Nothing Special   »   [go: up one dir, main page]

Review of Mineral Deposits 2010

Download as pdf or txt
Download as pdf or txt
You are on page 1of 42

Earth-Science Reviews 100 (2010) 1–420

Contents lists available at ScienceDirect

Earth-Science Reviews
j o u r n a l h o m e p a g e : w w w. e l s ev i e r. c o m / l o c a t e / e a r s c i r ev

The “chessboard” classification scheme of mineral deposits: Mineralogy and geology


from aluminum to zirconium
Harald G. Dill
Institute of Geosciences, Gem-Materials Research and Economic Geology, Johannes-Gutenberg-University Mainz, D-55099 Mainz, Becherweg 21, Germany

a r t i c l e i n f o a b s t r a c t

Article history: Economic geology is a mixtum compositum of all geoscientific disciplines focused on one goal, finding new
Received 6 July 2008 mineral depsosits and enhancing their exploitation. The keystones of this mixtum compositum are geology
Accepted 23 October 2009 and mineralogy whose studies are centered around the emplacement of the ore body and the development
Available online 18 November 2009
of its minerals and rocks. In the present study, mineralogy and geology act as x- and y-coordinates of a
classification chart of mineral resources called the “chessboard” (or “spreadsheet”) classification scheme.
Keywords:
economic geology
Magmatic and sedimentary lithologies together with tectonic structures (1-D/pipes, 2-D/veins) are plotted
mineral deposits along the x-axis in the header of the spreadsheet diagram representing the columns in this chart diagram. 63
geology commodity groups, encompassing minerals and elements are plotted along the y-axis, forming the lines of
mineralogy the spreadsheet. These commodities are subjected to a tripartite subdivision into ore minerals, industrial
classification scheme minerals/rocks and gemstones/ornamental stones.
spreadsheet Further information on the various types of mineral deposits, as to the major ore and gangue minerals, the
current models and the mode of formation or when and in which geodynamic setting these deposits mainly
formed throughout the geological past may be obtained from the text by simply using the code of each
deposit in the chart. This code can be created by combining the commodity (lines) shown by numbers plus
lower caps with the host rocks or structure (columns) given by capital letters.
Each commodity has a small preface on the mineralogy and chemistry and ends up with an outlook into its
final use and the supply situation of the raw material on a global basis, which may be updated by the user
through a direct link to databases available on the internet. In this case the study has been linked to the
commodity database of the US Geological Survey. The internal subdivision of each commodity section
corresponds to the common host rock lithologies (magmatic, sedimentary, and metamorphic) and
structures. Cross sections and images illustrate the common ore types of each commodity. Ore takes
priority over the mineral. The minerals and host rocks are listed by their chemical and mineralogical
compositions, respectively, separated from the text but supplemented with cross-references to the columns
and lines, where they prevalently occur.
A metallogenetic-geodynamic overview is given at the bottom of each column in the spreadsheet. It may be
taken as the “sum” or the “ mean” of a number of geodynamic models and ideas put forward by the various
researchers for all the deposits pertaining to a certain clan of lithology or structure. This classical or
conservative view of metallotects related to the common plate tectonic settings is supplemented by an
approach taken for the first time for such a number of deposits, using the concepts of sequence stratigraphy.
This paper, so as to say, is a “launch pad” for a new mindset in metallogenesis rather than the final result.
The relationship supergene–hypogene and syngenetic–epigenetic has been the topic of many studies for ages
but to keep them as separate entities is often unworkable in practice, especially in the so-called epithermal
or near-surface/shallow deposits. Vein-type and stratiform ore bodies are generally handled also very
differently. To get these different structural elements (space) and various mineralizing processes (time)
together and to allow for a forward modeling in mineral exploration, architectural elements of sequence
stratigraphy are adapted to mineral resources. Deposits are geological bodies which need accommodation
space created by the environment of formation and the tectonic/geodynamic setting through time. They are
controlled by horizontal to subhorizontal reference planes and/or vertical structures. Prerequisites for the
deposits to evolve are thermal and/or mechanical gradients. Thermal energy is for most of the settings under
consideration deeply rooted in the mantle. A perspective on how this concept might work is given in the text

E-mail address: haralddill@web.de.


URL: http://www.hgeodill.de.

0012-8252/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.earscirev.2009.10.011
2 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

by a pilot project on mineral deposits in Central Europe and in the spreadsheet classification scheme by
providing a color-coded categorization into

1. mineralization mainly related to planar architectural elements, e.g. sequence boundaries subaerial and
unconformities
2. mineralization mainly related to planar architectural elements, e.g. sequence boundaries submarine,
transgressive surfaces and maximum flooding zones/surfaces)
3. mineralization mainly controlled by system tracts (lowstand system tracts transgressive system tracts,
highstand system tracts)
4. mineralization of subvolcanic or intermediate level to be correlated with the architectural elements of
basin evolution
5. mineralization of deep level to be correlated with the deep-seated structural elements.

There are several squares on the chessboard left blank mainly for lack of information on sequence stratigraphy
of mineral deposits. This method has not found many users yet in mineral exploration. This review is designed
as an “interactive paper” open, for amendments in the electronic spreadsheet version and adjustable to the
needs and wants of application, research and training in geosciences. Metamorphic host rock lithologies and
commodities are addressed by different color codes in the chessboard classification scheme.
© 2009 Elsevier B.V. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1. Mineral deposits and economic geology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2. Classification of mineral deposits through time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2. The “chessboard” (spreadsheet ) classification scheme of mineral deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1. The principles of the “chessboard” (spreadsheet ) classification scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2. The host of mineral deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1. Magmatic host rocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2. Ore-bearing structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3. Sedimentary host rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.4. Organic material and special host rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3. Type of commodity (inorganic raw material) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1. Ore minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2. Industrial minerals and rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.3. Gemstones and ornamental stones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4. Mineralizing processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3. Chromium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1. Chemistry and mineralogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2. Magmatic chromium deposits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3. Sedimentary chromium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4. Metamorphic chromium (gemstone) deposit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5. Chromium supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4. Nickel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1. Chemistry and mineralogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2. Magmatic nickel deposits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3. Structure-related nickel deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4. Sedimentary nickel deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5. Nickel supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5. Cobalt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1. Chemistry and mineralogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2. Cobalt deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3. Cobalt supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6. Platinum group elements (PGE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1. Chemistry and mineralogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2. Magmatic platinum-group-element deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3. Structure-related platinum-group-element deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4. Sedimentary platinum-group-element deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.5. Platinum-group-element supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7. Titanium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.1. Chemistry and mineralogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.2. Magmatic titanium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.3. Structure-related titanium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.4. Sedimentary titanium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.5. Metamorphic titanium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.6. Titanium supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8. Vanadium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.1. Chemistry and mineralogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.2. Magmatic vanadium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 3

8.3. Sedimentary vanadium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66


8.4. Vanadium supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9. Iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.1. Chemistry and mineralogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.2. Magmatic iron deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.3. Structure-related iron deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.4. Sedimentary iron deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.5. Metamorphic iron deposits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.6. Iron supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10. Manganese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.1. Chemistry and mineralogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.2. Magmatic manganese deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.3. Structure-related manganese deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.4. Sedimentary manganese deposits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.5. Metamorphic manganese deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
10.6. Manganese supply and use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11. Copper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.1. Chemistry and mineralogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.2. Magmatic copper deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.3. Structure-bound copper deposit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
11.4. Sedimentary copper deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
11.5. Copper supply and use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
12. Selenium and tellurium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
12.1. Chemistry, mineralogy and economic geology of selenium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
12.2. Chemistry, mineralogy and economic geology of tellurium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
13. Molybdenum and rhenium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
13.1. Chemistry and mineralogy of molybdenum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
13.2. Magmatic molybdenum deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
13.3. Sedimentary molybdenum and rhenium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
13.4. Molybdenum and rhenium supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
14. Tin and tungsten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
14.1. Chemistry and mineralogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
14.2. Magmatic tin and tungsten deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
14.3. Structure-bound tungsten deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
14.4. Sedimentary tin and tungsten deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
14.5. Supply and use of tin and tungsten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
15. Niobium-, tantalum- and scandium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
15.1. Chemistry and mineralogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
15.2. Magmatic niobium-, tantalum- and scandium deposits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
15.3. Sedimentary niobium- and tantalum deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
15.4. Supply and use of niobium and tantalum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
16. Beryllium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
16.1. Beryllium chemistry and mineralogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
16.2. Magmatic beryllium deposits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
16.3. Structure-bound beryllium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
16.4. Sedimentary beryllium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
16.5. Metamorphic beryllium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
16.6. Supply and use of beryllium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
17. Cesium, lithium and rubidium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
17.1. Chemistry and mineralogy of cesium and lithium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
17.2. Magmatic cesium-, lithium and rubidium deposits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
17.3. Cesium and lithium sedimentary deposits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
17.4. Cesium and lithium supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
18. Lead, zinc, germanium, indium, cadmium and silver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
18.1. Chemistry and mineralogy of lead, zinc, germanium, indium, cadmium, and silver. . . . . . . . . . . . . . . . . . . . . . . . . . 148
18.2. Magmatic lead-zinc deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
18.3. Structure-bound lead-zinc deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
18.4. Sedimentary lead–zinc deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
18.5. Metamorphic lead–zinc deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
18.6. Silver deposits sensu stricto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
18.7. Lead, zinc, germanium, indium, cadmium, and silver supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
18.7.1. Past and present of mining and metallurgy of lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
18.7.2. Past and present of mining and metallurgy of zinc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
18.7.3. Final use of germanium, indium and cadmium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
18.7.4. Final use of silver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
19. Bismuth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
19.1. Chemistry and mineralogy of bismuth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
19.2. Deposits of bismuth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
19.3. Final use of bismuth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
20. Gold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
20.1. Chemistry and mineralogy of gold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
20.2. Magmatic gold deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

20.3. Structure-bound gold deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186


20.4. Sedimentary gold deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
20.5. Metamorphic gold deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
20.6. Gold supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
21. Antimony, arsenic and thallium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
21.1. Chemistry and mineralogy of antimony, arsenic and thallium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
21.2. Antimony deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
21.2.1. Magmatic antimony deposits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
21.2.2. Structure-bound antimony deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
21.2.3. Sedimentary antimony deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
21.3. Arsenic deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
21.4. Thallium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
21.5. Antimony, arsenic, thallium supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
21.5.1. Antimony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
21.5.2. Arsenic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
21.5.3. Thallium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
22. Mercury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
22.1. Chemistry and mineralogy of mercury. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
22.2. Magmatic mercury deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
22.3. Structure-bound mercury deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
22.4. Sedimentary mercury deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
22.5. Mercury supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
23. Rare Earth Elements (REE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
23.1. Chemistry and mineralogy of rare earth elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
23.2. Magmatic rare earth element deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
23.3. Structure-bound rare earth element deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
23.4. Sedimentary rare earth element deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
23.5. Rare earth element supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
24. Uranium, thorium and radium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
24.1. Chemistry and mineralogy of uranium and thorium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
24.2. Uranium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
24.2.1. Magmatic uranium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
24.2.2. Structure-bound uranium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
24.2.3. Sedimentary uranium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
24.3. Thorium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
24.3.1. Magmatic thorium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
24.3.2. Structure-bound thorium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
24.3.3. Sedimentary thorium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
24.3.4. Uranium and thorium supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
25. Aluminum and gallium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
25.1. Chemistry and mineralogy of aluminum and gallium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
25.2. Magmatic aluminum deposits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
25.3. Sedimentary aluminum deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
25.4. Gallium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
25.5. Aluminum and gallium supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
26. Magnesium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
26.1. Chemistry and mineralogy of magnesium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
26.2. Magmatic magnesium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
26.3. Structure-bound magnesium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
26.4. Sedimentary magnesium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
26.5. Magnesium supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
27. Calcium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
27.1. Chemistry and mineralogy of calcium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
27.2. Magmatic calcium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
27.3. Structure-bound calcium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
27.4. Sedimentary calcium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
27.5. Metamorphic calcium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
27.6. Carbonate rocks supply and use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
28. Boron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
28.1. Chemistry and mineralogy of boron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
28.2. Magmatic boron deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
28.3. Sedimentary boron deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
28.4. Metamorphic boron deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
28.5. Boron supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
29. Sulfur and calcium sulfate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
29.1. Chemistry and mineralogy of sulfur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
29.2. Magmatic sulfur and sulfate deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
29.3. Sedimentary sulfur and Ca sulfate deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
29.4. Sulfur and calcium sulfate supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
30. Fluorine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
30.1. Chemistry and mineralogy of fluorine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
30.2. Magmatic fluorine deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 5

