Method of Differentiation
Method of Differentiation
Method of Differentiation
1
Q.13 If g is the inverse of f & f (x) = then g (x) =
1 x 5
1 1
(A*) 1 + [g(x)]5 (B) (C) (D) none
1 [g(x)]5 1 [g(x)]5
n e2 d 2y
Q.25 If y = tan1 x
+ tan1 3 2 n x then =
nex 2 dx 2
1 6 n x
(A) 2 (B) 1 (C*) 0 (D) 1
3x 4 dy
Q.37 If y = f & f (x) = tan x2 then =
5x 6 dx
2
3x 4 1
(A) tan x3 (B*) 2 tan .
5x 6 (5x 6)2
3 tan x 2 4
(C) f tan x2 (D) none
5 tan x 2 6
dy 1
Q.48 If y = sin1 x 1 x x 1 x 2 & = + p, then p =
dx 2 x (1 x)
2x 1 dy
Q.59 If y = f 2
& f (x) = sin x then =
x 1 dx
(A)
1 x x2 2x 1
sin 2 (B*)
2 1 x x2 sin 2x 1
2 2
2 2
1 x 2 x 1
1 x x 1
1 x x2 2x 1
(C) 2 sin (D) none
1 x 2 x 2 1
x10
Q.611 Let g is the inverse function of f & f (x) = . If g(2) = a then g (2) is equal to
1 x 2
5 1 a2 a 10 1 a 10
(A) 10 (B*) (C) (D)
2 a 10 1 a2 a2
[Sol. f [ g(x) ] = x f [ g (x)] . [g(x)] = 1 f (a).g(2) = 1 [putting x = 2]
a 10 1 a2
given, f (a) = g (2) = ]
1 a2 a 10
Alternative : g [f (x)] = x
g' [f (x)] . f ' (x) = 1
now g (2) = a f (a) = 2
g and f are inverse of each other
now f (x) = 2 g (2) = x = a
g ' (2) . f ' (a) = 1
1 1 a 2
g ' (2) = = 10 ]
f (a ) a
dy
Q.715 If sin (xy) + cos (xy) = 0 then =
dx
y y x x
(A) (B*) (C) (D) y
x x y
2x dy
Q.820 If y = sin1 2 then dx is :
1 x x 2
2 2 2
(A) (B) (C*) (D) none
5 5 5
1 1
Q.922 The derivative of sec1 2
w.r.t. 1 x 2 at x = is :
2x 1 2
(A*) 4 (B) 1/4 (C) 1 (D) none
d 3 d 2y
Q.1023 If y2 = P(x), is a polynomial of degree 3, then 2 y . 2 equals :
dx dx
(A) P (x) + P (x) (B) P (x) . P (x) (C*) P (x) . P (x) (D) a constant
d
[Sol: 2 (y3 y2) = 2 (y3.y3 + 3 y2 y1y2). Now differentiate y2 = P(x) thrice)]
dx
Q.1124 Let f(x) be a quadratic expression which is positive for all real x . If
g(x) = f(x) + f (x) + f (x), then for any real x, which one is correct .
(A) g(x) < 0 (B*) g(x) > 0 (C) g(x) = 0 (D) g(x) 0
dy
Q.1227 If xp . yq = (x + y)p + q then is :
dx
(A) independent of p but dependent on q (B) dependent on p but independent of q
(C) dependent on both p & q (D*) independent of p & q both .
