4 - Phasematching and Dispersion: EE 346 Nonlinear Optics M.M. Fejer 01/20/21
4 - Phasematching and Dispersion: EE 346 Nonlinear Optics M.M. Fejer 01/20/21
4 - Phasematching and Dispersion: EE 346 Nonlinear Optics M.M. Fejer 01/20/21
1/20/21, #4 slide 1
0
-10 -5 0 5 10
∆kL / 2
EE346 NLO
1/20/21, #4 slide 3
Today
• Phasematching in birefringent crystals
• Tolerances
• Reading
– Harris 5.4.2
– Yariv 16.5
– Yariv and Yeh 12.4.1
• Assume n2ω >nω (true over most of spectrum): no ,ω < no ,2ω , ne ,ω < ne ,2ω
• Consider a uniaxial medium [like KDP (42m ), LiNbO3 (3m), BBO (3m) …]
– take negative uniaxial case: ne < no
Z Z n
o ,2ω
no ,ω
ne ,ω ne ,2ω
X X
Type I Type II
1
positive birefringent no ,2ω = ne ,ω (θ ) no ,2ω =
2
( ne,ω (θ ) + no,ω )
1
negative birefringent ne ,2ω (θ ) = no ,ω ne ,2ω (θ ) =
2
( ne,ω (θ ) + no,ω )
dne (θ )
⇒ ≈ 2 ( ne − no ) sin θ cosθ = ( ne − no ) sin 2θ
dθ
4π
⇒ ∆k ≈
λ
(n e ,2ω − no ,2ω ) δθ 2
λ Taylor series, #4.7
⇒ δθ <
4 L ( ne ,2ω − no ,2ω )
with tolerance from #4.7
• Temperature PM
– makes use of difference between thermo-optic coeff’s at ω and 2ω
– e.g. take negative uniaxial with dne ,2ω / dT > dno ,ω / dT (commonly true)
Z Z Z
ne ,2ω (θ ) ne ,2ω (θ )
ne ,2ω (θ )
k
no ,ω no ,ω no ,ω
k
ne ,2ω X X X
ne ,2ω ne ,2ω
Z Y
X
Z
nY ,2ω
k
nX ,ω k nY ,ω θ
θ PM,1
PM,2
• Simple model
– reveals essential features of EM field
interacting with bound electron
F = −k q q
– considers electron bound to massive −e
nucleus with a linear spring E
– driven by a sinusoidal electric field
m q = −k q − e E
Newton ⇒ accel not adequate to describe resonance behavior
spring field need damping term − mγ x
phenomenological k / m ≡ ω 02
damping term resonant frequency
iωt
Assume sinusoidal driving field: E (t ) = E eiω t ⇒ sinusoidal response: q (t ) = q (ω ) e
−ω 2 q + i γ ω q + ω02 q = −(e / m) E ⇒ q = (−eE / m) / (ω02 − ω 2 + i γ ω )
Im[q ]
Resonant response of electron
when driven by field near natural
frequency
Re[q ]
How connected to EM phenomena?
EE346 NLO
1/20/21, #4 slide 15
Dipole Response and EM Phenomena
2.5
nRe
• Connection to EM wave propagation:
2 ~ (ω − ω0 ) −1
1.5
n 2 = 1 + ( Ne 2 / ε 0 m)[(ω02 − ω 2 ) + i γ ω ]−1
1
0.5
− i 2π nre z / λ 2π nim z / λ
E( z) ∝ e e -0.5
~ (ω − ω0 ) −2 nIm
phase attenuation -1
-1.5
-2
-2.5
ω / ω0
0 0.5 1 1.5
EE346 NLO
1/20/21, #4 slide 16
CEO vs Reality
…
• Classical result: n 2 = 1 + ( Ne 2 / ε 0 m)[(ω02 − ω 2 ) + i γ ω ]−1 3
2
– quantum result:
1
n = 1 + ( Ne / ε 0 m)∑ f gp [(ω − ω ) + i γ gp ω ]
2 2 2
gp
2 −1
p
oscillator strength
g
– close correspondence between classical and quantum results
• Motivates common parameterization of empirical results:
– “Sellmeier” form
)
ω12 − ω 2 ω22 − ω 2 ω / ω0
temperature dependent coefficients, … x
EE346 NLO
1/20/21, #4 slide 17
Material Dispersion
A
• Single resonance: n 2 = 1 + 2
ω0 − ω 2
– key features:
except in absorbing region:
nre monotone increasing with frequency
n(ω )
slope decreases away from resonance
d 2n d 2n
<0 >0
dω 2 dω 2