30.3. Structure-bound fluorite and topaz deposits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255


30.4. Sedimentary fluorite and topaz deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
30.5. Fluorine supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
31. Barium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
31.1. Chemistry and mineralogy of barium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
31.2. Magmatic barium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
31.3. Structure-bound barium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
31.4. Sedimentary barium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
31.5. Barium supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
32. Strontium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
32.1. Chemistry and mineralogy of strontium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
32.2. Magmatic strontium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
32.3. Structure-bound strontium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
32.4. Sedimentary strontium deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
32.5. Strontium supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
33. Potassium, sodium, chlorine and bromine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
33.1. Chemistry and mineralogy of potassium, sodium, chlorine and bromine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
33.2. Sedimentary potassium, sodium, chlorine and bromine deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
33.3. Sodium, potassium, chlorine and bromine supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
34. Nitrogen and iodine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
34.1. Chemistry and mineralogy of nitrogen and iodine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
34.2. Sedimentary nitrogen and iodine deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
34.3. Economic consideration of nitrogen and iodine deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
35. Sodium carbonate and –sulfate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
35.1. Chemistry and mineralogy of sodium carbonate and –sulfate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
35.2. Sedimentary sodium carbonate and –sulfate deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
35.3. Sodium carbonate and –sulfate supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
36. Phosphorus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
36.1. Chemistry and mineralogy of phosphorus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
36.2. Magmatic phosphate deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
36.3. Structure-bound phosphate deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
36.4. Sedimentary phosphate deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
36.5. Metamorphic phosphate deposits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
36.6. Phosphate supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
37. Zirconium and hafnium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
37.1. Chemistry and mineralogy of zirconium and hafnium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
37.2. Magmatic, metamorphic and sedimentary zirconium (hafnium) deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
37.3. Zirconium (hafnium) supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
38. Silica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
38.1. Chemistry and mineralogy of silica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
38.2. Magmatic silica deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
38.3. Structure-bound silica deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
38.4. Sedimentary silica deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
38.5. Metamorphic silica deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
38.6. Silica supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
39. Feldspar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
39.1. Chemistry and mineralogy of feldspar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
39.2. Magmatic feldspar deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
39.3. Structure-bound feldspar deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
39.4. Sedimentary feldspar deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
39.5. Metamorphic feldspar deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
39.6. Feldspar supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
40. Feldspathoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
40.1. Chemistry and mineralogy of feldspathoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
40.2. Magmatic feldspathoids deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
40.3. Metamorphic feldspathoids deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
40.4. Feldspathoids supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
41. Zeolites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
41.1. Chemistry and mineralogy of zeolites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
41.2. Magmatic zeolite deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
41.3. Sedimentary zeolite deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
41.4. Metamorphic zeolite deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
41.5. Zeolite supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
42. Amphibole and asbestos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
42.1. Chemistry and mineralogy of amphibole and asbestiform minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
42.2. Magmatic amphibole and asbestos deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
42.3. Metamorphic amphibole and asbestos deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
42.4. Amphibole and asbestos supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
43. Olivine and dunite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
43.1. Chemistry and mineralogy of olivine minerals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
43.2. Magmatic olivine and dunite deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
43.3. Sedimentary olivine deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
6 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

43.4. Metamorphic olivine and dunite deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323


43.5. Olivine and dunite supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
44. Pyroxene and inosilicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
44.1. Chemistry and mineralogy of pyroxene and pyroxenoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
44.2. Magmatic pyroxene and inosilicate deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
44.3. Metamorphic pyroxene and inosilicate deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
44.4. Pyroxene and inosilicate supply and use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
45. Garnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
45.1. Chemistry and mineralogy of garnet-group minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
45.2. Magmatic garnet deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
45.3. Structure-bound garnet deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
45.4. Sedimentary garnet deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
45.5. Metamorphic garnet deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
45.6. Garnet supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
46. Epidote-group minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
46.1. Chemistry and mineralogy of epidote-group minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
46.2. Magmatic epidote-group mineral deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
46.3. Metamorphic epidote-group deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
46.4. Epidote-group minerals supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
47. Sillimanite-group minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
47.1. Chemistry and mineralogy of sillimanite-group minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
47.2. Magmatic deposits of sillimanite-group minerals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
47.3. Structure-bound deposits of sillimanite-group minerals and staurolite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
47.4. Sedimentary deposits of sillimanite-group minerals and staurolite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
47.5. Metamorphic sillimanite-group deposits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
47.6. Sillimanite-group minerals and staurolite supply and use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
48. Corundum and spinel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
48.1. Chemistry and mineralogy of corundum and spinel minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
48.2. Magmatic deposits of corundum and spinel minerals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
48.3. Sedimentary deposits of corundum and spinel minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
48.4. Metamorphic deposits of corundum and spinel minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
48.5. Corundum and spinel supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
49. Diamond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
49.1. Chemistry and mineralogy of diamond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
49.2. Magmatic deposits of diamonds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
49.3. Sedimentary deposits of diamonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
49.4. Metamorphic deposits of diamonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
49.5. Diamond supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
50. Graphite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
50.1. Chemistry and mineralogy of graphite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
50.2. Magmatic deposits of graphite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
50.3. Structure-bound graphite deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
50.4. Sedimentary graphite deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
50.5. Metamorphic graphite deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
50.6. Graphite supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
51. Clay minerals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
51.1. Chemistry and mineralogy of clay minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
51.2. Magmatic deposits of clay minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
51.2.1. Serpentine–kaolin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
51.2.2. Talc-pyrophyllite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
51.2.3. Smectite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
51.2.4. Vermiculite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
51.2.5. Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
51.2.6. Chlorite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
51.2.7. Sepiolite–palygorskite (hormites) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
51.3. Sedimentary deposits of clay minerals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
51.3.1. Serpentine–kaolin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
51.3.2. Talc-pyrophyllite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
51.3.3. Smectite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
51.3.4. Vermiculite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
51.3.5. Mica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
51.3.6. Sepiolite–palygorskite (hormites) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
51.4. Metamorphic deposits of clay minerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
51.4.1. Mica–(chlorite) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
51.4.2. Prehnite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
51.4.3. Talc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
51.4.4. Pyrophyllite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
51.5. Clay minerals and phyllosilicate supply and use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
52. Biological materials (“biominerals”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
52.1. Chemistry and mineralogy of biological materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
52.2. Jet and amber deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
52.3. Supply and use of biological materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 7

53. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374


53.1. The columns: geodynamic setting and environment of deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
53.1.1. The ultrabasic magmatic clan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
53.1.2. The basic magmatic clan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
53.1.3. The intermediate and felsic magmatic clan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
53.1.4. The alkaline magmatic clan and carbonatites with pegmatitic plus aplitic derivative products . . . . . . . . . . . . . . . . 375
53.1.5. One-dimensional structures— pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
53.1.6. Two-dimensional structures—veins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
53.1.7. Duricrusts–regolith–vein like deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
53.1.8. Coarse-grained clastic rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
53.1.9. Fine-grained clastic rocks and massive rocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
53.1.10. Limestones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
53.1.11. Evaporites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
53.1.12. Special sedimentary rocks and carbon-bearing hosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
53.2. Metamorphogenetic mineral deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
53.3. The spreadsheet correlation — bringing together the columns and the lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
53.4. Sequence stratigraphy of epigenetic and diagenetic mineral deposits in Central Europe . . . . . . . . . . . . . . . . . . . . . . . 382
54. Conclusions — the importance of raw materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

1. Introduction for metals grows while the domestic metal production has already
passed its climax. At the very end the domestic mining industry can no
1.1. Mineral deposits and economic geology longer cater for the needs and wants of the domestic industry and
metallic goods have to be imported from foreign countries. The
Mineral deposits resulted from physical–chemical changes in the current situation in the Asian countries China and India is another
atmosphere, hydrosphere and lithosphere (crust and the upper mantle). example for the rightness of this prediction made in 1927. The world
There are physical barriers hampering our access to mineral deposits, such production of mineral raw materials may be looked up in various
as mining depth controlled among others by the geothermal gradients publications such as the “World Mining Data”, a yearbook issued by
(5 km will hardly be crossed by exploitation methods in the foreseeable Weber and Zsak (2007) or on the Internet (US Geological Survey
future) and the vast oceans, which cover more than 2/3 of the Earth http://minerals.usgs.gov/minerals/). This link is placed at the end of
surface. Manganese nodules are widely known as a potential source of Mn, each section to give the reader a quick access to these data and update
Cu and Ni, but neither the technical nor the jurisdictional issues have so far his/her knowledge on an annual basis. World mining data listed at the
been solved to everybody's satisfaction, so that a vast part of the sea has end of sections are to give a rough idea on the world raw material
still to be considered as an area of scientific research of black and white situation and enable the reader to critically look at the daily statistics.
smokers, rather than an area of exploration and exploitation of mineral Some data in the paper have been derived from compilations by Huy
deposits. On the other hand, who can exclude that future generations will (2007) and based on the annual reports of the Raw Materials Group
extract all elements from seawater and consider the ocean as the only (Sweden). A bridge between classical mining data and metallogenic
inexhaustible low-grade, large-tonnage deposit on earth? The first step studies has been built by the review of giant ore deposits by Laznicka
has already been taken with some alkaline, earth alkaline and halogenides (1999).
recovered from seawater. For the time being, a growing demand for
mineral raw materials and, unlike organic raw materials, with only a few 1.2. Classification of mineral deposits through time
of the inorganic raw materials being renewable in a life-time, mineral
resources are limited. We are in need of the knowledge and experience The wealth of minerals and rocks which form the building blocks of
provided by economic geologists from academia and application (Gocht, mineral deposits has very early sparked attempts among geoscientists
1978; Saager, 1984). Economic geology is not a discipline of its own, it is a to classify mineral deposits and refine their terminology. Lindgren
mixtum compositum of various subjects of earth sciences dedicated to find (1934) and Lindberg (1922) were among the pioneers who addressed
new inorganic raw materials and enhance the exploitation of those this problem in a modern way; numerous others followed suit and
already known. Geology and mineralogy are the key players in achieving joined in the attempt to put in order the newly discovered mineral
these goals. deposits worldwide as well as those which have already been mined for
Magmatic, sedimentary and metamorphic processes may concentrate ages. Mining operations may be counted among the most long-lasting
some elements to such a degree that these mineral occurrences stand out operations. Different approaches have been taken by the various
not only by their mineralogical and chemical compositions but also by students of mineral deposits to pigeonhole or classify the wide range
color, texture or structure from the unmineralized or poorly-mineralized of mineral deposits. Some provided a general overview of mineral
wall and country rocks around. Hand specimens of such “abnormal” rocks, deposits and ore-forming processes (Bateman, 1950, 1957; Schneider-
called ore, are shown in the succeeding chapters together with the sites höhn, 1962; Routhier, 1963; Stanton, 1972; Hutchinson, 1983; Laznicka,
which these rocks have been taken from, called ore bodies. 1985; Schröcke, 1986; Guilbert and Park, 1986; Carr and Herz, 1989;
The widely-known report “Limits of Growth” by the “Club of Pohl, 1992, 2005; Evans, 1993; Kesler, 1994; Robb, 2004; Laznicka,
Rome” predicted in 1972 that by the year 2000 many deposits will be 2005) while others selected one group of commodity (Manning, 1995;
exhausted and many metals will no longer be available even at a high Harben and Kužvart, 1996) or a special type of ore deposits such as those
price level. The pessimistic and very constricted view of this group of related to magmatic processes (Whitney and Naldrett, 1989). A different
persons has proved to be wrong, but not so the predictions of Hewett approach has been taken by Roberts and Sheahan (1988) and Kirkham
in 1927 who was able to demonstrate that in mining countries et al. (1993) who focused on modeling ore deposits. The textbooks by
exploitation, export and import of metals evolve in a cyclic way Barnes (1997) on the geochemistry of hydrothermal ore deposits and
(Saager, 1984). During an initial stage, countries go through a period Henley et al. (1984) on fluid-mineral equilibria in hydrothermal systems
of metal surplus. With the domestic industry on the rise, the demand deviate from the norm when focusing on the classification of mineral
8 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