[Hint: Note that f (x, y) is a homogeneous function dy/dx = y/x]
g (x) . cos x1 if x 0
Q.1328 Let f(x) = where g(x) is an even function differentiable at x = 0, passing
0 if x 0
through the origin . Then f (0) :
(A) is equal to 1 (B*) is equal to 0 (C) is equal to 2 (D) does not exist
[Hint : g (x) = g ( x) g (0) = 0 ]
1 1 1 dy np
Q.1430 If y = + + then at e m is equal to:
1 x n m x p m 1 xm n xp n 1 xm p xn p dx
(A) emnp (B) emn/p (C) enp/m (D*) none
[ Hint : multiply Numerator and Denominator by xm ]
Lim n! ( 1) n m
Using L' Hospital's rule l = x x =0]
0
mn
cos x x 1
f (x)
Q.1834 Let f(x) = 2 sin x x 2 2x . Then Limit
x0 =
x
tan x x 1
(A) 2 (B*) 2 (C) 1 (D) 1
[Hint : C2 C2 – xC3 x2 (tan x – cos x)] f' (x) = (tan x – cos x) 2x – x2 (sec2x + sin x) ]
cos x sin x cos x
Q.1936 Let f(x) = cos 2x sin 2x 2 cos 2x then f =
2
cos 3x sin 3x 3 cos 3x
(A) 0 (B) – 12 (C*) 4 (D) 12
[Hint : Differentiate column wise, where 1 = – 4; 2 = 0 and 3 = 8]
Q.2037 People living at Mars, instead of the usual definition of derivative D f(x), define a new kind of derivative,
D*f(x) by the formula
f 2 (x h) f 2 (x)
D*f(x) = Limit where f(x) means [f(x)]2. If f(x) = x lnx then
h 0 h
D * f ( x ) x e has the value
(A) e (B) 2e (C*) 4e (D) none
[Hint: D*f(x) = 2f(x).f (x)
D*(x lnx) = 2x lnx (1 + lnx)]
f (x) g (x)
Q.2138 If f(4) = g(4) = 2 ; f (4) = 9 ; g (4) = 6 then Limit
x4 is equal to :
x 2
3
(A*) 3 2 (B) (C) 0 (D) none
2
[Hint : Use L' Hospital's rule or first rationalise]
f (x 3h) f (x 2h)
Q.2241 If f(x) is a differentiable function of x then Limit
h0 =
h
(A) f (x) (B*) 5f (x) (C) 0 (D) none
d 2x
Q.2345 If y = x + ex then is :
dy 2
ex ex 1
(A) ex (B*) 3 (C) 2 (D) 3
1 e x
1 e x
1 e
x
d 2y
Q.2448 If x2y + y3 = 2 then the value of at the point (1, 1) is :
dx 2
3 3 5
(A) (B*) (C) (D) none
4 8 12
g (x) . f (a ) g (a ) . f (x)
Q.2549 If f(a) = 2, f (a) = 1, g(a) = 1, g (a) = 2 then the value of Limit is:
xa xa
(A) 5 (B) 1/5 (C*) 5 (D) none
1 2x + 1
Q.2959 The solution set of f (x) > g (x), where f(x) = (5 ) & g(x) = 5x + 4x (ln 5) is :
2
(A) x > 1 (B) 0 < x < 1 (C) x 0 (D*) x > 0
x2 1 x2 1 dy
Q.3062 If y = sin1 2 + sec1
2 , x > 1 then is equal to :
x 1 x 1 dx
x x2
(A) (B) (C*) 0 (D) 1
4
x 1 x4 1
x2 1 x2 1
[Hint : sec–1 2 = cos–1
2 hence given expression = ]
x 1 x 1 2
x x x x x x dy
Q.3165 If y = ...... then =
a b a b a b dx
a b a b
(A) (B) (C) (D*)
ab 2 ay ab 2 by ab 2 by ab 2 ay
x
[Hint: y = ]
x
a
by
Q.3266 Let f (x) be a polynomial function of second degree. If f (1) = f (–1) and a, b, c are in A.P., then f '(a),
f '(b) and f '(c) are in
(A) G.P. (B) H.P. (C) A.G.P. (D*) A.P.
[Sol. Let 2
f (x) = px + qx + r
f (1) = f (–1) gives p + q + r = p – q + r
hence q = 0
Hence f (x) = px2 + r
f ' (x) = 2px ....(1)
Given a, b, c are in A.P.
hence 2pa, 2pb, 2pc will also be in A.P.
or f ' (a), f ' (b), f ' (c) will also be in A.P. (D) ]
y y1 y2
Q.3367 If y = sin mx then the value of y 3 y4 y 5 (where subscripts of y shows the order of derivatiive) is:
y6 y7 y8
(A) independent of x but dependent on m (B) dependent of x but independent of m
(C) dependent on both m & x (D*) independent of m & x .
