Nothing Special   »   [go: up one dir, main page]

#1 PDF

Download as pdf or txt
Download as pdf or txt
You are on page 1of 11

A

WORKSHEET-1
vz
MATHEMATICS (Book-II) Ex #. 1.1, 1.2

Worksheet-1

1. Let f : R  R be defined by USE THIS SPACE FOR


f  x   0 when x is rational be a real – valued
1 when x is irrational
SCRATCH WORK

function. The function f  x  is:


A. One – One
B. Onto
C. Injective
D. Neither one – one nor onto
2. Let f : R  R; g : R  R be two functions given by
1
f ( x)  2 x  3, g ( x)  x  5 then ( fog ) ( x) 
3

1 1
 x  7 3  x  7 3
A.   B.  
 2   2 
1 1
 7 3  x  2 3
C.  x   D.  
 2  7 
 1 if x  0

3. A function f  x  defined by f  x    0 if x  0 is
1 if x  0

symmetric about:
A. x  axis B. y  axis
C. Origin D. None of these
3x  1
If g ( x)  , x  1 , then g ( x ) is not defined at:
2
4.
x 1
A. 1, 3 B.  1
C. 1 D.  1
5. The range of the real – valued function f  x   x  x
is:
A.  ,  B.  0,  
C. 0 D.  2,  
6. Which statement is true:
A.  2,1 , 3, x  ,  y, z  is a function if y3
B. x  8 is not a function
C. f  x   5x2  3 is 1  1 function

D. is a graph of 1  1 function

Your STEP Towards A Brighter Future! 239


MATHEMATICS (Book-II) Ex #. 1.1, 1.2

7. Domain of log( x  1) is: USE THIS SPACE FOR


SCRATCH WORK
A. R  1 B. x  1
C. x  1 D. R
8. Function f ( x)  4 x 17 is defined for x  R and
g ( x)  5(2 x  7)1 is defined for x  R except at
. The value of f 1 g  x  :
7
x
2
20  34 x 17 x  57
A. B.
2x  7 2 2x  7
16 x  34 17 x  57
C. D.
2x  7 2x  7
9. The functions f and g are defined, for x  R, by
7x  a
f : x  3 x  2, g : x  ; x  1, the value of
x 1
"a" for which f 1 g  4  2 is:
A. a  8 B. a  6
C. a  4 D. a  2
x
10. If f  x   , then f 1  2  :
x 1
A.  1 B.  1
C.  0 D. 2
A function f : x  1  6 x  x has an inverse for the
2
11.
domain:
A. x  3 B. x  3
C. x  3 D. x  3
12. f  x   x sin x is a/an:
A. Even function
B. Neither even nor odd function
C. Odd function
D. Even as well as odd function
13. If f  x   nx and g  x   e x are two real – valued
functions. Then:
A. fog  gof B. f 1  g
C. gof  x D. All are correct

Your STEP Towards A Brighter Future! 240


MATHEMATICS (Book-II) Ex #. 1.1, 1.2

4
14. The domain of f defined by f :x , x 1
x 1
corresponding to the range 1  f ( x)  3 is:
7
A.   x  2 B.  x5
3
C.    x   D. 0  x  
e2  1
15. equals to:
e2  1
A. tanh 2 B. tanh 1
C. sinh 1 D. cosh1
3x  5
16. The function g is defined, for x  1 , by g ( x)  , the
x 1
1
value of x for which g ( x)  g ( x) :
A. x  5 B. x  1
C. x  5 or  1 D. x  4
17. Which one is even relation:
I. y  x 2  1 II. f ( x)  2 III. x 2  y 2  1
A. I only B. I and II only
C. I and III only D. I, II and III
18. The only function which is both even and odd:
A. f  x   a B. f  x   0

C. f  x   x D. (A) & (B)


 x 1 , x3
19. Range of the function g  x    :
2 x  1, x3

A.  ,2 7,  B. R

C.  ,7  D.  2, 

20. x

a 1 t2 , y
2bt
are the parametric equations
1 t 2
1 t2
of:
A. Ellipse B. Hyperbola
C. Parabola D. Circle

Your STEP Towards A Brighter Future! 241


MATHEMATICS (Book-II) Ex #. 1.1, 1.2

21. To make  5,0 ,  4, 2 , 1,1 ,  7,1 ,  2,3 a 1  1


function domain will restrict to:
A. 1, 2, 4,5,7 B. 2, 4,5,7
C. 1, 2,5,7 D. 0,1, 2,3
22. Which of the following is not in the range of
f ( x)  x 2  3 :
A. 6 C. 1
B.  1 D.  6
x 1
23. f ( x)  , x  1 is :
x 1
A. Surjective only B. Bijective only
C. Many one only D. Injective only
The greatest value of x for which f ( x)  2 x  4 x  5
2
24.
is bijective:
A. x  2 B. x  3
C. x  1 D. x  0
x
25. If gof ( x)  , x  1 where g ( x)  2 x  3, then:
x 1
3  2x 2x  3
A. f ( x)   B. f ( x) 
2( x  1) x 1
2x  3 3  2x
C. f ( x)  D. f ( x) 
x 1 x 1
e2 x  1
26. f ( x)  is an:
2e x
A. Even function B. Odd function
C. Neither even nor odd D. None of these
27. Express the edge length f  x  of a cube as a function of
the cube’s diagonal length x :
x
A. f  x   B. f  x   2x2
3
x3
C. f  x   D. f  x   x3
3 3