deposits. They are quoted here for two reasons. In these books, there are called economic geology to the beginner in its own camp or to people
some groups of (hydrothermal) deposits dealt with so that the data may interested in it but not dealing with this matter on a permanent basis.
be used for classification schemes. First and foremost, these papers act as When studying mineral deposits, nobody can afford to sideline any
transition into geochemistry, a field of study which is of utmost new chemical or physical methods, appearing on the scene but these new
importance when studying mineral deposits. However, this topic cannot methods need to be handled in a careful balance combined with “nose-
be dealt with in any of the afore-mentioned classification schemes at on-rock methods” (hammer and laptop). Results obtained by means of
length without getting the reader's attention drawn off from the gist of fluid inclusion measurements, data derived from the study of stable and
these classifications or the audience drowned into numbers and radioactive isotopes are sparsely used in this study. The current study has
equations that are published elsewhere in a more appropriate way. two major goals, not to cloud the reader's vision and not to distract the
Among the energy resources it has become common practice to treat reader's attention from the essentials of economic geology: geology,
the various commodities separately, as it was done for uranium deposits mineralogy and chemical composition. The reader is referred to the
by Dahlkamp (1979), for coal deposits by Stach (1982), Diessel (1992), different publications quoted for each type of deposit to get more
Moore and Shearer (2003) and Kalkreuth (2004), and for petroleum information on those data which cannot be treated to the full extent in
deposits by Tissot and Welte (1978), Hunt (1979), North (1985), Selley this paper.
(1997) and Gluyas and Swarbrick (2004). The chessboard classification Ore grades reported for the various commodities in the final
scheme presented in this paper is open for an enlargement towards coal section of each chapter are not strict or sharp boundaries set in this
petrography and classification schemes dealing with the accumulation of case by experts from the “Gesellschaft für Metall-, Hütten- und
organic matter in whatever physical condition (Fig. 01.01a,b). There are Bergleute” in Germany (GDMB). These data have been reported in the
special publications which try to relate metallogenesis to a particular final section of each chapter to give the reader an idea to what extent
geodynamic process such as global tectonics (Sawkins, 1990) or deal with an element has to be enriched relative to the average grade in the
a particular group of ore deposits such as the iron or non-sulfidic zinc crust, which is reported in the introduction to each chapter, to render
deposits (Zitzmann, 1977; Boni and Large, 2003). German economic this element feasible for exploitation. Mean values of elements may be
geologists have begun compiling the wealth of information gathered looked up in various reference books like the “Handbook on
through times on Pb–Zn- and Fe deposits in several monographs in the Geochemistry” or found when visiting website likes http://www.
“Geologische Jahrbuch” and “Beiheft zum Geologischen Jahrbuch” uniterra.de/rutherford (Clark and Washington, 1924; Mason, 1958;
between 1951 and 1986 and thereby contributed to the classification of Turekian and Wedepohl, 1961; Vinogradov, 1962; Taylor, 1964).
vein-type deposits, in particular. Only a few of these monographs can be Mineral formulae are found among others in the paper by Kretz (1983)
quoted here. Regional-based classification schemes are numerous and in and all minerals referred to in this study are listed in Table 01.01.
this context some studies from Central Europe may be quoted as Further information on minerals can be obtained by consulting
representative of this sort of classification schemes (Pouba and Ilavsky, encyclopedias such as Roberts et al. (1990) or textbooks such as
1986; Dill, 1989; Osika, 1990; Walther and Dill, 1995; Dill et al., 2008a,b). Strunz (1970) and Ramdohr and Strunz (1978). Those who want to
Some classification schemes can still be used for the purpose which they know what nice well-crystallized minerals in mineral galleries look
were designed for, be it teaching or exploration, while others are still nice like are requested to visit special websites on the internet, e.g.,
to read and informative on certain aspects. It has to be noted, no “Mineralogy Database” http://webmineral.com or http://www.
classification scheme is really perfect or complete. mindat.org/. Those who make use of ore microscopy, which is still a
In the most recent comprehensive publication on fossil fuels, ore valuable and efficient tool to understand ore genesis and not yet
and industrial minerals in Central Europe two separate approaches outdated by the electron microprobe (EMP), need to consult textbooks
have been taken one for the map (Dill et al., 2008a) and another for or determination tables published by Schouten (1962), Ramdohr
the text (Dill et al., 2008b). The map used an element-based (1975), Picot and Johan (1977), Craig and Vaughan (1981), Uytenbo-
classification scheme, avoiding any interpretation, whereas in the gaardt and Burke (1985) and Mücke (1989) or the “Virtual Atlas of
text a classification scheme has been adopted which makes use of Opaques and Ore Minerals” http://www.smenet.org/opaque-ore/.
various structural elements related in time and space to the Variscan The reader will find there ore varieties on a microscopic scale for each
and Alpine orogenies, the most significant geodynamic phases during type of ore deposit containing native elements, oxidic or sulfidic minerals.
crustal consolidation of what is called today Central Europe: (1) Classification schemes solely based on new concepts, models and
stratabound deposits, (2) thrust-bound metamorphogenic and/or geodynamic processes may sometimes stand on shaky grounds and
fold-related deposits, (3) deposits controlled by collision-related may get swiftly out of fashion. In the wide range of features that may
granitic activity, (4) unconformity-related fault-bound hypogene and be useful to define mineral deposits, two categories underwent little
supergene deposits, (5) deposits controlled by extension-related change through time. It is the terminology of the host rock lithology
magmatic activity along deep-seated fault zones, and (6) petroleum and the ore-bearing structures on one part and the element and
deposits. This classification scheme is well-established for the extra- mineral of economic interest on the other. There may be ups and
Alpine part of Central Europe (e.g. Dill, 1988a, 1989, 1994a; Dill and downs in demand and supply, but rarely has an element really fallen
Nielsen, 1987; Tischendorf et al., 1995) and was extended to the out of use, excluding uranium in modern-day Germany. Exploration
Alpine realm, where similar subdivisions have been applied by Pohl does not place the main emphasis on ore types but on raw materials
(1993), Pohl and Belocky (1994, 1999) and Rodeghiero et al. (1996). and it goes without saying that it is the quality and quantity of
elements and the minerals that make the wheel in the head frame of a
2. The “chessboard” (spreadsheet ) classification scheme of shaft go round or make load–haul-dumpers go ahead in the open pit.
mineral deposits A chemist with industrial background who wants to know more about
the basic ingredients of a certain substance in his lab uses the element
2.1. The principles of the “chessboard” (spreadsheet ) classification scheme for his/her search and the rockhound makes use of the mineral to find
a new site where to look for something out of the ordinary. And an
Needless to say, ideas, concepts and models in economic geology exploration geologist specialized on a certain type of deposit but less
are important but they are changing rapidly. Quite often, they are familiar with other commodities will enter a new frontier area
dependent on the metallogenic fashion and fostered by current through the metal's or mineral's doors rather than an ore type or a
trends, likewise driven by industry or politics. This back and fro in model. The first object an exploration geologist becomes aware of in
economic geology can neither be the basic philosophy of exploration the field is the lithology of the country rocks that might then turn into
nor is it helpful to disclose the secrets of this mixtum composition the wall rocks of the ore body.
H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 9

Table 01.01
Chemical composition of minerals referred to in the text. The column on the right-hand side denotes the “line” where the mineral may be found (e.g. 12 = Sn–W).

Mineral Chemical composition Line

Actinolite Ca2Fe2Mg3(Si8O22)(OH)2 14-19-41-44-49


Aegerine NaFeSi2O6 44-46
Aeschynite (Ce,Ca,Fe)(Ti,Nb)2(O,OH)6 24
Akaganeite Fe7.6Ni0.4O6.4(OH)9.7Cl1.3 7
Alabandite MnS 8-37
Albite (Na end member plagioclase) NaAlSi3O8 7-12-13-14-19-25-27-30-41-42-43-46
Alexandrite BeAl2O4 14
Allanite-(Ce) orthite (Ce,Ca,Y)2(Al,Fe)3(SiO4)3(OH) 24-48
Allargentum Ag0.99Sb0.01 16
Alstonite BaCa(CO3)2 32-33
Altaite PbTe 10
Alunite KAl3(SO4)2(OH)6 16-19-20-38-40-49-54-55
Alunogen Al2(SO4)3·17(H2O) 31
Amblygonite Li0.75Na0.25Al(PO4)F0.75(OH)0.25 13-15
Amesite Mg2Al2SiO5(OH)4 32
Amosite Fe7(Si8O22)(OH)2 44
Amphibole XY2Z5(Si, Al, Ti)8O22(OH, F)2 44-46-48
X = K, Na, Y = Fe Ca, Mg, Mn, Zn, Z = Fe, Mn, Al, Ti
Analcime NaAl(Si2O6)·(H2O) 43
Anatase TiO2 5
Ancylite SrCe(CO3)2(OH)·(H2O) 24
Andalusite Al2SiO5 49-50
Anglesite PbSO4 16
Anhydrite CaSO4 31
Anilite Cu1.75S 9
Ankerite Ca(Mg, Fe)(CO3)2 7
Annabergite Ni3 (AsO4)2.8H2O 2
Anorthite (Ca end member plagioclase) CaAl2Si2O8 41-46-50
Anothoclase (Na,K)AlSi3O8 41
Anthophyllite Mg7(Si8O22)(OH)2 44
Antimonselite Sb2Se3 20
Antimony native Sb 20
Apatite Ca5 (F,Cl,OH) (PO4)3 5-6-7-9-12-13-24-25-32-38-41-50-51-59
Apophyllite KCa4(Si4O10)2F·8(H2O) 43
Aragonite CaCO3 29
Ardennite Mn2.8Ca0.8Mg1.4Al4.7Fe0.4(AsO4)0.9(VO4)0.1(SiO4)2(Si3O10)(OH)6 47
Arfvedsonite Na3Fe2+4Fe3+(Si8O22)(OH)2 25-26
Argentite Ag2S 17
Argyrodite Ag8GeS6 16
Armenite BaCa2Al6Si8O22·2H2O 32
Arsenic native As 21
Arseniosiderite Ca2Fe3(AsO4)3O3·3(H2O) 21
Arsenolite As2O3 21
Arsenopyrite FeAsS 21
Asbolane Ni0.3Co0.1Ca 0.1Mn2 +1.5O1.5(OH)2·0.6(H2O) 2
Atacamite Cu2Cl(OH)3 9
Atokite Pd2.25Pt0.75Sn 4
Attapulgite/palygorskite (Mg,Al)2Si4O10(OH)·4H2O 38-57-61
Augite (Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)2O6 5-46-50
Aurostibite AuSb2 19-20
Autunite Ca(UO2)2(PO4)2·12(H2O) 25
Axinite-(Mg) Ca2MgAl2(BO3)Si4O12(OH) 30
Azurite Cu3(CO3)2(OH)2 9
Baddeleyite ZrO2 39
Bariopyrochlore (Ba,Sr)(Nb,Ti)2(O,OH)7 24
Barite (baryte) BaSO4 33
Bassanite 2Ca(SO4)·H2O 29
Bastnaesite (Ce,La)(CO3)F 24
Bazzite Be3(Sc,Al)2 Si2O18 13
Becquerelite Ca(UO2)6O4(OH)6·8(H2O) 25
Behoite Be(OH)2 14
Beidellite Na0.5Al2(Si3.5Al0.5)O10(OH)2·n(H2O) 57
Belendorffite Cu7Hg6 23
Benitoite BaTiSi3O9 5
Benleonardite Ag8Sb0.5As0.5Te2S3 10
Benstonite Ca,Mg,Mn7(Ba,Sr)6(CO3)13 32-33
Berborite Be2(BO3)(OH,F)·(H2O) 14-30
Berthierine Fe2Al(Si,Al)O5(OH)4 7
Bertrandite Be4Si2O7(OH)2 14
Beryl, aquamarine, heliodor, goshenite, Be3Al2Si6O8 14
morganite, rosterite, bixbite, emerald
Berzelianite Cu2Se 10
Bicchulite Ca2Al2SiO6(OH)2 42
Bikitaite Li2Al2(Si2O6)2·2(H2O) 15

(continued on next page)


10 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

Table 01.01 (continued)


