物化1
物化1
物化1
滄海書局
周耀文 0932-597-262
2
成績計算
小考2次: 36 分
期中考: 30 分
期末考: 34 分
加分:出席 (正課+實習)、作業、普化會考5分(?)
、其他
最高98 分
3
FOCUS 1 The properties of gases
Topic 1A The perfect gas
1A.1 Variables of state 狀態是由狀態
變數所表明
⚫ The variables needed to specify the state of a system:
n (no. of moles or mass), V (volume), p (pressure), T (temperature)
e.g., State 1: one mole of nitrogen gas at 1 atm and 298 K
State 2: one mole of nitrogen gas at 1atm and 1000 K
狀態變數改變,就是處於不同狀態!
(a) Pressure
⚫ The pressure of a fluid (gas or liquid) is defined as the forces the
fluid exert on the wall of the container per unit area; i.e., p = F/A.
⚫ Pressure units: Table 1A.1, pascal, bar, atmosphere, etc.
⚫ Mechanical equilibrium: Figure 1A.1
‘pask(ə)l’ 4
(b) Temperature
⚫ Thermal equilibrium: no transfer of heat can be observed, equality
of temperature.
⚫ The zeroth law of thermodynamics: If A is in thermal equilibrium
with B, and B is in thermal equilibrium with C, then C is also in
thermal equilibrium with A.
⚫ Thermodynamic temperature scale: temperatures are denoted T
and are normally reported in kelvins (K).
T(K) = θ(oC) + 273.15 (1A.1)
1A.2 Equation of state
⚫ General form of equation of state: relate the state variables p, T, V, n
For a pure substance, 4變數中取其3個即可完
p = f (T, V, n) (1A.2) 整表明氣體所處狀態
only 3 variables are needed to specify the state; the 4th variable is
fixed by the other three; e.g., knowing T, V, n of a particular substance,
p can be calculated by eq.(1A.2) 5
⚫ Each substance has its own equation of state.
Special case: for a perfect (ideal) gas, pV = nRT
體積減半時,撞擊器
(a) The empirical basis 壁倍增,壓力加倍
⚫ For a given amount of ideal gas, one cannot vary simultaneous all
of the three variables p, V, T only two degree of freedom
(須符合ideal gas law, 3擇2來改變)
Gas Constant R
dm3 = liter
dm = 0.1 m
注意單位!
8
⚫ p-V-T 3-D plot of an ideal gas: a surface, points on the surface are
Fig. 1A.6 states available to the ideal gas.
Fig. 1A.7 isothermal, isobaric, and isochoric sections. 剖面圖
nj
• mole fraction, x j = (1A.7)
n
j: component no.
n: total no. of moles, n = nA + nB + …
對總壓 p 的貢獻
⚫ partial pressure of j in a gas mixture, pj
any gas, real or ideal
p j = x j p (1A.6)
11
1B. The kinetic model
Three assumptions for the gas:
1. mass m, random motion, obeying laws of classical mechanics
2. negligible size: << distance between collision
3. interact through elastic collision internal modes of
motion are excited
移動動能不損失 轉動、震動
translational kinetic energy
elastic inelastic
(a) Pressure and molecular speeds
1 perfect gas (1B.2)
可推得 pV = nMv rms
2
3
M: molecular weight (molar mass) = mNA 將各個粒子的速
度平方後,取平
m: molecular mass 每個分子的質量 均值,再開根號
NA: Avogadro’s number 均方根
2 1/ 2
vrms: root-mean-square speed, v rms = v (1B.1) 12
How is that done? 1B.1, p.12
Fig. 1B.2
mvx
分子運動速
mv 度v,在x軸
之分量為vx
-mvx
nN A
Number density of molecules: (個/單位體積)
V
n: total number of moles
V: container volume
13
nN A
右側方塊中之分子數 = (v x DtA)
V
1 nN A
但半數朝右,半數朝左 → 碰撞器壁分子數 = v x Dt A
2 V
每顆分子碰撞產生 2mvx 的動量變化
M = mNA
d (mv)