[Hint : Differentiate column wise. D1 = 0 & D2 = 0.
F
Gn I
mx J. lastly D is also zero Ans is 0]
Note that Dn sin m x = mn. sin H2 K 3
y
Q.3470 If x2 + y2 = R2 (R > 0) then k = where k in terms of R alone is equal to
2 3
1 y
1 1 2 2
(A) – 2 (B*) – (C) (D) –
R R R R2
[Sol. 2x + 2yy' = 0
x
x + yy' = 0 y' = – ....(1)
y
1 + yy'' + (y')2 = 0
1 ( y' ) 2
y'' = –
y
x3
Q.3672 Given f(x) = + x2 sin 1.5 a x sin a . sin 2a 5 arc sin (a2 8a + 17) then :
3
(A) f(x) is not defined at x = sin 8 (B) f (sin 8) > 0
(C) f (x) is not defined at x = sin 8 (D*) f (sin 8) < 0
x3
[Sol. f (x) = + x2 sin 6 – x sin4 . sin8 – 5 sin–1 ((a – 4)2 + 1)
3
f (x) = – x2 + 2x sin6 – sin4 sin8 (a = 4)
2
f (sin8) = – sin 8 + 2 sin6 sin8 – sin4 sin8
= sin8 [ – sin8 + 2 sin6 – sin4]
= – sin8 [sin8 + sin4 – 2sin6] = – sin8[2sin6 cos2 – 2sin6]
= 2 sin8 sin6 [ 1 – cos2] ]
Q.3776 A function f, defined for all positive real numbers, satisfies the equation f(x2) = x3 for every x > 0 . Then
the value of f (4) =
(A) 12 (B*) 3 (C) 3/2 (D) cannot be determined
2 2
[Hint : 2x f (x ) = 3 x ; 4 f (x) = 12 f (4) = 3 ]
d 2y dy
Q.3978 If y = (A + Bx) emx + (m 1)2 ex then 2 2m + m2y is equal to :
dx dx
(A*) ex (B) emx (C) emx (D) e(1 m) x
[Hint : multiply given equation by emx & then differentiate twice ]
Q.4079 Suppose f (x) = eax + ebx, where a b, and that f '' (x) – 2 f ' (x) – 15 f (x) = 0 for all x. Then the product
ab is equal to
(A) 25 (B) 9 (C*) – 15 (D) – 9
[Sol. 2 ax 2
(a – 2a – 15)e + (b – 2b – 15)e = 0 bx
Q.4283 Let ef(x) = ln x . If g(x) is the inverse function of f(x) then g (x) equals to :
(A) ex (B) ex + x (C*) e ( x ex ) (D) e(x + ln x)
y
[Hint: Let f (x) = y x = f –1(y) = g (y) x ee
dy
= e e y ·e y = e ey y
dx
x
x
hence g ' (x) = e e ]
dy
Q.4384 The equation y2exy = 9e–3·x2 defines y as a differentiable function of x. The value of for
dx
x = – 1 and y = 3 is
15 9
(A) – (B) – (C) 3 (D*) 15
2 5
xy dy dy
[Sol. y2 e x y + exy · 2y = 9e–3 · 2x
dx dx
put x = – 1 and y = 3
3 dy dy
9 e 1 3 + e–3 · 6 = – 9e–3 · 2
dx dx
dy dy
– 9 3 + 6 = – 18
dx dx
dy dy
3 = 45 = 15 Ans. ]
dx dx
dy dy dx 1
[Alternate : ex 1 ; 3 ]
dx dx x n 2 dy 3
(a x) a x (b x) x b dy
Q.4791 If y = then wherever it is defined is equal to :
a x xb dx
x (a b) 2 x (a b) (a b) 2 x (a b)
(A) (B*) (C) (D)
(a x) (x b) 2 (a x) (x b) 2 (a x) (x b) 2 (a x) (x b)
d2 y dy
Q.4893 If y is a function of x then 2 + y = 0 . If x is a function of y then the equation becomes :
dx dx
3
d2 x dx d2 x dx
(A) 2 +x =0 (B) +y =0
dy dy d y2 dy
2 2
d2 x dx d2 x dx
(C*) y =0 (D) x =0
d y2 dy d y2 dy
d2y dy
[Sol. Given 2 y 0
dx dx
FI FI
dy 1 d2y d 1 G
G JJ d G1 J. dy 1d2x 1
now
dx dx
2
dx dx dx G J Gdx JJ dx
dy G
dxF2
. 2.
