Nothing Special   »   [go: up one dir, main page]

R7FS5D97E2A01CBG Renesas

Download as pdf or txt
Download as pdf or txt
You are on page 1of 116

Cover

Datasheet

S5D9 Microcontroller Group


Datasheet

Renesas Synergy™ Platform


Synergy Microcontrollers
S5 Series

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

www.renesas.com Rev.1.20 Aug 2018


S5D9 Microcontroller Group
Datasheet
Leading performance 120-MHz Arm® Cortex®-M4 core, up to 2-MB code flash memory, 640-KB SRAM, Graphics LCD
Controller, 2D Drawing Engine, Capacitive Touch Sensing Unit, Ethernet MAC Controller with IEEE 1588 PTP, USB 2.0
High-Speed, USB 2.0 Full-Speed, SDHI, Quad SPI, security and safety features, and advanced analog.

Features
■ Arm Cortex-M4 Core with Floating Point Unit (FPU) ■ System and Power Management
 Armv7E-M architecture with DSP instruction set  Low power modes
 Maximum operating frequency: 120 MHz  Realtime Clock (RTC) with calendar and VBATT support
 Support for 4-GB address space  Event Link Controller (ELC)
 On-chip debugging system: JTAG, SWD, and ETM  DMA Controller (DMAC) × 8
 Boundary scan and Arm Memory Protection Unit (Arm MPU)  Data Transfer Controller (DTC)
 Key Interrupt Function (KINT)
■ Memory
 Power-on reset
 Up to 2-MB code flash memory (40 MHz zero wait states)
 Low Voltage Detection (LVD) with voltage settings
 64-KB data flash memory (125,000 erase/write cycles)
 Up to 640-KB SRAM ■ Security and Encryption
 Flash Cache (FCACHE)  AES128/192/256
 Memory Protection Units (MPU)  3DES/ARC4
 Memory Mirror Function (MMF)  SHA1/SHA224/SHA256/MD5
 128-bit unique ID  GHASH
 RSA/DSA/ECC
■ Connectivity
 True Random Number Generator (TRNG)
 Ethernet MAC Controller (ETHERC)
 Ethernet DMA Controller (EDMAC) ■ Human Machine Interface (HMI)
 Ethernet PTP Controller (EPTPC)  Graphics LCD Controller (GLCDC)
 USB 2.0 High-Speed (USBHS) module  JPEG codec
- On-chip transceiver with voltage regulator  2D Drawing Engine (DRW)
- Compliant with USB Battery Charging Specification 1.2  Capacitive Touch Sensing Unit (CTSU)
 USB 2.0 Full-Speed (USBFS) module  Parallel Data Capture Unit (PDC)
- On-chip transceiver with voltage regulator
■ Multiple Clock Sources
 Serial Communications Interface (SCI) with FIFO × 10
 Main clock oscillator (MOSC) (8 to 24 MHz)
 Serial Peripheral Interface (SPI) × 2
 Sub-clock oscillator (SOSC) (32.768 kHz)
 I2C bus interface (IIC) × 3
 High-speed on-chip oscillator (HOCO) (16/18/20 MHz)
 Controller Area Network (CAN) × 2
 Middle-speed on-chip oscillator (MOCO) (8 MHz)
 Serial Sound Interface Enhanced (SSIE) × 2
 Low-speed on-chip oscillator (LOCO) (32.768 kHz)
 SD/MMC Host Interface (SDHI) × 2
 IWDT-dedicated on-chip oscillator (15 kHz)
 Quad Serial Peripheral Interface (QSPI)
 Clock trim function for HOCO/MOCO/LOCO
 IrDA interface
 Clock out support
 Sampling Rate Converter (SRC)
 External address space ■ General-Purpose I/O Ports
- 8-bit or 16-bit bus space is selectable per area  Up to 133 input/output pins
- SDRAM support - Up to 9 CMOS input
- Up to 124 CMOS input/output
■ Analog
- Up to 21 input/output 5 V tolerant
 12-bit A/D Converter (ADC12) with 3 sample-and-hold circuits
- Up to 18 high current (20 mA)
each × 2
 12-bit D/A Converter (DAC12) × 2 ■ Operating Voltage
 High-Speed Analog Comparator (ACMPHS) × 6  VCC: 2.7 to 3.6 V
 Programmable Gain Amplifier (PGA) × 6
■ Operating Temperature and Packages
 Temperature Sensor (TSN)
 Ta = -40°C to +85°C
■ Timers - 176-pin BGA (13 mm × 13 mm, 0.8 mm pitch)
 General PWM Timer 32-bit Enhanced High Resolution - 145-pin LGA (7 mm × 7 mm, 0.5 mm pitch)
(GPT32EH) × 4  Ta = -40°C to +105°C
 General PWM Timer 32-bit Enhanced (GPT32E) × 4 - 176-pin LQFP (24 mm × 24 mm, 0.5 mm pitch)
 General PWM Timer 32-bit (GPT32) × 6 - 144-pin LQFP (20 mm × 20 mm, 0.5 mm pitch)
 Asynchronous General-Purpose Timer (AGT) × 2 - 100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch)
 Watchdog Timer (WDT)
■ Safety
 Error Correction Code (ECC) in SRAM
 SRAM parity error check
 Flash area protection
 ADC self-diagnosis function
 Clock Frequency Accuracy Measurement Circuit (CAC)
 Cyclic Redundancy Check (CRC) calculator
 Data Operation Circuit (DOC)
 Port Output Enable for GPT (POEG)
 Independent Watchdog Timer (IWDT)
 GPIO readback level detection
 Register write protection
 Main oscillator stop detection
 Illegal memory access

R01DS0303EU0120 Rev.1.20 Page 2 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

1. Overview
The MCU integrates multiple series of software- and pin-compatible Arm®-based 32-bit cores that share the same set of
Renesas peripherals to facilitate design scalability and efficient platform-based product development.
The MCU in this series incorporates a high-performance Arm Cortex®-M4 core running up to 120 MHz, with the
following features:
 Up to 2-MB code flash memory
 640-KB SRAM
 Graphics LCD Controller (GLCDC)
 2D Drawing Engine (DRW)
 Capacitive Touch Sensing Unit (CTSU)
 Ethernet MAC Controller (ETHERC) with IEEE 1588 PTP, USBFS, USBHS, SD/MMC Host Interface
 Quad Serial Peripheral Interface (QSPI)
 Security and safety features
 Analog peripherals.

1.1 Function Outline

Table 1.1 Arm core


Feature Functional description
Arm Cortex-M4 core  Maximum operating frequency: up to 120 MHz
 Arm Cortex-M4 core:
- Revision: r0p1-01rel0
- ARMv7E-M architecture profile
- Single precision floating-point unit compliant with the ANSI/IEEE Std 754-2008.
 Arm Memory Protection Unit (Arm MPU):
- ARMv7 Protected Memory System Architecture
- 8 protect regions.
 SysTick timer:
- Driven by SYSTICCLK (LOCO) or ICLK.

Table 1.2 Memory


Feature Functional description
Code flash memory Maximum 2 MB of code flash memory. See section 55, Flash Memory in User’s Manual.
Data flash memory 64 KB of data flash memory. See section 55, Flash Memory in User’s Manual.
Memory Mirror Function (MMF) The Memory Mirror Function (MMF) can be configured to mirror the target application image
load address in code flash memory to the application image link address in the 23-bit unused
memory space (memory mirror space addresses). Your application code is developed and
linked to run from this MMF destination address. The application code does not need to know
the load location where it is stored in code flash memory. See section 5, Memory Mirror
Function (MMF) in User’s Manual.
Option-setting memory The option-setting memory determines the state of the MCU after a reset. See section 7,
Option-Setting Memory in User’s Manual.
SRAM On-chip high-speed SRAM with either parity-bit or Error Correction Code (ECC). The first
32 KB in SRAM0 provides error correction capability using ECC. Parity check is performed for
other areas. See section 53, SRAM in User’s Manual.
Standby SRAM On-chip SRAM that can retain data in Deep Software Standby mode. See section 54, Standby
SRAM in User’s Manual.

R01DS0303EU0120 Rev.1.20 Page 3 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

Table 1.3 System (1 of 2)


Feature Functional description
Operating modes Two operating modes:
- Single-chip mode
- SCI or USB boot mode.
See section 3, Operating Modes in User’s Manual.
Resets 14 resets:
 RES pin reset
 Power-on reset
 Voltage monitor 0 reset
 Voltage monitor 1 reset
 Voltage monitor 2 reset
 Independent watchdog timer reset
 Watchdog timer reset
 Deep software standby reset
 SRAM parity error reset
 SRAM ECC error reset
 Bus master MPU error reset
 Bus slave MPU error reset
 Stack pointer error reset
 Software reset.
See section 6, Resets in User’s Manual.
Low Voltage Detection (LVD) The Low Voltage Detection (LVD) function monitors the voltage level input to the VCC pin, and
the detection level can be selected using a software program. See section 8, Low Voltage
Detection (LVD) in User’s Manual.
Clocks  Main clock oscillator (MOSC)
 Sub-clock oscillator (SOSC)
 High-speed on-chip oscillator (HOCO)
 Middle-speed on-chip oscillator (MOCO)
 Low-speed on-chip oscillator (LOCO)
 PLL frequency synthesizer
 IWDT-dedicated on-chip oscillator
 Clock out support.
See section 9, Clock Generation Circuit in User’s Manual.
Clock Frequency Accuracy The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be
Measurement Circuit (CAC) measured (measurement target clock) within the time generated by the clock to be used as a
measurement reference (measurement reference clock), and determines the accuracy
depending on whether the number of pulses is within the allowable range.
When measurement is complete or the number of pulses within the time generated by the
measurement reference clock is not within the allowable range, an interrupt request is
generated.
See section 10, Clock Frequency Accuracy Measurement Circuit (CAC) in User’s Manual.
Interrupt Controller Unit (ICU) The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC/DTC
module and DMAC module. The ICU also controls NMI interrupts. See section 14, Interrupt
Controller Unit (ICU).
Key Interrupt Function (KINT) A key interrupt can be generated by setting the Key Return Mode Register (KRM) and inputting
a rising or falling edge to the key interrupt input pins. See section 21, Key Interrupt Function
(KINT) in User’s Manual.
Low power modes Power consumption can be reduced in multiple ways, such as by setting clock dividers,
controlling EBCLK output, controlling SDCLK output, stopping modules, selecting power
control mode in normal operation, and transitioning to low power modes. See section 11, Low-
Power Modes in User’s Manual.
Battery backup function A battery backup function is provided for partial powering by a battery. The battery-powered
area includes the RTC, SOSC, backup memory, and switch between VCC and VBATT. See
section 12, Battery Backup Function in User’s Manual.
Register write protection The register write protection function protects important registers from being overwritten
because of software errors. See section 13, Register Write Protection in User’s Manual.
Memory Protection Unit (MPU) Four Memory Protection Units (MPUs) and a CPU stack pointer monitor function are provided
for memory protection. See section 16, Memory Protection Unit (MPU) in User’s Manual.

R01DS0303EU0120 Rev.1.20 Page 4 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

Table 1.3 System (2 of 2)


Feature Functional description
Watchdog Timer (WDT) The Watchdog Timer (WDT) is a 14-bit down-counter that can be used to reset the MCU when
the counter underflows because the system has run out of control and is unable to refresh the
WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow.
A refresh-permitted period can be set to refresh the counter and be used as the condition for
detecting when the system runs out of control. See section 27, Watchdog Timer (WDT) in
User’s Manual.
Independent Watchdog Timer (IWDT) The Independent Watchdog Timer (IWDT) consists of a 14-bit down-counter that must be
serviced periodically to prevent counter underflow. It can be used to reset the MCU or to
generate a non-maskable interrupt or interrupt for a timer underflow. Because the timer
operates with an independent, dedicated clock source, it is particularly useful in returning the
MCU to a known state as a fail safe mechanism when the system runs out of control. The
IWDT can be triggered automatically on a reset, underflow, refresh error, or by a refresh of the
count value in the registers. See section 28, Independent Watchdog Timer (IWDT) in User’s
Manual.

Table 1.4 Event link


Feature Functional description
Event Link Controller (ELC) The Event Link Controller (ELC) uses the interrupt requests generated by various peripheral
modules as event signals to connect them to different modules, enabling direct interaction
between the modules without CPU intervention. See section 19, Event Link Controller (ELC)
in User’s Manual.

Table 1.5 Direct memory access


Feature Functional description
Data Transfer Controller (DTC) A Data Transfer Controller (DTC) module is provided for transferring data when activated by an
interrupt request. See section 18, Data Transfer Controller (DTC) in User’s Manual.
DMA Controller (DMAC) An 8-channel DMA Controller (DMAC) module is provided for transferring data without the
CPU. When a DMA transfer request is generated, the DMAC transfers data stored at the
transfer source address to the transfer destination address. See section 17, DMA Controller
(DMAC) in User’s Manual.

Table 1.6 External bus interface


Feature Functional description
External buses  CS area (EXBIU): Connected to the external devices (external memory interface)
 SDRAM area (EXBIU): Connected to the SDRAM (external memory interface)
 QSPI area (EXBIUT2): Connected to the QSPI (external device interface).

Table 1.7 Timers (1 of 2)


Feature Functional description
General PWM Timer (GPT) The General PWM Timer (GPT) is a 32-bit timer with 14 channels. PWM waveforms can be
generated by controlling the up-counter, down-counter, or the up- and down-counter. In
addition, PWM waveforms can be generated for controlling brushless DC motors. The GPT
can also be used as a general-purpose timer. See section 23, General PWM Timer (GPT) in
User’s Manual.
Port Output Enable for GPT (POEG) Use the Port Output Enable for GPT (POEG) function to place the General PWM Timer (GPT)
output pins in the output disable state. See section 22, Port Output Enable for GPT (POEG) in
User’s Manual.
Asynchronous General-Purpose The Asynchronous General-Purpose Timer (AGT) is a 16-bit timer that can be used for pulse
Timer (AGT) output, external pulse width or period measurement, and counting of external events.
This 16-bit timer consists of a reload register and a down-counter. The reload register and the
down-counter are allocated to the same address, and can be accessed with the AGT register.
See section 25, Asynchronous General-Purpose Timer (AGT) in User’s Manual.

R01DS0303EU0120 Rev.1.20 Page 5 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

Table 1.7 Timers (2 of 2)


Feature Functional description
Realtime Clock (RTC) The Realtime Clock (RTC) has two counting modes, calendar count mode and binary count
mode, that are controlled by the register settings.
For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and
automatically adjusts dates for leap years.
For binary count mode, the RTC counts seconds and retains the information as a serial value.
Binary count mode can be used for calendars other than the Gregorian (Western) calendar.
See section 26, Realtime Clock (RTC) in User’s Manual.

Table 1.8 Communication interfaces (1 of 2)


Feature Functional description
Serial Communications Interface The Serial Communications Interface (SCI) is configurable to five asynchronous and
(SCI) synchronous serial interfaces:
 Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter
(ACIA))
 8-bit clock synchronous interface
 Simple IIC (master-only)
 Simple SPI
 Smart card interface.
The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and
transmission protocol.
Each SCI has FIFO buffers to enable continuous and full-duplex communication, and the data
transfer speed can be configured independently using an on-chip baud rate generator.
See section 34, Serial Communications Interface (SCI) in User’s Manual.
IrDA interface The IrDA interface sends and receives IrDA data communication waveforms in cooperation
with the SCI1 based on the IrDA (Infrared Data Association) standard 1.0. See section 35,
IrDA Interface in User’s Manual.
I2C bus interface (IIC) The 3-channel I2C bus interface (IIC) conforms with and provides a subset of the NXP I2C
(Inter-Integrated Circuit) bus interface functions. See section 36, I2C Bus Interface (IIC) in
User’s Manual.
Serial Peripheral Interface (SPI) Two independent Serial Peripheral Interface (SPI) channels are capable of high-speed, full-
duplex synchronous serial communications with multiple processors and peripheral devices.
See section 38, Serial Peripheral Interface (SPI) in User’s Manual.
Serial Sound Interface Enhanced The Serial Sound Interface Enhanced (SSIE) peripheral provides functionality to interface with
(SSIE) digital audio devices for transmitting I2S 2ch, 4ch, 6ch, 8ch, WS Continue/Monaural/TDM
audio data over a serial bus. The SSIE supports an audio clock frequency of up to 50 MHz,
and can be operated as a slave or master receiver, transmitter, or transceiver to suit various
applications. The SSIE includes 32-stage FIFO buffers in the receiver and transmitter, and
supports interrupts and DMA-driven data reception and transmission. See section 41, Serial
Sound Interface Enhanced (SSIE) in User’s Manual.
Quad Serial Peripheral Interface The Quad Serial Peripheral Interface (QSPI) is a memory controller for connecting a serial
(QSPI) ROM (nonvolatile memory such as a serial flash memory, serial EEPROM, or serial FeRAM)
that has an SPI-compatible interface. See section 39, Quad Serial Peripheral Interface (QSPI)
in User’s Manual.
Controller Area Network (CAN) The Controller Area Network (CAN) module provides functionality to receive and transmit data
module using a message-based protocol between multiple slaves and masters in electromagnetically-
noisy applications.
The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports
up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox
and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are
supported. See section 37, Controller Area Network (CAN) Module in User’s Manual.
USB 2.0 Full-Speed (USBFS) module The USB 2.0 Full-Speed (USBFS) module can operate as a host controller or device controller.
The module supports full-speed and low-speed (host controller only) transfer as defined in
Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and
supports all of the transfer types defined in the Universal Serial Bus Specification 2.0.
The USB has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9
can be assigned any endpoint number based on the peripheral devices used for
communication or based on your system. See section 32, USB 2.0 Full-Speed Module
(USBFS) in User’s Manual.

R01DS0303EU0120 Rev.1.20 Page 6 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

Table 1.8 Communication interfaces (2 of 2)


Feature Functional description
USB 2.0 High-Speed (USBHS) The USB 2.0 High-Speed (USBHS) module can operate as a host controller or a device
module controller. As a host controller, the USBHS supports high-speed transfer, full-speed transfer,
and low-speed transfer as defined in the Universal Serial Bus Specification 2.0. As a device
controller, the USBHS supports high-speed transfer and full-speed transfer as defined in the
Universal Serial Bus Specification 2.0. The USBHS has an internal USB transceiver and
supports all of the transfer types defined in the Universal Serial Bus Specification 2.0.
The USBHS has FIFO buffers for data transfer, providing a maximum of 10 pipes. Any
endpoint number can be assigned to pipes 1 to 9, based on the peripheral devices or your
system for communication. See section 33, USB 2.0 High-Speed Module (USBHS) in User’s
Manual.
Ethernet MAC with IEEE 1588 PTP One-channel Ethernet MAC Controller (ETHERC) compliant with the Ethernet/IEEE802.3
(ETHERC) Media Access Control (MAC) layer protocol. An ETHERC channel provides one channel of the
MAC layer interface, connecting the MCU to the physical layer LSI (PHY-LSI) that allows
transmission and reception of frames compliant with the Ethernet and IEEE802.3 standards.
The ETHERC is connected to the Ethernet DMA Controller (EDMAC) so data can be
transferred without using the CPU.
To handle timing and synchronization between devices, an on-chip Precision Time Protocol
(PTP) module for the Ethernet PTP Controller (EPTPC) applies the PTP defined in the IEEE
1588-2008 version 2.0 standard.
The EPTPC is composed of:
 Synchronization Frame Processing unit (SYNFP0)
 A Statistical Time Correction Algorithm unit (STCA).
Use the EPTPC in combination with the on-chip Ethernet MAC Controller (ETHERC) and the
DMA Controller for the PTP Ethernet Controller (PTPEDMAC). See section 29, Ethernet MAC
Controller (ETHERC) in User’s Manual.
SD/MMC Host Interface (SDHI) The SDHI and MultiMediaCard (MMC) interface module provides the functionality required to
connect a variety of external memory cards to the MCU. The SDHI supports both 1-bit and 4-
bit buses for connecting memory cards that support SD, SDHC, and SDXC formats. When
developing host devices that are compliant with the SD Specifications, you must comply with
the SD Host/Ancillary Product License Agreement (SD HALA).
The MMC interface supports 1-bit, 4-bit, and 8-bit MMC buses that provide eMMC 4.51
(JEDEC Standard JESD 84-B451) device access. This interface also provides backward
compatibility and supports high-speed SDR transfer modes. See section 43, SD/MMC Host
Interface (SDHI) in User’s Manual.

Table 1.9 Analog


Feature Functional description
12-bit A/D Converter (ADC12) Up to two successive approximation 12-bit A/D Converters (ADC12) are provided. In unit 0, up
to 13 analog input channels are selectable. In unit 1, up to 11 analog input channels, the
temperature sensor output, and an internal reference voltage are selectable for conversion.
The A/D conversion accuracy is selectable from 12-bit, 10-bit, and 8-bit conversion, making it
possible to optimize the tradeoff between speed and resolution in generating a digital value.
See section 47, 12-Bit A/D Converter (ADC12) in User’s Manual.
12-bit D/A Converter (DAC12) The 12-bit D/A Converter (DAC12) converts data and includes an output amplifier. See section
48, 12-Bit D/A Converter (DAC12) in User’s Manual.
Temperature Sensor (TSN) The on-chip Temperature Sensor (TSN) determines and monitors the die temperature for
reliable operation of the device. The sensor outputs a voltage directly proportional to the die
temperature, and the relationship between the die temperature and the output voltage is linear.
The output voltage is provided to the ADC12 for conversion and can also be used by the end
application. See section 49, Temperature Sensor (TSN) in User’s Manual.
High-Speed Analog Comparator The High-Speed Analog Comparator (ACMPHS) compares a test voltage with a reference
(ACMPHS) voltage and provides a digital output based on the conversion result.
Both the test and reference voltages can be provided to the comparator from internal sources
such as the DAC12 output and internal reference voltage, and an external source with or
without an internal PGA.
Such flexibility is useful in applications that require go/no-go comparisons to be performed
between analog signals without necessarily requiring A/D conversion. See section 50, High-
Speed Analog Comparator (ACMPHS) in User’s Manual.

R01DS0303EU0120 Rev.1.20 Page 7 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

Table 1.10 Human machine interfaces


Feature Functional description
Capacitive Touch Sensing Unit The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the
(CTSU) touch sensor. Changes in the electrostatic capacitance are determined by software, which
enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode
surface of the touch sensor is usually enclosed with an electrical insulator so that fingers do
not come into direct contact with the electrodes. See section 51, Capacitive Touch Sensing
Unit (CTSU) in User’s Manual.

Table 1.11 Graphics


Feature Functional description
Graphics LCD Controller (GLCDC) The Graphics LCD Controller (GLCDC) provides multiple functions and supports various data
formats and panels. Key GLCDC features include:
 GPX bus master function for accessing graphics data
 Superimposition of three planes (single-color background plane, graphic 1-plane, and
graphic 2-plane)
 Support for many types of 32-bit or 16-bit per pixel graphics data and 8-bit, 4-bit, or 1-bit LUT
data format
 Digital interface signal output supporting a video image size of WVGA or greater.
See section 58, Graphics LCD Controller (GLCDC) in User’s Manual.
2D Drawing Engine (DRW) The 2D Drawing Engine (DRW) provides flexible functions that can support almost any object
geometry rather than being bound to only a few specific geometries such as lines, triangles, or
circles. The edges of every object can be independently blurred or antialiased.
Rasterization is executed at one pixel per clock on the bounding box of the object from left to
right and top to bottom. The DRW can also raster from bottom to top to optimize the
performance in certain cases. In addition, optimization methods are available to avoid
rasterization of many empty pixels of the bounding box.
The distances to the edges of the object are calculated by a set of edge equations for every
pixel of the bounding box. These edge equations can be combined to describe the entire
object.
If a pixel is inside the object, it is selected for rendering. If it is outside, it is discarded. If it is on
the edge, an alpha value can be chosen proportional to the distance of the pixel to the nearest
edge for antialiasing.
Every pixel that is selected for rendering can be textured. The resulting aRGB quadruple can
be modified by a general raster operation approach independently for each of the four
channels. The aRGB quadruples can then be blended with one of the multiple blend modes of
the DRW.
The DRW provides two inputs (texture read and framebuffer read), and one output
(framebuffer write).
The internal color format is always aRGB (8888). The color formats from the inputs are
converted to the internal format on read and a conversion back is made on write.
See section 56, 2D Drawing Engine (DRW) in User’s Manual.
JPEG codec The JPEG incorporates a JPEG codec that conforms to the JPEG baseline compression and
decompression standard. This provides high-speed compression of image data and high-
speed decoding of JPEG data. See section 57, JPEG Codec (JPEG) in User’s Manual.
Parallel Data Capture (PDC) unit One Parallel Data Capture (PDC) unit is provided for communicating with external I/O devices,
including image sensors, and transferring parallel data, such as an image output from the
external I/O device through the DTC or DMAC to the on-chip SRAM and external address
spaces (the CS and SDRAM areas). See section 44, Parallel Data Capture Unit (PDC) in
User’s Manual.