∴ total momentum change = 1 nN A v Dt A 2mv F = ma =
x x dt
2 V
Newton’s 2nd law of motion: force = rate of momentum change
momemtum change nMAvx2
= =
Dt V
force nMvx2
Pressure = =
A V
Not all molecules travel with the same velocity use average velocity
nM v x
2
p=
V 14
v =v +v +v
2 2 2 2 vrms = v 2 1 / 2
x y z
speed of a molecule 2
vrms = v x2 + v y2 + v z2
random motion: v x2 = v y2 = v z2
nM v x
2
p=
2
vrms = 3v x2 帶入上頁壓力 p 之式子
V
1
pV = nMvrms
2
得證 (1.B.2)
3
2
vrms = f(T) only v
T → rms ∴ pV = constant
當n亦不動 即 Boyle’s law
1/ 2
又 1 3RT
pV = nMvrms
2
= nRT ∴ v rms =
3 M BI 1B.1, p.16 15
v v+dv
(b) The Maxwell-Boltzmann distribution of speeds
− x x − x
/ 2 kT
f ( v ) dv K e x
m 2kT
total fraction = 1
1/ 2
m −mv
f (v x ) = (1B.3)
2
e x / 2 kT
2kT
3/ 2
m −mv − mv y2 / 2 kT − mvz2 / 2 kT
f (v x ) f (v y ) f (v z )dv x dv y dv z =
2
e
/ 2 kT
x
e e dv x dv y dv z
2kT
− m ( vx2 + v y2 + vz2 ) / 2 kT − mv 2 / 2 kT
e =e
probability (fraction) that a molecule
has a velocity in the range:
vx to vx+dvx, vy to vy+dvy, vz to vz+dvz, i.e., f(v)dv
17
3/ 2
m − mv 2 / 2 kT
f (v)dv = e dv x dv y dv z
2kT
3/ 2
2 m
直角坐標 → 球座標 f (v)dv = 4v e − mv 2 / 2 kT
dv
2kT
Fig.1B.3
3/ 2
2 m
f (v) = 4v e − mv 2 / 2 kT
2kT
m mN A M
= =
k kN A R 3/ 2
M
= 4
2
v e − Mv 2 / 2 RT
(1B.4)
2RT
18
⚫ Features of the Boltzmann-Maxwell distribution, f(v) Fig. 1B.4
Gaussian, 有 e − Mv
2
/ 2 RT
∴ 當v ↑ → f(v) ↓↓
率之大分子不多
率分子比率較高
19
(c) Mean values
• The fraction of molecules with speed in the range v1 to v2: F(v1, v2)
(probability)
v2
F = f ( v )dv (1B.5) Fig. 1B.5
v1
• Average value of vn v 2 = v rms
2
= v 2 f (v)dv
0
n=2
v = v n f (v)dv
n
3RT
0 = (1B.7)
(1B.6) M
1/ 2
3RT
v rms = (1B.8)
M
3/ 2
n=1 M
v = v mean = vf (v)dv = 4
2
v 3 e -mv / 2 RT
dv
0
2RT 0
3/ 2 2 1/ 2
M 1 2 RT 8 RT
= 4 =
2RT 2 M M
Ex. 1B.1, p.16 20
1/ 2 1/ 2 1/ 2
vmean 8 RT 3RT 8
⚫ = = = 0.921 (1B.9)
vrms M M 3
21
⚫ mean relative speed, vrel: mean speed with which one molecule
approaches another.
Fig. 1B.7
For molecules of the same kind: vrel = 2 (1B.11a)
1/ 2
vmean
1
§ 1B.2 Collisions
(a) The collision frequency, z
z: number of collisions made by one molecule in Dt
Dt: time interval
Dt 期間分子行進距離 = vrel ∙ Dt
2 σ = π𝑑2
掃過柱狀體積 = vrel ∙Dt∙π𝑑
N N
體積內分子數 = vrel ∙Dt∙σ ∙ N=
V V
皆可參與碰撞 23
rel DtsN (1B.12a)
z= = rel sN
Dt N nN A p
N = =
= v rel s V nRT kT
V p
v rel s p
=
kT (1B.12b)
BI 1B.2 , p.17
24
(b) The mean free path, λ 平均自由路徑
λ : average distance a molecule travels between collision.
v v kT 1
= rel = rel = T固定, λ正比於
z v relsp sp p
kT (1B.13), (1B.14)
BI 1B.3 , p.18
26
• Considering Fig. 1C.2(b): A →B →C →D →E →F
isothermal compression of a gas
sample initially in the state A
A: pV ≈ constant Boyle’s law
B: deviations from Boyle’s law, 分子靠近 CO2, p-V phase diagram
V C: first drop of liquid appears
下 CO2
C → E: pressure would not
降
build-up, i.e., constant p Force
D: more liquid appears
coexistence of Vapor-Liquid-Equilibrium
two phases
gas vapor pressure in
liquid a closed system
Figure 1C.3
(i) low pressure → Z ≈ 1 nearly perfect, with different slopes!