Mineral Chemical composition Line

Biotite K(Mg,Fe)3AlSi3O10(OH,F)2 9-13-14-27-32-38-42-47-48-49-50-56-58-59


Birnessite Na0.3Ca 0.1K 0.1Mn4+Mn3+O4·1.5(H2O) 8
Bischofite MgCl2·6 H2O 28-35
Bismite Bi2O3 18
Bismuth native Bi 18
Bismuthinite Bi2S3 18
Bixbyite Mn1.5Fe0.5O3 8
Blödite Na2Mg(SO4)2·4(H2O) 37
Boehmite AlO(OH) 27
Boracite Mg3B7O13Cl 30-35
Bornite Cu5FeS4 9
Boulangerite Pb5Sb4S11 16
Bournonite PbCuSbS3 16
Braggite Pt0.6Pd0.3Ni0.1S 4
Brannerite U0.5Ca0.3Ce0.2Ti1.5Fe0.5O6 25
Braunite Mn2Mn3+6SiO12 8
Bravoite (Ni,Co,Fe)S2 2
Brazilianite NaAl3(PO4)2(OH)4 38
Breithauptite NiSb 2
Breunnerite (Fe,Mg)CO3 28
Briartite Cu2(Fe, Zn)GeS4 9-16
Britolite-(Ce) (Ce,Ca,Sr)2(Ce,Ca)3(SiO4,PO4)3(O,OH,F) 24
Brochantite Cu4(SO4)(OH)6 9
Brockite Ca0.6Th0.3Ce0.1(PO4)·(H2O) 26
Bromargyrite AgBr 17
Bromellite BeO 14
Bronzite (Mg,Fe)2 (SiO3)2 1-4
Brookite TiO2 5
Brucite Mg(OH)2 28
Brüggenite Ca(IO3)2 36
Brunckite ZnS 16
Brushite Ca(HPO4)·2(H2O) 38
Bustamite (Mn,Ca)3Si3O9 8
Calaverite AuTe2 19
Calcite CaCO3 29
Cancrinite Na6Ca2Al6Si6O24(CO3)2 42
Canfieldite Ag8SnS6 12-17
Carbocernaite (Ca,Na)(Sr,Ce,Ba)(CO3)2 24
Carlinite Tl2S 22
Carnallite KMgCl3·6 (H2O) 35
Carnotite K2(UO2)2(VO4)2·3H2O 25-6
Carrolite Co2CuS4 3-9
Cascandite Ca (Sc,Fe) Si3O8 (OH) 13
Cassiterite SnO2 12
Cattierite CoS2 3
Cavansite CaVSi4O11·4(H2O) 43
Celadonite K(Mg,Fe2+)(Fe 3+,Al)[Si4O10](OH)2 40-43-59
Celestite SrSO4 34
Celsian BaAl2Si2O8 41
Cerianite (Ce,Th)O2 24
Ceriopyrochlore (Ce,Ca,Y)2(Nb,Ta)2O6(OH,F) 24
Cerite (La,Ce,Ca)9(Mg,Fe)(SiO4)6[SiO3(OH)](OH)3 24
Cerussite PbCO3 16
Chabazite-(Ca) (Ca0.5Na,K)4[Al4Si8O24]·12H2O 14-43
Chalcedony SiO2 40
Chalcocite Cu2S 9
Chalcomenite Cu(SeO3)·2(H2O) 10
Chalcophanite (Zn,Fe2+,Mn2+)Mn4+3O7·3(H2O) 8
Chalcopyrite CuFeS2 9
Chalcostibite CuSbS2 20
Chamosite Fe3Mg1.5AlFe0.5Si3AlO12(OH)6 7
Charoite K5Ca8Si18O46(OH)·3(H2O) 46
Chengdeite Ir3Fe 4
Chevkinite-(Ce) (Ce,La,Ca,Th)4(Fe,Mg)2(Ti,Fe)3Si4O22 24
Chiavennite CaMnBe2Si5O13(OH)2·2H2O 43
Chlorite A4-6Z4O10(OH,O) A = Al, Fe, Li, Mg, Mn, Ni, Z = Al, Fe, Si 1-2-6-7-12-16-19-25-27-28-32-43-44-45-56-60
Chloritoid (Fe,Mg,Mn)2Al4Si2O10(OH)4 50
Chloroargyrite AgCl 17
Choloalite CuPb(TeO3)2·(H2O) 10
Chondrodite Mg3.75Fe2+1.25(SiO4)2F1.5(OH)0.5 7
Chrisstanleyite Ag2Pd3Se4 9-10
Christite TlHgAsS3 22
Chromite FeCr2O4 1
Chrysoberyl BeAl2O3 14
Chrysocolla Cu1.75Al0.25H1.75(Si2O5)(OH)4·0.25(H2O) 9
Chrysoprase Ni-bearing layer silicates (willemseite) 2
Cinnabarite HgS 23
H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 11

Table 01.01 (continued)


Mineral Chemical composition Line

Clausthalite PbSe 10
Clinochlore Cr-bearing (kammererite) Mg5(Al,Cr)2Si3O10(OH)8 1
Clinohumite Mg9Si4O16(F,OH)2 42-50
Clinoptilolite-(K) (Na,K,Ca)2–3Al3(Al,Si)2Si13O36·12(H2O) 43
Clinozoisite Ca2Al3(SiO4)3(OH)
Cobaltite CoAsS 3
Coffinite U(SiO4)0.9(OH)0.4 25
Colemanite Ca2B6O11·5 H2O 30
Colusite Cu3(As,Sn,V,Fe,Te)S4 12
Cookeite LiAl5Si3O10(OH)8 7-15
Cooperite Pt0.6Pd0.3Ni0.S 4
Copper Cu 9
Cordierite/iolite Mg2Al4Si5O18 30-49
Cordylite-(Ce) BaCe1.5La0.5(CO3)3F2 24
Coronadite Pb(Mn4+Mn2+)8O16 8
Corundum, sapphire, ruby, padparadscha α-Al2O3 30-32-42-49-50-56
Corvusite Na0.6Ca0.25K0.15V8O20·4(H2O) 6
Covellite CuS 9
Crandallite CaAl3(PO4)2(OH)5·(H2O) 19-27
Crocidolite Na2Fe2+3Fe3+2(Si8O22)(OH)2 44
Crocoite PbCrO4 1
Cryolite Na3AlF6 32
Cryptomelane K(Mn4+Mn2+)8O16 8
Cubanite CuFe2S3 9
Cummingtonite Mg7(Si8O22)(OH)2 9 (and others)
Cuprite Cu2O 9
Cylindrite Pb3Sn4FeSb2S14 20-12
Danburite CaB2Si2O8 30
Daqingshanite-(Ce) Sr1.2Ca0.6Ba0.2Ce0.75La0.25(PO4)(CO3)2.5(OH)0.4F0.1 24
Datolite CaBSiO4(OH) 30
Davidite La0.7C 0.2Ca0.1Y0.75U0.25i15Fe5O38 25
Dawsonite NaAl(CO3)(OH)2 43
Descloizite (Pb,Zn)Cu(OH)(VO4) 16-9-6
Diamond C 45-46-47-49-51
Diaspore AlO(OH) 27
Dietzeite Ca2(IO3)2.(CrO4) 36
Digenite Cu9S5 9
Diopside CaMg(Si2O6) 1-7-9-14-38-42-46-49-50-51-58-59
Dioptase CuSiO2(OH)2 9
Djurleite Cu 1.96S 9
Dolomite CaMg(CO3)2 28
Donbassite Al5.333Si3O10(OH)8 7
Dumortierite Al 6.9(BO3)(SiO4)3O 2.5(OH) 0.5 30
Duranusite As4S 8
Dyscrasite Ag3Sb 17
Edingtonite BaAl2Si3O10·4(H2O) 43
Electrum AuAg 19
Embolite AgCl0.5Br0.5 17
Emplectite CuBiS2 18
Enargite Cu3AsS4 9
Enstatite Mg2Si2O6 45-46
Epidote Ca2Fe2.25Al0.75(SiO4)3(OH) 7-9-12-17-19-41-44-47-48
Epistolite Na 3.79Ca 0.27Mn0.04Nb1.92Ti 0.04Fe0.04 13-5
(Si2O7)2 O2 (OH)1.44 F0.56·4(H2O)
Epsomite MgSO4·7 H2O 28
Erionite-(Na) (Na2,K2,Ca)2[Al4Si14O36]·15(H2O) 43
Erythrite Co3(AsO4)2.8H2O 3
Eucairite CuAgSe 10
Euclase BeAlSiO4OH 14
Eudialyte Na15Ca6 (Fe, Mn)3 Zr3[Si25O73] (O,OH,H2O)3 (OH,Cl)2 39
Eulytine Bi4(SiO4)3 18
Falcondoite (“garnierite”) Ni3MgSi6O15(OH)2·6(H2O) 2
Famatinite Cu3SbS4 9
Fangite Tl3AsS4 22
Faujasite-(Na) (Na2,Ca,Mg)3.5[Al7Si17O48]·32(H2O) 43
Fayalite Fe2SiO4 45
Feitknechtite MnO(OH) 8
Ferberite (Mn wolframite) MnWO4 12
Fergusonite La0.2Ce0.4Pr0.1Nd0.2REE0.1Nb0.9O 4 24-13
Feroxyhyte FeO(OH) 7
Ferrihydrite Fe3+2O3·0.5(H2O) 7
Ferrocolumbite (columbite-(Fe), niobite) FeNb2O6 13
Ferroselite FeSe2 10
Ferrotantalite FeTa2O6 13
Fersmite (Ca,Ce,Na)(Nb,Ta,Ti)2(O,OH,F)6 24
Fervanite (FeVO4)·(H2O) 6

(continued on next page)


12 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

Table 01.01 (continued)


Mineral Chemical composition Line

Florencite-(Ce) (Ce, La)Al3(PO4)2(OH)6, 24


Fluocerite (Ce,La)F3 24
Fluorite CaF2 32
Forsterite Mg2SiO4 13-30-32-45-59
Fourmarierite Pb(UO2)4O3(OH)4·4(H2O) 25
Fowlerite Zn-rich rhodonite 8
Fraipontite (Zn,Al)3(Si,Al)2O5(OH)4 16
Francevillite (Ba,P)(UO2)2(VO4)2·5H2) 6-25
Franckeite Pb5Sn3Sb2S14 12
Francolite Ca5(PO4)2.5(CO3)0.5F 38-32
Franklinite (Zn,Fe,Mn)Fe2O4 16
Freibergite (Ag, Cu)12(Sb, As)4S13 9-17
Fuchsite (chromium muscovite) K(Al,Cr)3(Si3O10(OH)2) 1-19-50
Gahnite ZnAl2O4 16
Galena PbS 16
Galkhaite (Cs,Tl)(Hg,Cu,Zn)6(As,Sb)4S12 22
Gallite CuGaS2 27
Gallobeudantite (PbGa3[(AsO4),(SO4)]2(OH)6) 27
Garnet X3Y2(SiO4)3 X = Fe, Ca, Mn, Mg; 1-5-7-8-13-14-16-25-32-41-42-44-45-46-
Y = Fe, Al, Cr, Zr, Ti 47-49-50
Gedrite Mg5Al2(Si6Al2O22)(OH)2 30-44
Germanite Cu26Fe4Ge4S32 16
Gersdorffite NiAsS 2
Geversite PtSb1.5Bi0.5 4
Gibbsite Al(OH)3 27
Gillulyite Tl2As6Sb2S13 22
Glauconite (K,Na)(Fe3+,Al,Mg)2(Si,Al)4O10(OH)2 7-8-38-59
Glaucophane Na2Mg3Al2(Si8O22)(OH)2 43
Gmelinite-(Na) (Na2,Ca)Al2Si4O12·6(H2O) 43
Goethite α FeO(OH) 7
Gold native Au 19
Goldfieldite Cu12(Sb, As)4(Te, S)13 9
Gorceixite BaAl3(PO4)2(OH)5·H2O 13-24
Goyazite SrAl3(PO4)2(OH)5·(H2O) 24
Graphite C 14-20-23-38-42-46-47-50-52
Gratonite Pb9As4S15 16
Greenalite Fe2.3Fe0.5Si2.2O5 (OH)3.3 7
Greenockite CdS 16
Gregoryite Na 1.74K 0.1(Ca, Sr, Ba)0.16CO3, 37
Greigite Fe3S4 7
Groutite MnO(OH) 8
Grumiplucite HgBi2S4 23
Grunerite Fe7(Si8O22)(OH)2 7
Guanajuatite Bi2Se3 10
Gudmundite FeSbS 20
Gypsum CaSO4·H2O 28-30-31-34-37-38-40-54
Hafnon Hf(SiO4) 39-39
Halite NaCl 35-35
Halloysite Al4Si4O6(OH)12 27-53-54-55
Halotrichite FeAl2(SO4)4·22(H2O) 31
Hambergite Be2(OH,F)BO3 14
Hanksite KNa22(SO4)9(CO3)2Cl 37
Hastingsite NaCa2(Fe2+4Fe3+)Si6Al2O22(OH)2 49
Hausmannite Mn2+/3+3O4 8
Hauyne Na4Ca2Al6Si6O22S2(SO4)Cl0.5 42
Hawleyite CdS 16
Heazlewoodite Ni3S2 2
Hectorite Na0,3(Mg,Li)3Si4O10(FOH)2 15-57
Hedenbergite CaFe(Si2O6) 9-12-16-19-20-32-46
Hematite α Fe2O3 7
Hemihedrite Pb10Zn(CrO4)6(SiO4)2F2 1
Hemimorphite Zn4Si2O7(OH)2·H2O 16
Hercynite FeAl2O4 49-50
Herzenbergite SnS 12
Hessite AgTe 17-10
Hetaerolite ZnMn2O4 8
Heterogenite CoOOH 3
Heulandite (Ca,Na)2–3Al3(Al,Si)2Si13O36·12(H2O) 43
Hewettite CaV6O16·9H2O 6
Hibonite (Ca,Ce)(Al,Ti,Mg)12O19 50
Hinsdalite (Pb,Sr)Al3(PO4)(SO4)(OH)6 19
Hocartite Ag2FeSnS4 12-17
Hochschildite PbSnO3.n H2O 12
Högbomite (Mg,Fe)2(Al,Ti)5O10 49-50
Hollandite Ba(Mn4+Mn2+)8O16 8
Hollingworthite Rh0.6Pt0.3Pd0.1AsS 4
Holmquistite Li2Mg3Al2(Si8O22)(OH)2 13-15
H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 13