Table 1.12 Data processing (1 of 2)


Feature Functional description
Cyclic Redundancy Check (CRC) The Cyclic Redundancy Check (CRC) calculator generates CRC codes to detect errors in the
calculator data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first
communication. Additionally, various CRC-generating polynomials are available. The snoop
function allows monitoring reads from and writes to specific addresses. This function is useful
in applications that require CRC code to be generated automatically in certain events, such as
monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See
section 40, Cyclic Redundancy Check (CRC) Calculator in User’s Manual.

R01DS0303EU0120 Rev.1.20 Page 8 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

Table 1.12 Data processing (2 of 2)


Feature Functional description
Data Operation Circuit (DOC) The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. See section 52,
Data Operation Circuit (DOC) in User’s Manual.
Sampling Rate Converter (SRC) The Sampling Rate Converter (SRC) converts the sampling rate of data produced by various
audio decoders, such as the WMA, MP3, and AAC. Both 16-bit stereo and monaural data are
supported. See section 42, Sampling Rate Converter (SRC) in User’s Manual.

Table 1.13 Security


Feature Functional description
Secure Crypto Engine 7 (SCE7)  Security algorithms:
- Symmetric algorithms: AES, 3DES, and ARC4
- Asymmetric algorithms: RSA, DSA, and ECC.
 Other support features:
- TRNG (True Random Number Generator)
- Hash-value generation: SHA1, SHA224, SHA256, GHASH, and MD5
- 128-bit unique ID.
See section 46, Secure Cryptographic Engine (SCE7) in User’s Manual.

R01DS0303EU0120 Rev.1.20 Page 9 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

1.2 Block Diagram


Figure 1.1 shows a block diagram of the MCU superset, some individual devices within the group have a subset of the
features.

Memory Bus Arm Cortex-M4 System

2 MB code flash DSP FPU POR/LVD Clocks


External

CSC MOSC/SOSC
64 KB data flash
MPU Reset
SDRAM (H/M/L) OCO
640 KB SRAM
NVIC
8 KB Standby Mode control PLL/USBPLL
MPU
SRAM
System timer
Power control CAC

DMA Test and DBG interface


ICU Battery backup
DTC

Register write
DMAC × 8 KINT
protection

Timers Communication interfaces Human machine interfaces


SCI × 10 Graphics
QSPI USBHS CTSU
GPT32EH x 4 IrDA × 1
GPT32E x 4 GLCDC
GPT32 x 6 ETHERC
IIC × 3 SDHI × 2
with IEEE 1588 DRW

SPI × 2 CAN × 2 JPEG codec


AGT × 2

SSIE × 2 USBFS PDC


RTC

WDT/IWDT

Event link Data processing Analog


ELC ADC12 with
CRC SRC TSN
PGA × 2

Security DOC DAC12 ACMPHS × 6

SCE7

Figure 1.1 Block diagram

R01DS0303EU0120 Rev.1.20 Page 10 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

1.3 Part Numbering

R 7 F S 5 D 9 7E 2 A 0 1 C B G # A C 0

Production identification code

Packaging, Terminal material (Pb-free)


#AA: Tray/Sn (Tin) only
#AC: Tray/others
Package type
BG: BGA 176 pins
FC: LQFP 176 pins
FB: LQFP 144 pins
FP: LQFP 100 pins
LK: LGA 145 pins

Quality ID
Software ID
Operating temperature
2: -40°C to 85°C
3: -40°C to 105°C

Code flash memory size


C: 1 MB
E: 2 MB

Feature set
7: Superset

Group name
D9: S5D9 Group, Arm Cortex-M4, 120 MHz

Series name
5: High integration

Renesas Synergy family

Flash memory

Renesas microcontroller

Renesas

Figure 1.2 Part numbering scheme

Table 1.14 Product list


Code Data Operating
Product part number Orderable part number Package code flash flash SRAM temperature
R7FS5D97E2A01CBG R7FS5D97E2A01CBG#AC0 PLBG0176GE-A 2 MB 64 KB 640 KB -40 to +85°C
R7FS5D97E3A01CFC R7FS5D97E3A01CFC#AA0 PLQP0176KB-A -40 to +105°C
R7FS5D97E2A01CLK R7FS5D97E2A01CLK#AC0 PTLG0145KA-A -40 to +85°C
R7FS5D97E3A01CFB R7FS5D97E3A01CFB#AA0 PLQP0144KA-B -40 to +105°C
R7FS5D97E3A01CFP R7FS5D97E3A01CFP#AA0 PLQP0100KB-B -40 to +105°C
R7FS5D97C2A01CBG R7FS5D97C2A01CBG#AC0 PLBG0176GE-A 1 MB -40 to +85°C
R7FS5D97C3A01CFC R7FS5D97C3A01CFC#AA0 PLQP0176KB-A -40 to +105°C
R7FS5D97C2A01CLK R7FS5D97C2A01CLK#AC0 PTLG0145KA-A -40 to +85°C
R7FS5D97C3A01CFB R7FS5D97C3A01CFB#AA0 PLQP0144KA-B -40 to +105°C
R7FS5D97C3A01CFP R7FS5D97C3A01CFP#AA0 PLQP0100KB-B -40 to +105°C

R01DS0303EU0120 Rev.1.20 Page 11 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

1.4 Function Comparison

Table 1.15 Functional comparison (Graphics)


Part numbers
R7FS5D97E2XXXCBG/ R7FS5D97E3XXXCFC/ R7FS5D97E2XXXCLK/ R7FS5D97E3XXXCFB/ R7FS5D97E3XXXCFP/
Function R7FS5D97C2XXXCBG R7FS5D97C3XXXCFC R7FS5D97C2XXXCLK R7FS5D97C3XXXCFB R7FS5D97C3XXXCFP

Pin count 176 176 145 144 100


Package BGA LQFP LGA LQFP LQFP
Code flash memory 2/1 MB
Data flash memory 64 KB
SRAM 640 KB
Parity 608 KB
ECC 32 KB
Standby SRAM 8 KB
System CPU clock 120 MHz
Backup 512 B
registers
ICU Yes
KINT 8
Event link ELC Yes
DMA DTC Yes
DMAC 8
BUS External bus 16-bit bus 8-bit bus
SDRAM Yes No
Timers GPT32EH 4 4 4 4 4
GPT32E 4 4 4 4 4
GPT32 6 6 6 6 5
AGT 2 2 2 2 2
RTC Yes
WDT/IWDT Yes
Communication SCI 10
IIC 3 2
SPI 2
SSIE 2 1
QSPI 1
SDHI 2
CAN 2
USBFS Yes
USBHS Yes No
ETHERC 1
Analog ADC12 24 22 19
DAC12 2
ACMPHS 6
TSN Yes
HMI CTSU 13 18 12
Graphics GLCDC RGB888
DRW Yes
JPEG Yes
PDC Yes
Data processing CRC Yes
DOC Yes
SRC Yes
Security SCE7

R01DS0303EU0120 Rev.1.20 Page 12 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

1.5 Pin Functions

Table 1.16 Pin functions (1 of 5)


Function Signal I/O Description
Power supply VCC Input Digital voltage supply pin. This is used as the digital power supply for the
respective modules and internal voltage regulator, and used to monitor the
voltage of the POR/LVD. Connect to the system power supply. Connect to
VSS through a 0.1-μF smoothing capacitor close to each VCC pin.
VCL0 - Connect to VSS through a 0.1-μF smoothing capacitor close to each VCL
VCL - pin. Stabilize the internal power supply.
VSS Input Ground pin. Connect to the system power supply (0 V).
VBATT Input Backup power pin
Clock XTAL Output Pins for a crystal resonator. An external clock signal can be input through the
EXTAL Input EXTAL pin.
XCIN Input Input/output pins for the sub-clock oscillator. Connect a crystal resonator
XCOUT Output between XCOUT and XCIN.
EBCLK Output Outputs the external bus clock for external devices
SDCLK Output Outputs the SDRAM-dedicated clock
CLKOUT Output Clock output pin
Operating mode MD Input Pin for setting the operating mode. The signal level on this pin must not be
control changed during operation mode transition on release from the reset state.
System control RES Input Reset signal input pin. The MCU enters the reset state when this signal goes
low.
CAC CACREF Input Measurement reference clock input pin
Interrupt NMI Input Non-maskable interrupt request pin
IRQ0 to IRQ15 Input Maskable interrupt request pins
KINT KR00 to KR07 Input A key interrupt can be generated by inputting a falling edge to the key
interrupt input pins
On-chip emulator TMS I/O On-chip emulator or boundary scan pins
TDI Input
TCK Input
TDO Output
TCLK Output This pin outputs the clock for synchronization with the trace data
TDATA0 to TDATA3 Output Trace data output
SWDIO I/O Serial wire debug data input/output pin
SWCLK Input Serial wire clock pin
SWO Output Serial wire trace output pin
External bus RD Output Strobe signal indicating that reading from the external bus interface space is
interface in progress, active low
WR Output Strobe signal indicating that writing to the external bus interface space is in
progress, in 1-write strobe mode, active low
WR0 to WR1 Output Strobe signals indicating that either group of data bus pins (D07 to D00 or
D15 to D08) is valid in writing to the external bus interface space, in byte
strobe mode, active low
BC0 to BC1 Output Strobe signals indicating that either group of data bus pins (D07 to D00 or
D15 to D08) is valid in access to the external bus interface space, in 1-write
strobe mode, active low
ALE Output Address latch signal when address/data multiplexed bus is selected
WAIT Input Input pin for wait request signals in access to the external space, active low
CS0 to CS7 Output Select signals for CS areas, active low
A00 to A23 Output Address bus
D00 to D15 I/O Data bus
A00/D00 to A15/D15 I/O Address/data multiplexed bus

R01DS0303EU0120 Rev.1.20 Page 13 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

Table 1.16 Pin functions (2 of 5)


Function Signal I/O Description
SDRAM interface CKE Output SDRAM clock enable signal
SDCS Output SDRAM chip select signal, active low
RAS Output SDRAM low address strobe signal, active low
CAS Output SDRAM column address strobe signal, active low
WE Output SDRAM write enable signal, active low
DQM0 Output SDRAM I/O data mask enable signal for DQ07 to DQ00
DQM1 Output SDRAM I/O data mask enable signal for DQ15 to DQ08
A00 to A15 Output Address bus
DQ00 to DQ15 I/O Data bus
GPT GTETRGA, Input External trigger input pins
GTETRGB,
GTETRGC,
GTETRGD
GTIOC0A to I/O Input capture, output compare, or PWM output pins
GTIOC13A,
GTIOC0B to
GTIOC13B
GTIU Input Hall sensor input pin U
GTIV Input Hall sensor input pin V
GTIW Input Hall sensor input pin W
GTOUUP Output 3-phase PWM output for BLDC motor control (positive U phase)
GTOULO Output 3-phase PWM output for BLDC motor control (negative U phase)
GTOVUP Output 3-phase PWM output for BLDC motor control (positive V phase)
GTOVLO Output 3-phase PWM output for BLDC motor control (negative V phase)
GTOWUP Output 3-phase PWM output for BLDC motor control (positive W phase)
GTOWLO Output 3-phase PWM output for BLDC motor control (negative W phase)
AGT AGTEE0, AGTEE1 Input External event input enable signals
AGTIO0, AGTIO1 I/O External event input and pulse output pins
AGTO0, AGTO1 Output Pulse output pins
AGTOA0, AGTOA1 Output Output compare match A output pins
AGTOB0, AGTOB1 Output Output compare match B output pins
RTC RTCOUT Output Output pin for 1-Hz or 64-Hz clock
RTCIC0 to RTCIC2 Input Time capture event input pins
SCI SCK0 to SCK9 I/O Input/output pins for the clock (clock synchronous mode)
RXD0 to RXD9 Input Input pins for received data (asynchronous mode/clock synchronous mode)
TXD0 to TXD9 Output Output pins for transmitted data (asynchronous mode/clock synchronous
mode)
CTS0_RTS0 to I/O Input/output pins for controlling the start of transmission and reception
CTS9_RTS9 (asynchronous mode/clock synchronous mode), active low
SCL0 to SCL9 I/O Input/output pins for the I2C clock (simple IIC mode)
SDA0 to SDA9 I/O Input/output pins for the I2C data (simple IIC mode)
SCK0 to SCK9 I/O Input/output pins for the clock (simple SPI mode)
MISO0 to MISO9 I/O Input/output pins for slave transmission of data (simple SPI mode)
MOSI0 to MOSI9 I/O Input/output pins for master transmission of data (simple SPI mode)
SS0 to SS9 Input Chip-select input pins (simple SPI mode), active low
IIC SCL0 to SCL2 I/O Input/output pins for the clock
SDA0 to SDA2 I/O Input/output pins for data
SSIE SSIBCK0 I/O SSIE serial bit clock pins
SSIBCK1
SSILRCK0/SSIFS0 I/O LR clock/frame synchronization pins
SSILRCK1/SSIFS1
SSITXD0 Output Serial data output pins
SSIRXD0 Input Serial data input pins
SSIDATA1 I/O Serial data input/output pins
AUDIO_CLK Input External clock pin for audio (input oversampling clock)

R01DS0303EU0120 Rev.1.20 Page 14 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

Table 1.16 Pin functions (3 of 5)


Function Signal I/O Description
SPI RSPCKA, RSPCKB I/O Clock input/output pin
MOSIA, MOSIB I/O Input or output pins for data output from the master
MISOA, MISOB I/O Input or output pins for data output from the slave
SSLA0, SSLB0 I/O Input or output pin for slave selection
SSLA1 to SSLA3, Output Output pins for slave selection
SSLB1 to SSLB3
QSPI QSPCLK Output QSPI clock output pin
QSSL Output QSPI slave output pin
QIO0 to QIO3 I/O Data0 to Data3
CAN CRX0, CRX1 Input Receive data
CTX0, CTX1 Output Transmit data
USBFS VCC_USB Input Power supply pins
VSS_USB Input Ground pins
USB_DP I/O D+ I/O pin of the USB on-chip transceiver. Connect this pin to the D+ pin of
the USB bus
USB_DM I/O D- I/O pin of the USB on-chip transceiver. Connect this pin to the D- pin of
the USB bus
USB_VBUS Input USB cable connection monitor pin. Connect this pin to VBUS of the USB
bus. The VBUS pin status (connected or disconnected) can be detected
when the USB module is operating as a function controller.
USB_EXICEN Output Low-power control signal for external power supply (OTG) chip
USB_VBUSEN Output VBUS (5 V) supply enable signal for external power supply chip
USB_OVRCURA, Input Connect the external overcurrent detection signals to these pins. Connect
USB_OVRCURB the VBUS comparator signals to these pins when the OTG power supply
chip is connected.
USB_ID Input Connect the MicroAB connector ID input signal to this pin during operation in
OTG mode
USBHS VCC_USBHS Input Power supply pin
VSS1_USBHS Input Ground pin
VSS2_USBHS Input Ground pin
AVCC_USBHS Input Analog power supply pin for the USBHS
AVSS_USBHS Input Analog ground pin for the USBHS. Must be shorted to the PVSS_USBHS
pin
PVSS_USBHS Input PLL circuit ground pin for the USBHS. Must be shorted to the AVSS_USBHS
pin
USBHS_RREF I/O USBHS reference current source pin. Connect this pin to the AVSS_USBHS
pin through a 2.2-kΩ resistor (1%)
USBHS_DP I/O USB bus D+ data pin
USBHS_DM I/O USB bus D- data pin
USBHS_EXICEN Output Connect this pin to the OTG power supply IC
USBHS_ID Input Connect this pin to the OTG power supply IC
USBHS_VBUSEN Output VBUS power enable signal for USB
USBHS_OVRCURA, Input Overcurrent pin for USB
USBHS_OVRCURB
USBHS_VBUS Input USB cable connection monitor input pin

R01DS0303EU0120 Rev.1.20 Page 15 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

Table 1.16 Pin functions (4 of 5)


Function Signal I/O Description
ETHERC REF50CK0 Input 50-MHz reference clock. This pin inputs reference signal for
transmission/reception timing in RMII mode.
RMII0_CRS_DV Input Indicates carrier detection signals and valid receive data on RMII0_RXD1
and RMII0_RXD0 in RMII mode
RMII0_TXD0, Output 2-bit transmit data in RMII mode
RMII0_TXD1
RMII0_RXD0, Input 2-bit receive data in RMII mode
RMII0_RXD1
RMII0_TXD_EN Output Output pin for data transmit enable signal in RMII mode
RMII0_RX_ER Input Indicates an error occurred during reception of data in RMII mode
ET0_CRS Input Carrier detection/data reception enable signal
ET0_RX_DV Input Indicates valid receive data on ET0_ERXD3 to ET0_ERXD0
ET0_EXOUT Output General-purpose external output pin
ET0_LINKSTA Input Input link status from the PHY-LSI
ET0_ETXD0 to Output 4 bits of MII transmit data
ET0_ETXD3
ET0_ERXD0 to Input 4 bits of MII receive data
ET0_ERXD3
ET0_TX_EN Output Transmit enable signal. Functions as signal indicating that transmit data is
ready on ET0_ETXD3 to ET0_ETXD0
ET0_TX_ER Output Transmit error pin. Functions as signal notifying the PHY_LSI of an error
during transmission
ET0_RX_ER Input Receive error pin. Functions as signal to recognize an error during reception
ET0_TX_CLK Input Transmit clock pin. This pin inputs reference signal for output timing from
ET0_TX_EN, ET0_ETXD3 to ET0_ETXD0, and ET0_TX_ER
ET0_RX_CLK Input Receive clock pin. This pin inputs reference signal for input timing to
ET0_RX_DV, ET0_ERXD3 to ET0_ERXD0, and ET0_RX_ER
ET0_COL Input Input collision detection signal
ET0_WOL Output Receive Magic packets
ET0_MDC Output Output reference clock signal for information transfer through ET0_MDIO.
ET0_MDIO I/O Input or output bidirectional signal for exchange of management data with
PHY-LSI
SDHI SD0CLK, SD1CLK Output SD clock output pins
SD0CMD, SD1CMD I/O Command output pin and response input signal pins
SD0DAT0 to I/O SD and MMC data bus pins
SD0DAT7,
SD1DAT0 to
SD1DAT7
SD0CD, SD1CD Input SD card detection pins
SD0WP, SD1WP Input SD write-protect signals
Analog power AVCC0 Input Analog voltage supply pin. This is used as the analog power supply for the
supply respective modules. Supply this pin with the same voltage as the VCC pin.
AVSS0 Input Analog ground pin. This is used as the analog ground for the respective
modules. Supply this pin with the same voltage as the VSS pin.
VREFH0 Input Analog reference voltage supply pin for the ADC12 (unit 0). Connect this pin
to VCC when not using the ADC12 (unit 0) and sample-and-hold circuit for
AN000 to AN002.
VREFL0 Input Analog reference ground pin for the ADC12. Connect this pin to VSS when
not using the ADC12 (unit 0) and sample-and-hold circuit for AN000 to
AN002
VREFH Input Analog reference voltage supply pin for the ADC12 (unit 1) and D/A
Converter. Connect this pin to VCC when not using the ADC12 (unit 1),
sample-and-hold circuit for AN100 to AN102, and D/A Converter.
VREFL Input Analog reference ground pin for the ADC12 and D/A Converter. Connect this
pin to VSS when not using the ADC12 (unit 1), sample-and-hold circuit for
AN100 to AN102, and D/A Converter.

R01DS0303EU0120 Rev.1.20 Page 16 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

Table 1.16 Pin functions (5 of 5)


Function Signal I/O Description
ADC12 AN000 to AN007, Input Input pins for the analog signals to be processed by the ADC12
AN016 to AN020
AN100 to AN103, Input
AN105 to AN107,
AN116 to AN119
ADTRG0 Input Input pins for the external trigger signals that start the A/D conversion
ADTRG1 Input
PGAVSS000/PGAVS Input Differential input pins
S100
DAC12 DA0, DA1 Output Output pins for the analog signals processed by the D/A converter
ACMPHS VCOUT Output Comparator output pin
IVREF0 to IVREF3 Input Reference voltage input pins for comparator
IVCMP0 to IVCMP2 Input Analog voltage input pins for comparator
CTSU TS00 to TS17 Input Capacitive touch detection pins (touch pins)
TSCAP - Secondary power supply pin for the touch driver
I/O ports P000 to P007 Input General-purpose input pins
P008 to P010, I/O General-purpose input/output pins
P014, P015
P100 to P115 I/O General-purpose input/output pins
P200 Input General-purpose input pin
P201 to P214 I/O General-purpose input/output pins
P300 to P315 I/O General-purpose input/output pins
P400 to P415 I/O General-purpose input/output pins
P500 to P508, I/O General-purpose input/output pins
P511 to P513
P600 to P615 I/O General-purpose input/output pins
P700 to P713 I/O General-purpose input/output pins
P800 to P806 I/O General-purpose input/output pins
P900, P901, I/O General-purpose input/output pins
P905 to P908
PA00, PA01, I/O General-purpose input/output pins
PA08 to PA10
PB00, PB01 I/O General-purpose input/output pins
GLCDC LCD_DATA23 to Output Data output pins for panel
LCD_DATA00
LCD_TCON3 to Output Output pins for panel timing adjustment
LCD_TCON0
LCD_CLK Output Panel clock output pin
LCD_EXTCLK Input Panel clock source input pin
PDC PIXCLK Input Image transfer clock pin
VSYNC Input Vertical synchronization signal pin
HSYNC Input Horizontal synchronization signal pin
PIXD0 to PIXD7 Input 8-bit image data pins
PCKO Output Output pin for dot clock

R01DS0303EU0120 Rev.1.20 Page 17 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

1.6 Pin Assignments


Figure 1.3 to Figure 1.7 show the pin assignments.

