Nothing Special   »   [go: up one dir, main page]

Ejercicios Resueltos Cálculo Diferencial e Integral

Download as docx, pdf, or txt
Download as docx, pdf, or txt
You are on page 1of 4

LABORATORIO #2 CÁLCULO DIFERENCIAL E INTEGRAL

1 ¿ f ( x )=( x−senx )( x +cosx ) Regla del producto

f ´ ( x )=[ x−sen ( x ) ] [ 1+ ( −sen ( x ) ∙ 1 ) ] + [ x +cos ( x ) ] [1−( cos ( x ) ∙1 ) ]


f ´ ( x )=[ x−sen ( x ) ][ 1−sen ( x ) ] + [ x+ cos ( x ) ] [1−cos ( x )]
2 2
f ´ ( x )=x−xsen ( x ) −sen ( x ) + sen ( x ) + x−xcos ( x ) +cos ( x )−cos ⁡( x )
2 2
f ´ ( x )=2 x−xsen ( x )−sen ( x )+ sen ( x ) −xcos ( x ) +cos ( x )−cos ⁡( x )

−1
2 ¿ f ( x )=3 sen ( x ) Regla del múltiplo constante
u=x
du=1

(√ )
1
f ´ ( x )=( 3 ) 2
1− ( x )
3
f ´ ( x )=
√ 1−( x ) 2

2 sen ( 3 x )
3 ¿ f ( x )=e
2 sen ( 3 x )
f ´ ( x )=e ∙ ( 2 ) (cos ( 3 x ) ∙ 3)
2 sen ( 3 x )
f ´ ( x )=e ∙ 6 cos ( 3 x )
2 sen ( 3 x )
f ´ ( x )=6 e cos ( 3 x )

cotx
4 ¿ f ( x )= Regla del cociente
1−senx

f ´ ( x )=(1−sen x)(−csc 2 x ∙ 1)−( cot x )¿¿


f ´ ( x )=(1−sen x)(−csc 2 x )−(cot x )¿ ¿
−csc 2 x+ sen x csc2 x +cot x cos x
f ´ ( x )= 2
(1−sen x )
2 2
−csc ( x )+ sen ( x ) csc ( x ) +cot x cos x
f ´ ( x )= (revisar)
(1−sen x )2

2 cscx−1
5 ¿ f ( x )= Regla del cociente
cscx+2
( csc x+ 2 )( 2 ∙−csc x cot x ∙1 ) −(2 csc x−1)(−csc x cot x ∙ 1)
f ´ ( x )= 2
(csc x+ 2)
( csc x+ 2 )(−2 csc x cot x )−(2 csc x−1)(−csc x cot x )
f ´ ( x )=
(csc x +2)2
( ) −2 csc 2 x cot x−4 csc x cot x+ 2 csc 2 x cot x−csc x cot x
f´ x =
(csc x+ 2)2
−5 csc x cot x
f ´ ( x )= 2
(csc x +2)

6 ¿ f ( x )=cotx cotx Regla de la cadena

f ( x )=(cot x)2
f ´ ( x )=2 ∙(cot x) ∙ (−csc 2 x ∙ 1 )
f ´ ( x )=−2cot x csc 2 x

7 ¿ f ( x )=cos (lnx )
1
f ´ ( x )=−sen (lnx) ∙
x
−sen(lnx)
f ´ ( x )=
x

8 ¿ f ( x )= √ tan ( 4 x )

cosx−1
9 ¿ f ( x )=
senx

[ ]
2 3
x ( 2 x−1 )
10 ¿ f ( x )=ln
( x +5 )2

11 ¿ f ( x )=ln 3
√ x+1
2
x +1

12 ¿ f ( x )=x 2 e x −2 x e x + 2 e x
x−tanx
13 ¿ f ( x )=
x−senx

3x −2 x
e −5 e
14 ¿ f ( x )=
e4 x

x 2 +2 x
15 ¿∫ dx
√ x 3+ 3 x 2 +1
dU
U =x3 +3 x 2+ 1dU =3 x 2+6 x dxdU =3 ( x 2+ 2 x ) dx =x 2+ 2 x dx
3
dU 1 1
1
1 2 1 2
3 1 dU 1 1 U 1 2U 3 2 2
∫ 1
= ∫ 1 = ∫ dU ∙U = ∙
3 3 3 1
+C= ∙ 2U +C=
3 3
2
+C ¿ 2(x +3 x +1) + C 2

U2 U2 3
2

2
x
16 ¿∫ 4 dx
√ x 3 +2
dU 3 3
−1 4 4
dU 3 1 dU 1 1 U 4U
=x dx∫
3 ∫ 14 3 ∫
2
U =x3 +2dU =3 x 2 dx = = U 4
dU = ∙ +C= +C
3 1
4
3 3 9
(U ) U 4

17 ¿∫ √ 1+ tan 2 ( 6 x ) dx

( 1+lnx )3
18 ¿∫ dx
x

( )( )
3 2
1 x −1
19 ¿∫ x + 2
dx
x x2
2
1 1 1 x −1 3
U =x+ dU =1−x 2 dxdU = − 2 dx dU = 2 dx ∫ U 2 dU
x 1 x x
5 5
U2 2U 2 2 1 5
+C= +C= (x + ) 2 +C
5 5 5 x
2

cot ( lnx ) dx
20 ¿∫
x

csc 2 ( 3 x )
21 ¿∫ 3
dx
cot (3 x )
−dU 2
U =cot ( 3 x )dU =−csc 2 ( 3 x ) ( 3 ) dx =csc ( 3 x ) dx
3
−dU
2
csc ( 3 x ) −2 −2 1
3 −1 −3 −1 U +U 1 ¿ +C
∫ 3
=∫ 3
=
3 ∫ dU ∙ U = ∙
3 −2
+ C=
6
+C= 2
+C 6[cot (3 x)]
2

[ cot ( 3 x ) ] U 6U

You might also like