Table 01.01 (continued)


Mineral Chemical composition Line

Howlite Ca2B5SiO9(OH)5 30
Huanghoite-(Ce) BaCe(CO3)2F 24
Huebnerite (Fe wolframite) FeWO4 12
Humite (Mg,Fe)7(SiO4)3(F,OH)2 44
Huntite CaMg3(CO3)4 28
Hutchinsonite TlFeS2 22
Hyalophane K0.75Ba0.25Al1.75Si2.25O8 41
Hydroboracite CaMgB6O8(OH)6·3(H2O) 30
Hydromagnesite 3MgCO3 Mg(OH)2·3H2O 28
Hydrozincite Zn5(CO3)2(OH)6 16
Hypersthene MgFeSi2O6 46
Illite (K,H3O)(Al,Mg,Fe)2 (Si,Al)4O10·H2O 19-38-43-54-55-59
Ilmenite FeTiO3 5
Ilvaite CaFe3(SiO4)2(OH) 9 (and others)
Indite FeInS2 16
Indium native In 16
Inyoite CaB3O3(OH)5·4(H2O) 30
Iranite Pb10Cu(CrO4)6(SiO4)2F1.5(OH)0.5 1
Isoferroplatinum Pt2.25Pd0.75Fe 0.75Cu 0.25 4
Ixiolite (Ta,Nb,Sn,Mn,Fe)O2 13
Jacobsite Mn2+0.6Fe2+0.3Mg0.1Fe3+1.5Mn3+0.5O4 8
Jadeite NaAlSi2O6 44-46-50
Jamesonite Pb4FeSb6S14 20
Jarosite KFe3(SO4)2(OH)6 9
Jentschite TlPbAs2SbS6 22
Jeremejevite Al6B5O15F2.5(OH)0.5 30
Jervisite (Na,Ca,Fe)(Sc,Mg,Fe) Si2O6, 13
Joaquinite NaBa2FeCe2(Ti, Nb)2(SiO3)8(OH, F)·H2O 5
Johannsenite CaMn(Si2O6) 9-16-46
Jordanite Pb14(As,Sb)6S23 16
Jordisite MoS2 8
Juonniite CaMgSc(PO4)2(OH)·4(H2O) 13
Kainite Mg(SO4)KCl·3(H2O) 35
Kaolinite, dickite, nacrite Al4Si4O10(OH)8 7-8-16-19-20-23-27-32-38-40-49-54-55-56-59
Kemmlitzite (Sr,Ce)Al3(AsO4)(SO4)(OH)6 24
Kernite Na2B4O7·4 H2O 30
Kieserite MgSO4·H2O 28-35
Klockmannite CuSe 10
Knopite (Ca,Ce)TiO3 24
Koesterite Cu2ZnSnS4 12
Kolbeckite Sc(PO4)·2 H2O 13
Kolymite Cu7Hg6 23
Kornerupine Mg3.5Fe0.2Al5.7(SiO4)3.7(BO4)0.3O1.2(OH) 30
Kotoite Mg3B2O6 30
Krennerite AuTe2 19
Kristiansenite Ca2ScSn(Si2O7)(Si2O6OH) 13
Kutnahorite CaMn0.6Mg0.3Fe0.1(CO3)2 8
Kyanite Al2SiO5 46-48-49-50
Kylindrite Pb3Sn4SbS14 12
Langbeinite K2Mg2(SO4)3 35
Lanthanite (Ce,La)2(CO3)3·8(H2O) 24
Larnite Ca2(SiO4) 45
Laumontite CaAl2Si4O12·4(H2O) 43
Lautarite Ca(IO3)2 36
Lawsonite CaAl2Si2O7(OH)2·(H2O) 43
Lazulite MgAl2(PO4)2(OH)2 49
Lazurite Na3CaAl3Si3O12S 42
Leonite K2Mg(SO4)2·4(H2O) 35
Lepidocrocite γ FeO(OH) 7
Lepidolite KLi2AlSi4O10F(OH) 15
Leucite KAlSi2O6 42-51
Libethenite Cu2(PO4)(OH) 9
Linneite Co3S4 3
Lithiophilite LiMn(PO4) 13-15-38
Lithiophorite (Al,Li)Mn3+/4+O2(OH)2 8
Livingstonite HgSb4S7 23
Loellingite FeAs2 21
Lomonosovite Na5Ti2O2Si2O7(PO4) 13
Lonsdaleite C 51
Loparite (Na,Ca,Ca) (Ti,Nb)O3 13
Lorandite TlAsS2 22
Lorenzenite Na2Ti2Si2O9 13
Loughlinite Na2Mg3Si6O16·8(H2O) 61
Ludwigite Mg2FeBO5 30
Luzonite Cu3AsS4 9
Mackinawite Fe0.75Ni0.25S0.9 7

(continued on next page)


14 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

Table 01.01 (continued)


Mineral Chemical composition Line

Maghemite γ Fe2O3 7
Magnesite MgCO3 28
Magnetite Fe3O4 7
Magnetite/vanadiferous (Fe,V)3O4 6
Malachite Cu2(CO3)(OH)2 9
Malayaite CaSnSiO5 12
Maldonite Au2Bi 19
Manganite MnO(OH) 8
Manganotantalite MnNb2O6 13
Manjiroitite (K,Na)(Mn4+Mn2+)8O16·n H2O 8
Marcasite FeS2 7-31
Margarite CaAl4Si2O10(OH)2 32-49-50-59
Marialite scapolite 3 (NaAlSi3O8)·NaCl 5-7-38-42-47-50
Mariposite K(Al,Cr)2(Al,Si)4O10(OH)2 1
Martite γ Fe2O3 7
Matildite AgBiS2 16-17-18
Maucherite Ni3As2 2
Meionite scapolite 3 (CaAlSi2O8).(CaCO3) 5-7-38-42-47-50
Melanterite Fe2+(SO4)·7(H2O) 31
Meneghinite Pb13CuSbS24 20
Mercury native Hg 23
Merenskyite Pd0.9Pt0.1Te1.8Bi0.2 4
Metacinnabarite HgS 23
Metastibnite Sb2S3 20
Meyerhofferite Ca2B6O6(OH)10·2(H2O) 30
Miargyrite AgSbS2 17
Microlite Na1.5Ca0.5Ta2O6.6(OH)0.3F0.1 13
Millerite NiS 2
Mimetite Pb5(AsO4)3Cl 16
Minasragreite VO(SO4)·5(H2O) 6
Minnesotaite Fe2.5Mg0.5Si4O10(OH)2 7-56
Mirabilite Na2(SO4)·10(H2O) 35-37
Molybdenite MoS2 11
Molybdite MoO3 11
Monazite (Ce,La,Nd,Th)PO4 24
Monetite Ca(HPO4) 38
Montmorillonite (Na,Ca)0,3(Al,Mg)2Si4O10(OH)2·n(H2O) 15-27-30-54-57
Montroseite (V,Fe)O(OH) 6
Montroydite HgO 23
Mordenite Na1.1Ca0.5K0.1Al2.2Si9.8O24·5.9(H2O) 43-57
Mosandrite Na2Ca4(Ce,Y)(Ti,Zr)(Si2O7)2OF3 39
Moschelite Hg2I2 23
Moschellandsbergite Ag2Hg3 23
Mottramite Pb (Zn,Cu)(OH)(VO4) 16-9-6
Mtorolite/mtorodite chrom chalcedony 1
Murmanite Na3Ti3.6 Nb0.4(Si2O7)2O4·4(H2O) 5
Muscovite KAl2(Si3Al)O10(OH,F)2 9-12-14-32-41-43-47-59
Nagyagite AuPb(Sb,Bi)Te2–3S6 19-10
Nahcolite Na(HCO3) 43
Natrite Na2(CO3) 43
Natrolite Na2Al2Si3O10·2(H2O) 43-52
Naumanite Ag2Se 10-17
Nepheline (Na,K)AlSiO4 27
Nepouite Ni3Si2O5(OH)4 2
Neptunite KNa2LiFe 1.5Mn 0.5Ti2Si8O24 5
Nesquehonite MgCO3.3 H2O 28
Nickelite/nickeline NiAs 2
Nimite (“schuchardite”) Ni2.6Mg1.7AlFe3+0.4Fe2+0.3Si3AlO10.3(OH) 7.7 2
Ningyoite (U,Ca,Ce)2(PO4)2·1–2(H2O) 24
Niter KNO3 36
Nitratine NaNO3 36
Nontronite Na0.3Fe2(Si,Al)4O10(OH)2·n(H2O) 54-57
Nosean Na8Al6Si6O24(SO4)·(H2O) 42
Nsutite Mn4+0.85O1.7Mn2+0.15(OH)0.3 8
Nyerereite (Na 0.82K 0.19)2(Ca, Sr, Ba) 0.975(CO3)2 37
Olivenite Cu2(AsO4)(OH) 9
Olivine (Mg,Fe)2SiO4 1-2-7-9-19-43-45
Opal SiO2·n(H2O) 8-9-20-28-32-40-53-55-57
Orpiment As2S3 21
Otavite CdCO3 16-38
Paladium Pd 4
Paragonite NaAl3Si3O10(OH)2 43-56-59
Paralstonite BaCa(CO3)2 32
Paraschachnerite Ag3Hg2 23-17
Pargasite NaCa2(Mg,Fe)4Al(Si6Al2)O22(OH)2 50
Parisite Ca(Ce,La)2(CO3)3F2 24
Parsettensite (K,Ca)8(Mn,Mg)49[(OH)50/Si64Al8O168]·20H2O 8
H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 15

Table 01.01 (continued)