R7FS5D9XX2XXXCBG

A B C D E F G H J K L M N P R

USBHS_ PVSS_ P212


15 P407 P409 P411 P414 P708 XCIN VCL0 P707 P703 P700 P405 P401 15
DM USBHS /EXTAL

USBHS_ AVSS_ P213


14 USB_DP USB_DM P410 P412 P415 XCOUT VBATT P706 P701 P406 P402 P512 14
DP USBHS /XTAL

VCC_ VSS_ VCC_ USBHS_ AVCC_


13 P204 P408 P413 VSS PB01 P704 P404 P400 P511 P805 13
USB USB USBHS RREF USBHS

VSS1_ VSS2_
12 P313 P202 P207 P206 P205 VCC PB00 P705 P702 P403 P513 P806 P000 12
USBHS USBHS

11 P900 P315 P314 P203 VCC P001 P004 P002 11

10 P214 P211 P901 VSS VSS P006 P008 P005 10

9 P210 P209 RES VCC P009 AVSS0 VREFL0 VREFH0 9

8 P208 P201/MD P200 P908 P010 AVCC0 VREFL VREFH 8

7 P906 P905 P312 P907 VCC VSS P015 P014 7

6 P310 P309 P307 P311 P007 P507 P505 P508 6

5 P308 P305 VSS VCC P003 P503 P504 P506 5

P300/TCK
4 P306 P304 P111 VSS P613 PA09 PA00 P607 VCC VSS VSS VCC P501 P502 4
/SWCLK

P108/TMS
3 P303 P302 P110/TDI VCC P610 VCC VSS P604 P603 P105 P102 P800 P804 P500 3
SWDIO

2 P301 P112 P114 P608 P611 P614 PA10 PA01 P605 P601 P107 P104 P101 P802 P803 2

1 P109/TDO P113 P115 P609 P612 P615 PA08 VCL P606 P602 P600 P106 P103 P100 P801 1

A B C D E F G H J K L M N P R

Figure 1.3 Pin assignment for 176-pin BGA (top view)

R01DS0303EU0120 Rev.1.20 Page 18 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

P108/TMS/SWDIO
P109/TDO
P110/TDI
PA00
PA01

PA10
PA09
PA08
P100
P101
P102
P103
P104
P105
P106
P107

P600
P601
P602
P603
P604
P605
P606
P607

P615
P614
P613
P612
P611
P610
P609
P608

P115
P114
P113
P112
P111
VCC

VCC

VCC
VSS

VSS

VSS
VCL
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
P800 133 88 P300/TCK/SWCLK
P801 134 87 P301
P802 135 86 P302
P803 136 85 P303
P804 137 84 VCC
VCC 138 83 VSS
VSS 139 82 P304
P500 140 81 P305
P501 141 80 P306
P502 142 79 P307
P503 143 78 P308
P504 144 77 P309
P505 145 76 P310
P506 146 75 P311
P507 147 74 P312
P508 148 73 P905
VCC 149 72 P906
VSS 150 71 P907
P015 151 70 P908
P014 152 69 P200
VREFL
VREFH
153
154 R7FS5D9XX3XXXCFC 68
67
P201/MD
RES
AVCC0 155 66 P208
AVSS0 156 65 P209
VREFL0 157 64 P210
VREFH0 158 63 P211
P010 159 62 P214
P009 160 61 VCC
P008 161 60 VSS
P007 162 59 P901
P006 163 58 P900
P005 164 57 P315
P004 165 56 P314
P003 166 55 P313
P002 167 54 P202
P001 168 53 P203
P000 169 52 P204
VSS 170 51 P205
VCC 171 50 P206
P806 172 49 P207
P805 173 48 VCC_USB
P513 174 47 USB_DP
P512 175 46 USB_DM
P511 176 45 VSS_USB
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
1
2
3
4
5
6
7
8
9
P400
P401
P402
P403
P404
P405
P406
P700
P701
P702
P703
P704
P705
P706
P707
PB00
PB01

VCL0

P213/XTAL
P212/EXTAL

P708
P415
P414
P413
P412
P411

P408
P407
VBATT

XCOUT

USBHS_DM
AVCC_USBHS
USBHS_RREF
VSS

AVSS_USBHS
PVSS_USBHS
VSS2_USBHS

USBHS_DP
VSS1_USBHS
VCC_USBHS
XCIN

VCC

P410
P409

Figure 1.4 Pin assignment for 176-pin LQFP (top view)

R01DS0303EU0120 Rev.1.20 Page 19 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

R7FS5D9XX2XXXCLK

A B C D E F G H J K L M N

P212
13 P407 P409 P412 P708 P711 VCC XCIN VCL0 P702 P405 P402 P400 13
/EXTAL

P213
12 USB_DM USB_DP P410 P414 P710 VSS XCOUT VBATT P701 P404 P511 VCC 12
/XTAL

VCC_ VSS_
11 P207 P411 P415 P712 P705 P704 P703 P403 P401 P512 VSS 11
USB USB

10 P205 P206 P204 P408 P413 P709 P713 P700 P406 P003 P000 P002 P001 10

9 P203 P313 P202 VSS P004 P006 P009 P008 9

8 P214 P211 P200 VCC P005 AVSS0 VREFL0 VREFH0 8

7 P210 P209 RES P310 P007 AVCC0 VREFL VREFH 7

6 P208 P201/MD P312 P305 P505 P506 P015 P014 6

5 P309 P311 P308 P303 NC P503 P504 VSS VCC 5

4 P307 P306 P304 P109/TDO P114 P608 P604 P600 P105 P500 P502 P501 P508 4

3 VSS VCC P301 P112 P115 P610 P614 P603 P107 P106 P104 VSS VCC 3

P300/TCK
2 P302 P111 VCC P609 P612 VSS P605 P601 VCC P800 P101 P801 2
/SWCLK

P108/TMS
1 P110/TDI P113 VSS P611 P613 VCC VCL P602 VSS P103 P102 P100 1
/SWDIO

A B C D E F G H J K L M N

Figure 1.5 Pin assignment for 145-pin LGA (top view)

R01DS0303EU0120 Rev.1.20 Page 20 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

P108/TMS/SWDIO
P109/TDO
P110/TDI
P100
P101
P102
P103
P104
P105
P106
P107

P600
P601
P602
P603
P604
P605

P614
P613
P612
P611
P610
P609
P608

P115
P114
P113
P112
P111
VCC

VCC

VCC
VSS

VSS

VSS
VCL
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
P800 109 72 P300/TCK/SWCLK
P801 110 71 P301
VCC 111 70 P302
VSS 112 69 P303
P500 113 68 VCC
P501 114 67 VSS
P502 115 66 P304
P503 116 65 P305
P504 117 64 P306
P505 118 63 P307
P506 119 62 P308
P508 120 61 P309
VCC 121 60 P310
VSS 122 59 P311
P015 123 58 P312
P014 124 57 P200
VREFL 125 56 P201/MD
VREFH 126 R7F5D9XX3XXXCFB 55 RES
AVCC0 127 54 P208
AVSS0 128 53 P209
VREFL0 129 52 P210
VREFH0 130 51 P211
P009 131 50 P214
P008 132 49 VCC
P007 133 48 VSS
P006 134 47 P313
P005 135 46 P202
P004 136 45 P203
P003 137 44 P204
P002 138 43 P205
P001 139 42 P206
P000 140 41 P207
VSS 141 40 VCC_USB
VCC 142 39 USB_DP
P512 143 38 USB_DM
P511 144 37 VSS_USB
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
1
2
3
4
5
6
7
8
9
P400
P401
P402
P403
P404
P405
P406
P700
P701
P702
P703
P704
P705

VCL0

P213/XTAL
P212/EXTAL

P713
P712
P711
P710
P709
P708
P415
P414
P413
P412

P409
P408
P407
VBATT

XCOUT
VSS
XCIN

VCC

P411
P410

Figure 1.6 Pin assignment for 144-pin LQFP (top view)

R01DS0303EU0120 Rev.1.20 Page 21 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

P108/TMS/SWDIO
P109/TDO
P110/TDI
P100
P101
P102
P103
P104
P105
P106
P107
P600
P601
P602

P610
P609
P608
P115
P114
P113
P112
P111
VCC
VSS
VCL
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
P500 76 50 P300/TCK/SWCLK
P501 77 49 P301
P502 78 48 P302
P503 79 47 P303
P504 80 46 VCC
P508 81 45 VSS
VCC 82 44 P304
VSS 83 43 P305
P015 84 42 P306
P014 85 41 P307
VREFL 86 40 P200
VREFH 87 39 P201/MD
AVCC0
AVSS0
88
89
R7FS5D9XX3XXXCFP 38
37
RES
P208
VREFL0 90 36 P209
VREFH0 91 35 P210
P008 92 34 P211
P007 93 33 P214
P006 94 32 P205
P005 95 31 P206
P004 96 30 P207
P003 97 29 VCC_USB
P002 98 28 USB_DP
P001 99 27 USB_DM
P000 100 26 VSS_USB
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
1
2
3
4
5
6
7
8
9
VBATT

XCOUT
VSS
XCIN

VCC
P400
P401
P402
P403
P404
P405
P406

VCL0

P213/XTAL
P212/EXTAL

P708
P415
P414
P413
P412
P411
P410
P409
P408
P407

Figure 1.7 Pin assignment for 100-pin LQFP (top view)

R01DS0303EU0120 Rev.1.20 Page 22 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

1.7 Pin Lists

Pin number Extbus Timers Communication interfaces Analog HMI


Power, System,

ETHERC (RMII)
Clock, Debug,

ETHERC (MII)

GLCDC, PDC
External bus

SCI0,2,4,6,8

SCI1,3,5,7,9

SPI, QSPI
LQFP176

LQFP144
LQFP100

ACMPHS
Interrupt

(30 MHz)

(30 MHz)

(25 MHz)

(50 MHz)
BGA176

LGA145

USBFS,
SDRAM

DAC12,
I/O port

USBHS

ADC12

CTSU
SDHI
SSIE
CAC

CAN
AGT

GPT

GPT

RTC

IIC
N13 1 N13 1 1 - IRQ0 P400 - - AGTIO1 - GTIOC - - SCK4 SCK7 SCL0 - AUDIO ET0_W ET0_ - - ADTRG - - -
6A _A _CLK OL WOL 1
R15 2 L11 2 2 - IRQ5- P401 - - - GTETRGA GTIOC - CTX0 CTS4_ TXD7/ SDA0 - - ET0_M ET0_M - - - - - -
DS 6B RTS4/ MOSI7 _A DC DC
SS4 /SDA7
P14 3 M13 3 3 CACREF IRQ4- P402 - - AGTIO0/ - - RTC CRX0 - RXD7/ - - AUDIO ET0_M ET0_M - - - - - VSYNC
DS AGTIO1 IC0 MISO7 _CLK DIO DIO
/SCL7
M12 4 K11 4 4 - - P403 - - AGTIO0/ - GTIOC RTC - - CTS7_ - - SSIBC ET0_LI ET0_LI - SD1 - - - PIXD7
AGTIO1 3A IC1 RTS7/ K0_A NKSTA NKST DAT7
SS7 A _B
M13 5 L12 5 5 - - P404 - - - - GTIOC RTC - - - - - SSILR ET0_EX ET0_E - SD1 - - - PIXD6
3B IC2 CK0/S OUT XOUT DAT6
SIFS0_ _B
A
P15 6 L13 6 6 - - P405 - - - - GTIOC - - - - - - SSITX ET0_TX RMII0_ - SD1 - - - PIXD5
1A D0_A _EN TXD_E DAT5
N_B _B
N14 7 J10 7 7 - - P406 - - - - GTIOC - - - - - SSLB3 SSIRX ET0_RX RMII0_ - SD1 - - - PIXD4
1B _C D0_A _ER TXD1_ DAT4
B _B
N15 8 H10 8 - - - P700 - - - - GTIOC - - - - - MISOB - ET0_ET RMII0_ - SD1 - - - PIXD3
5A _C XD1 TXD0_ DAT3
B _B
M14 9 K12 9 - - - P701 - - - - GTIOC - - - - - MOSIB - ET0_ET REF50 - SD1 - - - PIXD2
5B _C XD0 CK0_B DAT2
_B
L12 10 K13 10 - - - P702 - - - - GTIOC - - - - - RSPC - ET0_ER RMII0_ - SD1 - - - PIXD1
6A KB_C XD1 RXD0_ DAT1
B _B
M15 11 J11 11 - - - P703 - - - - GTIOC - - - - - SSLB0 - ET0_ER RMII0_ - SD1 - VCOUT - PIXD0
6B _C XD0 RXD1_ DAT0
B _B
L13 12 H11 12 - - - P704 - - AGTO0 - - - CTX0 - - - SSLB1 - ET0_RX RMII0_ - SD1 - - - HSYNC
_C _CLK RX_E CLK_
R_B B
K12 13 G11 13 - - - P705 - - AGTIO0 - - - CRX0 - - - SSLB2 - ET0_C RMII0_ - SD1 - - - PIXCLK
_C RS CRS_ CMD
DV_B _B
L14 14 - - - - IRQ7 P706 - - - - - - - - RXD3/ - - - - - USB SD1 - - - -
MISO3 HS_ CD_
/SCL3 OVR B
CUR
B
L15 15 - - - - IRQ8 P707 - - - - - - - - TXD3/ - - - - - USB SD1 - - - -
MOSI3 HS_ WP_
/SDA3 OVR B
CUR
A
J12 16 - - - - - PB00 - - - - - - - - SCK3 - - - - - USB - - - - -
HS_
VBU
SEN
K13 17 - - - - - PB01 - - - - - - - - CTS3_ - - - - - USB - - - - -
RTS3/ HS_
SS3 VBU
S
K14 18 J12 14 8 VBATT - - - - - - - - - - - - - - - - - - - - - -
K15 19 J13 15 9 VCL0 - - - - - - - - - - - - - - - - - - - - - -
J15 20 H13 16 10 XCIN - - - - - - - - - - - - - - - - - - - - - -
J14 21 H12 17 11 XCOUT - - - - - - - - - - - - - - - - - - - - - -
J13 22 F12 18 12 VSS - - - - - - - - - - - - - - - - - - - - - -
H14 23 G12 19 13 XTAL IRQ2 P213 - - - GTETRGC GTIOC - - - TXD1/ - - - - - - - ADTRG - - -
0A MOSI1 1
/SDA1
H15 24 G13 20 14 EXTAL IRQ3 P212 - - AGTEE1 GTETRGD GTIOC - - - RXD1/ - - - - - - - - - - -
0B MISO1
/SCL1
H12 25 F13 21 15 VCC - - - - - - - - - - - - - - - - - - - - - -
H13 26 - - - AVCC_U - - - - - - - - - - - - - - - - - - - - - -
SBHS
G13 27 - - - USBHS_ - - - - - - - - - - - - - - - - - - - - - -
RREF
G14 28 - - - AVSS_U - - - - - - - - - - - - - - - - - - - - - -
SBHS
G15 29 - - - PVSS_U - - - - - - - - - - - - - - - - - - - - - -
SBHS
G12 30 - - - VSS2_U - - - - - - - - - - - - - - - - - - - - - -
SBHS
F15 31 - - - - - - - - - - - - - - - - - - - - USB - - - - -
HS_
DM
F14 32 - - - - - - - - - - - - - - - - - - - - USB - - - - -
HS_
DP
F12 33 - - - VSS1_U - - - - - - - - - - - - - - - - - - - - - -
SBHS
F13 34 - - - VCC_US - - - - - - - - - - - - - - - - - - - - - -
BHS
- - G10 22 - - - P713 - - AGTOA0 - GTIOC - - - - - - - - - - - - - TS17 -
2A

R01DS0303EU0120 Rev.1.20 Page 23 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

Pin number Extbus Timers Communication interfaces Analog HMI

Power, System,

ETHERC (RMII)
Clock, Debug,

ETHERC (MII)

GLCDC, PDC
External bus

SCI0,2,4,6,8

SCI1,3,5,7,9

SPI, QSPI
LQFP176

LQFP144
LQFP100

ACMPHS
Interrupt

(30 MHz)

(30 MHz)

(25 MHz)

(50 MHz)
BGA176

LGA145

USBFS,
SDRAM

DAC12,
I/O port

USBHS

ADC12

CTSU
SDHI
SSIE
CAC

CAN
AGT

GPT

GPT

RTC

IIC
- - F11 23 - - - P712 - - AGTOB0 - GTIOC - - - - - - - - - - - - - TS16 -
2B
- - E13 24 - - - P711 - - AGTEE0 - - - - - CTS1_ - - - ET0_TX - - - - - TS15 -
RTS1/ _CLK
SS1
- - E12 25 - - - P710 - - - - - - - - SCK1 - - - ET0_TX - - - - - TS14 -
_ER
- - F10 26 - - IRQ10 P709 - - - - - - - - TXD1/ - - - ET0_ET - - - - - TS13 -
MOSI1 XD2
/SDA1
E15 35 D13 27 16 CACREF IRQ11 P708 - - - - - - - - RXD1/ - SSLA3 AUDIO ET0_ET - - - - - TS12 PCKO
MISO1 _B _CLK XD3
/SCL1
E14 36 E11 28 17 - IRQ8 P415 - - - - GTIOC - USB_ - - - SSLA2 - ET0_TX RMII0_ - SD0 - - TS11 PIXD5
0A VBUS _B _EN TXD_E CD_
EN N_A A
D15 37 D12 29 18 - IRQ9 P414 - - - - GTIOC - - - - - SSLA1 - ET0_RX RMII0_ - SD0 - - TS10 PIXD4
0B _B _ER TXD1_ WP_
A A
E13 38 E10 30 19 - - P413 - - - GTOUUP - - - CTS0_ - - SSLA0 - ET0_ET RMII0_ - SD0 - - TS09 PIXD3
RTS0/ _B XD1 TXD0_ CLK_
SS0 A A
D14 39 C13 31 20 - - P412 - - AGTEE1 GTOULO - - - SCK0 - - RSPC - ET0_ET REF50 - SD0 - - TS08 PIX02
KA_B XD0 CK0_A CMD
_A
C15 40 D11 32 21 - IRQ4 P411 - - AGTOA1 GTOVUP GTIOC - - TXD0/ CTS3_ - MOSIA - ET0_ER RMII0_ - SD0 - - TS07 PIX01
9A MOSI0 RTS3/ _B XD1 RXD0_ DAT0
/SDA0 SS3 A _A
C14 41 C12 33 22 - IRQ5 P410 - - AGTOB1 GTOVLO GTIOC - - RXD0/ SCK3 - MISOA - ET0_ER RMII0_ - SD0 - - TS06 PIXD0
9B MISO0 _B XD0 RXD1_ DAT1
/SCL0 A _A
B15 42 B13 34 23 - IRQ6 P409 - - - GTOWUP GTIOC - USB_ - TXD3/ - - - ET0_RX RMII0_ USB - - - TS05 HSYNC
10A EXIC MOSI3 _CLK RX_E HS_
EN /SDA3 R_A EXIC
EN
D13 43 D10 35 24 - IRQ7 P408 - - - GTOWLO GTIOC - USB_ - RXD3/ SCL0 - - ET0_C RMII0_ USB - - - TS04 PIXCLK
10B ID MISO3 _B RS CRS_ HS_I
/SCL3 DV_A D
A15 44 A13 36 25 - - P407 - - AGTIO0 - - RTC USB_ CTS4_ - SDA0 SSLB3 - ET0_EX ET0_E - - ADTRG - TS03 -
OUT VBUS RTS4/ _B _A OUT XOUT 0
SS4
C13 45 B11 37 26 VSS_US - - - - - - - - - - - - - - - - - - - - - -
B
B14 46 A12 38 27 - - - - - - - - - USB_ - - - - - - - - - - - - -
DM
A14 47 B12 39 28 - - - - - - - - - USB_ - - - - - - - - - - - - -
DP
B13 48 A11 40 29 VCC_US - - - - - - - - - - - - - - - - - - - - - -
B
C12 49 C11 41 30 - - P207 A17 - - - - - - - - - SSLB2 - - - - - - - TS02 LCD_DATA
_A/QS 23_B
SL
D12 50 B10 42 31 - IRQ0- P206 WAIT - - GTIU - - USB_ RXD4/ - SDA1 SSLB1 SSIDA ET0_LI ET0_LI - SD0 - - TS01 -
DS VBUS MISO4 _A _A TA1_A NKSTA NKST DAT2
EN /SCL4 A _A
E12 51 A10 43 32 CLKOUT IRQ1- P205 A16 - AGTO1 GTIV GTIOC - USB_ TXD4/ CTS9_ SCL1 SSLB0 SSILR ET0_W ET0_ - SD0 - - TSCA -
DS 4A OVR MOSI4 RTS9/ _A _A CK1/S OL WOL DAT3 P
CUR /SDA4 SS9 SIFS1_ _A
A-DS A
A13 52 C10 44 - CACREF - P204 A18 - AGTIO1 GTIW GTIOC - USB_ SCK4 SCK9 SCL0 RSPC SSIBC ET0_RX - - SD0 - - TS00 -
4B OVR _B KB_A K1_A _DV DAT4
CUR _A
B-DS
D11 53 A9 45 - - IRQ2- P203 A19 - - - GTIOC - CTX0 CTS2_ TXD9/ - MOSIB - ET0_C - - SD0 - - TSCA -
DS 5A RTS2/ MOSI9 _A OL DAT5 P
SS2 /SDA9 _A
B12 54 C9 46 - - IRQ3- P202 WR1/ - - - GTIOC - CRX0 SCK2 RXD9/ - MISOB ET0_ER - - SD0 - - - LCD_TCO
DS BC1 5B MISO9 _A XD2 DAT6 N3_B
/SCL9 _A
A12 55 B9 47 - - - P313 A20 - - - - - - - - - - - ET0_ER - - SD0 - - - LCD_TCO
XD3 DAT7 N2_B
_A
C11 56 - - - - - P314 A21 - - - - - - - - - - - - - - - ADTRG - - LCD_TCO
0 N1_B
B11 57 - - - - - P315 A22 - - - - - - RXD4 - - - - - - - - - - - LCD_TCO
N0_B
A11 58 - - - - - P900 A23 - - - - - - TXD4 - - - - - - - - - - - LCD_CLK_
B
C10 59 - - - - - P901 - - AGTIO1 - - - - SCK4 - - - - - - - - - - - LCD_DATA
15_B
D10 60 D9 48 - VSS - - - - - - - - - - - - - - - - - - - - - -
D9 61 D8 49 - VCC - - - - - - - - - - - - - - - - - - - - - -
A10 62 A8 50 33 TRCLK - P214 - - - GTIU - - - - - - QSPC - ET0_M ET0_M - SD0 - - - LCD_DATA
LK DC DC CLK_ 22_B
B
B10 63 B8 51 34 TRDATA - P211 - - - GTIV - - - - - - QIO0 - ET0_M ET0_M - SD0 - - - LCD_DATA
0 DIO DIO CMD 21_B
_B
A9 64 A7 52 35 TRDATA - P210 - - - GTIW - - - - - - QIO1 - ET0_W ET0_ - SD0 - - - LCD_DATA
1 OL WOL CD_ 20_B
B
B9 65 B7 53 36 TRDATA - P209 - - - GTOVUP - - - - - - QIO2 - ET0_EX ET0_E - SD0 - - - LCD_DATA
2 OUT XOUT WP_ 19_B
B

R01DS0303EU0120 Rev.1.20 Page 24 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

Pin number Extbus Timers Communication interfaces Analog HMI

Power, System,

ETHERC (RMII)
Clock, Debug,

ETHERC (MII)

GLCDC, PDC
External bus

SCI0,2,4,6,8

SCI1,3,5,7,9

SPI, QSPI
LQFP176

LQFP144
LQFP100

ACMPHS
Interrupt

(30 MHz)

(30 MHz)

(25 MHz)

(50 MHz)
BGA176

LGA145

USBFS,
SDRAM

DAC12,
I/O port

USBHS

ADC12

CTSU
SDHI
SSIE
CAC

CAN
AGT

GPT

GPT

RTC

IIC
A8 66 A6 54 37 TRDATA - P208 - - - GTOVLO - - - - - - QIO3 - ET0_LI ET0_LI - SD0 - - - LCD_DATA
3 NKSTA NKST DAT0 18_B
A _B
C9 67 C7 55 38 RES - - - - - - - - - - - - - - - - - - - - - -
B8 68 B6 56 39 MD - P201 - - - - - - - - - - - - - - - - - - - -
C8 69 C8 57 40 - NMI P200 - - - - - - - - - - - - - - - - - - - -
D8 70 - - - - - P908 CS7 - - - GTIOC - - - - - - - - - - - - - - LCD_DATA
2A 14_B
D7 71 - - - - - P907 CS6 - - - GTIOC - - - - - - - - - - - - - - LCD_DATA
2B 13_B
A7 72 - - - - - P906 CS5 - - - GTIOC - - - - - - - - - - - - - - LCD_DATA
3A 12_B
B7 73 - - - - - P905 CS4 - - - GTIOC - - - - - - - - - - - - - - LCD_DATA
3B 11_B
C7 74 C6 58 - - - P312 CS3 CAS AGTOA1 - - - - - CTS3_ - - - - - - - - - - -
RTS3/
SS3
D6 75 B5 59 - - - P311 CS2 RAS AGTOB1 - - - - - SCK3 - - - - - - - - - - LCD_DATA
23_A
A6 76 D7 60 - - - P310 A15 A15 AGTEE1 - - - - - TXD3 - QIO3 - - - - - - - - LCD_DATA
22_A
B6 77 A5 61 - - - P309 A14 A14 - - - - - - RXD3 - QIO2 - - - - - - - - LCD_DATA
21_A
A5 78 C5 62 - - - P308 A13 A13 - - - - - - - - QIO1 - - - - - - - - LCD_DATA
20_A
C6 79 A4 63 41 - - P307 A12 A12 - GTOUUP - - - CTS6 - - QIO0 - - - - - - - - LCD_DATA
19_A
A4 80 B4 64 42 - - P306 A11 A11 - GTOULO - - - SCK6 - - QSSL - - - - - - - - LCD_DATA
18_A
B5 81 D6 65 43 - IRQ8 P305 A10 A10 - GTOWUP - - - TXD6/ - - QSPC - - - - - - - - LCD_DATA
MOSI6 LK 17_A
/SDA6
B4 82 C4 66 44 - IRQ9 P304 A09 A09 - GTOWLO GTIOC - - RXD6/ - - - - - - - - - - - LCD_DATA
7A MISO6 16_A
/SCL6
C5 83 A3 67 45 VSS - - - - - - - - - - - - - - - - - - - - - -
D5 84 B3 68 46 VCC - - - - - - - - - - - - - - - - - - - - - -
A3 85 D5 69 47 - - P303 A08 A08 - - GTIOC - - - - - - - - - - - - - - LCD_DATA
7B 15_A
B3 86 A2 70 48 - IRQ5 P302 A07 A07 - GTOUUP GTIOC - - TXD2/ - - SSLB3 - - - - - - - - LCD_DATA
4A MOSI2 _B 14_A
/SDA2
A2 87 C3 71 49 - IRQ6 P301 A06 A06 AGTIO0 GTOULO GTIOC - - RXD2/ CTS9_ - SSLB2 - - - - - - - - LCD_DATA
4B MISO2 RTS9/ _B 13_A
/SCL2 SS9
C4 88 B2 72 50 TCK/SW - P300 - - - GTOUUP GTIOC - - - - - SSLB1 - - - - - - - - -
CLK 0A_A _B
C3 89 A1 73 51 TMS/SW - P108 - - - GTOULO GTIOC - - - CTS9_ - SSLB0 - - - - - - - - -
DIO 0B_A RTS9/ _B
SS9
A1 90 D4 74 52 CLKOUT - P109 - - - GTOVUP GTIOC - CTX1 - TXD9/ - MOSIB - - - - - - - - -
/TDO/S 1A_A MOSI9 _B
WO /SDA9
D3 91 B1 75 53 TDI IRQ3 P110 - - - GTOVLO GTIOC - CRX1 CTS2_ RXD9/ - MISOB - - - - - - VCOUT - -
1B_A RTS2/ MISO9 _B
SS2 /SCL9
D4 92 C2 76 54 - IRQ4 P111 A05 A05 - - GTIOC - - SCK2 SCK9 - RSPC - - - - - - - - LCD_DATA
3A_A KB_B 12_A
B2 93 D3 77 55 - - P112 A04 A04 - - GTIOC - - TXD2/ SCK1 - SSLB0 SSIBC - - - - - - - LCD_DATA
3B_A MOSI2 _B K0_B 11_A
/SDA2
B1 94 C1 78 56 - - P113 A03 A03 - - GTIOC - - RXD2/ - - - SSILR - - - - - - - LCD_DATA
2A MISO2 CK0/S 10_A
/SCL2 SIFS0_
B
C2 95 E4 79 57 - - P114 A02 A02 - - GTIOC - - - - - - SSIRX - - - - - - - LCD_DATA
2B D0_B 09_A
C1 96 E3 80 58 - - P115 A01 A01 - - GTIOC - - - - - - SSITX - - - - - - - LCD_DATA
4A D0_B 08_A
E3 97 D2 81 - VCC - - - - - - - - - - - - - - - - - - - - - -
E4 98 D1 82 - VSS - - - - - - - - - - - - - - - - - - - - - -
D2 99 F4 83 59 - - P608 A00/ A00/D - - GTIOC - - - - - - - - - - - - - - LCD_DATA
BC0 QM1 4B 07_A
D1 100 E2 84 60 - - P609 CS1 CKE - - GTIOC - CTX1 - - - - - - - - - - - - LCD_DATA
5A 06_A
F3 101 F3 85 61 - - P610 CS0 WE - - GTIOC - CRX1 - - - - - - - - - - - - LCD_DATA
5B 05_A
E2 102 E1 86 - CLKOUT - P611 - SDCS - - - - - - CTS7_ - - - - - - - - - - -
/CACRE RTS7/
F SS7
E1 103 F2 87 - - - P612 D08[ DQ08 - - - - - - SCK7 - - - - - - - - - - -
A08/
D08]
F4 104 F1 88 - - - P613 D09[ DQ09 - - - - - - TXD7 - - - - - - - - - - -
A09/
D09]
F2 105 G3 89 - - - P614 D10[ DQ10 - - - - - - RXD7 - - - - - - - - - - -
A10/
D10]
F1 106 - - - - - P615 - - - - - - - - - - - - - - - - - - - LCD_DATA
10_B
G1 107 - - - - - PA08 - - - - - - - - - - - - - - - - - - - LCD_DATA
09_B