(ii) high pressure (圖中~400 atm) → Z > 1
28
與理想氣體比較 ∴ Vm Vmo → repulsive forces dominate
same T
ZRT attractive force
Vm = 擠開
p same high pressure, Z > 1
same T, p
Vm > Vmo
(iii) intermediate pressure → Z < 1
∴ Vm Vmo → attractive force dominant
BI 1C.2, p.21
dZ/dp
• dZ
=
d
dp T dp
(1 + Bp + C p 2 + ) = B + 2 pC + (1C.4a)
dZ
as p → 0 → B ?
=0
dp As p → 0, Z = 1, but dZ/dp
𝑑𝑍 (slope) may be different for
然而 ideal gas, Z =1, 𝑑𝑝
=0
different gases. Fig. 1C.3 & 4
dZ
Similarly, 可推得,當 Vm → =B (1C.4b)
d (1 / Vm )
B
另可證 B =
RT
30
• 𝐵′ = 𝑓(𝑇) ⇒
d𝑍
ቤ
d𝑝 p→0
depends on temperature
pVm RTB
31
(C) Critical constants p = vapor pressure
Fig. 1C.2 當T < Tc 恆溫壓縮氣體可生出液體,達成VLE
當T > Tc 恆溫壓縮氣體不生液相
當T = Tc 恆溫壓縮氣體,液相→ 0
Tc: a single point on the p-V diagram
critical point: 𝑇 = 𝑇𝑐 , 𝑝 = 𝑝𝑐 , 𝑉𝑚 = 𝑉𝑐
BI 1C.3, p.23
32
§1C.2 The van der Waals equation
nRT n2
(a) Formulation p= −a 2 (1C.5a)
V − nb V
an 2
2
: affecting the pressure by reducing the frequency & force
V
of collision with the wall. n n n2
=a 2
attractive force V V V
nRT n2 RT a
p= −a 2 = − 2 (1C.5b) BI 1C.4, p.24
V − nb V Vm − b Vm
33
(b) The features of the equation 等溫線 isotherms
Calculated results of van der Waals equation → Fig. 1C.6, 1C.7
• Apart from oscillations for T < Tc , the isotherms resemble
experimental results.
• oscillation ← van der Waals’ loop
• a, b are found by fitting the
calculated curve to the experimental
curves. Table 1C.3
Features:
近
(1) High temperature and large molar volume → ideal gas law
low pressure
RT a RT
T↑ & Vm : V − b V 2 且 Vm b p= ideal
m m Vm
34
(2) Liquid and gas coexists (VLE) when attractive and repulsive
terms have a similar magnitude. 2nd term 1st term
Van der Waals’ loops occur
dp RT 2a
=− + =0 解得 Vc = 3b
dVm (Vm − b) Vm
2 3
(1C.5b) a
pc =
d2p 2 RT 6a Tc =
8a 27b 2
= − =0
dVm
2
(Vm − b) Vm
3 4
27 Rb
p cV c 3
Compression factor at critical condition: Zc = = = 0.375
RTc 8
obeying the van der Waals eq. 35
(c) The principle of corresponding state
對應狀態原理
X
• reduced properties: = reduced Xr
Xc
對比性質
T p V
Tr = , pr = , Vr = m
Tc pc Vc
Fig. 1C.9: Z vs. pr for different gases falls on the same curve.
一條線可代表不同氣體,亦即相同 pr , Tr 時,雖然是不同氣
體亦有相同 Z (相同Vr ) principle of corresponding states
• It is not exact !
pVm p pVV pV pV pV 必須有相同Zc 才
Z= = r c r c = c c r r = Zc r r 可能在相同 pr 及
RT RTr Tc RTc Tr Tr
Tr 時,有相同Z
37