Integral Calculus
Integral Calculus
Integral Calculus
INTEGRAL CALCULUS
Integration Formulas
1. a du a du au C , where a = constant
u n 1
u du C , where n ≠ -1
n
2.
n1
du
3.
u
ln u du C
4. ln u du u ln u u C
e du eu C
u
5.
au
a du C
u
6.
ln a
7. u dv uv v du (Integration by Parts)
8. sin u du cos u C
9. cos u du sin u C
10. tan u du ln sec u C ln cos u C
11. cot u du ln sin u C ln csc u C
12. sec u du ln sec u tan u C
13. csc u du ln csc u cot u C ln csc u cot u C
sec u du tan u C
2
14.
csc u du cot u C
2
15.
16. sec u tan u du sec u C
17. csc u cot u du csc u C
du u
18. arc sin
a
C
a u
2 2
du 1 u
19. u2 a2
a
arc tan C
a
du 1 u
20.
a
arc sec C
a
u u a 2 2
csc h u du coth u C
2
24.
25. sech u tanh u du sech u C
26. csc h u coth u du csc h u C
du 1 u a
27. u2 a2 ln C , if u2 > a2
2 a u a
du 1 u a
28. a2 u2 ln C , if u2 < a2
2 a u a
ln u u 2 a 2 C
du
29.
u a
2 2
ln u u 2 a 2 C
du
30.
a u
2 2
u 2 a2 u
31. a2 u2
2
a u2
2
arc sin C
a
a2
ln u u 2 a 2 C
u 2
32. u2 a2
2
u a2
2
Walli’s Formula
MRTC - 32
Multivector Review and Training Center
(b, d)
y = f(x)
R
x
0 (a, c) y = g(x)
y
y y = f(x) y = g(x)
dA y u y L dx (b, d)
A
b
a
y u y L dx dA yu - yL
yu
A f ( x) g( x) dx
b dx yL
a (a, c) x
0
where: U – upper
L – lower
y y = f(x) or
x = f(y) y = g(x) or
(b, d) x = g(y)
dA x R x L dy xL
x R x L dy
d dA dy
A
c
(a, c)
A
d
c
g(y ) f (y ) dy 0
x
xR - xL
xR
1 2 2
2 1
A r d
r
d
MRTC - 33
Multivector Review and Training Center
x
x
0
Torus
I. Disk Method
Rules: 1. The axis of rotation is a part of the boundary of the plane area.
2. The element chosen must be parallel to the axis of rotation.
dh
r
Axis of dV
h=a dh h=b Rotation r
dV r 2 dh
b
V r 2 dh
a
Rules: 1. The axis of rotation is not a part of the boundary of the plane area.
2. The element chosen must be parallel to the axis of rotation.
dh
r2 r2
r1 r1
r1
h=a h=b r2
MRTC - 34
Multivector Review and Training Center
dV r22 r12 dh
dV r22 r12 dh
b
V r22 r12 dh
a
III. Cylindrical Shell Method
Rules: 1. The axis of rotation may or may not be a part of the boundary of
the rotated area.
2. The element chosen must be parallel to the axis of rotation.
dr
r = a dr r = b
r
dV 2rh dr
b
V 2 r h dr
a
Pappus Theorem
First Proposition
The surface area of revolution is equal to the length of the generating arc times the
circumference of the circle described by the centroid of the arc, provided the axis
of revolution does not cross the generating arc.
B
A
A s CL c
As 2 c L 0
x
Second Proposition
The volume of the solid revolution is equal to the generating area times the
circumference of the circle described by the centroid of the area, provided the axis
of revolution does not cross the generating arc.
MRTC - 35
Multivector Review and Training Center
y
V AC A 2 c
V 2 c A c
x
Centroid of a Plane Area
A x xc dA
A y y c dA
y
(x, y)
xc x
1 (xc, yc)
y
yc y yc
2 x
0 xc
y
x
1
xc x
2
yc y (x, y)
yc
x
0
xc
y
xL
yc y xc
x xL dy
xc R xL (xc, yc)
2 yc = y
x xL
xc R x
2
xR
MRTC - 36
Multivector Review and Training Center
x
xc
xc x
yu yL
yc yL yu - yL
yu
2
yc
y yL
yc u yL
x
2
V x xc dV
V y y c dV
SHELL
dV DISK
WASHER
r 2acos , A a 2
MRTC - 37
Multivector Review and Training Center
a 2 3a 2
r asin 3, A r a1 sin , A
12 2
1 2 1 2
r acos 2, A a r asin 2, A a
2 2
MRTC - 38