R01DS0303EU0120 Rev.1.20 Page 25 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

Pin number Extbus Timers Communication interfaces Analog HMI

Power, System,

ETHERC (RMII)
Clock, Debug,

ETHERC (MII)

GLCDC, PDC
External bus

SCI0,2,4,6,8

SCI1,3,5,7,9

SPI, QSPI
LQFP176

LQFP144
LQFP100

ACMPHS
Interrupt

(30 MHz)

(30 MHz)

(25 MHz)

(50 MHz)
BGA176

LGA145

USBFS,
SDRAM

DAC12,
I/O port

USBHS

ADC12

CTSU
SDHI
SSIE
CAC

CAN
AGT

GPT

GPT

RTC

IIC
G4 108 - - - - - PA09 - - - - - - - - - - - - - - - - - - - LCD_DATA
08_B
G2 109 - - - - - PA10 - - - - - - - - - - - - - - - - - - - LCD_DATA
07_B
G3 110 G1 90 62 VCC - - - - - - - - - - - - - - - - - - - - - -
H3 111 G2 91 63 VSS - - - - - - - - - - - - - - - - - - - - - -
H1 112 H1 92 64 VCL - - - - - - - - - - - - - - - - - - - - - -
H2 113 - - - - - PA01 - - - - - - - SCK8 - - - - - - - - - - - LCD_DATA
06_B
H4 114 - - - - - PA00 - - - - - - - TXD8 - - - - - - - - - - - LCD_DATA
05_B
J4 115 - - - - - P607 - - - - - - - RXD8 - - - - - - - - - - - LCD_DATA
04_B
J1 116 - - - - - P606 - - - - - RTC - CTS8_ - - - - - - - - - - - LCD_DATA
OUT RTS8/ 03_B
SS8
J2 117 H2 93 - - - P605 D11[ DQ11 - - GTIOC - - - - - - - - - - - - - - -
A11/ 8A
D11]
J3 118 G4 94 - - - P604 D12[ DQ12 - - GTIOC - - - - - - - - - - - - - - -
A12/ 8B
D12]
K3 119 H3 95 - - - P603 D13[ DQ13 - - GTIOC - - - CTS9_ - - - - - - - - - - -
A13/ 7A RTS9/
D13] SS9
K1 120 J1 96 65 - - P602 EBC SDCL - - GTIOC - - - TXD9 - - - - - - - - - - LCD_DATA
LK K 7B 04_A
K2 121 J2 97 66 - - P601 WR/ DQM0 - - GTIOC - - - RXD9 - - - - - - - - - - LCD_DATA
WR0 6A 03_A
L1 122 H4 98 67 CLKOUT - P600 RD - - - GTIOC - - - SCK9 - - - - - - - - - - LCD_DATA
/CACRE 6B 02_A
F
K4 123 K2 99 - VCC - - - - - - - - - - - - - - - - - - - - - -
L4 124 K1 100 - VSS - - - - - - - - - - - - - - - - - - - - - -
L2 125 J3 101 68 - KR07 P107 D07[ DQ07 AGTOA0 - GTIOC - - CTS8_ - - - - - - - - - - - LCD_DATA
A07/ 8A RTS8/ 01_A
D07] SS8
M1 126 K3 102 69 - KR06 P106 D06[ DQ06 AGTOB0 - GTIOC - - SCK8 - - SSLA3 - - - - - - - - LCD_DATA
A06/ 8B _A 00_A
D06]
L3 127 J4 103 70 - IRQ0/ P105 D05[ DQ05 - GTETRGA GTIOC - - TXD8/ - - SSLA2 - - - - - - - - LCD_TCO
KR05 A05/ 1A MOSI8 _A N3_A
D05] /SDA8
M2 128 L3 104 71 - IRQ1/ P104 D04[ DQ04 - GTETRGB GTIOC - - RXD8/ - - SSLA1 - - - - - - - - LCD_TCO
KR04 A04/ 1B MISO8 _A N2_A
D04] /SCL8
N1 129 L1 105 72 - KR03 P103 D03[ DQ03 - GTOWUP GTIOC - CTX0 CTS0_ - - SSLA0 - - - - - - - - LCD_TCO
A03/ 2A_A RTS0/ _A N1_A
D03] SS0
M3 130 M1 106 73 - KR02 P102 D02[ DQ02 AGTO0 GTOWLO GTIOC - CRX0 SCK0 - - RSPC - - - - - ADTRG - - LCD_TCO
A02/ 2B_A KA_A 0 N0_A
D02]
N2 131 M2 107 74 - IRQ1/ P101 D01[ DQ01 AGTEE0 GTETRGB GTIOC - - TXD0/ CTS1_ SDA1 MOSIA - - - - - - - - LCD_CLK_
KR01 A01/ 5A MOSI0 RTS1/ _B _A A
D01] /SDA0 SS1
P1 132 N1 108 75 - IRQ2/ P100 D00[ DQ00 AGTIO0 GTETRGA GTIOC - - RXD0/ SCK1 SCL1 MISOA - - - - - - - - LCD_EXT
KR00 A00/ 5B MISO0 _B _A CLK_A
D00] /SCL0
N3 133 L2 109 - - - P800 D14[ DQ14 - - - - - - - - - - - - - - - - - -
A14/
D14]
R1 134 N2 110 - - - P801 D15[ DQ15 - - - - - - - - - - - - - SD1 - - - -
A15/ DAT4
D15] _A
P2 135 - - - - - P802 - - - - - - - - - - - - - - - SD1 - - - LCD_DATA
DAT5 02_B
_A
R2 136 - - - - - P803 - - - - - - - - - - - - - - - SD1 - - - LCD_DATA
DAT6 01_B
_A
P3 137 - - - - P804 - - - - - - - - - - - - - - - SD1 - - - LCD_DATA
DAT7 00_B
_A
N4 138 N3 111 - VCC - - - - - - - - - - - - - - - - - - - - - -
M4 139 M3 112 - VSS - - - - - - - - - - - - - - - - - - - - - -
R3 140 K4 113 76 - - P500 - - AGTOA0 GTIU GTIOC - USB_ - - - QSPC - - - - SD1 AN016 IVREF0 - -
11A VBUS LK CLK_
EN A
P4 141 M4 114 77 - IRQ11 P501 - - AGTOB0 GTIV GTIOC - USB_ - TXD5/ - QSSL - - - - SD1 AN116 IVREF1 - -
11B OVR MOSI5 CMD
CUR /SDA5 _A
A
R4 142 L4 115 78 - IRQ12 P502 - - - GTIW GTIOC - USB_ - RXD5/ - QIO0 - - - - SD1 AN017 IVCMP0 - -
12A OVR MISO5 DAT0
CUR /SCL5 _A
B
N5 143 K5 116 79 - - P503 - - - GTETRGC GTIOC - USB_ CTS6_ SCK5 - QIO1 - - - - SD1 AN117 - - -
12B EXIC RTS6/ DAT1
EN SS6 _A
P5 144 L5 117 80 - - P504 ALE - - GTETRGD GTIOC - USB_ SCK6 CTS5_ - QIO2 - - - - SD1 AN018 - - -
13A ID RTS5/ DAT2
SS5 _A
P6 145 K6 118 - - IRQ14 P505 - - - - GTIOC - - RXD6/ - - QIO3 - - - - SD1 AN118 - - -
13B MISO6 DAT3
/SCL6 _A

R01DS0303EU0120 Rev.1.20 Page 26 of 116


Aug 10, 2018
S5D9 Datasheet 1. Overview

Pin number Extbus Timers Communication interfaces Analog HMI

Power, System,

ETHERC (RMII)
Clock, Debug,

ETHERC (MII)

GLCDC, PDC
External bus

SCI0,2,4,6,8

SCI1,3,5,7,9

SPI, QSPI
LQFP176

LQFP144
LQFP100

ACMPHS
Interrupt

(30 MHz)

(30 MHz)

(25 MHz)

(50 MHz)
BGA176

LGA145

USBFS,
SDRAM

DAC12,
I/O port

USBHS

ADC12

CTSU
SDHI
SSIE
CAC

CAN
AGT

GPT

GPT

RTC

IIC
R5 146 L6 119 - - IRQ15 P506 - - - - - - - TXD6/ - - - - - - - SD1 AN019 - - -
MOSI6 CD_
/SDA6 A
N6 147 - - - - - P507 - - - - - - - - CTS5_ - - - - - - SD1 AN119 - - -
RTS5/ WP_
SS5 A
R6 148 N4 120 81 - - P508 - - - - - - - SCK6 SCK5 - - - - - - - AN020 - - -
M7 149 N5 121 82 VCC - - - - - - - - - - - - - - - - - - - - - -
N7 150 M5 122 83 VSS - - - - - - - - - - - - - - - - - - - - - -
P7 151 M6 123 84 - IRQ13 P015 - - - - - - - - - - - - - - - - AN006/ DA1/ - -
AN106 IVCMP1
R7 152 N6 124 85 - - P014 - - - - - - - - - - - - - - - - AN005/ DA0/ - -
AN105 IVREF3
P8 153 M7 125 86 VREFL - - - - - - - - - - - - - - - - - - - - - -
R8 154 N7 126 87 VREFH - - - - - - - - - - - - - - - - - - - - - -
N8 155 L7 127 88 AVCC0 - - - - - - - - - - - - - - - - - - - - - -
N9 156 L8 128 89 AVSS0 - - - - - - - - - - - - - - - - - - - - - -
P9 157 M8 129 90 VREFL0 - - - - - - - - - - - - - - - - - - - - - -
R9 158 N8 130 91 VREFH0 - - - - - - - - - - - - - - - - - - - - - -
M8 159 - - - - IRQ14 P010 - - - - - - - - - - - - - - - - AN103 - - -
-DS
M9 160 M9 131 - - IRQ13 P009 - - - - - - - - - - - - - - - - AN004 - - -
-DS
P10 161 N9 132 92 - IRQ12 P008 - - - - - - - - - - - - - - - - AN003 - - -
-DS
M6 162 K7 133 93 - - P007 - - - - - - - - - - - - - - - - PGAVS - - -
S100/A
N107
N10 163 L9 134 94 - IRQ11- P006 - - - - - - - - - - - - - - - - AN102 IVCMP2 - -
DS
R10 164 K8 135 95 - IRQ10 P005 - - - - - - - - - - - - - - - - AN101 IVCMP2 - -
-DS
P11 165 K9 136 96 - IRQ9- P004 - - - - - - - - - - - - - - - - AN100 IVCMP2 - -
DS
M5 166 K10 137 97 - - P003 - - - - - - - - - - - - - - - - PGAVS - - -
S000/A
N007
R11 167 M10 138 98 - IRQ8- P002 - - - - - - - - - - - - - - - - AN002 IVCMP2 - -
DS
N11 168 N10 139 99 - IRQ7- P001 - - - - - - - - - - - - - - - - AN001 IVCMP2 - -
DS
R12 169 L10 140 100 - IRQ6- P000 - - - - - - - - - - - - - - - - AN000 IVCMP2 - -
DS
M10 170 N11 141 - VSS - - - - - - - - - - - - - - - - - - - - - -
M11 171 N12 142 - VCC - - - - - - - - - - - - - - - - - - - - - -
P12 172 - - - - - P806 - - - - - - - - - - - - - - - - - - - LCD_EXT
CLK_B
R13 173 - - - - - P805 - - - - - - - - TXD5 - - - - - - - - - - LCD_DATA
17_B
N12 174 - - - - - P513 - - - - - - - - RXD5 - - - - - - - - - - LCD_DATA
16_B
R14 175 M11 143 - - IRQ14 P512 - - - - GTIOC - CTX1 TXD4/ - SCL2 - - - - - - - - - VSYNC
0A MOSI4
/SDA4
P13 176 M12 144 - - IRQ15 P511 - - - - GTIOC - CRX1 RXD4/ - SDA2 - - - - - - - - - PCKO
0B MISO4
/SCL4

Note: Some pin names have the added suffix of _A, _B, and _C. When assigning the GPT, IIC, SPI, SSIE, ETHERC (RMII), SDHI,
and GLCDC functionality, select the functional pins with the same suffix.

R01DS0303EU0120 Rev.1.20 Page 27 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

2. Electrical Characteristics
Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:
VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, VCC_USBHS =
AVCC_USBHS = 3.0 to 3.6 V, VSS = AVSS0 = VREFL0/VREFL = VSS_USB = VSS1_USBHS = VSS2_USBHS =
PVSS_USBHS = AVSS_USBHS = 0 V, Ta = Topr.
Figure 2.1 shows the timing conditions.

For example P100

VOH = VCC × 0.7, VOL = VCC × 0.3


VIH = VCC × 0.7, VIL = VCC × 0.3
Load capacitance C = 30pF

Figure 2.1 Input or output timing measurement conditions


The measurement conditions of timing specification in each peripherals are recommended for the best peripheral
operation, however make sure to adjust driving abilities of each pins to meet your conditions.

2.1 Absolute Maximum Ratings

Table 2.1 Absolute maximum ratings


Parameter Symbol Value Unit
Power supply voltage VCC, VCC_USB *2 -0.3 to +4.0 V
VBATT power supply voltage VBATT -0.3 to +4.0 V
Input voltage (except for 5V-tolerant ports*1) Vin -0.3 to VCC + 0.3 V
Input voltage (5V-tolerant ports*1) Vin -0.3 to + VCC + 4.0 (max 5.8) V
Reference power supply voltage VREFH/VREFH0 -0.3 to AVCC0 + 0.3 V
Analog power supply voltage AVCC0 *2 -0.3 to +4.0 V
USBHS power supply voltage VCC_USBHS -0.3 to +4.0 V
USBHS analog power supply voltage AVCC_USBHS -0.3 to +4.0 V
Analog input voltage (except for P000 to P007) VAN -0.3 to AVCC0 + 0.3 V
Analog input voltage (P000 to P007) when PGA VAN -0.3 to AVCC0 + 0.3 V
differential input is disabled
Analog input voltage (P000 to P002, P004 to P006) VAN -1.3 to AVCC0 + 0.3 V
when PGA differential input is enabled
Analog input voltage (P003, P007) when PGA VAN -0.8 to AVCC0 + 0.3 V
differential input is enabled
Operating temperature*3,*4,*5 Topr -40 to +85 °C
-40 to +105
Storage temperature Tstg -55 to +125 °C

R01DS0303EU0120 Rev.1.20 Page 28 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Caution: Permanent damage to the MCU might result if absolute maximum ratings are exceeded.
Note 1. Ports P205, P206, P400, P401, P407 to P415, P511, P512, P708 to P713, and PB01 are 5V-tolerant.
Note 2. Connect AVCC0 and VCC_USB to VCC.
Note 3. See section 2.2.1, Tj/Ta Definition.
Note 4. Contact a Renesas Electronics sales office for information on derating operation when Ta = +85°C to +105°C. Derating is the
systematic reduction of load for improved reliability.
Note 5. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part
Numbering.

Table 2.2 Recommended operating conditions


Parameter Symbol Value Min Typ Max Unit
Power supply voltages VCC When USB/SDRAM is not used 2.7 - 3.6 V
When USB/SDRAM is used 3.0 - 3.6 V
VSS - 0 - V
USB power supply voltages VCC_USB, - VCC - V
VCC_USBHS
VSS_USB, - 0 - V
AVSS_USBHS,
PVSS_USBHS,
VSS1_USBHS,
VSS2_USBHS
VBATT power supply voltage VBATT 1.8 - 3.6 V
Analog power supply voltages AVCC0*1 - VCC - V
AVSS0 - 0 - V

Note 1. Connect AVCC0 to VCC. When neither the A/D converter nor the D/A converter nor the comparator is in use, do not leave the
AVCC0, VREFH/VREFH0, AVSS0, and VREFL/VREFL0 pins open. Connect the AVCC0 and VREFH/VREFH0 pins to VCC,
and the AVSS0 and VREFL/VREFL0 pins to VSS, respectively.

2.2 DC Characteristics

2.2.1 Tj/Ta Definition

Table 2.3 DC characteristics


Conditions: Products with operating temperature (Ta) -40 to +105°C
Parameter Symbol Typ Max Unit Test conditions
Permissible junction temperature Tj - 125 °C High-speed mode
Low-speed mode
105*1
Subosc-speed mode

Note: Make sure that Tj = Ta + θja × total power consumption (W), where total power consumption = (VCC - VOH) × ΣIOH + VOL × ΣIOL
+ ICCmax × VCC.
Note 1. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part
Numbering. If the part number shows the operation temperature to 85°C, then Tj max is 105°C, otherwise, 125°C.

R01DS0303EU0120 Rev.1.20 Page 29 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

2.2.2 I/O VIH, VIL

Table 2.4 I/O VIH, VIL


Parameter Symbol Min Typ Max Unit
Input voltage Peripheral EXTAL(external clock input), WAIT, SPI (except VIH VCC × 0.8 - - V
(except for function RSPCK)
VIL - - VCC × 0.2
Schmitt trigger pin
input pins) D00 to D15, VIH VCC × 0.7 - -
DQ00 to DQ15
VIL - - VCC × 0.3
ETHERC VIH 2.3 - -
VIL - - VCC × 0.2
IIC (SMBus)*1 VIH 2.1 - -
VIL - - 0.8
IIC (SMBus)*2 VIH 2.1 - VCC + 3.6
(max 5.8)
VIL - - 0.8
Schmitt trigger IIC (except for SMBus)*1 VIH VCC × 0.7 - -
input voltage
VIL - - VCC × 0.3
ΔVT VCC × 0.05 - -
IIC (except for SMBus)*2 VIH VCC × 0.7 - VCC + 3.6
(max 5.8)
VIL - - VCC × 0.3
ΔVT VCC × 0.05 - -
5V-tolerant ports*3, *7 VIH VCC × 0.8 - VCC + 3.6
(max 5.8)
VIL - - VCC × 0.2
ΔVT VCC × 0.05 - -
RTCIC0, When using the When VBATT VIH VBATT × 0.8 - VBATT + 0.3
RTCIC1, Battery Backup power supply is
VIL - - VBATT × 0.2
RTCIC2 Function selected
ΔVT VBATT × 0.05 - -
When VCC VIH VCC × 0.8 - Higher
power supply is voltage either
selected VCC + 0.3 V
or
VBATT + 0.3 V
VIL - - VCC × 0.2
ΔVT VCC × 0.05 - -
When not using the Battery Backup VIH VCC × 0.8 - VCC + 0.3
Function
VIL - - VCC × 0.2
ΔVT VCC × 0.05 - -
Other input pins*4 VIH VCC × 0.8 - -
VIL - - VCC × 0.2
ΔVT VCC × 0.05 - -
Ports 5V-tolerant ports*5, *7 VIH VCC × 0.8 - VCC + 3.6
(max 5.8)
VIL - - VCC × 0.2
Other input pins*6 VIH VCC × 0.8 - -
VIL - - VCC × 0.2

Note 1. SCL0_B (P204), SCL1_B, SDA1_B (total 3 pins).


Note 2. SCL0_A, SDA0_A, SCL0_B (P408), SDA0_B, SCL1_A, SDA1_A, SCL2, SDA2 (total 8 pins).
Note 3. RES and peripheral function pins associated with P205, P206, P400, P401, P407 to P415, P511, P512, P708 to P713, PB01
(total 23 pins).

R01DS0303EU0120 Rev.1.20 Page 30 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Note 4. All input pins except for the peripheral function pins already described in the table.
Note 5. P205, P206, P400, P401, P407 to P415, P511, P512, P708 to P713, PB01 (total 22 pins).
Note 6. All input pins except for the ports already described in the table.
Note 7. When VCC is less than 2.7 V, the input voltage of 5 V-tolerant ports should be less than 3.6 V, otherwise breakdown might
occur because the 5 V-tolerant ports are electrically controlled to not violate the breakdown voltage.

2.2.3 I/O IOH, IOL

Table 2.5 I/O IOH, IOL


Parameter Symbol Min Typ Max Unit
Permissible output current Ports P008 to P010, P201 - IOH - -- -2.0 mA
(average value per pin)
IOL - - 2.0 mA

Ports P014, P015 - IOH - - -4.0 mA

IOL - - 4.0 mA

Ports P205, P206, P407 to P415, Low drive*1 IOH - - -2.0 mA


P602, P708 to P713, PB01 (total
19 pins) IOL - - 2.0 mA

Middle drive*2 IOH - - -4.0 mA

IOL - - 4.0 mA

High drive*3 IOH - - -20 mA

IOL - - 20 mA

Other output pins*4 Low drive*1 IOH - - -2.0 mA

IOL - - 2.0 mA

Middle drive*2 IOH - - -4.0 mA

IOL - - 4.0 mA

High drive*3 IOH - - -16 mA

IOL - - 16 mA

Permissible output current Ports P008 to P010, P201 - IOH - - -4.0 mA


(max value per pin)
IOL - - 4.0 mA

Ports P014, P015 - IOH - - -8.0 mA

IOL - - 8.0 mA

Ports P205, P206, P407 to P415, Low drive*1 IOH - - -4.0 mA


P602, P708 to P713, PB01
(total 19 pins) IOL - - 4.0 mA

Middle drive*2 IOH - - -8.0 mA

IOL - - 8.0 mA

High drive*3 IOH - - -40 mA

IOL - - 40 mA

Other output pins*4 Low drive*1 IOH - - -4.0 mA

IOL - - 4.0 mA

Middle drive*2 IOH - - -8.0 mA

IOL - - 8.0 mA

High drive*3 IOH - - -32 mA

IOL - - 32 mA

Permissible output current Maximum of all output pins ΣIOH (max) - - -80 mA
(max value total pins)
ΣIOL (max) - - 80 mA

Caution: To protect the reliability of the MCU, the output current values should not exceed the values in this
table. The average output current indicates the average value of current measured during 100 μs.
Note 1. This is the value when low driving ability is selected in the port drive capability bit in the PmnPFS register. The selected driving
ability is retained in Deep Software Standby mode.
Note 2. This is the value when middle driving ability is selected in the port drive capability bit in the PmnPFS register. The selected
driving ability is retained in Deep Software Standby mode.
Note 3. This is the value when high driving ability is selected in the port drive capability bit in the PmnPFS register. The selected driving
ability is retained in Deep Software Standby mode.

R01DS0303EU0120 Rev.1.20 Page 31 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Note 4. Except for P000 to P007, P200, which are input ports.