Mineral Chemical composition Line

Pascoite Ca3V10O28·17(H2O) 6
Patronite VS4 6
Pearceite Ag16As2S11 17
Pecoraite Ni3Si2O5(OH)4 2
Pectolite NaCa2Si3O8(OH) 46
Penroseite (Ni,Co,Cu)Se2 10
Pentlandite (Ni,Fe)9S8 2
Periclase MgO 28
Perovskite (dysanalyte (Nb), knopite (Ce)) (Ca,Fe,REE)TiO3 5
Petalite Li0.92Al0.99Si3.99O10 15
Petzite Ag3AuTe2 19
Pezzottaite Cs(Be2Li)Al2Si6O18 14-15
Phenakite Be2SiO4 14
Phillipsite-(K) K0.8Na0.7Ca0.7Si5.2Al2.8O16·6(H2O) 43
Phlogopite KMg3AlSi3O10F(OH) 44-50-51-59
Phoenicochroite Pb2CrO5 1
Phosphophyllite Zn2(Fe,Mn)(PO4)2·4(H2O) 38
Phosphosiderite Fe3(PO4)·2(H2O) 49
Piemontite Ca2Al1.8Mn2+0.9Fe2+0.3(SiO4)3(OH) 47-48
Pimelite Ni3Si4O10(OH)2·4(H2O) 2
Pitchblende U3O8 25
Plancheite Cu8Si8O22(OH)4·(H2O) 9
Platinum Pt 4
Plumbogummite PbAl3(PO4)2(OH)5·(H2O) 24
Polhemusite Zn0.75Hg0.25S 23
Polianite MnO2 8
Pollucite Cs0.6Na0.2Rb0.04Al0.9Si2.1O6·(H2O) 15
Pollucite (Cs,Na)2Al2Si4O12·(H2O) 13-15-43
Polybasite Ag16Sb2S11 17
Polydymite Ni3S4 2
Polyhalite K2Ca2Mg(SO4)4·2(H2O) 35
Porpezite AuPd 19
Poudretteite KNa2BSi12O30 30
Powellite CaMoO4 11
Prehnite Ca2Al2Si3O10(OH) 43-46-47-52
Pretulite Sc(PO4) 13
Priceite Ca4B10O19·7 H2O 30
Priderite (K,Ba)(Ti,Fe)8O16 51
Proustite Ag3AsS3 17
Psilomelane Ba (H2O)Mn3+5O10 8
Pumpellyite Ca2MgAl2(SiO4)(Si2O7)(OH)2·(H2O) 41-43
Pyrargyrite Ag3SbS3 17
Pyrite FeS2 7-31
Pyrochlore Na1.5Ca0.5Nb2O6(OH)0.75F0.25 13
Pyrolusite MnO2 8
Pyromorphite Pb5(PO4)3Cl 16
Pyrophyllite Al2Si4O10(OH)2 2-23-27-30-49-55-56
Pyroxmangite MnSiO3 8
Pyrrhotite Fe7S8 7
Quartz, lechatelierite, keatite, SiO2 40
stishovite, christobalite, tridymite
Radian barite (Ba, Ra)SO4 25
Rammelsbergite NiAs2 2
Ramsdellite MnO2 8
Rancieite Ca0.75Mn2+0.25 Mn4+4O9·3(H2O) 8
Realgar As4S4 21
Reniérite (Cu,Zn)11(Ge,As)2Fe4S16 16
Rhabdophane (Ce,La)PO4·(H2O) 24
Rheniite ReS2 11
Rhodizite (K,Cs)Al4Be4(B,Be)12O28 14
Rhodochrosite Mn(CO3) 8
Rhodonite (Mn,Fe,Mg,Ca)SiO3 8
Richterite Na2CaMg3Fe2(Si8O22)(OH)2 13
Riebeckite Na2Fe2+3Fe3+2(Si8O22)(OH)2 7-25-44
Rinkite Na2.5Ca4CeTi0.75Nb 0.25(Si2O7)2O3F 5-13
Rodalquilarite HFe3+2(TeO3)4Cl 10
Romanèchite (Ba,H2O)2(Mn4+,Mn3+)5O10 8
Romeite (Ca,Fe,Mn,Na)2(Sb,Ti)2O6(O,OH,F) 20
Roquesite CuInS2 16
Roscoelite KV2(OU/)2/AlSiO3O10 6-25
Roselite Ca2(Co, Mg)(AsO4)2·2H2O 3
Rustenburgite Pt2.25Pd0.75Sn 4
Rutile TiO2 5
Safflorite CoAs2 3
Samarskite Y0.2REE0.3Fe0.3U0.2Nb0.8Ta0.2O4 24-13-13-25
Samsonite Ag3MnSb2S6 20-17

(continued on next page)


16 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

Table 01.01 (continued)


Mineral Chemical composition Line

Sanbornite BaSi2O5 33
Sanidine, orthoclase, microcline KAlSi3O8 6-12-13-27-30-41-45-51
Santafeite (Mn,Fe,Al,Mg)2(Mn4+,Mn2+)2(Ca,Sr,Na)3(VO4,AsO4)4(OH)3·2(H2O) 25
Santanaite Pb9Pb2CrO16 1
Saponite (Ca,Na)0,3(Mg,Fe)3(Si,Al)4O10(OH)2·4(H2O) 43-57
Sapphirine (Al,Mg)8(Al,Si)6O20 30-49-50
Sarabauite CaSb10O10S6 20
Sassolite B(OH)3 30
Sauconite (Na0.3(Zn,Mg)3 (Si,Al)4.OH2·nH2O) 16
Scandiobabingtonite Ca2(Fe2+, Mn)ScSi5O14(OH) 13
Scapolite Na2Ca2Al3Si9O24Cl 5-7-38-42-47-50
Schachnerite Ag1.1Hg0.9 23-17
Schapachite AgBiS2 17
Scheelite CaWO4 12
Schoepite (UO2)8O2(OH)12·12(H2O) 25
Schwatzite (mercurian tetrahedrite) (Cu,Hg)12Sb4S13 23
Scorodite Fe(AsO4)·2(H2O) 21
Scorzalite Fe0.75Mg0.25Al2(PO4)2(OH)2 38
Seginite PbFe3H(AsO4)2(OH)6 21
Seinajokite FeSb2 20
Sellaite MgF2 32
Senarmontite Sb2O3 20
Sepiolite Mg4 [(OH)2 Si6O15]·2H2O + 4H2O 61
Serendibite Ca2Mg4.5Al1.5Si3.6Al1.8BO 30
Serpentine, antigorite, chrysotile Mg3Si2O5(OH)4 1-2-3-7-28-32-44-45-52
Siderite FeCO3 7
Siegenite (Co,Ni)3S4 3
Sillimanite Al2SiO5 30-32-48-49-50
Silver native Ag 17
Sinhalite MgAlBO4 30
Sklodowskite (H3O)2Mg(UO2)2(SiO4)2·4(H2O) 25
Skutterudite CoAs3 3
Smithsonite ZnCO3 16
Smythite Fe6.75Ni2.25S11 7
Sodalite Na8Al6Si6O24Cl2 14-42
Sohngeite Ga(OH)3 27
Sperrylite PtAs2 4
Sphalerite ZnS 16
Sphene CaTiSiO5 5
Spherocobaltite CoCO3 3
Spinel-group minerals (X)(Y)2O4 X = Mg, Zn, Fe, Mn, Y = Al, Cr, Ti 1-7-30-45-47-50-51
Spodumene-hiddenite-kunzite LiAl(Si2O6) 15
Stannite Cu2FeSnS4 12
Staurolite (Fe,Mg)2Al9(Si,Al)4O20(O,OH)4 45-49
Stavelotite (La) (La,Sc,Nd)3 Mn Cu(Mn,Fe)26 O30|(Si2O7)6 13
Steenstrupin Ce (Na14Ce6Mn2+Mn3+Fe2+ 2 (Zr,Th)(Si6O18)2(PO4)7·3H2O) 39
Stephanite Ag5SbS4 16-17
Stevensite (Ca0.5,Na)0.33(Mg,Fe)3Si4O10(OH)2·n(H2O) 57
Stibiconite Sb3O6(OH) 20
Stibiopalladinite Pd3Sb 4
Stibnite Sb2S3 20
Stilbite-Ca NaCa4Al8Si28O72·30(H2O) 12-43
Stilleite ZnSe 10
Stilpnomelane K0.7Fe3.3Mg1.4Fe3.3Si10Al2O24(OH)3·2(H2O) 7
Stokesite CaSnSi3O9·2H2O 12
Stolzite PbWO4 12
Strelkinite Na2(UO2)2V2O8·6(H2O) 25
Stromeyerite CuAgS 17
Strontianite SrCO3 34
Strüverite (Ti,Ta,Nb,Fe)2O4 13
Suanite Mg2B2O5 30
Sugilite KNa2(Fe,Mn,Al)2Li3Si12O30 8
Sulfur native S8 S
Svanbergite SrAl3(PO4)(SO4)(OH)6 49
Sylvanite (Au,Ag)2Te4 19
Sylvite KCl 35-35
Synchysite CaCe(CO3)2F 24
Szaybelyite MgB2(OH) 30
Taaffeite Mg3Al8BeO16 14
Tachyhydrite CaMg2Cl6·12(H2O) 35
Talc Mg3Si4O10(OH)2 44-56
Tapiolite FeTa2O6 13
Tarkianite (Cu,Fe)(Re,Mo)4S8 11
Teallite PbSnS2 12
Tennantite (Cu,Fe)12As4S13 9
Tenorite CuO 9
Tephroite Mn2(SiO4) 9-45
H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 17

Table 01.01 (continued)


Mineral Chemical composition Line

Tetradymite Bi2Te2S 10-18


Tetraedrite (Cu,Fe)12Sb4S13 9
Thenardite Na2(SO4) 35-37
Thomsonite-(Ca) NaCa2Al5Si5O20·6(H2O) 43
Thoreaulite SnTa2O7 12-13
Thorianite ThO2 26
Thorite ThSiO4 26
Thortveitite (Sc,Y)2 (Si2O7), 13
Thorutite Th0.4U0.4Ca0.2Ti2O3(OH)3 26-25
Thulite (Ca,Mn)2Al3(SiO4)(Si2O7)O 48
Tiemannite HgSe 10
Tinaksite K2NaCa1.75 Mn0.25Ti0.85Fe0.15Si7O19(OH) 46
Tincalconite (“borax”) Na2B4O7.10 H2O 30
Tinzenite (Ca, Mn, Fe) Al2BSi4O15(OH) 8
Tirodite Na2.5Mn0.5Mg4Fe3+(Si8O22)(OH)2 47
Tischendorfite Pd8Hg3Se9 4
Tlapallite H6Ca1.5Pb0.5Cu3(SO4)(TeO3)4(TeO6) 10
Todorokite Na0.2Ca0.05K0.02Mn4+4Mn3+2 O12·3(H2O) 8
Topaz Al2(SiO4)F1.1(OH)0.9 12-13-14-30-32-42-49
Torbernite Cu(UO2)2(PO4)2·11(H2O) 25
Tourmaline, rubellite, indigolite, X1Y3Al6B3Si6(OH)4 30
elbaite, dravite, schoerl, achroite X = Na, Ca , Y = Mg, Li, Al, Fe
Tremolite Ca2Mg5(Si8O22)(OH)2 44-49-50-52-58
Triphylite LiFe(PO4) 15-38
Triplite (Mn,Fe,Mg,Ca)2(PO4)(F,OH) 12-15-38
Troillite FeS 7
Trona Na3(HCO3)(CO3)·2H2O 37-43
Tsumgallite GaO(OH) 27
Tugtupite Na4AlBe(Si4O12)Cl 14
Tulameenite Pt2FeCu 4
Tungstenite WS2 12
Tungstite WO3·H2O 12
Turquoise CuAl6(PO4)4(OH)8·4(H2O) 9
Tyrrelite Cu1.8Co0.9Ni0.3Se4 10
Tyuyamunite Ca(UO2)2(VO4)2·5 H2O 6-25
Ulexite NaCaB5O9·8 H2O 30
Ullmannite NiSbS 20
Ulvite Fe2TiO4 5
Umangite Cu3Se2 10
Uraninite UO2–U3O8 25
Uranophane CaH2(SiO4)2(UO2)·5(H2O) 25
Uranospinite Ca(UO2)2(AsO4)2·10(H2O) 25
Uranothorite (U,Th)SiO4 26-25
Uvarovite Ca3Cr2(SiO4)3 1
Valentinite Sb2O3 20
Valleriite Fe2+2.2Cu1.8S4Mg1.7Al1.3(OH)2 2
Vanadinite Pb5(VO4)3Cl 16-6
Vandendriesscheite Pb(UO2)10O6(OH)11·11(H2O) 25
Vaughanite TlHgSb4S7 23-22
Vauquelinite Pb2Cu(CrO4)(PO4)(OH) 1
Vermiculite (Mg,Fe,Al)3(Al,Si)4O10(OH)2·4(H2O) 38-44-50-58
Vesuvianite Ca10Mg2Al4(Si2O7)2(SiO4)5(OH)4 9 (and others)
Villiaumite NaF 32
Violarite FeNi2S4 2
Vivianite Fe3(PO4)2·8(H2O) 9
Volchonskoite Ca0.Mg 0.1Cr1.2Mg0.8Fe0.3Si3.5Al0.5O10(OH)2·3.6 (H2O) 2
Voltaite K2Fe2+5Fe3+3Al(SO4)12·18(H2O) 31
Wadeite K2ZrSi3O9 51
Wickmanite MnSn(OH)6 12
Willemite Zn2SiO4 16
Willemseite Ni2.25Mg0.75Si4O10(OH)2 2
Witherite BaCO3 33
Wodginite Mn(Sn,Ta)(Ta,Nb)2O8 13
Wollastonite CaSiO3 9-20-32-45-46-47-52
Woodhouseite CaAl3(PO4)(SO4)(OH)6 55
Woodruffite (Zn,Mn2+)2Mn4+5O12·4(H2O) 8
Wulfenite PbMoO4 11
Wurtzite ZnS 16
Xanthochroite CdS 16
Xanthophyllite/clintonite CaMg2.2Al0.7Al2.7Si1.3O10(OH)2 7
Xenotime-(Y) YPO4 24
Zincite ZnO 16
Zinckenite PbSb2S4 20
Zinnwaldite KLiFeAl2Si3O10F 1.5(OH)0.5 15
Zircon ZrSiO4 39
Zoisite (ortho/clinozoiste) Ca2Al3Si3O12(OH) 41-48
Zunyite Al13Si5O20(OH)16F2Cl 19
18 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

