonzalez et al. 2014
Andes Mature forest 113.4 341.5 Oliveras et al. 2018
Andes Mature forest 61.9 154.3 Oliveras et al. 2018
Andes Mature forest 52.4 236.5 Oliveras et al. 2018
Andes Mature forest Scallonia resinosa 6 78.6 Orihuela et al. 2019
Andes Mature forest Scallonia resinosa 4.8 23.8 Orihuela et al. 2019
Andes Secondary forest 600 175.4 Miyamoto et al. 2018
Andes Secondary forest 700 50 234.3 Lapeyre et al. 2004
Andes Secondary forest 700 20 62.1 Lapeyre et al. 2004
Andes Secondary forest 3500 8.6 Miyamoto et al. 2018
Andes Secondary forest 10-42 40 ± 10 Gonzalez et al. 2014
Andes Secondary forest 28 36.6 295.3 Oliveras et al. 2018
Andes Secondary forest 9 43.2 161.1 Oliveras et al. 2018
Andes Secondary forest 4 26.1 116.6 Oliveras et al. 2018
Andes Agroforestry system 650 - 1500 Coffea arabica, Inga edulis 15-20 19.3 Lapeyre et al. 2004
Andes Agroforestry system Coffea arabica, Inga edulis 25 30.3 ± 3.2 119.9 ± 19.5 Ehrenbergerova et al. 2015
Andes Agroforestry system Coffea arabica, Pinus spp. 15 62 ± 4.7 177.5 ± 14.1 Ehrenbergerova et al. 2015
Andes Agroforestry system Coffea arabica, Eucalyptus spp. 7 53.5 ± 3.1 162.3 ± 18.2 Ehrenbergerova et al. 2015
Andes Tree plantation Eucalyptus globulus 10 72.1 136.2 Gamarra 2001
Andes Tree plantation 3350 - 3986 Eucalyptus 5 30.1 129 Cuellar and Salazar 2016
Andes Tree plantation 3354 - 3845 Pinus radiata <47 111.2 217.8 Cuellar and Salazar 2016
Andes Tree plantation 3449 - 3788 Alnus acuminata ? 22.2 128.3 Cuellar and Salazar 2016
Andes Tree plantation Cipres ? 15.5 Maquera 2017
Andes Tree plantation Eucalyptus globulus ? 60.9 Maquera 2017
Andes Tree plantation Pinus ? 23.6 Maquera 2017
Andes Tree plantation Eucalyptus globulus labil 11 72 142.3 Bernachea 2019
Andes Tree plantation Pinus radiata 11 72.7 141.8 Bernachea 2019
Andes Tree plantation Pinus spp. 28 35.7 Raboin and Posner 2012
Andes Tree plantation ? 3 46.4 - 116.3 Rodriguez and quispe 1997
Coast Mature forest 70 27.6 44.1 Cuellar and Salazar 2016
Coast Mature forest 142.8 Zuñe da Silva & Davila Raffo 2018
Coast Mature forest 1-8 ± 2 Asner et al. 2014*
Coast Secondary forest 25 4.23 46.9 Chavez Suazo 2018
Coast Secondary forest ? 11.1 Campos Huamán 2017
Coast Tree plantation 70 Mangifera indica <12 8.2 14.3 Cuellar and Salazar 2016
* Using lidar or satellite imagery analysis
REFERENCES

Alegre, J., L. Arévalo, and A. Ricse. 2002. Reservas de carbono según el uso de la tierra en dos sitios de la Amazonia Peruana. IACRAF/INIA:9.
Angulo Avalos, E.M. 2017. Servicio ecosistémico de almacenamiento de carbon en la biomasa aérea en plantaciones de bolaina (Guazuma
crinita Mart), Cacao (Theobroma cacao L.) y Guaba (Inga edulis Mart.) en Saipai-Pueblo nuevo. Universidad Agraria de la Selva, Perú.
Asner, G. P., D. E. Knapp, R. E. Martin, R. Tupayachi, C. B. Anderson, J. Mascaro, F. Sinca, K. D. Chadwick, S. Sousan, M. Higgins, W.
Farfan, M. R. Silman, W. A. Lactayo León, and A. F. Neyra Palomino. 2014. La Geografía del Carbono en Alta Resolución del Perú.
Carnegie Institution for Science.