2.2.4 I/O VOH, VOL, and Other Characteristics

Table 2.6 I/O VOH, VOL, and other characteristics


ParameterParameter Symbol Min Typ Max Unit Test conditions
Output voltage IIC VOL - - 0.4 V IOL = 3.0 mA

VOL - - 0.6 IOL = 6.0 mA

IIC*1 VOL - - 0.4 IOL = 15.0 mA


(ICFER.FMPE = 1)
VOL - 0.4 - IOL = 20.0 mA
(ICFER.FMPE = 1)
ETHERC VOH VCC - 0.5 - - IOH = -1.0 mA

VOL - - 0.4 IOL = 1.0 mA

Ports P205, P206, P407 to P415, VOH VCC - 1.0 - - IOH = -20 mA
P602, P708 to P713, PB01 (total 19 VCC = 3.3 V
pins)*2
VOL - - 1.0 IOL = 20 mA
VCC = 3.3 V
Other output pins VOH VCC - 0.5 - - IOH = -1.0 mA

VOL - - 0.5 IOL = 1.0 mA

Input leakage current RES |Iin| - - 5.0 μA Vin = 0 V


Vin = 5.5 V
Ports P000 to P002, P004 to P006, - - 1.0 Vin = 0 V
P200 Vin = VCC
Ports P003, P007 Before - - 45.0 Vin = 0 V
initialization*3 Vin = VCC
After - - 1.0 Vin = 0 V
initialization*4 Vin = VCC
Three-state leakage 5V-tolerant ports |ITSI| - - 5.0 μA Vin = 0 V
current (off state) Vin = 5.5 V
Other ports (except for ports P000 - - 1.0 Vin = 0 V
to P007, P200) Vin = VCC
Input pull-up MOS current Ports P0 to PB (except for ports Ip -300 - -10 μA VCC = 2.7 to 3.6 V
P000 to P007) Vin = 0 V
Input capacitance USB_DP, USB_DM, and ports Cin - - 16 pF Vbias = 0V
P003, P007, P014, P015, P400, Vamp = 20mV
P401, P511, P512 f = 1 MHz
Ta = 25°C
Other input pins - - 8

Note 1. SCL0_A, SDA0_A (total 2 pins).


Note 2. This is the value when high driving ability is selected in the port drive capability bit in the PmnPFS register.
The selected driving ability is retained in Deep Software Standby mode.
Note 3. P0nPFS.ASEL (n = 3 or 7) = 1.
Note 4. P0nPFS.ASEL (n = 3 or 7) = 0.

R01DS0303EU0120 Rev.1.20 Page 32 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

2.2.5 Operating and Standby Current

Table 2.7 Operating and standby current (1 of 2)


Parameter Symbol Min Typ Max Unit Test conditions
Supply Maximum*2 ICC*3 - - 137*2 mA ICLK = 120 MHz
current*1 PCLKA = 120 MHz*7
CoreMark®*5 - 21 - PCLKB = 60 MHz
Normal mode All peripheral clocks enabled, - 34 - PCLKC = 60 MHz
while (1) code executing from PCLKD = 120 MHz
flash*4 FCLK = 60 MHz
BCLK = 120 MHz
All peripheral clocks disabled, - 14 -
High-speed mode

while (1) code executing from


flash*5, *6
Sleep mode*5, *6 - 12 46
Increase during BGO Data flash P/E - 6 -
operation
Code flash P/E - 8 -
Low-speed mode*5 - 2.4 - ICLK = 1 MHz
Subosc-speed mode*5 - 2 - ICLK = 32.768 kHz
Software Standby mode - 1.8 18 Ta ≤ 85°C
- 1.8 28 Ta ≤ 105°C
Power supplied to Standby SRAM and USB resume - 30 79 μA Ta ≤ 85°C
detecting unit
- 30 113 μA Ta ≤ 105°C
Power not supplied to Power-on reset circuit low- - 13 33 μA Ta ≤ 85°C
SRAM or USB resume power function disabled
detecting unit - 13 40 Ta ≤ 105°C
Deep Software Standby mode

Power-on reset circuit low- - 6.3 28 Ta ≤ 85°C


power function enabled
- 6.3 34 Ta ≤ 105°C
Increase when the RTC When the low-speed on-chip - 5 - -
and AGT are operating oscillator (LOCO) is in use
When a crystal oscillator for - 1.0 - -
low clock loads is in use
When a crystal oscillator for - 1.5 - -
standard clock loads is in use
RTC operating while VCC is off (with When a crystal - 0.9 - VBATT = 1.8 V,
the battery backup function, only the oscillator for low clock VCC = 0 V
RTC and sub-clock oscillator loads is in use
operate) - 1.3 - VBATT = 3.3 V,
VCC = 0 V
When a crystal - 1.1 - VBATT = 1.8 V,
oscillator for standard VCC = 0 V
clock loads is in use
- 1.8 - VBATT = 3.3 V,
VCC = 0 V
Analog During 12-bit A/D conversion AICC - 0.8 1.1 mA -
power
supply During 12-bit A/D conversion with S/H amp - 2.3 3.3 mA -
current PGA (1ch) - 1 3 mA -
ACMPHS (1unit) - 100 150 µA -
Temperature sensor - 0.1 0.2 mA -
During D/A conversion (per unit) Without AMP output - 0.1 0.2 mA -
With AMP output - 0.6 1.1 mA -
Waiting for A/D, D/A conversion (all units) - 0.9 1.6 mA -
ADC12, DAC12 in standby modes (all units)*8 - 2 8 µA -
Reference During 12-bit A/D conversion (unit 0) AIREFH0 - 70 120 μA -
power
supply Waiting for 12-bit A/D conversion (unit 0) - 0.07 0.5 μA -
current ADC12 in standby modes (unit 0) - 0.07 0.5 µA -
(VREFH0)
Reference During 12-bit A/D conversion (unit 1) AIREFH - 70 120 µA -
power
supply During D/A conversion Without AMP output - 0.1 0.4 mA -
current (per unit)
With AMP ouput - 0.1 0.4 mA -
(VREFH)
Waiting for 12-bit A/D (unit 1), D/A (all units) conversion - 0.07 0.8 µA -
ADC12 unit 1 in standby modes - 0.07 0.8 µA -

R01DS0303EU0120 Rev.1.20 Page 33 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Table 2.7 Operating and standby current (2 of 2)


Parameter Symbol Min Typ Max Unit Test conditions
USB Low speed USB ICCUSBLS - 3.5 6.5 mA VCC_USB
operating
current USBHS - 10.5 13.5 mA VCC_USBHS =
AVCC_USBHS
(PHYSET.HSEB = 0)
USBHS - 2.8 3.6 mA VCC_USBHS =
AVCC_USBHS
(PHYSET.HSEB = 1)
Full speed USB ICCUSBFS - 4.0 10.0 mA VCC_USB
USBHS - 14 22 mA VCC_USBHS =
AVCC_USBHS
(PHYSET.HSEB = 0)
USBHS - 6.5 13.0 mA VCC_USBHS =
AVCC_USBHS
(PHYSET.HSEB = 1)
High speed USBHS ICCUSBHS - 50 65 mA VCC_USBHS =
AVCC_USBHS
Standby mode (direct power down) USBHS ICCUSBSBY - 0.5 4.5 μA VCC_USBHS =
AVCC_USBHS

Note 1. Supply current values are with all output pins unloaded and all input pull-up MOS transistors in the off state.
Note 2. Measured with clocks supplied to the peripheral functions. This does not include the BGO operation.
Note 3. ICC depends on f (ICLK) as follows. (ICLK:PCLKA:PCLKB:PCLKC:PCLKD:BCK:EBCLK = 2:2:1:1:2:1:1)
ICC Max. = 0.84 × f + 37 (max. operation in High-speed mode)
ICC Typ. = 0.09 × f + 3.7 (normal operation in High-speed mode)
ICC Typ. = 0.6 × f + 1.8 (Low-speed mode 1)
ICC Max. = 0.08 × f + 37 (Sleep mode).
Note 4. This does not include the BGO operation.
Note 5. Supply of the clock signal to peripherals is stopped in this state. This does not include the BGO operation.
Note 6. FCLK, BCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (3.75 MHz).
Note 7. When using ETHERC, GLCDC, DRW, and JPEG, PCLKA frequency is such that PCLKA = ICLK.
Note 8. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (ADC120 Module Stop bit) and
MSTPCRD.MSTPD15 (ADC121 Module Stop bit) are in the module-stop state. See section 47.6.8, Available Functions and
Register Settings of AN000 to AN002, AN007, AN100 to AN102, and AN107 in User’s Manual.

R01DS0303EU0120 Rev.1.20 Page 34 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

100

ICC (mA)

10

1
-40 -20 0 20 40 60 80 100
Ta (Ԩ)

Average value of the tested middle samples during product evaluation.


Average value of the tested upper-limit samples during product evaluation.

Figure 2.2 Temperature dependency in Software Standby mode (reference data)

1000

100
ICC (uA)

10

1
-40 -20 0 20 40 60 80 100
Ta (Ԩ)

Average value of the tested middle samples during product evaluation.


Average value of the tested upper-limit samples during product evaluation.

Figure 2.3 Temperature dependency in Deep Software Standby mode, power supplied to standby SRAM and
USB resume detecting unit (reference data)

R01DS0303EU0120 Rev.1.20 Page 35 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

100

ICC (uA)

10

1
-40 -20 0 20 40 60 80 100
Ta (Ԩ)

Average value of the tested middle samples during product evaluation.


Average value of the tested upper-limit samples during product evaluation.

Figure 2.4 Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or USB
resume detecting unit, power-on reset circuit low-power function disabled (reference data)

100
ICC (uA)

10

1
-40 -20 0 20 40 60 80 100
Ta (Ԩ)

Average value of the tested middle samples during product evaluation.


Average value of the tested upper-limit samples during product evaluation.

Figure 2.5 Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or USB
resume detecting unit, power-on reset circuit low-power function enabled (reference data)

R01DS0303EU0120 Rev.1.20 Page 36 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

2.2.6 VCC Rise and Fall Gradient and Ripple Frequency

Table 2.8 Rise and fall gradient characteristics


Parameter Symbol Min Typ Max Unit Test conditions
VCC rising gradient Voltage monitor 0 reset disabled at startup SrVCC 0.0084 - 20 ms/V -
Voltage monitor 0 reset enabled at startup 0.0084 - - -
SCI/USB boot mode*1 0.0084 - 20 -
VCC falling gradient*2 SfVCC 0.0084 - - ms/V -

Note 1. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of OFS1.LVDAS bit.
Note 2. This applies when VBATT is used.

Table 2.9 Rise and fall gradient and ripple frequency characteristics
The ripple voltage must meet the allowable ripple frequency fr(VCC) within the range between the VCC upper limit (3.6 V) and lower limit
(2.7 V). When the VCC change exceeds VCC ±10%, the allowable voltage change rising and falling gradient dt/dVCC must be met.
Parameter Symbol Min Typ Max Unit Test conditions
Allowable ripple frequency fr (VCC) - - 10 kHz Figure 2.6
Vr (VCC) ≤ VCC × 0.2
- - 1 MHz Figure 2.6
Vr (VCC) ≤ VCC × 0.08
- - 10 MHz Figure 2.6
Vr (VCC) ≤ VCC × 0.06
Allowable voltage change rising dt/dVCC 1.0 - - ms/V When VCC change exceeds VCC ±10%
and falling gradient

1/fr(VCC)

VCC Vr(VCC)

Figure 2.6 Ripple waveform

2.3 AC Characteristics

2.3.1 Frequency

Table 2.10 Operation frequency value in high-speed mode


Parameter Symbol Min Typ Max Unit
Operation frequency System clock (ICLK*2) f - - 120 MHz
Peripheral module clock (PCLKA)*2 - - 120
Peripheral module clock (PCLKB)*2 - - 60
Peripheral module clock (PCLKC)*2 -*3 - 60
Peripheral module clock (PCLKD)*2 - - 120
Flash interface clock (FCLK)*2 -*1 - 60
External bus clock (BCLK)*2 - - 120
EBCLK pin output - - 60
SDCLK pin output VCC ≥ 3.0 V - - 120

R01DS0303EU0120 Rev.1.20 Page 37 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Note 1. FCLK must run at a frequency of at least 4 MHz when programming or erasing the flash memory.
Note 2. See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC,
PCLKD, FCLK, and BCLK frequencies.
Note 3. When the ADC12 is used, the PCLKC frequency must be at least 1 MHz.

Table 2.11 Operation frequency value in low-speed mode


Parameter Symbol Min Typ Max Unit
Operation frequency System clock (ICLK)*2 f - - 1 MHz
Peripheral module clock (PCLKA)*2 - - 1
Peripheral module clock (PCLKB)*2 - - 1
Peripheral module clock (PCLKC)*2,*3 -*3 - 1
Peripheral module clock (PCLKD)*2 - - 1
Flash interface clock (FCLK)*1, *2 - - 1
External bus clock (BCLK) - - 1
EBCLK pin output - - 1

Note 1. Programming or erasing the flash memory is disabled in low-speed mode.


Note 2. See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC,
PCLKD, FCLK, and BCLK frequencies.
Note 3. When the ADC12 is used, the PCLKC frequency must be set to at least 1 MHz.

Table 2.12 Operation frequency value in Subosc-speed mode


Parameter Symbol Min Typ Max Unit
Operation frequency System clock (ICLK)*2 f 27.8 - 37.7 kHz
Peripheral module clock (PCLKA)*2 - - 37.7
Peripheral module clock (PCLKB)*2 - - 37.7
Peripheral module clock (PCLKC)*2,*3 - - 37.7
Peripheral module clock (PCLKD)*2 - - 37.7
Flash interface clock (FCLK)*1, *2 27.8 - 37.7
External bus clock (BCLK)*2 - - 37.7
EBCLK pin output - - 37.7

Note 1. Programming or erasing the flash memory is disable in Subosc-speed mode.


Note 2. See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC,
PCLKD, FCLK, and BCLK frequencies.
Note 3. The ADC12 cannot be used.

2.3.2 Clock Timing

Table 2.13 Clock timing except for sub-clock oscillator (1 of 2)


Parameter Symbol Min Typ Max Unit Test conditions
EBCLK pin output cycle time tBcyc 16.6 - - ns Figure 2.7
EBCLK pin output high pulse width tCH 3.3 - - ns
EBCLK pin output low pulse width tCL 3.3 - - ns
EBCLK pin output rise time tCr - - 5.0 ns
EBCLK pin output fall time tCf - - 5.0 ns
SDCLK pin output cycle time tSDcyc 8.33 - - ns
SDCLK pin output high pulse width tCH 1.0 - - ns
SDCLK pin output low pulse width tCL 1.0 - - ns
SDCLK pin output rise time tCr - - 3.0 ns
SDCLK pin output fall time tCf - - 3.0 ns

R01DS0303EU0120 Rev.1.20 Page 38 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Table 2.13 Clock timing except for sub-clock oscillator (2 of 2)


Parameter Symbol Min Typ Max Unit Test conditions
EXTAL external clock input cycle time tEXcyc 41.66 - - ns Figure 2.8
EXTAL external clock input high pulse width tEXH 15.83 - - ns
EXTAL external clock input low pulse width tEXL 15.83 - - ns
EXTAL external clock rise time tEXr - - 5.0 ns
EXTAL external clock fall time tEXf - - 5.0 ns
Main clock oscillator frequency fMAIN 8 - 24 MHz -
Main clock oscillation stabilization wait time tMAINOSCWT - - -*1 ms Figure 2.9
(crystal) *1
LOCO clock oscillation frequency fLOCO 27.8528 32.768 37.6832 kHz -
LOCO clock oscillation stabilization wait time tLOCOWT - - 60.4 μs Figure 2.10
ILOCO clock oscillation frequency fILOCO 12.75 15 17.25 kHz -
MOCO clock oscillation frequency FMOCO 6.8 8 9.2 MHz -
MOCO clock oscillation stabilization wait time tMOCOWT - - 15.0 μs -
HOCO clock oscillator Without FLL fHOCO16 15.78 16 16.22 MHz -20 ≤ Ta ≤ 105°C
oscillation frequency
fHOCO18 17.75 18 18.25
fHOCO20 19.72 20 20.28
fHOCO16 15.71 16 16.29 -40 ≤ Ta ≤ -20°C
fHOCO18 17.68 18 18.32
fHOCO20 19.64 20 20.36
With FLL fHOCO16 15.955 16 16.045 -40 ≤ Ta ≤ 105°C
Sub-clock
fHOCO18 17.949 18 18.051
frequency accuracy
fHOCO20 19.944 20 20.056 is ±50 ppm.
HOCO clock oscillation stabilization wait time*2 tHOCOWT - - 64.7 μs -
FLL stabilization wait time tFLLWT - - 1.8 ms -
PLL clock frequency fPLL 120 - 240 MHz -
PLL clock oscillation stabilization wait time tPLLWT - - 174.9 μs Figure 2.11

Note 1. When setting up the main clock oscillator, ask the oscillator manufacturer for an oscillation evaluation and use the results as the
recommended oscillation stabilization time. Set the MOSCWTCR register to a value equal to or greater than the recommended
value.
After changing the setting in the MOSCCR.MOSTP bit to start main clock operation, read the OSCSF.MOSCSF flag to confirm
that it is 1, and then start using the main clock oscillator.
Note 2. This is the time from release from reset state until the HOCO oscillation frequency (fHOCO) reaches the range for guaranteed
operation.

Table 2.14 Clock timing for the sub-clock oscillator


Parameter Symbol Min Typ Max Unit Test conditions
Sub-clock frequency fSUB - 32.768 - kHz -
Sub-clock oscillation stabilization wait time tSUBOSCWT - - *1 s Figure 2.12

Note 1. When setting up the sub-clock oscillator, ask the oscillator manufacturer for an oscillation evaluation and use the results as the
recommended oscillation stabilization time.
After changing the setting in the SOSCCR.SOSTP bit to start sub-clock operation, only start using the sub-clock oscillator after
the sub-clock oscillation stabilization time elapses with an adequate margin. Two times the value shown is recommended.

R01DS0303EU0120 Rev.1.20 Page 39 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

tBcyc, tSDcyc
tCH
tCf

EBCLK pin output, SDCLK pin output

tCr
tCL

Figure 2.7 EBCLK and SDCLK output timing

tEXcyc
tEXH tEXL

EXTAL external clock input VCC × 0.5

tEXr tEXf

Figure 2.8 EXTAL external clock input timing

MOSCCR.MOSTP

Main clock oscillator output

tMAINOSCWT

Main clock

Figure 2.9 Main clock oscillation start timing

LOCOCR.LCSTP

On-chip oscillator output

tLOCOWT

LOCO clock

Figure 2.10 LOCO clock oscillation start timing

R01DS0303EU0120 Rev.1.20 Page 40 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

PLLCR.PLLSTP

PLL circuit output

tPLLWT

OSCSF.PLLSF

PLL clock

Figure 2.11 PLL clock oscillation start timing


Note: Only operate the PLL is operated after main clock oscillation has stabilized.

SOSCCR.SOSTP

Sub-clock oscillator output

tSUBOSCCWT
Sub-clock

Figure 2.12 Sub-clock oscillation start timing

2.3.3 Reset Timing

Table 2.15 Reset timing


Test
Parameter Symbol Min Typ Max Unit conditions
RES pulse width Power-on tRESWP 1 - - ms Figure 2.13
Deep Software Standby mode tRESWD 0.6 - - ms Figure 2.14
Software Standby mode, Subosc-speed tRESWS 0.3 - - ms
mode
All other tRESW 200 - - μs
Wait time after RES cancellation tRESWT - 29 33 μs Figure 2.13
Wait time after internal reset cancellation tRESW2 - 320 408 μs -
(IWDT reset, WDT reset, software reset, SRAM parity error
reset, SRAM ECC error reset, bus master MPU error reset, bus
slave MPU error reset, stack pointer error reset)

R01DS0303EU0120 Rev.1.20 Page 41 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

VCC

RES

tRESWP
Internal reset signal
(low is valid)

tRESWT

Figure 2.13 Power-on reset timing

tRESWD, tRESWS, tRESW

RES

Internal reset signal


(low is valid)

tRESWT

Figure 2.14 Reset input timing

2.3.4 Wakeup Timing

Table 2.16 Timing of recovery from low power modes


Test
Parameter Symbol Min Typ Max Unit conditions
Recovery time Crystal System clock source is main tSBYMC - 2.4*9 2.8*9 ms Figure 2.15
from Software resonator clock oscillator*2 The division
Standby mode*1 connected ratio of all
System clock source is PLL tSBYPC - 2.7*9 3.2*9 ms
to main oscillators is
with main clock oscillator*3
clock 1.
oscillator
External System clock source is main tSBYEX - 230*9 280*9 μs
clock input clock oscillator*4
to main
System clock source is PLL tSBYPE - 570*9 700*9 μs
clock
with main clock oscillator*5
oscillator
System clock source is sub-clock tSBYSC - 1.2*9 1.3*9 ms
oscillator*8
System clock source is LOCO*8 tSBYLO - 1.2*9 1.4*9 ms
System clock source is HOCO clock tSBYHO - 240*9, *10 310 µs
oscillator*6 *9, *10
System clock source is MOCO clock tSBYMO - 220*9 300*9 µs
oscillator*7
Recovery time from Deep Software Standby mode tDSBY - 0.65 1.0 ms Figure 2.16
Wait time after cancellation of Deep Software Standby mode tDSBYWT 34 - 35 tcyc
Recovery time High-speed mode when system clock tSNZ - 35*9, *10 71 μs Figure 2.17
from Software source is HOCO (20 MHz) *9, *10
Standby mode to
High-speed mode when system clock tSNZ - 11*9 14*9 μs
Snooze mode
source is MOCO (8 MHz)

R01DS0303EU0120 Rev.1.20 Page 42 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Note 1. The recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be
determined with the following equation:
Total recovery time = recovery time for an oscillator as the system clock source + the longest oscillation stabilization time of any
oscillators requiring longer stabilization times than the system clock source + 2 LOCO cycles (when LOCO is operating) + 3
SOSC cycles (when Subosc is oscillating and MSTPC0 = 0 (CAC module stop)).
Note 2. When the frequency of the crystal is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For
other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 05h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =
05h))
Note 3. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For other
settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 05h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =
05h))
Note 4. When the frequency of the external clock is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h).
For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 00h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =
00h))
Note 5. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h). For other
settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:
tSBYMC (MOSCWTCR = Xh) = tSBYMC (MOSCWTCR = 00h) + (tMAINOSCWT (MOSCWTCR = Xh) - tMAINOSCWT (MOSCWTCR =
00h))
Note 6. The HOCO frequency is 20 MHz.
Note 7. The MOCO frequency is 8 MHz.
Note 8. In Subosc-speed mode, the sub-clock oscillator or LOCO continues oscillating in Software Standby mode.
Note 9. When the SNZCR.RXDREQEN bit is set to 0, the following time is added as the power supply recovery time:
STCONR.STCON[1:0] = 00b:16 µs (typical), 34 µs (maximum)
STCONR.STCON[1:0] = 11b:16 µs (typical), 104 µs (maximum).
Note 10. When the SNZCR.RXDREQEN bit is set to 0, 16 μs (typical) or 18 μs (maximum) is added as the HOCO wait time.

R01DS0303EU0120 Rev.1.20 Page 43 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Oscillator
(system clock)
tSBYOSCWT tSBYSEQ
Oscillator
(not the system clock)

ICLK

IRQ
Software Standby mode

tSBYMC, tSBYEX, tSBYPC, tSBYPE,


tSBYPH, tSBYSC, tSBYHO, tSBYLO

When stabilization of the system clock oscillator is slower

Oscillator
(system clock)
tSBYOSCWT tSBYSEQ

Oscillator
(not the system clock)

tSBYOSCWT
ICLK

IRQ

Software Standby mode

tSBYMC, tSBYEX, tSBYPC, tSBYPE,


tSBYPH, tSBYSC, tSBYHO, tSBYLO

When stabilization of an oscillator other than the system clock is slower

Figure 2.15 Software Standby mode cancellation timing

R01DS0303EU0120 Rev.1.20 Page 44 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Oscillator

IRQ

Deep Software Standby


reset
(low is valid)

Internal reset
(low is valid)

Deep Software Standby mode


tDSBY
tDSBYWT

Reset exception handling start

Figure 2.16 Deep Software Standby mode cancellation timing

Oscillator

ICLK(except DTC, SRAM)

ICLK(to DTC, SRAM)*1


PCLK

IRQ

Software Standby mode Snooze mode


tSNZ

Note 1. When SNZCR.SNZDTCEN is set to 1, ICLK is supplied to DTC and SRAM.

Figure 2.17 Recovery timing from Software Standby mode to Snooze mode

2.3.5 NMI and IRQ Noise Filter

Table 2.17 NMI and IRQ noise filter


Parameter Symbol Min Typ Max Unit Test conditions
NMI pulse width tNMIW 200 - - ns NMI digital filter disabled tPcyc × 2 ≤ 200 ns
tPcyc × 2*1 - - tPcyc × 2 > 200 ns
200 - - NMI digital filter enabled tNMICK × 3 ≤ 200 ns
tNMICK × 3.5*2 - - tNMICK × 3 > 200 ns
IRQ pulse width tIRQW 200 - - ns IRQ digital filter disabled tPcyc × 2 ≤ 200 ns
tPcyc × 2*1 - - tPcyc × 2 > 200 ns
200 - - IRQ digital filter enabled tIRQCK × 3 ≤ 200 ns
tIRQCK × 3.5*3 - - tIRQCK × 3 > 200 ns

Note: 200 ns minimum in Software Standby mode.


Note 1. tPcyc indicates the PCLKB cycle.

R01DS0303EU0120 Rev.1.20 Page 45 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Note 2. tNMICK indicates the cycle of the NMI digital filter sampling clock.
Note 3. tIRQCK indicates the cycle of the IRQi digital filter sampling clock.

NMI

tNMIW

Figure 2.18 NMI interrupt input timing

IRQ

tIRQW

Figure 2.19 IRQ interrupt input timing

2.3.6 Bus Timing

Table 2.18 Bus timing (1 of 2)


Condition 1: When using the CS area controller (CSC).
BCLK = 8 to 120 MHz, EBCLK = 8 to 60 MHz
VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V, VREFH/VREFH0 = 2.7 V to AVCC0,
VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF
EBCLK: High drive output is selected in the port drive capability bit in the PmnPFS register.
Others: Middle drive output is selected in the port drive capability bit in the PmnPFS register.

