Nothing Special   »   [go: up one dir, main page]

0perator Methods L#9.2

Download as pdf or txt
Download as pdf or txt
You are on page 1of 3

OPERATOR METHODS :

We wish to consider the determination of when Q(x) is a polynomial using operator method.

The following theorem will be handy in finding .

Theorem: If F(D) = aD2+bD+c then +

Proof : Since ]-1 = [aD2+bD+c ]-1 then this can be expanded in ascending powers of D (
say, by binomial theorem or by long division)

REM:
2
y3
1 . . . for -1
2! 3!

2 If +

1
Then y p  x n  [a0  a1 D  a 2 D 2  ...]x n a0  0
F ( D)

Now since D n (xm )  0 for n  m ,

then y p  +

Ex#1: Determine:

1 2 1 1
(a) (x ) (b) 2
(x3 ) c) (12 x)
D D D3

SOLN (c)
1
D 3
1 1  1
(12 x ) = 2  (12 x)  2
D D  D
12xdx 
1 1 1 
= (6x 2 ) =  (6 x 2 ) 
D 2
D D 
1 1
 6x (2 x 3 )
2
= dx =
D D

 2 x dx
3
=

1 4
= x
2

Exercise to the learner....? (a) and (b).

x3 1 5
[ ANS: (a) (b) x ]
3 20

Page 1 of 3
Ex#2: Determine :

1 1 1 1 1
(a) ( x 2 ) (b) 2 ( x 3 ) (c) 2 ( x 2  1) (d) 2 ( x 2  2 x) (e) ( x 2  2 x  1)
D 1 D 1 D 1 D  D 1 2D  2D  3
2

SOLN: ( Would you like to try (a) on your own first, before looking at the solution ....? )

1
(a) Now ( x 2 ) = (1+D) 1 (x 2 )
D 1
2
y3
But  . . . (#)
2! 3!

D2
So
2

= (1–D+ + . . .)

= -D( ) +D 2 (

= - 2x +2

1
REM: Series expansion of may be obtained by long division...Recall ?
y 1

1 y  y2
1 y 1
1 y
0 y
0  y  y2
0  0  y2
0  0  y2  y3

1
So = 1- y +y2 +. . .
y 1

1
Therefore ( x 2 ) = ( 1 - D +D2 +. . .) (x2)
D 1

1
(c) ( x 2  1)  ( D 2  1) 1 ( x 2  1)
D 1
2

Now (-1 + y) 1 =(-1)-1 (1-y)-1

= -1[1+(-1)y +(-1)(-1-1) +(-1)(-1-1)(-1-2) +. . .

= -{ 1 – y +y2-y3+. . . }

=- 1 +y+y2+y3+ . . .

Page 2 of 3
1
( x 2  1)  (1  D 2  D 4  D 6 ....)( x 2  1)
D 1
2

= (1  D 2  D 4  D 6 ....) ( x 2 )  (1  D 2  D 4  D 6 ....) 1

= (x  2)  1
2

Exercise to the learner? . . . try (b) (d) and (e)

[ ANS: (b) ( 1  D  D 2  ... )( x3 )  x3  6 x (d) (1  D  D 3  ...)( x 2  2 x)  x 2  4 x  2

1 2 2 25
(e) x  x
3 9 27

REM: We are now equipped to solve the ODE a2 y   a1 y   a0 y  Q( x) where Q(x) :

Ex#2: Determine the particular solution for each of the following equations by a suitable operator
method and hence solve the equation.

(a) ( D 2  1) y  x 2 (b) ( D 2  2D  1) y  x  1

SOLN:

(a) For y H : :

( D 2  1) y  0 and the auxiliary equation is m 2  1  0

Then m1  1 , m2  1

So that y H  C1e m1x  C2 e m2 x

 y H  C1e  x  C2 e x

For y p :

1
yp  (x 2 )
D 1
2

 (1  D 2  D 4  ...)( x 2 )

= - x2  2

Hence y  y h  y p

=> y  C1e  x  C2 e x - x 2  2

Exercise: (b)

{ ANS: y  (C1 x  C2 )e x  x  1 }

Page 3 of 3

You might also like