Baldoceda, R. 2001. Valoración económica del servicio ambiental de captura de C02 en la zona de Neshuya - Curinamá - Pucallpa. Conservación
y manejo de la biodiversidad y ecosistemas frágiles BIOFOR. Programa de becas de investigación sobre valoración económica de la
diversidad biológica y servicios ambientales.
Baltazar Peña, A. L. 2011. Carbono aéreo almacenado en una plantación de bolaina blanca (Guazuma crinita Martius) de un año de edad, en el
centro poblado Nuevo Edén, alto Madre de Dios. Universidad Nacional Agraria De La Selva, Perú.
Barbarán-García, J. 2000. Cuantificación de biomasa y carbono en los principales sistemas de uso de suelo en Campo Verde. Universidad
Nacional de Ucayali, Perú.
Bernachea Jesus, N. 2019. Valoración económica y secuestro de CO2 en bosques plantados de eucalipto (Eucalyptus globulus labil) y pino
(Pinus radiata) de 11 años de edad en Cochatama, distrito Huacar, provincia Ambo departamento Huánuco-setiembre, 2018 - febrero, 2019.
Universidad de Huánuco, Perú.
Bringas, H. 2010. Estimación del carbono almacenado en un sistema agroforestal de cacao (Theobroma cacao L.) comparado con un bosque
secundario de tres edades. Universidad Nacional Agraria de la Selva. Perú. 100p.
Callo-Concha, D., L. Krishnamurthy, and J. Alegre. 2001. Cuantificación del carbono secuestrado por algunos SAF’S y testigos, en tres pisos
ecológicos de la Amazonía del Perú. Pages 1–23 Simposio Internacional Medición y Monitoreo de la Captura de Carbono en Ecosistemas
Forestales. Valdivia, Chile.
Campos Huamán, M. 2017. Evaluación del nivel de captura de carbono en bosque secundario a través de las características morfológicas de la
especie forestal xerofítico (Prosopis Pallida). Universidad Cesar Vallejo, Perú.
Chávez Suazo, J. 2018. Captura y almacenamiento de carbono de los bosque estacionalmente secos de la costa norte (Lambayeque) , como
mitigación frente al cambio climático. Universidad Nacional Agraria la Molina, Perú.
Chuquizuta, P. D., G. F. Ruiz, C. T. Salas, and L. A. López. 2016. Carbono almacenado en cinco sistemas de uso de tierra, en la región San
Martín Perú. Rinderesu 1(2):57–67.
Colorado Zuluaga, G. J., and A. D. Rodewald. 2015. Response of mixed-species flocks to habitat alteration and deforestation in the Andes.
Biological Conservation 188(2015):72–81.
Concha, J. Y., J. C. Alegre, and V. Pocomucha. 2007. Determinación de las reservas de carbono en la biomasa aérea de sistemas agroforestales
de Theobroma cacao L. en el departamento de San Martin, Perú. Ecología Aplicada 6(1–2):75–82.
Cuellar, J., and E. Salazar. 2016. Dinámica del carbono almacenado en los diferentes sistemas de uso de la tierra en el Perú. Instituto Nacional
de Innovación Agraria INIA, Lima, Perú.
Ehrenbergerová, L., E. Cienciala, A. Kučera, L. Guy, and H. Habrová. 2016. Carbon stock in agroforestry coffee plantations with different shade
trees in Villa Rica, Peru. Agroforestry Systems 90(3):433–445.
Gamarra Ramos, J. 2001. Estimación del contenido de carbono en plantaciones de Eucalyptus globulus Labill, en Junin, Perú. Pages 1–21
Simposio Internacional Medición y Monitoreo de la Captura de Carbono en Ecosistemas Forestales.
Gonzales Andía, M. M. 2011. Capacidad de captura de carbono en los distintos sistemas de uso de la tierra en el campo experimental de
Tulumayo-Leoncio Prado. Universidad Nacional Agraria la Molina, Perú.
Gonzales, P. 2013. Valoración económica del secuestro de CO2 en plantaciones de Vochysia lomatophylla (standl)“quillosisa” de diferentes
edades en el CIEFOR Puerto Almendra. Universidad Nacional de la Amazonía Peruana. Perú.