Your STEP Towards A Brighter Future! 242


MATHEMATICS (Book-II) Ex #. 1.1, 1.2

28. If (2,5) lie on the graph of an odd function then which


one must lie on the graph of function:
A. (2,5) B. (2,5)
C. (2,5) D. (5, 2)
2x
29. Domain of function y  is:
x2  4
A. R  2 B. x  2, x  0

C. x  2 D. R  2,0
30. If f ( x)  2 x  3 , and fffff ( x)  ax  b , then:
A. a  32 B. a  64
C. a  16 D. a  8

Your STEP Towards A Brighter Future! 243


MATHEMATICS (Book-II) Ex #. 1.1, 1.2

ANSWER KEY (Worksheet-1) Graph of f  x  is


1 D 11 D 21 B
2 A 12 C 22 D
3 C 13 D 23 D
4 D 14 B 24 C
5 B 15 B 25 A
6 B 16 C 26 B
7 B 17 D 27 A Which is symmetric about origin
3x  1
8 B 18 B 28 A 4. (D) g  x  
9 A 19 A 29 C x 1
10 D 20 A 30 A first we find g 2  x 
g 2  x   gog  x   g  g  x  
ANSWERS EXPLAINED
 3x  1 
1. (D)
3g  x   1
3  1
  x 1 
f  x   0 when x is rational  
1 when x is irrational g  x  1  3x  1 
  1
f is not one – one  x 1 
f  x   0 x  Q 3  3x  1   x  1 3x  1   x  1
 
and f  x   1 x  Q x 1  x  1
f is not onto 9 x  3  x  1 10 x  2 5 x  1
  
Range  0,1  R 3x  1  x  1 2x  2 x 1
g  x  is not defined.
2
2. (A) Given functions are
f  x   2x  3, g  x   x3  5 if x  1  0 and x  1  0
 x  1, x  1
First, we find fog  x  OR
fog  x   f  g  x    2 g  x   3 g  g 1  is not defined.
 
 2 x3  5  3  2 x3  7 Now g  g  1   g 1 is not defined.
Now let y  2 x  7
3
g  1  1
To find inverse of fog  x  interchange
x and y and find value of y
5. (B) 
f  x   x  x  x  x if
x  x if
x0
x0

 x  2 y3  7  y 3 
x7
2

 2 x if
0 if
x0
x0
1 1 Range  0, 
 x  7 3  x  7 3
  fog 
1
 y  x  6. (B) (A)  y  3 included y  2
 2   2 
 x0
Then  2,1 , 3, x  ,  2, z  is not a function
 1 if
3. (C) f  x    0 if x0 (B)  x  8 is a relation only
1 if
 x0 (C)  f  x   5x2  3 is a function because
of for each value of x there is a unique
Your STEP Towards A Brighter Future! 244
MATHEMATICS (Book-II) Ex #. 1.1, 1.2

value a2
of y, but it is not 1  1 function. 11. (D) f  x   1  6x  x2
(D)  The graph is not a function because
it does not satisfy the vertical line test. 
  x2  6 x  1 
7. (B) log  x 1 is only defined if   x 2

 6x  9  1 9
x 1  0  x  1 f  x     x  3  10
2

So domain of log  x 1 is x  1 Function will have inverse for one of the
8. (B) Given functions are following conditions
f  x   4 x  17, g  x  
5 x 3  0 x 3  0
2x  7 x3 x3
To find f  x  we put y  4 x 17 ,
1
from given options
interchange x and y, then find value of y Best option is x  3
OR
 x  4 y  17
The quadratic function f  x  will have
x  17 x  17
y  f 1  x   invers if
4 4
Either f   x   0 or f   x   0
Now f og  x   f  g  x  
1 1

 6  2x  0  6  2x  0
5  3 x 3 x
g  x   17  17
  2x  7  x3  x3
4 4 12. (C) f  x   x sin x
5  17  2 x  7  34 x  114
  f   x    x sin  x
4  2x  7 4 2x  7
  x sin x   f  x 
17 x  57
  f  x  is odd
2 2x  7
9. (A) Functions f and g are given by 13. (D) f  x   nx and g  x   e x

f  x   3 x  2, g  x  
7x  a fog  f  g  x    nex  x
 x  1
x 1 and gof  g f  x   e nx  x
Now f 1 g  4  2
 f and g are inverse of each other.
 g  4  f  2 4
14. (B) y  f  x   , 1  f  x  3
7  4  a x 1
  3 2  2 Put
4 1
28  a f  x  1 and f  x  3
  4  28  a  20  a  8
5 4 4
1 3
x x 1 x 1
10. (D) f  x  
x 1 4  x 1 4  3x  3
Let a  f 1  2  x5 x
7
3
 f  a  2 7
a so required domain is   x5
 2 3
a 1 Note:
a  2a  2
Your STEP Towards A Brighter Future! 245
MATHEMATICS (Book-II) Ex #. 1.1, 1.2