IJdy dx
dy dy H K Hdy K dy
G
HK dy
d2 x
d2y d2 y
(putting in (1) )
dx 2 dx F
G IJ 3
dy HK
d2x
d2y dy F
Gdy I d x
2 2
Fdx I
3
y
dx
=0 y
Hdx JK dy 0 2
C ]
G
Hdy JK
Q.4994 A function f (x) satisfies the condition, f (x) = f (x) + f (x) + f (x) + ...... where f (x) is a
differentiable function indefinitely and dash denotes the order of derivative . If f (0) = 1, then f (x) is :
(A*) ex/2 (B) ex (C) e2x (D) e4x
[Sol. f (x) = f (x) + f (x) + f (x) + ......
f ' ( x) f ' ' ( x) f ' ' ' ( x) f ' ' ' ' ( x) ........
2 f ' (x) = f ' (x) + f '' (x) + f ''' (x) + ......
f '( x) 1
2 f '( x) f ( x)
f ( x) 2
1
n f ( x) x c
2
if x = 0 ; f(0) = 1 c = 0
x
hence n f ( x)
2
x
f ( x) e 2 ]
[Hint : f(x) simplifies to f ' (x) = 0 or directly differentiate f (x) to get zero]
1
x2 if x 0
e
Q.53104 Let y = f(x) =
0 if x 0
Then which of the following can best represent the graph of y = f(x) ?
d2 y
Alternatively : check concavity by finding and eliminate D. ]
dx 2
1 1 1
m n m n m n m n
n m
Q.54105 Diffrential coefficient of x
m n
. x . x w.r.t. x is
x0 = 1 y = 1 y' = 0 ]
1 x x
Q.57116 Limit a arc tan b arc tan has the value equal to
x 0 x x a b
ab (a 2 b 2 ) a 2 b2
(A) (B) 0 (C) (D*)
3 6a 2 b 2 3a 2 b2
x x
a tan 1 b tan 1
a a
[Sol. Using Lopital rule Limit
x 0 x x
a1 1 b 1 1
. . . .
x a 2 x x b 2 x
1 2 1 2 a2 b2 1 1 a 2 b2
a b Lim .