Gonzalez, P., B. Kroll, and C. R. Vargas. 2014. Tropical rainforest biodiversity and aboveground carbon changes and uncertainties in the Selva
Central, Peru. Forest Ecology and Management 312(2014):78–91.
Hinostroza, E. J. 2012. Cuantificación del carbono en la biomasa aérea de tres diferentes usos de la tierra en la cuenca de Aguaytía sectores:
Irazola, curimaná y campo verde-Región Ucayali. Universidad Nacional Agraria de la Selva. Perú. 100p.
ICRAF. 1998. Respuesta a nuevas demandas tecnológicas, fortalecimiento de la investigación en agroindustria y el manejo de recursos
naturales. BID-ICRAF ATN/SF.
Jezeer, R. E., M. J. Santos, P. A. Verweij, R. G. A. Boot, and Y. Clough. 2019. Benefits for multiple ecosystem services in Peruvian coffee
agroforestry systems without reducing yield. Ecosystem Services 40(2019):101033.
Lapeyre, T., J. Alegre, and L. Arévalo. 2004. Determinación de las reservas de carbono de la biomasa aérea, en diferentes sistemas de uso de la
tierra en San Martín, Perú. Ecologia Aplicada 3(1–2):35–44.
León Cáceres, F. J. 2019. Efectos Ambientales por deforestación del Bosque Seco “El Algarrobal” de Conache –Laredo, 2016. Universidad
Nacional de Trujillo, Perú.
Lopez-Lavajos, E., Del Aguila-Pasquel, J., Paredes-Dávila, E., Pinedo-Panduro, M., and Abanto-Rodriguez, C. 2015. Almacenamiento de
carbono en individuos de camu camu arbustivo [Myrciaria dubia (HBK) Mc Vaugh] plantados en el Centro Experimental San Miguel,
Iquitos, Perú. Folia Amazónica, 24(1), 83-90.
Lucano, D., J. Vargas, R. Celestino, C. Apolaya, and L. Crespo. 2019. Calidad y almacenamiento de carbono en dos parcelas agroforestales con
cacao. The Biologist (Lima) 17(2):277–285.
Málaga, N., K. Hergoualc’h, G. Kapp, and C. Martius. 2021. Variation in Vegetation and Ecosystem Carbon Stock Due to the Conversion of
Disturbed Forest to Oil Palm Plantation in Peruvian Amazonia. Ecosystems 24(2):351–369.
Maquera Maquera, D. 2017. Determinación del contenido de carbono por especie forestal en el bosque del CIP Camacani-UNA-Puno por
titulación. Universidad Nacional del Altiplano, Perú.
Martel, C., and Cairampoma, L. 2012. Cuantificación del carbono almacenado en formaciones vegetales amazónicas en" cicra", Madre de Dios
(Perú). Ecología Aplicada, 11(2), 59-65.
Miyamoto, K., Sato, T., Arana Olivos, E. A., Clostre Orellana, G., and Rohner Stornaiuolo, C. M. 2018. Variation in tree community
composition and carbon stock under natural and human disturbances in Andean forests, Peru. Forests, 9(7), 390.
Oliveras, I., R. M. Román‐Cuesta, E. Urquiaga‐Flores, J. A. Quintano Loayza, J. Kala, V. Huamán, N. Lizárraga, G. Sans, K. Quispe, E. Lopez,
D. Lopez, I. Cuba Torres, B. J. Enquist, and Y. Malhi. 2018. Fire effects and ecological recovery pathways of tropical montane cloud forests
along a time chronosequence. Global Change Biology 24(2):758–772.
Orihuela Izaguirre, W. B., and Gurmendi Porras, C. G. 2019. Valoración económica de la reserva de carbono de Escallonia resinosa (Ruiz &
Pav.) Pers. en San Pedro de Saños y Pucará. Universidad Nacional del Centro del Perú, Perú.
Pocomucha, V. S., Alegre, J., and Abregú, L. 2016. Análisis socio económico y carbono almacenado en sistemas agroforestales de cacao
(Theobroma cacao L.) en Huánuco. Ecología aplicada, 15(2), 107-114.
Raboin, M. L., and J. L. Posner. 2012. Pine or Pasture? Estimated Costs and Benefits of Land Use Change in the Peruvian Andes. Mountain
Research and Development 32(2):158–168.