Condition 2: When using the SDRAM area controller (SDRAMC).


BCLK = SDCLK = 8 to 120 MHz
VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0,
VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF
High drive output is selected in the port drive capability bit in the PmnPFS register.

Condition 3: When using the SDRAM area controller (SDRAMC) and CS area controller (CSC) simultaneously.
BCLK = SDCLK = 8 to 60 MHz
VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0,
VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF
High drive output is selected in the port drive capability bit in the PmnPFS register.
Parameter Symbol Min Max Unit Test conditions
Address delay tAD - 12.5 ns Figure 2.20 to
Figure 2.25
Byte control delay tBCD - 12.5 ns
CS delay tCSD - 12.5 ns
ALE delay time tALED - 12.5 ns
RD delay tRSD - 12.5 ns
Read data setup time tRDS 12.5 - ns
Read data hold time tRDH 0 - ns
WR/WRn delay tWRD - 12.5 ns
Write data delay tWDD - 12.5 ns
Write data hold time tWDH 0 - ns
WAIT setup time tWTS 12.5 - ns Figure 2.26
WAIT hold time tWTH 0 - ns

R01DS0303EU0120 Rev.1.20 Page 46 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Table 2.18 Bus timing (2 of 2)


Condition 1: When using the CS area controller (CSC).
BCLK = 8 to 120 MHz, EBCLK = 8 to 60 MHz
VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V, VREFH/VREFH0 = 2.7 V to AVCC0,
VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF
EBCLK: High drive output is selected in the port drive capability bit in the PmnPFS register.
Others: Middle drive output is selected in the port drive capability bit in the PmnPFS register.

Condition 2: When using the SDRAM area controller (SDRAMC).


BCLK = SDCLK = 8 to 120 MHz
VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0,
VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF
High drive output is selected in the port drive capability bit in the PmnPFS register.

Condition 3: When using the SDRAM area controller (SDRAMC) and CS area controller (CSC) simultaneously.
BCLK = SDCLK = 8 to 60 MHz
VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0,
VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF
High drive output is selected in the port drive capability bit in the PmnPFS register.
Parameter Symbol Min Max Unit Test conditions
Address delay 2 (SDRAM) tAD2 0.8 6.8 ns Figure 2.27 to
Figure 2.33
CS delay 2 (SDRAM) tCSD2 0.8 6.8 ns
DQM delay (SDRAM) tDQMD 0.8 6.8 ns
CKE delay (SDRAM) tCKED 0.8 6.8 ns
Read data setup time 2 (SDRAM) tRDS2 2.9 - ns
Read data hold time 2 (SDRAM) tRDH2 1.5 - ns
Write data delay 2 (SDRAM) tWDD2 - 6.8 ns
Write data hold time 2 (SDRAM) tWDH2 0.8 - ns
WE delay (SDRAM) tWED 0.8 6.8 ns
RAS delay (SDRAM) tRASD 0.8 6.8 ns
CAS delay (SDRAM) tCASD 0.8 6.8 ns

R01DS0303EU0120 Rev.1.20 Page 47 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Address cycle Data cycle


Ta1 Ta1 Tan
TW1 TW2 TW3 TW4 TW5 Tend Tn1 Tn2

EBCLK

tAD
Address bus

tRDS tRDH
tAD tAD
Address bus/
data bus

tALED tALED
Address latch
(ALE)

tRSD tRSD
Data read
(RD)

tCSD
tCSD
Chip select
(CSn)

Figure 2.20 Address/data multiplexed bus read access timing

Address cycle Data cycle


Ta1 Ta1 Tan
TW1 TW2 TW3 TW4 TW5 Tend Tn1 Tn2 Tn3

EBCLK

tAD
Address bus

tAD tAD tWDD tWDH


Address bus/
data bus

tALED tALED
Address latch
(ALE)

tWRD tWRD
Data write
(WRm)

tCSD
tCSD
Chip select
(CSn)

Figure 2.21 Address/data multiplexed bus write access timing

R01DS0303EU0120 Rev.1.20 Page 48 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

CSRWAIT: 2

RDON:1
CSROFF: 2
CSON: 0

TW1 TW2 Tend Tn1 Tn2

EBCLK

Byte strobe mode


tAD tAD

A23 to A00

1-write strobe mode


tAD tAD

A23 to A01

tBCD tBCD

BC1, BC0

Common to both byte strobe mode


and 1-write strobe mode
tCSD tCSD

CS7 to CS0

tRSD tRSD

RD (read)

tRDS tRDH

D15 to D00 (read)

Figure 2.22 External bus timing for normal read cycle with bus clock synchronized

R01DS0303EU0120 Rev.1.20 Page 49 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

CSWWAIT: 2

WRON: 1
WDON: 1*1
CSWOFF: 2

CSON:0 WDOFF: 1*1

TW1 TW2 Tend Tn1 Tn2

EBCLK

Byte strobe mode

tAD tAD

A23 to A00

1-write strobe mode


tAD tAD

A23 to A01

tBCD tBCD

BC1, BC0

Common to both byte strobe mode


and 1-write strobe mode
tCSD tCSD

CS7 to CS0

tWRD tWRD

WR1, WR0, WR (write)

tWDD
tWDH

D15 to D00 (write)

Note 1. Always specify WDON and WDOFF as at least one EBCLK cycle.

Figure 2.23 External bus timing for normal write cycle with bus clock synchronized

R01DS0303EU0120 Rev.1.20 Page 50 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

CSRWAIT:2 CSPRWAIT:2 CSPRWAIT:2 CSPRWAIT:2


RDON:1 RDON:1 RDON:1 RDON:1 CSROFF:2

CSON:0
TW1 TW2 Tend Tpw1 Tpw2 Tend Tpw1 Tpw2 Tend Tpw1 Tpw2 Tend Tn1 Tn2

EBCLK

Byte strobe mode


tAD tAD tAD tAD tAD

A23 to A00

1-write strobe mode tAD tAD tAD tAD tAD


A23 to A01

tBCD tBCD
BC1, BC0

Common to both byte strobe mode


and 1-write strobe mode tCSD
tCSD
CS7 to CS0
tRSD tRSD tRSD tRSD tRSD tRSD tRSD tRSD

RD (Read)

tRDS tRDH tRDS tRDH tRDS tRDH tRDS tRDH


D15 to D00 (Read)

Figure 2.24 External bus timing for page read cycle with bus clock synchronized

CSWWAIT:2 CSPWWAIT:2 CSPWWAIT:2 CSWOFF:2


WRON:1
WRON:1 WRON:1
WDON:1*1 WDOFF:1*1 WDOFF:1*1 WDOFF:1*1
WDON:1*1 WDON:1*1
CSON:0 TW1 TW2 Tend Tdw1 Tpw1 Tpw2 Tend Tdw1 Tpw1 Tpw2 Tend Tn1 Tn2

EBCLK

Byte strobe mode


tAD tAD tAD tAD

A23 to A00

1-write strobe mode tAD tAD tAD tAD

A23 to A01

tBCD tBCD
BC1, BC0

Common to both byte strobe mode


and 1-write strobe mode
tCSD tCSD
CS7 to CS0

tWRD tWRD tWRD tWRD tWRD tWRD

WR1, WR0, WR (write)

tWDD tWDD tWDD


tWDH tWDH tWDH
D15 to D00 (write)

Note 1. Always specify WDON and WDOFF as at least one EBCLK cycle.

Figure 2.25 External bus timing for page write cycle with bus clock synchronized

R01DS0303EU0120 Rev.1.20 Page 51 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

CSRWAIT:3
CSWWAIT:3

TW1 TW2 TW3 (Tend) Tend Tn1 Tn2

EBCLK

A23 to A00

CS7 to CS0

RD (read)

WR (write)

External wait

tWTS tWTH tWTS tWTH

WAIT

Figure 2.26 External bus timing for external wait control

R01DS0303EU0120 Rev.1.20 Page 52 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

SDRAM command ACT RD PRA

SDCLK

tAD2 tAD2 tAD2 tAD2

A15 to A00 Row Column address


address

tAD2 tAD2 tAD2 tAD2

AP*1 PRA
command
tCSD2 tCSD2 tCSD2 tCSD2 tCSD2 tCSD2

SDCS
tRASD tRASD tRASD tRASD

RAS
tCASD tCASD

CAS
tWED tWED

WE

(High)
CKE

tDQMD

DQMn

tRDS2 tRDH2

DQ15 to DQ00

Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM.

Figure 2.27 SDRAM single read timing

R01DS0303EU0120 Rev.1.20 Page 53 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

SDRAM command ACT WR PRA

SDCLK

tAD2 tAD2 tAD2 tAD2

A15 to A00 Row Column address


address

tAD2 tAD2 tAD2 tAD2

AP*1 PRA
command
tCSD2 tCSD2 tCSD2 tCSD2 tCSD2 tCSD2

SDCS
tRASD tRASD tRASD tRASD

RAS
tCASD tCASD

CAS
tWED tWED tWED tWED

WE

(High)
CKE

tDQMD

DQMn
tWDD2 tWDH2

DQ15 to DQ00

Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM.

Figure 2.28 SDRAM single write timing

R01DS0303EU0120 Rev.1.20 Page 54 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

ACT RD RD RD RD PRA

SDCLK

tAD2 tAD2 tAD2 tAD2 tAD2 tAD2 tAD2 tAD2

Row C0
A15 to A00 address (column address)
C1 C2 C3

tAD2 tAD2 tAD2 tAD2 tAD2

AP*1 PRA
command

tCSD2 tCSD2 tCSD2 tCSD2 tCSD2

SDCS

tRASD tRASD tRASD tRASD tRASD

RAS
tCASD tCASD tCASD

CAS
tWED tWED

WE

(High)

CKE

tDQMD tDQMD

DQMn
tRDS2 tRDH2 tRDS2 tRDH2

DQ15 to DQ00

Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM.

Figure 2.29 SDRAM multiple read timing

R01DS0303EU0120 Rev.1.20 Page 55 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

ACT WR WR WR WR PRA

SDCLK

tAD2 tAD2 tAD2 tAD2 tAD2 tAD2 tAD2 tAD2

Row C0
A15 to A00 address (column address)
C1 C2 C3

tAD2 tAD2 tAD2 tAD2 tAD2

AP*1 PRA
command

tCSD2 tCSD2 tCSD2 tCSD2 tCSD2

SDCS

tRASD tRASD tRASD tRASD tRASD

RAS
tCASD tCASD tCASD

CAS
tWED tWED

WE

(High)

CKE

tDQMD tDQMD

DQMn
tWDD2 tWDH2 tWDD2 tWDH2

DQ15 to DQ00

Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM.

Figure 2.30 SDRAM multiple write timing

R01DS0303EU0120 Rev.1.20 Page 56 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

ACT RD RD RD RD PRA ACT RD RD RD RD PRA


SDRAM command

SDCLK

t AD2 t AD2 t AD2 t AD2 t AD2 t AD2 t AD2 t AD2 t AD2 t AD2 t AD2 t AD2 t AD2 t AD2

A15 to A00 Row


address
C0
(column address 0) C1 C2 C3 R1 C4 C5 C6 C7

t AD2 t AD2 t AD2 t AD2 t AD2 t AD2 t AD2 t AD2

AP*1 PRA
command
PRA
command

t CSD2 t CSD2 t CSD2 t CSD2 t CSD2 t CSD2 t CSD2 t CSD2

SDCS

t RASD t RASD t RASD t RASD t RASD t RASD t RASD t RASD

RAS
t CASD t CASD t CASD t CASD

CAS
t WED t WED t WED t WED

WE

(High)

CKE
tDQMD

DQMn

t RDS2 t RDH2 t RDS2 t RDH2 t RDS2 t RDH2 t RDS2 t RDH2

DQ15 to DQ00

Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM.

Figure 2.31 SDRAM multiple read line stride timing

R01DS0303EU0120 Rev.1.20 Page 57 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

MRS
SDRAM command
SDCLK

t AD2 t AD2

A15 to A00

t AD2 t AD2

AP*1

t CSD2 t CSD2

SDCS
t RASD t RASD

RAS
t CASD t CASD

CAS
t WED t WED

WE

(High)

CKE

DQMn

(Hi-Z)

DQ15 to DQ00

Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM.

Figure 2.32 SDRAM mode register set timing

R01DS0303EU0120 Rev.1.20 Page 58 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

SDRAM command Ts (RFA) (RFS) (RFX) (RFA)

SDCLK

t AD2 t AD2

A15 to A00

t AD2 t AD2

AP*1

t CSD2 t CSD2 t CSD2 t CSD2 t CSD2 t CSD2 t CSD2

SDCS

t RASD t RASD t RASD t RASD t RASD t RASD t RASD

RAS
t CASD t CASD t CASD t CASD t CASD t CASD t CASD

CAS

(High)

WE

t CKED t CKED

CKE

t DQMD t DQMD

DQMn

(Hi-Z)
DQ15 to DQ00

Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM.

Figure 2.33 SDRAM self-refresh timing

2.3.7 I/O Ports, POEG, GPT32, AGT, KINT, and ADC12 Trigger Timing

Table 2.19 I/O ports, POEG, GPT32, AGT, KINT, and ADC12 trigger timing (1 of 2)
GPT32 Conditions:
High drive output is selected in the port drive capability bit in the PmnPFS register.

AGT Conditions:
Middle drive output is selected in the port drive capability bit in the PmnPFS register.

Test
Parameter Symbol Min Max Unit conditions
I/O ports Input data pulse width tPRW 1.5 - tPcyc Figure 2.34
POEG POEG input trigger pulse width tPOEW 3 - tPcyc Figure 2.35

R01DS0303EU0120 Rev.1.20 Page 59 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Table 2.19 I/O ports, POEG, GPT32, AGT, KINT, and ADC12 trigger timing (2 of 2)
GPT32 Conditions:
High drive output is selected in the port drive capability bit in the PmnPFS register.

AGT Conditions:
Middle drive output is selected in the port drive capability bit in the PmnPFS register.

Test
Parameter Symbol Min Max Unit conditions
GPT32 Input capture pulse width Single edge tGTICW 1.5 - tPDcyc Figure 2.36
Dual edge 2.5 -
GTIOCxY output skew Middle drive buffer tGTISK *2 - 4 ns Figure 2.37
(x = 0 to 7, Y= A or B)
High drive buffer - 4
GTIOCxY output skew Middle drive buffer - 4
(x = 8 to 13, Y = A or B)
High drive buffer - 4
GTIOCxY output skew Middle drive buffer - 6
(x = 0 to 13, Y = A or B)
High drive buffer - 6
OPS output skew tGTOSK - 5 ns Figure 2.38
GTOUUP, GTOULO, GTOVUP,
GTOVLO, GTOWUP, GTOWLO
GPT(PWM GTIOCxY_Z output skew tHRSK*3 - 2.0 ns Figure 2.39
Delay (x = 0 to 3, Y = A or B, Z = A)
Generation
Circuit)
AGT AGTIO, AGTEE input cycle tACYC*4 100 - ns Figure 2.40
AGTIO, AGTEE input high width, low width tACKWH, 40 - ns
tACKWL
AGTIO, AGTO, AGTOA, AGTOB output cycle tACYC2 62.5 - ns
ADC12 ADC12 trigger input pulse width tTRGW 1.5 - tPcyc Figure 2.41

KINT KRn (n = 00 to 07) pulse width tKR 250 - ns Figure 2.42

Note 1. tPcyc: PCLKB cycle, tPDcyc: PCLKD cycle.


Note 2. This skew applies when the same driver I/O is used. If the I/O of the middle and high drivers is mixed, operation is not
guaranteed.
Note 3. The load is 30 pF.
Note 4. Constraints on AGTIO input: tPcyc × 2 (tPcyc: PCLKB cycle) < tACYC.

Port

tPRW

Figure 2.34 I/O ports input timing

POEG input trigger

tPOEW

Figure 2.35 POEG input trigger timing

R01DS0303EU0120 Rev.1.20 Page 60 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Input capture

tGTICW

Figure 2.36 GPT32 input capture timing

PCLKD

Output delay

GPT32 output

tGTISK

Figure 2.37 GPT32 output delay skew

PCLKD

Output delay

GPT32 output

tGTOSK

Figure 2.38 GPT32 output delay skew for OPS

PCLKD

Output delay

GPT32 output
(PWM delay
generation circuit)

tHRSK

Figure 2.39 GPT32 (PWM Delay Generation Circuit) output delay skew

R01DS0303EU0120 Rev.1.20 Page 61 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

tACYC

tACKWL tACKWH

AGTIO, AGTEE
(input)

tACYC2

AGTIO, AGTO,
AGTOA, AGTOB
(output)

Figure 2.40 AGT input/output timing

ADTRG0,
ADTRG1
tTRGW

Figure 2.41 ADC12 trigger input timing

KR00 to KR07

tKR

Figure 2.42 Key interrupt input timing

2.3.8 PWM Delay Generation Circuit Timing

Table 2.20 PWM Delay Generation Circuit timing


Parameter Min Typ Max Unit Test conditions
Operation frequency 80 - 120 MHz -
Resolution - 260 - ps PCLKD = 120 MHz
DNL*1 - ±2.0 - LSB -

Note 1. This value normalizes the differences between lines in 1-LSB resolution.

2.3.9 CAC Timing

Table 2.21 CAC timing


Test
Parameter Symbol Min Typ Max Unit conditions
CAC CACREF input pulse width tPBcyc ≤ tcac*2 tCACREF 4.5 × tcac + 3 × tPBcyc - - ns -
tPBcyc > tcac*2 5 × tcac + 6.5 × tPBcyc - - ns

R01DS0303EU0120 Rev.1.20 Page 62 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Note 1. tPBcyc: PCLKB cycle.


Note 2. tcac: CAC count clock source cycle.

2.3.10 SCI Timing

Table 2.22 SCI timing (1)


Conditions: High drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: SCK0 to SCK9.
For other pins, middle drive output is selected in the port drive capability bit in the PmnPFS register.

Test
Parameter Symbol Min Max Unit*1 conditions
SCI Input clock cycle Asynchronous tScyc 4 - tPcyc Figure 2.43
Clock 6 -
synchronous
Input clock pulse width tSCKW 0.4 0.6 tScyc
Input clock rise time tSCKr - 5 ns
Input clock fall time tSCKf - 5 ns
Output clock cycle Asynchronous tScyc 6 - tPcyc
Clock 4 -
synchronous
Output clock pulse width tSCKW 0.4 0.6 tScyc
Output clock rise time tSCKr - 5 ns
Output clock fall time tSCKf - 5 ns
Transmit data delay Clock tTXD - 25 ns Figure 2.44
synchronous
Receive data setup time Clock tRXS 15 - ns
synchronous
Receive data hold time Clock tRXH 5 - ns
synchronous

Note 1. tPcyc: PCLKA cycle.

tSCKW tSCKr tSCKf

SCKn
(n = 0 to 9)

tScyc

Figure 2.43 SCK clock input/output timing

R01DS0303EU0120 Rev.1.20 Page 63 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

SCKn

tTXD

TxDn

tRXS tRXH

RxDn

n = 0 to 9

Figure 2.44 SCI input/output timing in clock synchronous mode

Table 2.23 SCI timing (2)


Conditions: High drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: SCK0 to SCK9.
For other pins, middle drive output is selected in the port drive capability bit in the PmnPFS register.
Test
Parameter Symbol Min Max Unit conditions
Simple SCK clock cycle output tSPcyc 4 (PCLKA ≤ 60 MHz) 65536 tPcyc Figure 2.45
SPI (master) 8 (PCLKA > 60 MHz)
SCK clock cycle input (slave) - 6 (PCLKA ≤ 60 MHz) 65536
12 (PCLKA > 60 MHz)
SCK clock high pulse width tSPCKWH 0.4 0.6 tSPcyc
SCK clock low pulse width tSPCKWL 0.4 0.6 tSPcyc
SCK clock rise and fall time tSPCKr, tSPCKf - 20 ns
Data input setup time tSU 33.3 - ns Figure 2.46 to
Figure 2.49
Data input hold time tH 33.3 - ns
SS input setup time tLEAD 1 - tSPcyc
SS input hold time tLAG 1 - tSPcyc
Data output delay tOD - 33.3 ns
Data output hold time tOH -10 - ns
Data rise and fall time tDr, tDf - 16.6 ns
SS input rise and fall time tSSLr, tSSLf - 16.6 ns
Slave access time tSA - 4 (PCLKA ≤ 60 MHz) tPcyc Figure 2.49
8 (PCLKA > 60 MHz)
Slave output release time tREL - 5 (PCLKA ≤ 60 MHz) tPcyc
10 (PCLKA > 60 MHz)

R01DS0303EU0120 Rev.1.20 Page 64 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

tSPCKWH tSPCKr tSPCKf

VOH VOH VOH VOH


SCKn
master select VOL VOL VOL
output
tSPCKWL
tSPcyc

tSPCKWH tSPCKr tSPCKf

VIH VIH VIH VIH


SCKn
slave select input VIL VIL VIL
tSPCKWL
(n = 0 to 9) tSPcyc

VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC

Figure 2.45 SCI simple SPI mode clock timing

SCKn
CKPOL = 0
output

SCKn
CKPOL = 1
output
tSU tH

MISOn
MSB IN DATA LSB IN MSB IN
input

tDr, tDf tOH tOD

MOSIn
MSB OUT DATA LSB OUT IDLE MSB OUT
output

(n = 0 to 9)

Figure 2.46 SCI simple SPI mode timing for master when CKPH = 1

SCKn
CKPOL = 1
output

SCKn
CKPOL = 0
output
tSU tH

MISOn
MSB IN DATA LSB IN MSB IN
input

tOH tOD tDr, tDf

MOSIn
MSB OUT DATA LSB OUT IDLE MSB OUT
output

(n = 0 to 9)

Figure 2.47 SCI simple SPI mode timing for master when CKPH = 0

R01DS0303EU0120 Rev.1.20 Page 65 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

tTD
SSn
input
tLEAD tLAG

SCKn
CKPOL = 0
input

SCKn
CKPOL = 1
input
tSA tOH tOD tREL

MISOn
MSB OUT DATA LSB OUT MSB IN MSB OUT
output

tSU tH tDr, tDf

MOSIn
MSB IN DATA LSB IN MSB IN
input

(n = 0 to 9)

Figure 2.48 SCI simple SPI mode timing for slave when CKPH = 1

tTD

SSn
input
tLEAD tLAG

SCKn
CKPOL = 1
input

SCKn
CKPOL = 0
input
tSA tOH tOD tREL

MISOn LSB OUT


(Last data) MSB OUT DATA LSB OUT MSB OUT
output

tSU tH tDr, tDf

MOSIn
MSB IN DATA LSB IN MSB IN
input

(n = 0 to 9)

Figure 2.49 SCI simple SPI mode timing for slave when CKPH = 0

Table 2.24 SCI timing (3) (1 of 2)


Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register.
Parameter Symbol Min Max Unit Test conditions
Simple IIC SDA input rise time tSr - 1000 ns Figure 2.50
(Standard mode)
SDA input fall time tSf - 300 ns
SDA input spike pulse removal time tSP 0 4 × tIICcyc ns
Data input setup time tSDAS 250 - ns
Data input hold time tSDAH 0 - ns
SCL, SDA capacitive load Cb*1 - 400 pF

R01DS0303EU0120 Rev.1.20 Page 66 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Table 2.24 SCI timing (3) (2 of 2)


Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register.
Parameter Symbol Min Max Unit Test conditions
Simple IIC SDA input rise time tSr - 300 ns Figure 2.50
(Fast mode)
SDA input fall time tSf - 300 ns
SDA input spike pulse removal time tSP 0 4 × tIICcyc ns
Data input setup time tSDAS 100 - ns
Data input hold time tSDAH 0 - ns
SCL, SDA capacitive load Cb*1 - 400 pF

Note: tIICcyc: IIC internal reference clock (IICφ) cycle.


Note 1. Cb indicates the total capacity of the bus line.

VIH
SDAn
VIL

tSr tSf
tSP

SCLn

P*1 S*1 Sr*1 P*1


(n = 0 to 9)
tSDAH tSDAS

Note 1. S, P, and Sr indicate the following: Test conditions:


S: Start condition VIH = VCC × 0.7, VIL = VCC × 0.3
P: Stop condition VOL = 0.6 V, IOL = 6 mA
Sr: Restart condition

Figure 2.50 SCI simple IIC mode timing

R01DS0303EU0120 Rev.1.20 Page 67 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

2.3.11 SPI Timing

Table 2.25 SPI timing


Conditions:
For RSPCKA and RSPCKB pins, high drive output is selected with the port drive capability bit in the PmnPFS register.
For other pins, middle drive output is selected in the port drive capability bit in the PmnPFS register.