= Lim = x 0 2 2
x 3 = 3a 2 b2 ]
x 0 3
. x (a x ) x ( b x )
2
x
Q.58125 Let f (x) be defined for all x > 0 & be continuous. Let f(x) satisfy f f ( x ) f ( y) for all x, y
y
& f(e) = 1. Then :
1
(A) f(x) is bounded (B) f 0 as x 0
x
(C) x.f(x)1 as x 0 (D*) f(x) = ln x
Q.59126 Suppose the function f (x) – f (2x) has the derivative 5 at x = 1 and derivative 7 at x = 2. The derivative
of the function f (x) – f (4x) at x = 1, has the value equal to
(A*) 19 (B) 9 (C) 17 (D) 14
[Sol. y = f (x) – f (2x)
y' = f ' (x) – 2 f ' (2x)
y'(1) = f ' (1) – 2 f ' (2) = 5 ....(1)
and y'(2) = f ' (2) – 2 f ' (4) = 7 ....(2)
now let y = f (x) – f (4x)
y' = f ' (x) – 4 f ' (4x)
y ' (1) = f ' (1) – 4 f ' (4) ....(3)
substituting the value of f ' (2) = 7 + 2 f ' (4) in (1)
f ' (1) – 2 [7 + 2 f ' (4)] = 5
f ' (1) – 4 f ' (4) = 19 (A) ]
x4 x2 1 dy
Q.60127 If y = 2 and = ax + b then the value of a + b is equal to
x 3x 1 dx
5 5 5 5
(A) cot (B*) cot (C) tan (D) tan
8 12 12 8
( x 2 1) 2 3x 2 ( x 2 1 3x )(x 2 1 3x )
[Sol. y= =
x 2 3x 1 x 2 1 3x
dy
= 2x – 3 a=2 & b=– 3
dx
5
a+b=2– 3 = tan 12 = cot 12 Ans. ]
Q.61128 Suppose that h (x) = f (x)·g(x) and F(x) = f g ( x ) , where f (2) = 3 ; g(2) = 5 ; g'(2) = 4 ;
f '(2) = –2 and f '(5) = 11, then
(A) F'(2) = 11 h'(2) (B*) F'(2) = 22h'(2) (C) F'(2) = 44 h'(2) (D) none
e x e x e x e x 1 1
(A*) (B) (C*) y2 4 (D) y2 4
2 x 2x 2 x 2 x
2 dy
Q.66506 If y = xx then =
dx
2 2
(A ) 2 ln x . xx (B) (2 ln x + 1). xx
2 1 2 1
(C*) (2 ln x + 1). x x (D*) x x . ln ex2
dy
Q.67507 Let y = x x x ...... then =
dx
1 x 1 y
(A*) (B) (C*) (D*)
2y 1 x 2y 1 4x 2x y
dy 1 x dy y
[Hint : y2 = x + y = 2 y 1 also y = y + 1 = 2x y
dx dx
make a quadratic in y to get explicit function C ]
dy
Q.68508 If 2x + 2y = 2x + y then has the value equal to :
dx
2y
(A*) x (B*)
1
(C*) 1 2y (D*)
2x 1 2y
2 1 2x 2 y
2 x
1
Q.69509 The functions u = ex sin x ; v = ex cos x satisfy the equation :
du dv d2u
(A*) v u = u2 + v2 (B*) = 2v
dx dx dx2
d 2v
(C*) = 2u (D) none of these
dx 2
x 2 x 1
Q.70511 Let f (x) = . x then :
x 11
(A * ) f (10) = 1 (B*) f (3/2) = 1
(C) domain of f (x) is x 1 (D) none
2
[Hint : f (x) =
x 1 1 2 x 1
.x =
x1 1
.x = [
x if x [1 , 2)
]
x if x (2 , )
x1 1 x 11
Q.71512 Two functions f & g have first & second derivatives at x = 0 & satisfy the relations,
2
f(0) = , f (0) = 2 g (0) = 4g (0) , g (0) = 5 f (0) = 6 f(0) = 3 then :
g(0)
f (x) 15
(A*) if h(x) = then h (0) = (B*) if k(x) = f(x) . g(x) sin x then k (0) = 2
g(x) 4
g (x) 1
(C*) Limit
x0 = (D) none
f (x) 2
n ( n x ) dy
Q.72514 If y = x ( n x ) , then is equal to :
dx
y y
(A)
x
n x n x 1 2 n x n n x (B*)
x
(ln x)ln (ln x) (2 ln (ln x) + 1)
y y n y
(C) ((ln x)2 + 2 ln (ln x)) (D*) (2 ln (ln x) + 1)
x n x x n x
n ( n x )
(n x )
[Sol. y= x
ny (n x) n ( nx) . nx .....(1)
n ( ny) n ( n x) . n( nx) n( nx)
1 1 dy 2 n( nx) 1 1
. .
ny y dx n x x x nx
2 n( nx) 1
x nx
dy y ny
. ( 2n ( nx) 1) D
dx x nx
Substituting the value of y from (1)
dy y
( nx) n ( nx ) ( 2n ( nx) 1) B ]
dx x