Purely descriptive parameters are used to constitute the basis for 2.2.1. Magmatic host rocks
the first-order subdivision in the present classification scheme Magmatic host rocks in the header of the diagram of Fig. 01.01 are
(Fig. 01.01). Both parameters, host and commodity may be coupled arranged in order of increasing SiO2 content as if they had originated
in a spreadsheet used in the daily routine on the PC (“spreadsheet by fractional crystallization from an ideal parental mantle magma
classification scheme”) with lines (commodities) and columns (host with the ultrabasic rocks plotted on the left-hand side and felsic rocks
rock and host structure) so that the relations between the element on the right-hand side (Carmichael et al., 1974).
and mineral looked for on one hand and the host rock and host The most recent geological classification of magmatic rocks into
structure on the other are more or less self-explanatory. Some users plutonic, subvolcanic, dikes and extrusive/effusive rocks and their wide
might call this classification scheme a “chessboard classification range of outward appearances has been published in the form of an easy-
scheme”, because playing chess has some similarities with explora- to-handle field guide by Thorpe and Brown (1985). The first-order
tion. Elements and minerals are required by the industry, rocks and classification of principal groups of mineral deposits is based on a
structures are the targets during exploration and mining. In the x–y mineralogical and/or chemical subdivision of magmatic rocks. A closer
plot of Fig. 01.01, the variation of the host environments is shown on look at the various classification schemes reveals little change in the
the x-axis and the mineralogical and chemical variation along the y- attributes of rock types throughout the recent past so that this can be
axis. Using the classification scheme in the strict sense of the word considered a rather sound basis (Iddings, 1909; Holmes, 1920; Johannes,
and using a spreadsheet of an .xls file (EXCEL) renders the scheme 1931; Niggli, 1954; Hatch et al., 1972; Streckeisen, 1976, 1980; Cox et al.,
more attractive because it becomes extremely versatile. The reader 1979; Ehlers and Blatt, 1982; Wimmernauer, 1985; Le Bas et al., 1986).
can scroll up and down to see which commodity you might expect in The double-triangular plot also called Q–A–P–F diagram (quartz, alkaline
a specific lithological realm and from left to right to get an overview feldspar, plagioclase, and foid) designed by Streckeisen (1976) allows for a
where you can find a specific commodity in the magmatic, subdivision of volcanic and plutonic magmatic rocks based on their
sedimentary or metamorphic realms and also find a cross over in mineralogical composition. The Q–A–P–F diagram combined with the
the field of coal petrography where equivalent studies have been pigeonhole diagram that uses the SiO2 content (wt.%) and the sum of
conducted and published in the “International Journal of Coal Na2O and K2O (wt.%) yields a subdivision into ultrabasic rocks, basic,
Geology”. A combination of the line and column codes defines the intermediate and acidic magmatic rocks suitable to describe the host
square and gives the code of type of deposit listed in the tables and rock lithologies used in this spreadsheet classification scheme. Alkaline
used as subheadings in the text. Economic geology is a subject matter magmatic rocks whether they are silica deficient and/or alumina
in constant change. If a new type of an ore deposit has been deficient (ekeritic, miaskitic, and agpaitic) can be grouped also within
discovered or a mineralization has been redefined for scientific or this series.
economic reasons, no matter, key them in. The digital arena provides
space for all of these arrangements and renders the spreadsheet 2.2.2. Ore-bearing structures
classification scheme user-friendly. Sedimentary and magmatic host lithologies in the diagram are
What about deposits which show up in different lines, as exemplified separated by two columns representative of structural elements.
by the VMS deposits which are significant producers of Co, Cu, Pb, Zn, Ag Megabreccias including fragments of various lithologies cannot be linked
and Au? The major commodity recovered from the deposit or the target to a particular host rock lithology. Their striking character is the irregular
mineral seems to be the most appropriate qualifier. The emplacement of shape of their fragments and structural control (Laznicka, 1988).
an ore deposit and the enrichment of element by some orders of Vein-type deposits in this classification scheme are defined as
magnitude is rarely a monophase process. Not surprisingly, there may be fault-related mineralizations unrelated to any magmatic or sedimen-
recognized certain variations from the reference types listed in the tary host rock lithologies or activities, some of which are described in
“chessboard classification scheme”. The mineralization may either be the the succeeding paragraph.
product of a complex polyphase mineralizing process, reflecting a Mineralized structure zones, fissures and veinlets are ubiquitous in
combination of different types or may be a type so far unknown to the mineral deposits. Criss-crossing veinlets most commonly occur in
scientific community or to the author. acidic and intermediate plutonic and subvolcanic magmatic rocks
Current metallogenetic models and concepts were not sidelined leading into disseminated mineralization where mineral grains are
in this classification scheme. They are mosaic stones to paint greater scattered across the magmatic host rocks and their exocontacts. This
pictures and referred to later on a second- or third-order level when interlaced network of irregularly shaped Cu-, Au- and Mo-bearing
it comes to the discussion of the individual deposits. Production veins forms an integral part of what is described later in this study as
figures and reserve calculations are important in economic geology hydrothermal Cu-, Au- and Mo porphyry system and, hence, dealt
but rarely presented for individual deposits rather than commodities. with in the chapters on Cu, Au and Mo. Alteration pipes and fissures
The Internet — see database mentioned previously — is cramped with mineralized with Fe and Cu sulfides are also found in another type
beautiful photographs of minerals and micromounts and full-color of world-class-deposits, underneath massive sulfide base metal
publications presenting them are numerous whereas images show- deposits. Vein-type Sn and W mineralizations in the immediate
ing specimens of ordinary ore and industrial minerals are scarcely surroundings of acidic intrusions as well as in copulas of a granitic
found in the literature and are often hidden in company reports. intrusion itself are treated as part of a granite-related minerali-
Therefore in this paper ore takes priority over mineral as far as the zation rather than a vein mineralization of its own. They never
presentation of rocks and minerals is concerned. It is mandatory, occur far off the granite with which they are genetically
when dealing with gemstones in a paper like that, that the common associated.
minerals are presented in images to give an idea how the different Fault-related or structure-related mineralization has been subdivided
varieties of gemstones differ from each other. into shallow and deep veins. These mineralizing processes are veritably
unrelated to any magmatic, sedimentary or metamorphic lithologies in
2.2. The host of mineral deposits the close vicinity.
Shallow veins, as viewed in plan view in the current study, show a
Rocks are either hosts of mineral deposits or they are used wide aerial extension in the basement rocks and near the basement-
themselves as mineral raw materials. The mineralogical composition platform interface, named unconformity (or disconformity). Al-
of common magmatic, sedimentary and metamorphic rocks referred though a preferred orientation of individual veins is often seen, they
to in the succeeding text is listed in Table 02.01, consulting the do not show up in platform sediments far off the uplifted basement
“Glossary of Geology” (Bates and Jackson, 1987). (Teuscher and Weinelt, 1972). These veins were emplaced in the
H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 19

aftermaths of an orogeny when the magmatic and metamorphic Isotopic data indicate a deep crustal or even mantle source for CO2,
basement rocks where uplifted and subjected to erosion or during while the water may have mixed sources, both surficial and
renewed phases of uplift and erosion as a long-range effect of distant metamorphic. Tectonic control of these Oligo–Miocene mineraliza-
orogenic processes. In both cases a subhorizontal plane called tions is transtensional faulting, which exposed hot metamorphic
unconformity is in control on the aerial extension of these veins rocks to fluid convection along brittle structures. These deposits
which do not reach very deep into the host rock underneath (2-D conform best to the model of metamorphogenic metallogenesis by
shallow veins). Unconformities or disconformities may come into retrograde leaching- see also section on metamorphic mobilization.
existence within a series of platform sediments which were only The color of the boxes direct the reader's thoughts to the principal
gently tilted and close to a domal structure caused by salt, mud or realms which these mineralized structure are affiliated with
magmatic intrusions. Such a setting is exemplified by the Late (Fig. 01.01b). The 2-D vein clusters are part of large-scale basinal
Variscan and the Subhercynian (or Laramide) unconformities, one mineralization with closer affinities to mineralization in duricrusts
developed in the wake of the Variscan orogeny and the other as a and siliciclastic–calcareous shelf sediments than any deep-seated
long-distant effect of the Alpine orogeny (Dill et al., 2008a,b). The heat source. By contrast, the 1-D vein zones are deeply rooted in the
distribution of the Permo–Mesozoic rocks overlying the folded basement and linked even to deeper sources of elements (mantle-
Variscides is controlled by eustacy and tectonic events related to derived).
the break-up of Gondwana. The question why the 2-D vein
mineralization is there can be answered by giving reference to the 2.2.3. Sedimentary host rocks
horizontal plane and large regional faults serving as master channel Sedimentary rocks result from deposition of products of
ways. The question when the 2-D vein mineralization came into chemical, physical and biological weathering and erosion of
existence can be answered by giving reference to various thermal magmatic, metamorphic or pre-existing sedimentary rocks. Me-
events. Major Permian to Jurassic tectonic events which influenced chanically disintegrated material and chemical compounds are
metallogenesis along the post-Variscan unconformity include (1) transported more or less far off the source rocks, where they are
Stephanian to early Permian rifting accompanied by extensive deposited and undergo lithification through time. Many classifica-
magmatism, (2) Triassic to Jurassic opening of oceanic domains in tion schemes for the various rock types have been put forward and
the Alpine region, and (3) Mid-Triassic to early Jurassic extension in compiled in the various textbooks (Leighton and Pendexter, 1962;
the extra-Alpine region. Isotope data increasingly show the signif- Füchtbauer and Müller, 1970; Selley, 1976; Flügel, 1978; Scoffin,
icance of a thermal event at the Triassic–Jurassic boundary for ore 1987; Tucker and Wright, 1990; Friedman et al., 1992; Adams and
formation in Central Europe (Wernicke and Lippolt, 1997). MacKenzie, 1998; Miall, 2000; Tucker, 2001). The sedimentary host
Deep veins mostly occur in uplifted basement blocks; in plan view rocks are arranged in a similar way like their magmatic counterparts,
they show the close relationship to deep-seated lineamentary fault reflecting a differentiation from the basin edge to the basin center or
zones, or structural elements of the folded host rock terrain which in lithological terms from autochthonous chemical residues evolving
can be traced over a long distance. Rarely, they are found near the in or proximal to the provenance area via siliciclastic deposits to
edge of basement uplifts, never are they reported from the platform calcareous and evaporitic sediments with the most soluble repre-
sediments. Mineralization is related to thrust and shear zones acting sentative on the right-hand side.
as channel ways and loci of mineralization. At a deeper level these
structures may convert into zones of mobilization along which felsic 2.2.4. Organic material and special host rocks
intrusions were able to penetrate the crystalline basement. The Sediments containing organic matter such as lignite and coal or
Variscan and Alpine orogenies used as an example for a metallotect hydrocarbons, which sometimes are enriched in inorganic com-
hosting 2-D shallow veins, can also be used as an example for thrust- pounds do not directly fit in this differentiation scheme and
bound and fold-related metamorphogenic deposits (Dill et al., 2008a, therefore they were given a column of their own. They may be
b). Activation of the continental margin resulted in the initiation of classified according to suggestions made by Stach (1982), Diessel
subduction in the early Late Devonian, closing of the Rhenohercynian (1992), Moore and Shearer (2003) and Kalkreuth (2004), and for
Basin and subsequent Variscan collisional tectonics led to the petroleum deposits by Tissot and Welte (1978), The missing link
accretion of shelf sediments and a magmatic activity along deep- between organic material and mineralization has been provided by
seated suture zones (Franke and Oncken, 1990). The Variscan ore Seredin and Finkelman (2008), who gave a detailed account of
shows pervasive textural distortion and strong mylonitization. It is metalliferous coal.
found in cleaved psammo-pelitic series and developed along the fold
axes of the Variscan anticlines. The Alpine analogues of thrust- 2.3. Type of commodity (inorganic raw material)
related or syn-orogenic veins developed during the Late Alpine
deformation and were controlled by sinistral wrenching along ENE- 2.3.1. Ore minerals
trending faults within the Eastern Alps and the subsequent eastward There is no yet common consensus about the meaning of the
lateral escape of crustal wedges towards the Pannonian realm word ore. The more stringent explanation defines ore as a rock
accompanied by orogen-parallel extension and tectonic denudation composed of ore minerals and gangue. From the standpoint of a
of metamorphic core complexes (Ratschbacher et al., 1991; Neu- metallurgist heavy metals (e.g. Pb) may be won at a profit from ore
bauer et al., 1999). Two groups of deposits have been recognized minerals, e.g. galena (PbS). Gangue comprises the various waste
within these syn- to late orogenic regimes (Prochaska, 1993; Pohl minerals for which there is no use at the current time and which
and Belocky, 1994). Immediately after the Cretaceous orogeny after beneficiation are dumped at the mining site. Some hundred
deposits were produced at high pressures by metamorphic fluids of years ago, a vein mineralization was mined for Cu ore made up of
very high salinity as a result of devolatilization of subducted South chalcopyrite forming the ore mineral and siderite plus dolomite
Pennic rocks. During the Paleogene orogeny under relatively low considered then as gangue minerals (Dill, 1985a). Siderite and
pressures, CO2-rich fluids and low to moderate salinities evolved. dolomite were used by our ancestors as backfill in the mined-out

Fig. 01.01a. (see next pages). Chessboard classification scheme. Bold arrowheads lateral facies changes of host rock lithologies. Thin arrowheads mineralization emplaced at the
contact of different lithologies or alternative placement of mineralization. Boxes show element composition, rocks and/or minerals of economic interest. Elements set in brackets
refer to elements present in abnormally high amounts but not necessarily show up by minerals of their own, e.g. (As) in coal. Terms firmly entrenched in the literature and used to
describe the ore types are given in italics. The locus typicus of ore type is written in italics and set in rounded brackets. For color coding and further symbols see legend Fig. 01.01b.
20 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420
H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 21

Fig. 01.01a (continued).