Ruiz Romero, N. O. 2015. Ensamblaje y dieta de murciélagos (Chiroptera) en la zona noroccidental del Área de Conservación Regional Bosque
Seco Salitral - Huarcama, Piura - Perú. Universidad Nacional de Piura, Perú.
Saatchi, S. S., R. A. Houghton, R. C. Dos santos Alvalá, J. V. Soares, and Y. Yu. 2007. Distribution of aboveground live biomass in the Amazon
basin. Global Change Biology 13(4):816–837.
Sosa Castillo, J. O. 2016. Valoración económica del secuestro de CO2 en tres tipos de bosque en el distrito del Alto Nanay, Loreto-Perú-2014.
Universidad Nacional de la Amazonía Peruana, Perú.
Soto-Navarro, C., C. Ravilious, A. Arnell, X. de Lamo, M. Harfoot, S. L. L. Hill, O. R. Wearn, M. Santoro, A. Bouvet, S. Mermoz, T. Le Toan,
J. Xia, S. Liu, W. Yuan, S. A. Spawn, H. K. Gibbs, S. Ferrier, T. Harwood, R. Alkemade, A. M. Schipper, G. Schmidt-Traub, B. Strassburg,
L. Miles, N. D. Burgess, and V. Kapos. 2020. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and
action. Philosophical Transactions of the Royal Society B: Biological Sciences 375(1794):20190128.
Timoteo del Aguila, K. J. 2014. Carbono almacenado en tres sistemas agroforestales (saf) durante el primer año de su instalación en el distrito de
José Crespo y Castillo-Huanuco. Universidad Nacional Agraria de la Selva, Perú.
Timoteo, K., J. Remuzgo, L. Valdivia, F. Sales, D. García-Soria, and C. Abanto. 2016. Estimación Del Carbono Almacenado En Tres Sistemas
Agroforestales Durante El Primer Año De Instalación En El Departamento De Huánuco. Folia Amazónica 25(1):45–54.
Viena Vela, H. 2010. Estimación de la biomasa y almacenamiento de carbono bajo cuatro sistemas de uso de la tierra en la Provincia de Leoncio
Prado. Universidad Nacional Agraria de la Selva, Perú.
Villogas Ventura, K. E. 2013. Almacenamiento de carbono en sistemas agroforestales (SAF) con cacao (Theobroma cacao L.) en producción.
Universidad Agraria de la Selva, Perú.
Zavala, W., E. Merino, and P. Peláez. 2018. Influence of three agroforestry systems of cocoa cultivation on carbon capture and storage. Scientia
Agropecuaria 9(4):493–501.
Zuñe Da Silva, L. F., and Dávila Raffo, D. C. 2018. Estimación de biomasa arbórea del Refugio de Vida Silvestre Laquipampa, Lambayeque–
Perú. Universidad Pedro Ruiz Gallo, Perú.
Table A2. Number of species reported in different forest types and regions.
Number of species
Site/Taxa Mature Secondary Agroforestry Tree Reference
forest forest system plantation
Amazon
Dung beetles 23 17-19 20 7--9 Horgan et al. 2009
Termites 38 14 18 23 Duran-Bautista et al. 2020
Insects 758 81 64 - 540 54 Lojka et al. 2010, Perry et al. 2016
Birds 454-501 406 71 Aerts et al. 2016, Whitworth et al., 2016
Trees 71 16 33 Vebrova et al. 2014
Amphibians 63-82 60 Whitworth et al., 2016
Mammals 47-48 38 Whitworth et al., 2016
Reptiles 60-75 66 Whitworth et al., 2016
Trees 313 241 Gonzales et al. 2014*
Butterfly 147 Jezeer et al. 2019
Andes
Birds 7.4 5.1 and 7.8 8.9 Colorado Zuluaga and Rodewald 2015**
Dung beetles 3 5 Vélez Quesquén and Saavedra Chávez 2019
Shurbs 10.1 12.2 - 9.8 De Valença et al. 2017***
Soil acrofauna 11.4 8 - 9.6 De Valença et al. 2017***
Coast
Birds 44 54 35 Villavicencio 2013, Cruzado-Jacinto et al.
2019
Trees 23 - 85 6 -- 17 Leal-Pinedo and Linares-Palomino 2005,
Cunningham et al. 2008, Lambayeque,
Delgado-Paredes et al. 2020,
Reptiles 33 1 Venegas 2005, Leon Caceres 2019
Insectivore bats 6 10 Ruiz Romero 2015
Amphibians 6 Venegas 2005.