Parameter Symbol Min Max Unit*1 Test conditions*2


SPI RSPCK clock cycle Master tSPcyc 2 (PCLKA  60 MHz) 4096 tPcyc Figure 2.51
4 (PCLKA > 60 MHz) C = 30 pF
Slave 4 4096
RSPCK clock high Master tSPCKWH (tSPcyc - tSPCKr - - ns
pulse width tSPCKf) / 2 - 3
Slave 2 × tPcyc -
RSPCK clock low pulse Master tSPCKWL (tSPcyc - tSPCKr - - ns
width tSPCKf) / 2 - 3
Slave 2 × tPcyc -
RSPCK clock rise and Master tSPCKr, - 5 ns
fall time tSPCKf
Slave - 1 µs
Data input setup time Master tSU 4 - ns Figure 2.52 to
Figure 2.57
Slave 5 -
C = 30 pF
Data input hold time Master tHF 0 - ns
(PCLKA division ratio
set to 1/2)
Master tH tPcyc -
(PCLKA division ratio
set to a value other
than 1/2)
Slave tH 20 -
SSL setup time Master tLEAD N × tSPcyc - 10*3 N× ns
tSPcyc +
100*3
Slave 6 x tPcyc - ns
SSL hold time Master tLAG N × tSPcyc - 10 *4 N× ns
tSPcyc +
100*4
Slave 6 x tPcyc - ns
Data output delay Master tOD - 6.3 ns
Slave - 20
Data output hold time Master tOH 0 - ns
Slave 0 -
Successive Master tTD tSPcyc + 2 × tPcyc 8× ns
transmission delay tSPcyc +
2 × tPcyc
Slave 6 × tPcyc
MOSI and MISO rise Output tDr, tDf - 5 ns
and fall time
Input - 1 μs
SSL rise and fall time Output tSSLr, - 5 ns
tSSLf
Input - 1 μs
Slave access time tSA - 2 x tPcyc ns Figure 2.56 and
+ 28 Figure 2.57
C = 30PF
Slave output release time tREL - 2 x tPcyc
+ 28

Note 1. tPcyc: PCLKA cycle.

R01DS0303EU0120 Rev.1.20 Page 68 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Note 2. Must use pins that have a letter (“_A”, “_B”) to indicate group membership appended to their name as groups. For the SPI
interface, the AC portion of the electrical characteristics is measured for each group.
Note 3. N is set to an integer from 1 to 8 by the SPCKD register.
Note 4. N is set to an integer from 1 to 8 by the SSLND register.

tSPCKWH tSPCKr tSPCKf


SPI
VOH VOH VOH VOH
RSPCKn
master select VOL VOL VOL
output
tSPCKWL
tSPcyc

tSPCKWH tSPCKr tSPCKf

VIH VIH VIH VIH


RSPCKn
slave select input VIL VIL VIL
tSPCKWL
tSPcyc

n = A or B VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC

Figure 2.51 SPI clock timing

SPI
tTD
SSLn0 to
SSLn3
output
tLEAD tLAG
tSSLr, t SSLf
RSPCKn
CPOL = 0
output

RSPCKn
CPOL = 1
output
tSU tH

MISOn
MSB IN DATA LSB IN MSB IN
input

tDr, tDf tOH t OD

MOSIn
MSB OUT DATA LSB OUT IDLE MSB OUT
output

n = A or B

Figure 2.52 SPI timing for master when CPHA = 0

R01DS0303EU0120 Rev.1.20 Page 69 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

SPI t TD

SSLn0 to
SSLn3
output tLEAD tLAG
tSSLr, tSSLf
RSPCKn
CPOL = 0
output

RSPCKn
CPOL = 1
output
tSU tHF tHF

MISOn MSB IN DATA LSB IN MSB IN


input

t Dr, tDf tOH tOD

MOSIn MSB OUT DATA LSB OUT IDLE MSB OUT


output

n = A or B

Figure 2.53 SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2

SPI
tTD
SSLn0 to
SSLn3
output
t LEAD tLAG
t SSLr, tSSLf
RSPCKn
CPOL = 0
output

RSPCKn
CPOL = 1
output
tSU tH

MISOn
MSB IN DATA LSB IN MSB IN
input

tOH tOD tDr, tDf

MOSIn
MSB OUT DATA LSB OUT IDLE MSB OUT
output

n = A or B

Figure 2.54 SPI timing for master when CPHA = 1

R01DS0303EU0120 Rev.1.20 Page 70 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

SPI
tTD
SSLn0 to
SSLn3
output
tLEAD tLAG
tSSLr, tSSLf
RSPCKn
CPOL = 0
output

RSPCKn
CPOL = 1
output
tSU tHF tH

MISOn
MSB IN DATA LSB IN MSB IN
input

tOH tOD tDr, tDf

MOSIn
MSB OUT DATA LSB OUT IDLE MSB OUT
output

n = A or B

Figure 2.55 RSPI timing for master when CPHA = 1 and the bit rate is set to PCLKA/2

SPI
tTD
SSLn0
input
tLEAD tLAG

RSPCKn
CPOL = 0
input

RSPCKn
CPOL = 1
input
t SA tOH tOD tREL

MISOn
MSB OUT DATA LSB OUT MSB IN MSB OUT
output

tSU tH tDr, tDf

MOSIn
MSB IN DATA LSB IN MSB IN
input

n = A or B

Figure 2.56 SPI timing for slave when CPHA = 0

R01DS0303EU0120 Rev.1.20 Page 71 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

SPI
tTD

SSLn0
input
tLEAD tLAG

RSPCKn
CPOL = 0
input

RSPCKn
CPOL = 1
input
tSA tOH tOD tREL

MISOn LSB OUT


(Last data) MSB OUT DATA LSB OUT MSB OUT
output

tSU tH tDr, tDf

MOSIn
MSB IN DATA LSB IN MSB IN
input

n = A or B

Figure 2.57 SPI timing for slave when CPHA = 1

2.3.12 QSPI Timing

Table 2.26 QSPI timing


Conditions: High drive output is selected in the port drive capability bit in the PmnPFS register.
Parameter Symbol Min Max Unit*1 Test conditions
QSPI QSPCK clock cycle tQScyc 2 48 tPcyc Figure 2.58
QSPCK clock high pulse width tQSWH tQScyc × 0.4 - ns
QSPCK clock low pulse width tQSWL tQScyc × 0.4 - ns
Data input setup time tSu 8 - ns Figure 2.59
Data input hold time tIH 0 - ns
QSSL setup time tLEAD (N+0.5) x (N+0.5) x ns
tQscyc - 5 *2 tQscyc +100 *2
QSSL hold time tLAG (N+0.5) x (N+0.5) x ns
tQscyc - 5 *3 tQscyc +100 *3
Data output delay tOD - 4 ns
Data output hold time tOH -3.3 - ns
Successive transmission delay tTD 1 16 tQScyc

Note 1. tPcyc: PCLKA cycle.


Note 2. N is set to 0 or 1 in SFMSLD.
Note 3. N is set to 0 or 1 in SFMSHD.

tQSWH tQSWL

QSPCLK output

tQScyc

Figure 2.58 QSPI clock timing

R01DS0303EU0120 Rev.1.20 Page 72 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

tTD

QSSL
output
tLEAD tLAG

QSPCLK
output

tSU tH

QIO0-3
MSB IN DATA LSB IN
input

tOH tOD

QIO0-3
MSB OUT DATA LSB OUT IDLE
output

Figure 2.59 Transmit and receive timing

2.3.13 IIC Timing

Table 2.27 IIC timing (1) (1 of 2)


(1) Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: SDA0_B,
SCL0_B, SDA1_A, SCL1_A, SDA1_B, SCL1_B.
(2) The following pins do not require setting: SCL0_A, SDA0_A, SCL2, SDA2.
(3) Use pins that have a letter appended to their names, for instance “_A” or “_B”, to indicate group membership. For the IIC interface, the
AC portion of the electrical characteristics is measured for each group.

Test
Parameter Symbol Min*1 Max Unit conditions*3
IIC SCL input cycle time tSCL 6 (12) × tIICcyc + 1300 - ns Figure 2.60
(Standard mode,
SCL input high pulse width tSCLH 3 (6) × tIICcyc + 300 - ns
SMBus)
ICFER.FMPE = 0 SCL input low pulse width tSCLL 3 (6) × tIICcyc + 300 - ns
SCL, SDA input rise time tSr - 1000 ns
SCL, SDA input fall time tSf - 300 ns
SCL, SDA input spike pulse removal tSP 0 1 (4) × tIICcyc ns
time
SDA input bus free time when tBUF 3 (6) × tIICcyc + 300 - ns
wakeup function is disabled
SDA input bus free time when tBUF 3 (6) × tIICcyc + 4 × tPcyc - ns
wakeup function is enabled + 300
START condition input hold time tSTAH tIICcyc + 300 - ns
when wakeup function is disabled
START condition input hold time tSTAH 1 (5) × tIICcyc + tPcyc + - ns
when wakeup function is enabled 300
Repeated START condition input tSTAS 1000 - ns
setup time
STOP condition input setup time tSTOS 1000 - ns
Data input setup time tSDAS tIICcyc + 50 - ns
Data input hold time tSDAH 0 - ns
SCL, SDA capacitive load Cb - 400 pF

R01DS0303EU0120 Rev.1.20 Page 73 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Table 2.27 IIC timing (1) (2 of 2)


(1) Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: SDA0_B,
SCL0_B, SDA1_A, SCL1_A, SDA1_B, SCL1_B.
(2) The following pins do not require setting: SCL0_A, SDA0_A, SCL2, SDA2.
(3) Use pins that have a letter appended to their names, for instance “_A” or “_B”, to indicate group membership. For the IIC interface, the
AC portion of the electrical characteristics is measured for each group.

Test
Parameter Symbol Min*1 Max Unit conditions*3
IIC SCL input cycle time tSCL 6 (12) × tIICcyc + 600 - ns Figure 2.60
(Fast mode)
SCL input high pulse width tSCLH 3 (6) × tIICcyc + 300 - ns
SCL input low pulse width tSCLL 3 (6) × tIICcyc + 300 - ns
SCL, SDA input rise time tSr 20 × (external pullup 300 ns
voltage/5.5V)*2
SCL, SDA input fall time tSf 20 × (external pullup 300 ns
voltage/5.5V)*2
SCL, SDA input spike pulse removal tSP 0 1 (4) × tIICcyc ns
time
SDA input bus free time when tBUF 3 (6) × tIICcyc + 300 - ns
wakeup function is disabled
SDA input bus free time when tBUF 3 (6) × tIICcyc + 4 × tPcyc - ns
wakeup function is enabled + 300
START condition input hold time tSTAH tIICcyc + 300 - ns
when wakeup function is disabled
START condition input hold time tSTAH 1 (5) × tIICcyc + tPcyc + - ns
when wakeup function is enabled 300
Repeated START condition input tSTAS 300 - ns
setup time
STOP condition input setup time tSTOS 300 - ns
Data input setup time tSDAS tIICcyc + 50 - ns
Data input hold time tSDAH 0 - ns
SCL, SDA capacitive load Cb - 400 pF

Note: tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle.
Note 1. Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.
Note 2. Only supported for SCL0_A, SDA0_A, SCL2, and SDA2.
Note 3. Must use pins that have a letter (“_A”, “_B”) to indicate group membership appended to their name as groups. For the IIC
interface, the AC portion of the electrical characteristics is measured for each group.

R01DS0303EU0120 Rev.1.20 Page 74 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Table 2.28 IIC timing (2)


Setting of the SCL0_A, SDA0_A pins is not required with the port drive capability bit in the PmnPFS register.

Test
Parameter Symbol Min*1,*2 Max Unit conditions
IIC SCL input cycle time tSCL 6 (12) × tIICcyc + 240 - ns Figure 2.60
(Fast-mode+)
SCL input high pulse width tSCLH 3 (6) × tIICcyc + 120 - ns
ICFER.FMPE = 1
SCL input low pulse width tSCLL 3 (6) × tIICcyc + 120 - ns
SCL, SDA input rise time tSr - 120 ns
SCL, SDA input fall time tSf - 120 ns
SCL, SDA input spike pulse removal tSP 0 1 (4) × tIICcyc ns
time
SDA input bus free time when tBUF 3 (6) × tIICcyc + 120 - ns
wakeup function is disabled
SDA input bus free time when tBUF 3 (6) × tIICcyc + 4 × tPcyc - ns
wakeup function is enabled + 120
Start condition input hold time when tSTAH tIICcyc + 120 - ns
wakeup function is disabled
START condition input hold time tSTAH 1 (5) × tIICcyc + tPcyc + - ns
when wakeup function is enabled 120
Restart condition input setup time tSTAS 120 - ns
Stop condition input setup time tSTOS 120 - ns
Data input setup time tSDAS tIICcyc + 30 - ns
Data input hold time tSDAH 0 - ns
SCL, SDA capacitive load Cb - 550 pF

Note: tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle.
Note 1. Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.
Note 2. Cb indicates the total capacity of the bus line.

VIH
SDA0 to SDA2
VIL

tBUF
tSCLH
tSTAH tSTAS tSP tSTOS

SCL0 to SCL2

P*1 S*1 Sr*1 P*1


tSCLL
tSf tSr tSDAS
tSCL
tSDAH
Test conditions:
Note 1. S, P, and Sr indicate the following:
VIH = VCC × 0.7, VIL = VCC × 0.3
S: Start condition
VOL = 0.6 V, IOL = 6 mA (ICFER.FMPE = 0)
P: Stop condition
VOL = 0.4 V, IOL = 15 mA (ICFER.FMPE = 1)
Sr: Restart condition

Figure 2.60 I2C bus interface input/output timing

R01DS0303EU0120 Rev.1.20 Page 75 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

2.3.14 SSIE Timing

Table 2.29 SSIE timing


(1) High drive output is selected with the port drive capability bit in the PmnPFS register.
(2) Use pins that have a letter appended to their names, for instance “_A” or “_B” to indicate group membership. For the SSIE interface,
the AC portion of the electrical characteristics is measured for each group.

Target specification
Parameter Symbol Min. Max. Unit Comments
SSIBCK Cycle Master tO 80 - ns Figure 2.61
Slave tI 80 - ns
High level/ low level Master tHC/tLC 0.35 - tO
Slave 0.35 - tI
Rising time/falling time Master tRC/tFC - 0.15 tO / tI
Slave - 0.15 tO / tI
SSILRCK/SSIFS, Input set up time Master tSR 12 - ns Figure 2.63,
SSITXD0, SSIRXD0, Figure 2.64
Slave 12 - ns
SSIDATA1
Input hold time Master tHR 8 - ns
Slave 15 - ns
Output delay time Master tDTR -10 5 ns
Slave 0 20 ns Figure 2.63,
Figure 2.64
Output delay time from Slave tDTRW - 20 ns Figure 2.65*1
SSILRCK/SSIFS
change
GTIOC1A, Cycle tEXcyc 20 - ns Figure 2.62
AUDIO_CLK
High level/ low level tEXL/ 0.4 0.6 tEXcyc
tEXH

Note 1. For slave-mode transmission, SSIE has a path, through which the signal input from the SSILRCK/SSIFS pin is used to
generate transmit data, and the transmit data is logically output to the SSITXD0 or SSIDATA1 pin.

tHC tRC tFC

SSIBCKn tLC

tO, tI

Figure 2.61 SSIE clock input/output timing

R01DS0303EU0120 Rev.1.20 Page 76 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

tEXcyc

tEXH tEXL

GTIOC1A,
AUDIO_CLK 1/2 VCC
(input)

tEXf tEXr

Figure 2.62 Clock input timing

SSIBCKn
(Input or Output)

SSILRCKn/SSIFSn (input),
SSIRXD0,
SSIDATA1 (input)

tSR tHR

SSILRCKn/SSIFSn (output),
SSITXD0,
SSIDATA1 (output)

tDTR

Figure 2.63 SSIE data transmit and receive timing when SSICR.BCKP = 0

R01DS0303EU0120 Rev.1.20 Page 77 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

SSIBCKn
(Input or Output)

SSILRCKn/SSIFSn (input),
SSIRXD0,
SSIDATA1 (input)

tSR tHR

SSILRCKn/SSIFSn (output),
SSITXD0,
SSIDATA1 (output)

tDTR

Figure 2.64 SSIE data transmit and receive timing when SSICR.BCKP = 1

SSILRCKn/SSIFSn (input)

SSITXD0,
SSIDATA1 (output)

tDTRW

MSB bit output delay after SSILRCKn/SSIFSn change for slave


transmitter when DEL = 1, SDTA = 0 or DEL = 1, SDTA = 1, SWL[2:0] = DWL[2:0] in SSICR.

Figure 2.65 SSIE data output delay after SSILRCKn/SSIFSn change

2.3.15 SD/MMC Host Interface Timing

Table 2.30 SD/MMC Host Interface signal timing


Conditions: High drive output is selected in the port drive capability bit in the PmnPFS register.
Clock duty ratio is 50%.

Parameter Symbol Min Max Unit Test conditions*1


SDCLK clock cycle TSDCYC 20 - ns Figure 2.66
SDCLK clock high pulse width TSDWH 6.5 - ns
SDCLK clock low pulse width TSDWL 6.5 - ns
SDCLK clock rise time TSDLH - 3 ns
SDCLK clock fall time TSDHL - 3 ns
SDCMD/SDDAT output data delay TSDODLY -6 5 ns
SDCMD/SDDAT input data setup TSDIS 4 - ns
SDCMD/SDDAT input data hold TSDIH 2 - ns

Note 1. Must use pins that have a letter (“_A”, “_B”) to indicate group membership appended to their name as groups. For

R01DS0303EU0120 Rev.1.20 Page 78 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

the SD/MMC Host interface, the AC portion of the electrical characteristics is measured for each group.

T S DC YC
TSDWL T SD W H
SD nC LK
(output) T SD LH
T S DH L
T SD O DLY (m ax) T S D O DLY (m in)
SD nC M D/SD nD ATm
(output)
T S D IS T SD IH
SD nC M D /SD nD ATm
(input)

n = 0, 1; m = 0 to 7

Figure 2.66 SD/MMC Host Interface signal timing

2.3.16 ETHERC Timing

Table 2.31 ETHERC timing


Conditions: ETHERC (RMII): Middle drive output is selected in the port drive capability bit in the PmnPFS register for the following pins:
ET0_MDC, ET0_MDIO.
For other pins, high drive output is selected in the port drive capability bit in the PmnPFS register.
ETHERC (MII): Middle drive output is selected in the port drive capability bit in the PmnPFS register.

Test
Parameter Symbol Min Max Unit conditions*3
ETHERC REF50CK cycle time Tck 20 - ns Figure 2.67 to
(RMII) Figure 2.70
REF50CK frequency, typical 50 MHz - - 50 + 100 ppm MHz
REF50CK duty - 35 65 %
REF50CK rise/fall time Tckr/ckf 0.5 3.5 ns
RMII0_xxxx*1 output delay Tco 2.5 12.0 ns
RMII0_xxxx*2 setup time Tsu 3 - ns
RMII0_xxxx*2 hold time Thd 1 - ns
RMII0_xxxx*1, *2 rise/fall time Tr/Tf 0.5 4 ns
ET0_WOL output delay tWOLd 1 23.5 ns Figure 2.71
ETHERC ET0_TX_CLK cycle time tTcyc 40 - ns -
(MII)
ET0_TX_EN output delay tTENd 1 20 ns Figure 2.72
ET0_ETXD0 to ET0_ETXD3 output delay tMTDd 1 20 ns
ET0_CRS setup time tCRSs 10 - ns
ET0_CRS hold time tCRSh 10 - ns
ET0_COL setup time tCOLs 10 - ns Figure 2.73
ET0_COL hold time tCOLh 10 - ns
ET0_RX_CLK cycle time tTRcyc 40 - ns -
ET0_RX_DV setup time tRDVs 10 - ns Figure 2.74
ET0_RX_DV hold time tRDVh 10 - ns
ET0_ERXD0 to ET0_ERXD3 setup time tMRDs 10 - ns
ET0_ERXD0 to ET0_ERXD3 hold time tMRDh 10 - ns
ET0_RX_ER setup time tRERs 10 - ns Figure 2.75
ET0_RX_ER hold time tRESh 10 - ns
ET0_WOL output delay tWOLd 1 23.5 ns Figure 2.76

Note 1. RMII0_TXD_EN, RMII0_TXD1, RMII0_TXD0.


Note 2. RMII0_CRS_DV, RMII0_RXD1, RMII0_RXD0, RMII0_RX_ER.

R01DS0303EU0120 Rev.1.20 Page 79 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Note 3. The following pins, must use pins that have a letter (“_A”, “_B”) to indicate group membership appended to their name as
groups. For the ETHERC (RMII) Host interface, the AC portion of the electrical characteristics is measured for each group.
REF50CK0_A, REF50CK0_B, RMII0_xxxx_A, RMII0_xxxx_B

Tck

90% Tckr
REF50CK0 50%
Tckf
10%

Tco Tsu Thd


Tr Tf
90%
*1 Change Change
RMII0_xxxx 50% Change in
in signal Signal Signal in signal
signal level
level level
10%

Note 1. RMII0_TXD_EN, RMII0_TXD1, RMII0_TXD0, RMII0_CRS_DV, RMII0_RXD1, RMII0_RXD0,


RMII0_RX_ER

Figure 2.67 REF50CK0 and RMII signal timing

TCK

REF50CK0

TCO

RMII0_TXD_EN

TCO

RMII0_TXD1, Preamble SFD DATA CRC


RMII0_TXD0

Figure 2.68 RMII transmission timing

REF50CK0

Tsu Thd

RMII0_CRS_DV
Thd
Tsu

RMII0_RXD1,
Preamble DATA CRC
RMII0_RXD0

SFD
RMII0_RX_ER
L

Figure 2.69 RMII reception timing in normal operation

R01DS0303EU0120 Rev.1.20 Page 80 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

REF50CK0

RMII0_CRS_DV

RMII0_RXD1,
Preamble SFD DATA xxxx
RMII0_RXD0
Thd
Tsu

RMII0_RX_ER

Figure 2.70 RMII reception timing when an error occurs

REF50CK0

tWOLd

ET0_WOL

Figure 2.71 WOL output timing for RMII

ET0_TX_CLK
tTENd

ET0_TX_EN
tMTDd

ET0_ETXD[3:0] Preamble SFD DATA CRC

ET0_TX_ER
tCRSs tCRSh

ET0_CRS

ET0_COL

Figure 2.72 MII transmission timing in normal operation

R01DS0303EU0120 Rev.1.20 Page 81 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

ET0_TX_CLK

ET0_TX_EN

ET0_ETXD[3:0] Preamble JAM

ET0_TX_ER

ET0_CRS tCOLs tCOLh

ET0_COL

Figure 2.73 MII transmission timing when a conflict occurs

ET0_RX_CLK

tRDVs tRDVh

ET0_RX_DV
tMRDh
tMRDs

ET0_ERXD[3:0] Preamble SFD DATA CRC

ET0_RX_ER

Figure 2.74 MII reception timing in normal operation

ET0_RX_CLK

ET0_RX_DV

ET0_ERXD[3:0] Preamble SFD DATA xxxx

tRERh
tRERs

ET0_RX_ER

Figure 2.75 MII reception timing when an error occurs

ET0_RX_CLK

tWOLd

ET0_WOL

Figure 2.76 WOL output timing for MII

R01DS0303EU0120 Rev.1.20 Page 82 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

2.3.17 PDC Timing

Table 2.32 PDC timing


Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register.
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF

Test
Parameter Symbol Min Max Unit conditions
PDC PIXCLK input cycle time tPIXcyc 37 - ns Figure 2.77
PIXCLK input high pulse width tPIXH 10 - ns
PIXCLK input low pulse width tPIXL 10 - ns
PIXCLK rise time tPIXr - 5 ns
PIXCLK fall time tPIXf - 5 ns
PCKO output cycle time tPCKcyc 2 × tPBcyc - ns Figure 2.78
PCKO output high pulse width tPCKH (tPCKcyc - tPCKr - tPCKf)/2 - 3 - ns
PCKO output low pulse width tPCKL (tPCKcyc - tPCKr - tPCKf)/2 - 3 - ns
PCKO rise time tPCKr - 5 ns
PCKO fall time tPCKf - 5 ns
VSYNV/HSYNC input setup time tSYNCS 10 - ns Figure 2.79
VSYNV/HSYNC input hold time tSYNCH 5 - ns
PIXD input setup time tPIXDS 10 - ns
PIXD input hold time tPIXDH 5 - ns

Note 1. tPBcyc: PCLKB cycle.

tPIXcyc

tPIXH tPIXf

PIXCLK input

tPIXr
tPIXL

Figure 2.77 PDC input clock timing

tPCKcyc

tPCKH tPCKf

PCKO pin output

tPCKr
tPCKL

Figure 2.78 PDC output clock timing

R01DS0303EU0120 Rev.1.20 Page 83 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

PIXCLK

tSYNCS tSYNCH
VSYNC

tSYNCS tSYNCH
HSYNC

tPIXDS tPIXDH
PIXD7 to PIXD0

Figure 2.79 PDC AC timing

2.3.18 GLCDC Timing

Table 2.33 GLCDC timing


Conditions:
LCD_CLK: High drive output is selected in the port drive capability bit in the PmnPFS register.
LCD_DATA: Middle drive output is selected in the port drive capability bit in the PmnPFS register.