22 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

Fig. 01.01a (continued).


H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 23

Fig. 01.01a (continued).


24 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

Fig. 01.01a (continued).


H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 25

Fig. 01.01a (continued).


26 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

Fig. 01.01a (continued).


H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 27

Fig. 01.01a (continued).


28 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

Fig. 01.01a (continued).


H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 29

Fig. 01.01a (continued).


30 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

Fig. 01.01a (continued).


H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 31

Fig. 01.01a (continued).


32 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

Fig. 01.01a (continued).


H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 33

Fig. 01.01a (continued).


34 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

Fig. 01.01a (continued).


H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 35

Fig. 01.01a (continued).


36 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

Fig. 01.01a (continued).


H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 37

Fig. 01.01a (continued).


38 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

Fig. 01.01a (continued).


H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 39

Fig. 01.01a (continued).


40 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

Fig. 01.01a (continued).

parts of the stopes to provide some kind of roof support and prevent metal or mineral product recovered in the milling process) and did
collapse of the hanging wall. During a subsequent mining period, the not achieve status of an ore mineral at that time. Siderite was the
mine was re-opened to recover sideritic parts of the vein only ore mineral, since it was used to smelt iron at a profit. The term
mineralization as well as debris of siderite used as backfill. ore mineral is also used by some geologists as a comprehensive term
Chalcopyrite was not even mined as a byproduct (a secondary for a wide range of commodities from aluminum resources such as
bauxite through wollastonite, which is beyond doubt an industrial
mineral.

2.3.2. Industrial minerals and rocks


Which raw material plays the most important part in the supply-
and-demand relation of societies across the world? Some may assume
that a mineral of the group of high-unit-value commodities such as
diamond is the most significant raw material, others may rate up fossil
fuels. To be more precise, diamond is a concentrate of diamond ore. If
commodities are ranked by cumulative production values, construc-
tion raw materials occupy the top places. Aggregates, sand and gravel
are followed by quarry and dimension stones (Prentice, 1990; Lorenz,
1991). These raw materials are high-place-value commodities and the
leading members among the non-metallic raw material and industrial
minerals. It is the distance between the place of exploitation and the
place of final use which plays a crucial part when calculating the price
for the consumer. Other important non-metallic raw materials such as
rock salt, phosphates or carbonate minerals are very well known in
our daily life. Non-metallic minerals such as wollastonite, barite or
fluorite are less well-known. Non-metallic raw materials are minerals
(wollastonite) and rocks (limestones) exploited for their physical and
chemical properties (density, inertness, and insulating capacity). They
are utilized either directly (sand as extracted in the sandpit) or after
undergoing special treatments and appropriate processing in various
production processes (e.g. burning bricks). These raw materials are
neither used for the extraction of metals (see galena used to recover
lead) nor as fossil fuels (see uraninite considered as an energy source
Fig. 01.01b. Legend. in power plants). Some experts expand this comprehensive term to
H.G. Dill / Earth-Science Reviews 100 (2010) 1–420 41

Fig. 01.01a (continued).

include artificial products such as fly ash, smelter slags or recycled gemstones to be of outstanding aesthetic quality. To achieve this
goods derived from construction raw materials after demolition. In a outstanding aesthetic quality, gemologists sometimes do not leave it to
classification scheme like this, these man-made raw materials do not nature alone but subject rough stones to thermal treatments to improve
fit in, even if they are primarily derived from rocks and minerals. their outward appearance (e.g. precious corundum species). Some do not
Many construction and non-construction raw materials form large look like a gemstones until they have undergone heat treatment (e.g.
deposits embedded within sedimentary series (magnesite, borate) or tanzanite). These treatments are legal procedures accepted by gemolo-
they form sediments by themselves (sand, gravel, limestones). With gists and fully in line with the ethics of economic geology; selling
about 75% of the upper earth's crust, down to a depth of 1.5 km, made however red α Al2O3 synthesized according to the Verneuil Process,
up of sediments, applied sedimentology becomes thereby a center- which even for the expert is often hard to distinguish from natural ruby, is
piece of extractive geology (quarrying and mining). a swindle. Despite a great deal of mineralogical and crystallographic
expertise and knowledge, necessary for the identification and evaluation
2.3.3. Gemstones and ornamental stones (four “C” cut, clarity, color, and carat) the majority of high-quality
Gemstones and ornamental stones are a subgroup of the afore- gemstones do not derive from primary metamorphic or magmatic
mentioned non-construction industrial minerals. It is a group of minerals deposits. About 50% of gemstones are won from sedimentary rocks,
and rocks, which unlike any other group of inorganic raw materials is demonstrating again what an outstanding part sedimentology may play.
influenced by the personal taste and by the outstanding aesthetic quality, An overview of gemstones is given by Hurlburt and Kammerling (1991)
both of which are not free from the dictate of fashion. Rough opaque and Schumann (1997).
corundum e.g. is used as an abrasive, Cr and Fe contents may turn α Al2O3
into ruby, displaying different shades of red, and Fe and Ti added to this Al 2.4. Mineralizing processes
oxide convert corundum into blue sapphire or padparadscha, showing
delicately colored tones of pinkish-orange to orange pink hues. All three Host and commodity/raw material are welded together by the
modifications of precious corundum are rather seldom owing to mineralizing process. Formation of a mineral deposit is not anything but
exceptional lithogenetic processes. Rarity has a strong impact on the an extraordinary process of petrogenesis when elements and minerals
value and is a criterion second to none among gemstones, but luster and are concentrated in layers, lenses and seams (Figs. 09.08, 09.09, 09.21,
hardness (corundum: hardness 9 on the Mohs hardness scale) cannot be 10.04, 10.05, 11.11, 11.14, 11.20), veins (Figs. 09.10, 18.04, 18.09, 18.10),
cast aside during classification of gemstones . Only diamonds are harder plugs and stocks (Fig. 17.04)(Figs. 11.02, 11.03, 17.05) cavities
than precious corundum minerals. Previous classification schemes (Figs. 09.15, 09.16, 10.06) and caps (gossan) (Fig. 09.17) to an amount
employing the hardness to subdivide this group of non-metallic raw exceeding by several orders of magnitude the Clarke value of elements
materials into gemstones s.s. (diamond, precious corundum, topaz and in the crust (Clark and Washington, 1924; Mason, 1958; Vinogradov,
emerald), semiprecious stones or gemstones s.l. down to hardness 1962; Turekian and Wedepohl, 1961; Taylor, 1964). In this classification
number 6 on the Mohs hardness scale and decoration stones or collectors' scheme of economic geology the mineralizing processes are presented
stones being softer has been abandoned today by gemologists. About 120 embedded into the well-known theories of petrology (Fig. 02.01). The
minerals out of more than 3000 minerals fulfill the requirements of depositional processes leading to a mineral deposit may be subdivided
42 H.G. Dill / Earth-Science Reviews 100 (2010) 1–420

Fig. 02.01. A cartoon to illustrate the pathway of element mobilization and the relation between the mineralizing processes leading to metallic and non-metallic deposits in
sedimentary, magmatic and metamorphic rocks. The temperatures of formation expected during the various lithological processes are indicated.

into hypogene and supergene processes, more or less synonymous with Even if in many models of hydrothermal ore deposits, the main agent
the magmatic and sedimentary parts of petrology, which may both of metal transport is an aqueous liquid, there is increasing evidence from
undergo regional or contact metamorphism or in case of non- volcanic vapors, geothermal systems (continental and submarine),
isochemical processes (contact) metasomatism. vapor-rich fluid inclusions, and experimental studies that the vapor
The magma is the material out of which different types of phase may be an important and even dominant ore fluid in some
magmatic rocks are born and ore minerals may be separated by hydrothermal systems. Aqueous fluid (vapor or a vapor-derived fluid) of
fractional crystallization and gravitational settling to give rise to ore any composition with a density lower than its critical density are involved
deposits. Early formed crystals do not equilibrate with the magma in the formation of porphyry and epithermal deposits (Williams-Jones
around and get separated from the magma as it is described in the and Heinrich, 2005).
various classical reaction schemes starting with silica-poor and Older classification schemes have introduced some stages such as
ending eventually in more siliceous magmatic rocks mostly rich in “katathermal” and “pneumatolitic” to bridge the gap between the critical
fluids. The cumulates and the fluid-enriched parts of the petrological point of water and the stage of solidification of magmatic rocks
system are the ones which attracted much of the attention of (Schneiderhöhn, 1962). This has only generated a subgroup of mineral
economic geologists, especially in terms of chromium deposits deposits which form part of the hydrothermal stage and of the pegmatitic
(Duke, 1983; Stowe, 1987). A different story is liquation or fluid stage, referring to a group of coarse-grained rocks which may have a
immiscibility which takes place only in magmatic rocks by metamorphic or magmatic origin. The subcritical–hydrothermal stage
separation of a parent magma into one conducive to ore mineraliza- runs from the critical point down to near-ambient temperature
tions rich in Ni sulfides and one forming the siliceous matrix or gangue conditions, dependant upon the present climate.
(Naldrett et al., 1984). Water plays an important role, but it is not the only Supergene mineralizations as part of sedimentary processes are
carrier in the transport of elements and their chemical compounds. due to mechanical or chemical concentration. Detrital sediments are
Carbon dioxide, methane, potassium–sodium–chloride- and hydrogen generally composed of rock fragments and mineral grains, the
sulfide-bearing solutions also play an important role. majority of which are light minerals such as feldspar, quartz and
It may be genuine magmatic water and meteoric water or a some mica. Heavy minerals with specific gravities exceeding that of
mixture of the two. Sea water as well as intrastratal solutions quartz are minor constituents in siliciclastic rocks. In places, these
percolating deep into and through sedimentary piles (connate waters) minerals such as cassiterite, monazite or gold are concentrated in
and even metamorphic fluids contribute to what is called a hydrothermal beds of varying thickness along the beach or in rivers resulting in
mineralization. Sulfur, oxygen, hydrogen and carbon stable isotope placer deposits. The interplay of chemical weathering, a function of
compositions are used to establish the source of palaeohydrothermal the existing climatic conditions, and erosion stimulated by uplift are
waters (Bethke and Rye, 1979; Hildreth and Hannah, 1996; Faure et al., decisive whether in the topmost part of sedimentary, magmatic or
87 86
2002; Salier et al., 2005). Sr/ Sr ratios of hydrous fluid inclusion waters in metamorphic rocks an autochthonous mineralization can develop.
wolframite, tetrahedrite and base metal sulfide quartz veins have This supergene alteration zone may be called saprolite, saprock,
successfully been used to constrain the source of mineralizing fluids laterite, and bauxite or when preexisting sulfide mineralizations are
(Norman and Landis, 1983; Pettke and Diamond, 1997). involved as gossan. This in-situ chemical concentration may gradually
Hydrothermal mineralizations occur in sedimentary, magmatic pass into allochthonous chemical precipitation as elements are
and metamorphic rocks and thereby form some kind of triple- transported away from the supergene alteration zone and deposited
junction of mineral deposition. At 374 °C/225 kg/cm3 water the most under near-ambient conditions elsewhere as evaporites or Fe
widespread solvent changes into a supercritical fluid. A supercritical mineralization in continental or marine depocenters. Products of
fluid has both the gaseous property of being highly mobile, and the diagenetic chemical redeposition by subsurface fluids, mainly inter-
liquid property of being able to dissolve materials into their stratal water, during basin subsidence and burial are hard to
components. Above the critical temperature and critical pressure distinguish from hydrothermal products which makes the traditional
gases and liquids can coexist. distinction between syngenesis and epigenesis merely an academic

You might also like