Mammals 1 Leon Caceres 2019
* Average plot species richness: 108 species ha-1 in mature forest and 43 species ha-1 in secondary forest.
** Number of species per flocks
*** On average
REFERENCES

Aerts, R., S. Spranghers, and C. H. Şekercioǧlu. 2017. Conservation of ecosystem


services does not secure the conservation of birds in a Peruvian shade coffee
landscape. Bird Conservation International 27(1):71–82.
Alegre, J., L. Arévalo, and A. Ricse. 2002. Reservas de carbono según el uso de la tierra
en dos sitios de la Amazonia Peruana. IACRAF/INIA:9.
Angulo Avalos, E.M. 2017. Servicio ecosistémico de almacenamiento de carbon en la
biomasa aérea en plantaciones de bolaina (Guazuma crinita Mart), Cacao
(Theobroma cacao L.) y Guaba (Inga edulis Mart.) en Saipai-Pueblo nuevo.
Asner, G. P., D. E. Knapp, R. E. Martin, R. Tupayachi, C. B. Anderson, J. Mascaro, F.
Sinca, K. D. Chadwick, S. Sousan, M. Higgins, W. Farfan, M. R. Silman, W. A.
Lactayo León, and A. F. Neyra Palomino. 2014. La Geografía del Carbono en Alta
Resolución del Perú. Carnegie Institution for Science.
Baldoceda, R. 2001. Valoración económica del servicio ambiental de captura de C02 en
la zona de Neshuya - Curinamá - Pucallpa. Conservación y manejo de la
biodiversidad y ecosistemas frágiles BIOFOR. Programa de becas de investigación
sobre valoración económica de la diversidad biológica y servicios ambientales.
Baltazar Peña, A. L. 2011. Carbono aéreo almacenado en una plantación de bolaina
blanca (Guazuma crinita Martius) de un año de edad, en el centro poblado Nuevo
Edén, alto Madre de Dios. Universidad Nacional Agraria De La Selva, Perú.
Barbarán-García, J. 2000. Cuantificación de biomasa y carbono en los principales
sistemas de uso de suelo en Campo Verde. Universidad Nacional de Ucayali, Perú.
Bernachea Jesus, N. 2019. Valoración económica y secuestro de CO2 en bosques
plantados de eucalipto (Eucalyptus globulus labil) y pino (Pinus radiata) de 11
años de edad en Cochatama, distrito Huacar, provincia Ambo departamento
Huánuco-setiembre, 2018 - febrero, 2019. Universidad de Huánuco, Perú.
Bonnesoeur, V., B. Locatelli, M. R. Guariguata, B. F. Ochoa-Tocachi, V. Vanacker, Z.
Mao, A. Stokes, and S.-L. Mathez-Stiefel. 2019. Impacts
Bringas, H. 2010. Estimación del carbono almacenado en un sistema agroforestal de
cacao (Theobroma cacao L.) comparado con un bosque secundario de tres edades.
Universidad Nacional Agraria de la Selva. Tingo María, Perú. 100p.
Callo-Concha, D., L. Krishnamurthy, and J. Alegre. 2001. Cuantificación del carbono
secuestrado por algunos SAF’S y testigos, en tres pisos ecológicos de la Amazonía
del Perú. Pages 1–23 Simposio Internacional Medición y Monitoreo de la Captura
de Carbono en Ecosistemas Forestales. Valdivia, Chile.
Campos Huamán, M. 2017. Evaluación Del Nivel De Captura De Carbono En Bosque
Secundario A Través De Las Características Morfológicas De La Especie Forestal
Xerofítico (Prosopis Pallida).
Chávez Suazo, J. 2018. Captura y almacenamiento de carbono de los bosque
estacionalmente secos de la costa norte (Lambayeque) , como mitigación frente al
cambio climatico. Universidad Nacional Agraria la Molina, Perú.
Chuquizuta, P. D., G. F. Ruiz, C. T. Salas, and L. A. López. 2016. Carbono almacenado
en cinco sistemas de uso de tierra, en la región San Martín Perú. Rinderesu
1(2):57–67.