Since 1  f  x   3 17. (D) If we replace  x, y  by   x, y  then I


4 and III are satisfied. So both are even.
1  3
x 1 Also, II is a constant function which is
1 x 1 always even.
  1 18. (B) f  x   0 is both even as well as odd
3 4
4 function.
  x 1  4
3 19. (A) By given function
7 x3 x3
  x5
3  x 1  3 1  2x  6
e x  e x  x 1  2  2x 1  7
15. (B) Since x  x  tanh x
e e  g  x  2  g  x  7
e1  e1
 tanh1 (put x  1 )
So range of g  x  is  , 2 7, 
e1  e1 20. (A) Given equations are
e
1 
a 1 t 2  2bt
e  tanh1  e  1  tanh1 x , y
2
 1 t 2
1 t 2
e
1 e2  1
x 1 t2 y 2t
e   , 
3x  5 a 1 t b 1 t 2
2

16. (C) g  x   Squaring and adding


x 1 2
 x   y   1  t   2t 
2 2 2
3x  5 2
To find g  x  Put y 
1

      2 
 2 
x 1  a   b   1 t   1 t 
interchange x and y then find value
1  t 4  2t 2  4t 2
of y  1
1  t 2 
2

3y  5
x  xy  x  3 y  5
y 1 x2 y 2
 2  2 1
x5 a b
 xy  3 y  x  5  y 
x3 Which is the equation of an ellipse.
x5 21. (B) If we restrict the domain to 2, 4,5,7
 g 1  x  
x3 then ordered pair 1,1 will be removed
Put g  x   g 1  x  and there will be no repetition in the
3x  5 x  5 second element of ordered pairs.
 
x 1 x3 Consequently, the function will be a
3x  5 x  3   x 1 x  5 1  1 function.
22. (D) Put y  x  3
2
This equation is satisfied by x  5 and
x  1 only. Range of y  x is 0, 
2

So range of function is 0,   3


OR
g  x   g 1  x 
 Range of f  x  is  3, 
 g  g  x   x
from given options  6 is not included in
g  g  1   1 and g  g  5   5 this interval.

Your STEP Towards A Brighter Future! 246


MATHEMATICS (Book-II) Ex #. 1.1, 1.2

23. (D) Put f  x1   f  x2  f x 


1 x
2

e  e   x  
x  1 x2  1
 1 
x1  1 x2  1
1
2
 1
  
 e x  e x   e x  e x   f  x
2
 x1 x2  x2  x1  1  x1 x2  x1  x2  1
 f  x   f  x
 2 x1  2 x2  x1  x2 So function is odd.
f  x1   f  x2   x1  x2
27. (A) d  x  3  f  x    3 f  x 
2
Hence function is injective.
Note:
Linear function x
(i) is always injective  f  x 
Linear function 3
Non  zero constant 28. (A) An odd function satisfy the condition
(ii) is always injective
Linear function f  x, y   f  x,  y 
24. (C) f  x   2x2  4x  5 so if  2,5 is on the graph of f then
For bijection if  2, 5 is also on the graph of f .
Either f   x   0 or f   x   0 2x
 4x  4  0  4x  4  0
29. (C) Function y  will be real and
x2  4
 x 1  x 1
In this case x  1 is greatest number for defined if x2  4  0  x2  4  x  2
x  1 and also is least number for x  1 . 30. (A) Here f  x   2x  3
ff  x   2  2x  3  3  4x  9
x
25. (A) By given gof  x   and
x 1
g  x   2x  3 fff  x   4  2x  3  9  8x  21

 x  ffff  x   8  2x  3  21  16x  45
 f  x   g 1  
 x 1  fffff  x   16  2x  3  45
First we find g 1  x   32 x  93
Put y  2 x  3 , interchange x and y Comparing with
then find value of y fffff  x   ax  b
x3 x3 We get a  32
x  2y  3  y   g 1  x   Note:
2 2
That for a linear function f  x   ax  b
 x 
Now f  x   g 1  
 x 1  we have f n  x   an x  B in this way we
x get result  an  25  32
 3 x  3  3x 3  2x
 x  1  
2 2  x  1 2  x  1
e2 x  1
26. (B) f  x  
2e x
 f  x 
2

1 x
e  e x 
Now
Your STEP Towards A Brighter Future! 247

You might also like