0perator Methods L#9.2
0perator Methods L#9.2
0perator Methods L#9.2
We wish to consider the determination of when Q(x) is a polynomial using operator method.
Proof : Since ]-1 = [aD2+bD+c ]-1 then this can be expanded in ascending powers of D (
say, by binomial theorem or by long division)
REM:
2
y3
1 . . . for -1
2! 3!
2 If +
1
Then y p x n [a0 a1 D a 2 D 2 ...]x n a0 0
F ( D)
then y p +
Ex#1: Determine:
1 2 1 1
(a) (x ) (b) 2
(x3 ) c) (12 x)
D D D3
SOLN (c)
1
D 3
1 1 1
(12 x ) = 2 (12 x) 2
D D D
12xdx
1 1 1
= (6x 2 ) = (6 x 2 )
D 2
D D
1 1
6x (2 x 3 )
2
= dx =
D D
2 x dx
3
=
1 4
= x
2
x3 1 5
[ ANS: (a) (b) x ]
3 20
Page 1 of 3
Ex#2: Determine :
1 1 1 1 1
(a) ( x 2 ) (b) 2 ( x 3 ) (c) 2 ( x 2 1) (d) 2 ( x 2 2 x) (e) ( x 2 2 x 1)
D 1 D 1 D 1 D D 1 2D 2D 3
2
SOLN: ( Would you like to try (a) on your own first, before looking at the solution ....? )
1
(a) Now ( x 2 ) = (1+D) 1 (x 2 )
D 1
2
y3
But . . . (#)
2! 3!
D2
So
2
= (1–D+ + . . .)
= -D( ) +D 2 (
= - 2x +2
1
REM: Series expansion of may be obtained by long division...Recall ?
y 1
1 y y2
1 y 1
1 y
0 y
0 y y2
0 0 y2
0 0 y2 y3
1
So = 1- y +y2 +. . .
y 1
1
Therefore ( x 2 ) = ( 1 - D +D2 +. . .) (x2)
D 1
1
(c) ( x 2 1) ( D 2 1) 1 ( x 2 1)
D 1
2
= -{ 1 – y +y2-y3+. . . }
=- 1 +y+y2+y3+ . . .
Page 2 of 3
1
( x 2 1) (1 D 2 D 4 D 6 ....)( x 2 1)
D 1
2
= (x 2) 1
2
1 2 2 25
(e) x x
3 9 27
Ex#2: Determine the particular solution for each of the following equations by a suitable operator
method and hence solve the equation.
(a) ( D 2 1) y x 2 (b) ( D 2 2D 1) y x 1
SOLN:
(a) For y H : :
Then m1 1 , m2 1
y H C1e x C2 e x
For y p :
1
yp (x 2 )
D 1
2
(1 D 2 D 4 ...)( x 2 )
= - x2 2
Hence y y h y p
=> y C1e x C2 e x - x 2 2
Exercise: (b)
{ ANS: y (C1 x C2 )e x x 1 }
Page 3 of 3