Colorado Zuluaga, G. J., and A. D. Rodewald. 2015. Response of mixed-species flocks
to habitat alteration and deforestation in the Andes. Biological Conservation
188(2015):72–81.
Cruzado-Jacinto, L., Chávez-Villavicencio, C., and Charcape-Ravelo, M. 2019. Uso y
selección de las partes aéreas del algarrobo Prosopis pallida (Fabaceae) por
reptiles, aves y mamíferos en Sechura (Piura-Perú). Revista peruana de biología,
26(1), 81-86.
Cunningham, M. A., Rodriguez, C. R., & Pratolongo, F. A. 2008. Vegetación de la
Quebrada Pavas (Lambayeque, Perú) para reintroducción de Penelope albipennis.
Zonas Áridas, 12(1), 60-73.
De Valença, A. W., Vanek, S. J., Meza, K., Ccanto, R., Olivera, E., Scurrah, M., ... and
Fonte, S. J. 2017. Land use as a driver of soil fertility and biodiversity across an
agricultural landscape in the Central Peruvian Andes. Ecological Applications,
27(4), 1138-1154.
Duran-Bautista, E. H., I. Armbrecht, A. N. Serrão Acioli, J. C. Suárez, M. Romero, M.
Quintero, and P. Lavelle. 2020. Termites as indicators of soil ecosystem services in
transformed amazon landscapes. Ecological Indicators 117(2020):106550.
Gonzalez, P., B. Kroll, and C. R. Vargas. 2014. Tropical rainforest biodiversity and
aboveground carbon changes and uncertainties in the Selva Central, Peru. Forest
Ecology and Management 312(2014):78–91.
Horgan, F. G. 2009. Invasion and retreat: shifting assemblages of dung beetles amidst
changing agricultural landscapes in central Peru. Biodiversity and Conservation
18(13):3519–3541.
Jezeer, R. E., M. J. Santos, P. A. Verweij, R. G. A. Boot, and Y. Clough. 2019. Benefits
for multiple ecosystem services in Peruvian coffee agroforestry systems without
reducing yield. Ecosystem Services 40(2019):101033.
León Cáceres, F. J. 2019. Efectos Ambientales por deforestación del Bosque Seco “El
Algarrobal” de Conache –Laredo, 2016. Universidad Nacional de Trujillo, Perú.
Lojka, B., J. Krausová, Š. Kubík, and Z. Polesný. 2011. Assessment of insect biological
diversity in various land use systems in the Peruvian Amazon. Pages 103–121 in
N. Rojas and R. Prieto, editors. Amazon Basin: Plant Life, Wildlife and
Environment. Nova Science Publishers, Inc., New York, USA.
Ruiz Romero, N. O. 2015. Ensamblaje y dieta de murciélagos (Chiroptera) en la zona
noroccidental del Área de Conservación Regional Bosque Seco Salitral -
Huarcama, Piura - Perú. Universidad Nacional de Piura, Perú.
Vebrova, H., B. Lojka, T. P. Husband, M. E. C. Zans, P. Van Damme, A. Rollo, and M.
Kalousova. 2014. Tree diversity in cacao agroforests in San Alejandro, Peruvian
Amazon. Agroforestry Systems 88(6):1101–1115.
Vélez Quesquén, M. A. M., and J. I. Saavedra Chávez. 2019. Estructura del ensamblaje
de escarabajos coprófagos (Coleoptera: Scarabaeidae: Scarabaeinae) en un bosque
primario y secundario del Bosque de Protección Pagaibamba, Querocoto, Chota,
Cajamarca, Perú, 2018. Universidad Nacional Pedro Ruiz Gallo, Perú.
Venegas, P. J. 2005. Herpetofauna del bosque seco ecuatorial de Perú: taxonomía,
ecología y biogeografía. Zonas áridas, 9(1), 9-24.
Villavicencio, C. C. 2013. Birds of Piura, Perú and its surroundings: Eight years looking
at the sky. The Biologist, 11(2), 193-204.
Whitworth, A., R. Downie, R. von May, J. Villacampa, and R. MacLeod. 2016. How
Much Potential Biodiversity and Conservation Value Can a Regenerating
Rainforest Provide? A ‘Best-Case Scenario ’Approach from the Peruvian Amazon.
Tropical Conservation Science 9(1):224–245.

You might also like