Parameter Symbol Min Typ Max Unit Test conditions


LCD_EXTCLK input clock frequency tEcyc - - 60*1 MHz Figure 2.80
LCD_EXTCLK input clock low pulse width tWL 0.45 - 0.55 tEcyc
LCD_EXTCLK input clock high pulse width tWH 0.45 - 0.55
LCD_CLK output clock frequency tLcyc - - 60*1 MHz Figure 2.81
LCD_CLK output clock low pulse width tLOL 0.4 - 0.6 tLcyc Figure 2.81
LCD_CLK output clock high pulse width tLOH 0.4 - 0.6 tLcyc Figure 2.81
LCD data output delay timing _A or _B combinations*2 tDD -3.5 - 4 ns Figure 2.82
_A and _B combinations*3 -5.0 - 5.5

Note 1. Parallel RGB888, 666,565: Maximum 54 MHz


Serial RGB888: Maximum 60 MHz (4x speed)
Note 2. Use pins that have a letter appended to their names, for instance, “_A” or “_B”, to indicate
Note 3. Pins of group “_A” and “_B” combinations are used.

tDcyc, tEcyc
tWH tWL

VIH VIH
1/2 Vcc
VIL VIL
LCD_EXTCLK

Figure 2.80 LCD_EXTCLK clock input timing

R01DS0303EU0120 Rev.1.20 Page 84 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

tLcyc

tLOL tLOH

LCD_CLK

tLOF tLOR

Figure 2.81 LCD_CLK clock output timing

LCD_CLK

tDD

Output on
falling edge
LCD_DATA23 to
LCD_DATA00, tDD
LCD_TCON3 to
LCD_TCON0 Output on
rising edge

Figure 2.82 Display output timing

2.4 USB Characteristics

2.4.1 USBHS Timing

Table 2.34 USBHS low-speed characteristics for host only (USBHS_DP and USBHS_DM pin characteristics)
Conditions: USBHS_RREF = 2.2 kΩ ± 1%, USBMCLK = 12/20/24 MHz, UCLK = 48 MHz
Parameter Symbol Min Typ Max Unit Test conditions
Input Input high voltage VIH 2.0 - - V - -
characteristics
Input low voltage VIL - - 0.8 V - -
Differential input sensitivity VDI 0.2 - - V | USBHS_DP - -
USBHS_DM |
Differential common-mode VCM 0.8 - 2.5 V - -
range
Output Output high voltage VOH 2.8 - 3.6 V IOH = -200 μA -
characteristics
Output low voltage VOL 0.0 - 0.3 V IOL= 2 mA -
Cross-over voltage VCRS 1.3 - 2.0 V - Figure 2.83,
Figure 2.84
Rise time tLR 75 - 300 ns -
Fall time tLF 75 - 300 ns -
Rise/fall time ratio tLR / tLF 80 - 125 % tLR / tLF -
Pull-up, USBHS_DP and USBHS_DM Rpd 14.25 - 24.80 kΩ -
Pull-down pull-down resistors (Host)
characteristics

R01DS0303EU0120 Rev.1.20 Page 85 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

USBHS_DP, VCRS 90% 90%


USBHS_DM 10% 10%

tr tf

Figure 2.83 USBHS_DP and USBHS_DM output timing in low-speed mode

Observation
USBHS_DP point

200 pF to
600 pF 3.6 V

1.5 K
USBHS_DM

200 pF to
600 pF

Figure 2.84 Test circuit in low-speed mode

Table 2.35 USBHS full-speed characteristics (USBHS_DP and USBHS_DM pin characteristics)
Conditions: USBHS_RREF = 2.2 kΩ ± 1%, USBMCLK = 12/20/24 MHz, UCLK = 48 MHz

Parameter Symbol Min Typ Max Unit Test conditions


Input Input high voltage VIH 2.0 - - V - -
characteristics
Input low voltage VIL - - 0.8 V - -
Differential input sensitivity VDI 0.2 - - V | USBHS_DP - -
USBHS_DM |
Differential common-mode VCM 0.8 - 2.5 V - -
range
Output Output high voltage VOH 2.8 - 3.6 V IOH = -200 μA -
characteristics
Output low voltage VOL 0.0 - 0.3 V IOL= 2 mA -
Cross-over voltage VCRS 1.3 - 2.0 V - Figure 2.85,
Figure 2.86
Rise time tLR 4 - 20 ns -
Fall time tLF 4 - 20 ns -
Rise/fall time ratio tLR / tLF 90 - 111.11 % tFR / tFF -
Output resistance ZDRV 40.5 - 49.5 Ω Rs Not used
(PHYSET.REPSEL[1:0] = 01b
and PHYSET. HSEB = 0)
DC USBHS_DM pull-up resistor Rpu 0.900 - 1.575 kΩ During idle state
characteristics (device)
1.425 - 3.090 kΩ During transmission and
reception
USBHS_DP/USBHS_DM Rpd 14.25 - 24.80 kΩ -
pull-down resistor (host)

R01DS0303EU0120 Rev.1.20 Page 86 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

USBHS_DP, VCRS 90% 90%


USBHS_DM 10% 10%

tFR tFF

Figure 2.85 USBHS_DP and USBHS_DM output timing in full-speed mode

Observation
point
USBHS_DP

50 pF

USBHS_DM

50 pF

Figure 2.86 Test circuit in full-speed mode

Table 2.36 USBHS high-speed characteristics (USBHS_DP and USBHS_DM pin characteristics)
Conditions: USBHS_RREF = 2.2 kΩ ± 1%, USBMCLK = 12/20/24 MHz

Parameter Symbol Min Typ Max Unit Test conditions


Input Squelch detect sensitivity VHSSQ 100 - 150 mV Figure 2.87
characteristics
Disconnect detect sensitivity VHSDSC 525 - 625 mV Figure 2.88
Common-mode voltage VHSCM -50 - 500 mV -
Output Idle state VHSOI -10.0 - 10 mV -
characteristics
Output high voltage VHSOH 360 - 440 mV
Output low voltage VHSOL -10.0 - 10 mV
Chirp J output voltage (difference) VCHIRPJ 700 - 1100 mV
Chirp K output voltage (difference) VCHIRPK -900 - -500 mV
AC Rise time tHSR 500 - - ps Figure 2.89
characteristics
Fall time tHSF 500 - - ps
Output resistance ZHSDRV 40.5 - 49.5 Ω -

USBHS_DP, VHSSQ
USBHS_DM

Figure 2.87 USBHS_DP and USBHS_DM squelch detect sensitivity in high-speed mode

USBHS_DP, VHSDSC
USBHS_DM

Figure 2.88 USBHS_DP and USBHS_DM disconnect detect sensitivity in high-speed mode

R01DS0303EU0120 Rev.1.20 Page 87 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

USBHS_DP, 90% 90%


USBHS_DM 10% 10%

tHSR tHSF

Figure 2.89 USBHS_DP and USBHS_DM output timing in high-speed mode

Observation
USBHS_DP point

45 

USBHS_DM

45 

Figure 2.90 Test circuit in high-speed mode

Table 2.37 USBHS high-speed characteristics (USBHS_DP and USBHS_DM pin characteristics)
Conditions: USBHS_RREF = 2.2 kΩ ± 1%, USBMCLK = 12/20/24 MHz

Parameter Symbol Min Max Unit Test conditions


Battery Charging D+ sink current IDP_SINK 25 175 μA -
Specification
D- sink current IDM_SINK 25 175 μA -
DCD source current IDP_SRC 7 13 μA -
Data detection voltage VDAT_REF 0.25 0.4 V -
D+ source voltage VDP_SRC 0.5 0.7 V Output current = 250 μA
D- source voltage VDM_SRC 0.5 0.7 V Output current = 250 μA

2.4.2 USBFS Timing

Table 2.38 USBFS low-speed characteristics for host only (USB_DP and USB_DM pin characteristics) (1 of 2)
Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, VCC_USBHS = AVCC_USBHS = 3.0
to 3.6 V, UCLK = 48 MHz

Parameter Symbol Min Typ Max Unit Test conditions


Input Input high voltage VIH 2.0 - - V -
characteristics
Input low voltage VIL - - 0.8 V -
Differential input sensitivity VDI 0.2 - - V | USB_DP - USB_DM |
Differential common-mode VCM 0.8 - 2.5 V -
range
Output Output high voltage VOH 2.8 - 3.6 V IOH = -200 μA
characteristics
Output low voltage VOL 0.0 - 0.3 V IOL= 2 mA
Cross-over voltage VCRS 1.3 - 2.0 V Figure 2.91
Rise time tLR 75 - 300 ns
Fall time tLF 75 - 300 ns
Rise/fall time ratio tLR / tLF 80 - 125 % tLR/ tLF

R01DS0303EU0120 Rev.1.20 Page 88 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Table 2.38 USBFS low-speed characteristics for host only (USB_DP and USB_DM pin characteristics) (2 of 2)
Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, VCC_USBHS = AVCC_USBHS = 3.0
to 3.6 V, UCLK = 48 MHz

Parameter Symbol Min Typ Max Unit Test conditions


Pull-up and pull- USB_DP and USB_DM pull- Rpd 14.25 - 24.80 kΩ -
down down resistance in host
characteristics controller mode

USB_DP, VCRS 90% 90%


USB_DM 10% 10%

tLR tLF

Figure 2.91 USB_DP and USB_DM output timing in low-speed mode

Observation
point
USB_DP

200 pF to
600 pF 3.6 V
27 
1.5 K
USB_DM

200 pF to
600 pF

Figure 2.92 Test circuit in low-speed mode

Table 2.39 USBFS full-speed characteristics (USB_DP and USB_DM pin characteristics)
Conditions: VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, VCC_USBHS = AVCC_USBHS = 3.0
to 3.6 V, UCLK = 48 MHz
Parameter Symbol Min Typ Max Unit Test conditions
Input Input high voltage VIH 2.0 - - V -
characteristics
Input low voltage VIL - - 0.8 V -
Differential input sensitivity VDI 0.2 - - V | USB_DP - USB_DM |
Differential common-mode VCM 0.8 - 2.5 V -
range
Output Output high voltage VOH 2.8 - 3.6 V IOH = -200 μA
characteristics
Output low voltage VOL 0.0 - 0.3 V IOL= 2 mA
Cross-over voltage VCRS 1.3 - 2.0 V Figure 2.93
Rise time tLR 4 - 20 ns
Fall time tLF 4 - 20 ns
Rise/fall time ratio tLR / tLF 90 - 111.11 % tFR/ tFF
Output resistance ZDRV 28 - 44 Ω USBFS: Rs = 27 Ω included
Pull-up and pull- DM pull-up resistance in Rpu 0.900 - 1.575 kΩ During idle state
down device controller mode
1.425 - 3.090 kΩ During transmission and
characteristics
reception
USB_DP and USB_DM pull- Rpd 14.25 - 24.80 kΩ -
down resistance in host
controller mode

R01DS0303EU0120 Rev.1.20 Page 89 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

USB_DP, VCRS 90% 90%


USB_DM 10% 10%

tFR tFF

Figure 2.93 USB_DP and USB_DM output timing in full-speed mode

Observation
point
USB_DP

50 pF
27 

USB_DM

50 pF

Figure 2.94 Test circuit in full-speed mode

2.5 ADC12 Characteristics

Table 2.40 A/D conversion characteristics for unit 0 (1 of 2)


Conditions: PCLKC = 1 to 60 MHz
Parameter Min Typ Max Unit Test conditions
Frequency 1 - 60 MHz -
Analog input capacitance - - 30 pF -
Quantization error - ±0.5 - LSB -

Resolution - - 12 Bits -
Channel-dedicated Conversion time*1 Permissible signal 1.06 - - μs  Sampling of channel-
sample-and-hold (operation at source impedance (0.4 + 0.25)*2 dedicated sample-and-hold
circuits in use PCLKC = 60 MHz) Max. = 1 kΩ circuits in 24 states
(AN000 to AN002)  Sampling in 15 states
Offset error - ±1.5 ±3.5 LSB AN000 to AN002 = 0.25 V

Full-scale error - ±1.5 ±3.5 LSB AN000 to AN002 =


VREFH0- 0.25 V
Absolute accuracy - ±2.5 ±5.5 LSB -
DNL differential nonlinearity error - ±1.0 ±2.0 LSB -
INL integral nonlinearity error - ±1.5 ±3.0 LSB -

Holding characteristics of sample-and hold - - 20 μs -


circuits
Dynamic range 0.25 - VREFH V -
0 - 0.25
Channel-dedicated Conversion time*1 Permissible signal 0.48 (0.267)*2 - - μs Sampling in 16 states
sample-and-hold (operation at source impedance
circuits not in use PCLKC = 60 MHz) Max. = 1 kΩ
(AN000 to AN002)
Offset error - ±1.0 ±2.5 LSB -
Full-scale error - ±1.0 ±2.5 LSB -

Absolute accuracy - ±2.0 ±4.5 LSB -


DNL differential nonlinearity error - ±0.5 ±1.5 LSB -
INL integral nonlinearity error - ±1.0 ±2.5 LSB -

R01DS0303EU0120 Rev.1.20 Page 90 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Table 2.40 A/D conversion characteristics for unit 0 (2 of 2)


Conditions: PCLKC = 1 to 60 MHz
Parameter Min Typ Max Unit Test conditions
High-precision Conversion time*1 Permissible signal 0.48 (0.267)*2 - - μs Sampling in 16 states
channels (operation at source impedance
(AN003 to AN007) PCLKC = 60 MHz) Max. = 1 kΩ
Max. = 400 Ω 0.40 (0.183)*2 - - μs Sampling in 11 states
VCC = AVCC0 = 3.0 to 3.6 V
3.0 V ≤ VREFH0 ≤ AVCC0
Offset error - ±1.0 ±2.5 LSB -

Full-scale error - ±1.0 ±2.5 LSB -


Absolute accuracy - ±2.0 ±4.5 LSB -
DNL differential nonlinearity error - ±0.5 ±1.5 LSB -

INL integral nonlinearity error - ±1.0 ±2.5 LSB -


Normal-precision Conversion time*1 Permissible signal 0.88 (0.667)*2 - - μs Sampling in 40 states
channels (Operation at source impedance
(AN016 to AN020) PCLKC = 60 MHz) Max. = 1 kΩ
Offset error - ±1.0 ±5.5 LSB -
Full-scale error - ±1.0 ±5.5 LSB -

Absolute accuracy - ±2.0 ±7.5 LSB -


DNL differential nonlinearity error - ±0.5 ±4.5 LSB -
INL integral nonlinearity error - ±1.0 ±5.5 LSB -

Note: These specification values apply when there is no access to the external bus during A/D conversion. If access occurs during
A/D conversion, values might not fall within the indicated ranges.
The use of ports 0 as digital outputs is not allowed when the 12-Bit A/D converter is used.
The characteristics apply when AVCC0, AVSS0, VREFH0, VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage is
stable.
Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test
conditions.
Note 2. Values in parentheses indicate the sampling time.

Table 2.41 A/D conversion characteristics for unit 1 (1 of 2)


Conditions: PCLKC = 1 to 60 MHz
Parameter Min Typ Max Unit Test conditions
Frequency 1 - 60 MHz -
Analog input capacitance - - 30 pF -
Quantization error - ±0.5 - LSB -

Resolution - - 12 Bits -
Channel-dedicated Conversion time*1 Permissible signal 1.06 - - μs  Sampling of channel-
sample-and-hold (operation at source impedance (0.4 + 0.25)*2 dedicated sample-and-hold
circuits in use PCLKC = 60 MHz) Max. = 1 kΩ circuits in 24 states
(AN100 to AN102)  Sampling in 15 states
Offset error - ±1.5 ±3.5 LSB AN100 to AN102 = 0.25 V

Full-scale error - ±1.5 ±3.5 LSB AN100 to AN102 =


VREFH - 0.25 V
Absolute accuracy - ±2.5 ±5.5 LSB -

DNL differential nonlinearity error - ±1.0 ±2.0 LSB -


INL integral nonlinearity error - ±1.5 ±3.0 LSB -
Holding characteristics of sample-and hold - - 20 μs -
circuits
Dynamic range 0.25 - VREFH - V -
0.25

R01DS0303EU0120 Rev.1.20 Page 91 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Table 2.41 A/D conversion characteristics for unit 1 (2 of 2)


Conditions: PCLKC = 1 to 60 MHz
Parameter Min Typ Max Unit Test conditions
Channel-dedicated Conversion time*1 Permissible signal 0.48 - - μs Sampling in 16 states
sample-and-hold (Operation at source impedance (0.267)*2
circuits not in use PCLKC = 60 MHz) Max. = 1 kΩ
(AN100 to AN102)
Offset error - ±1.0 ±2.5 LSB -

Full-scale error - ±1.0 ±2.5 LSB -


Absolute accuracy - ±2.0 ±4.5 LSB -
DNL differential nonlinearity error - ±0.5 ±1.5 LSB -

INL integral nonlinearity error - ±1.0 ±2.5 LSB -


High-precision Conversion time*1 Permissible signal 0.48 - - μs Sampling in 16 states
channels (Operation at source impedance (0.267)*2
(AN103, AN105 to PCLKC = 60 MHz) Max. = 1 kΩ
AN107)
Max. = 400 Ω 0.40 - - μs Sampling in 11 states
(0.183)*2 VCC = AVCC0 = 3.0 to 3.6 V
3.0 V ≤ VREFH ≤ AVCC0
Offset error - ±1.0 ±2.5 LSB -
Full-scale error - ±1.0 ±2.5 LSB -

Absolute accuracy - ±2.0 ±4.5 LSB -


DNL differential nonlinearity error - ±0.5 ±1.5 LSB -
INL integral nonlinearity error - ±1.0 ±2.5 LSB -

Normal-precision Conversion time*1 Permissible signal 0.88 - - μs Sampling in 40 states


channels (Operation at source impedance (0.667)*2
(AN116 to AN119) PCLKC = 60 MHz) Max. = 1 kΩ
Offset error - ±1.0 ±5.5 LSB -
Full-scale error - ±1.0 ±5.5 LSB -

Absolute accuracy - ±2.0 ±7.5 LSB -


DNL differential nonlinearity error - ±0.5 ±4.5 LSB -
INL integral nonlinearity error - ±1.0 ±5.5 LSB -

Note: These specification values apply when there is no access to the external bus during A/D conversion. If access occurs during
A/D conversion, values might not fall within the indicated ranges.
The use of ports 0 as digital outputs is not allowed when the 12-Bit A/D converter is used.
The characteristics apply when AVCC0, AVSS0, VREFH0, VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage is
stable.
Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test
conditions.
Note 2. Values in parentheses indicate the sampling time.

Table 2.42 A/D conversion characteristics for simultaneous using of channel-dedicated sample-and-hold
circuits in unit0 and unit1
Conditions: PCLKC = 30/60 MHz
Parameter Min Typ Max Test conditions
Channel-dedicated sample-and-hold circuits in use Offset error - ±1.5 ±5.0  PCLKC = 60 MHz
with continious sampling function enabled  Sampling in 15 states
Full-scale error - ±2.5 ±5.0
(AN000 to AN002)
Absolute accuracy - ±4.0 ±8.0
Channel-dedicated sample-and-hold circuits in use Offset error - ±1.5 ±5.0
with continious sampling function enabled
Full-scale error - ±2.5 ±5.0
(AN100 to AN102)
Absolute accuracy - ±4.0 ±8.0
Channel-dedicated sample-and-hold circuits in use Offset error - ±1.5 ±3.5  PCLKC = 30 MHz
with continious sampling function enabled  Sampling in 7 states
Full-scale error - ±1.5 ±3.5
(AN000 to AN002)
Absolute accuracy - ±3.0 ±5.5
Channel-dedicated sample-and-hold circuits in use Offset error - ±1.5 ±3.5
with continious sampling function enabled
Full-scale error - ±1.5 ±3.5
(AN100 to AN102)
Absolute accuracy - ±3.0 ±5.5

R01DS0303EU0120 Rev.1.20 Page 92 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Note: When simultaneously using channel-dedicated sample-and-hold circuits in unit0 and unit1, setting the ADSHMSR.SHMD bit to
1 is recommended.

Table 2.43 A/D internal reference voltage characteristics


Parameter Min Typ Max Unit Test conditions
A/D internal reference voltage 1.13 1.18 1.23 V -
Sampling time 4.15 - - μs -

FFFh
Full-scale error

Integral nonlinearity
error (INL)
A/D converter
output code Ideal line of actual A/D
Actual A/D conversion conversion characteristic
characteristic

Ideal A/D conversion


characteristic Differential nonlinearity error (DNL)
1-LSB width for ideal A/D
conversion characteristic

Differential nonlinearity error (DNL)

1-LSB width for ideal A/D


conversion characteristic

Absolute accuracy

000h Offset error


0 Analog input voltage VREFH0
(full-scale)

Figure 2.95 Illustration of ADC12 characteristic terms

Absolute accuracy
Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the
actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog
input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D
conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and the reference
voltage VREFH0 = 3.072 V, then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog
input voltages. If the analog input voltage is 6 mV, an absolute accuracy of ±5 LSB means that the actual A/D conversion
result is in the range of 003h to 00Dh, though an output code of 008h can be expected from the theoretical A/D
conversion characteristics.

Integral nonlinearity error (INL)


Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale
errors are zeroed, and the actual output code.

Differential nonlinearity error (DNL)


Differential nonlinearity error is the difference between the 1-LSB width based on the ideal A/D conversion
characteristics and the width of the actual output code.

R01DS0303EU0120 Rev.1.20 Page 93 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Offset error
Offset error is the difference between the transition point of the ideal first output code and the actual first output code.

Full-scale error
Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.

2.6 DAC12 Characteristics

Table 2.44 D/A conversion characteristics


Parameter Min Typ Max Unit Test conditions
Resolution - - 12 Bits -
Without output amplifier
Absolute accuracy - - ±24 LSB Resistive load 2 MΩ
INL - ±2.0 ±8.0 LSB Resistive load 2 MΩ
DNL - ±1.0 ±2.0 LSB -
Output impedance - 8.5 - kΩ -
Conversion time - - 3.0 μs Resistive load 2 MΩ,
Capacitive load 20 pF
Output voltage range 0 - VREFH V -
With output amplifier
INL - ±2.0 ±4.0 LSB -
DNL - ±1.0 ±2.0 LSB -
Conversion time - - 4.0 μs -
Resistive load 5 - - kΩ -
Capacitive load - - 50 pF -
Output voltage range 0.2 - VREFH - 0.2 V -

2.7 TSN Characteristics

Table 2.45 TSN characteristics


Parameter Symbol Min Typ Max Unit Test conditions
Relative accuracy - - ±1.0 - °C -
Temperature slope - - 4.0 - mV/°C -
Output voltage (at 25°C) - - 1.24 - V -
Temperature sensor start time tSTART - - 30 μs -
Sampling time - 4.15 - - μs -

2.8 OSC Stop Detect Characteristics

Table 2.46 Oscillation stop detection circuit characteristics


Parameter Symbol Min Typ Max Unit Test conditions
Detection time tdr - - 1 ms Figure 2.96

R01DS0303EU0120 Rev.1.20 Page 94 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Main clock
tdr
OSTDSR.OSTDF

MOCO clock

ICLK

Figure 2.96 Oscillation stop detection timing

2.9 POR and LVD Characteristics

Table 2.47 Power-on reset circuit and voltage detection circuit characteristics
Parameter Symbol Min Typ Max Unit Test conditions
Voltage detection Power-on reset Module-stop function VPOR 2.5 2.6 2.7 V Figure 2.97
level (POR) disabled*2
Module-stop function 1.8 2.25 2.7
enabled*3
Voltage detection circuit (LVD0) Vdet0_1 2.84 2.94 3.04 Figure 2.98
Vdet0_2 2.77 2.87 2.97
Vdet0_3 2.70 2.80 2.90
Voltage detection circuit (LVD1) Vdet1_1 2.89 2.99 3.09 Figure 2.99
Vdet1_2 2.82 2.92 3.02
Vdet1_3 2.75 2.85 2.95
Voltage detection circuit (LVD2) Vdet2_1 2.89 2.99 3.09 Figure 2.100
Vdet2_2 2.82 2.92 3.02
Vdet2_3 2.75 2.85 2.95
Internal reset time Power-on reset time tPOR - 4.5 - ms Figure 2.97
LVD0 reset time tLVD0 - 0.51 - Figure 2.98
LVD1 reset time tLVD1 - 0.38 - Figure 2.99
LVD2 reset time tLVD2 - 0.38 - Figure 2.100
Minimum VCC down time*1 tVOFF 200 - - μs Figure 2.97,
Figure 2.98
Response delay tdet - - 200 μs Figure 2.97 to
Figure 2.100
LVD operation stabilization time (after LVD is enabled) td(E-A) - - 10 μs Figure 2.99,
Figure 2.100
Hysteresis width (LVD1 and LVD2) VLVH - 70 - mV

Note 1. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR,
Vdet1, and Vdet2 for POR and LVD.
Note 2. The low-power function is disabled and DEEPCUT[1:0] = 00b or 01b.
Note 3. The low-power function is enabled and DEEPCUT[1:0] = 11b.

R01DS0303EU0120 Rev.1.20 Page 95 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

tVOFF

VPOR
VCC

Internal reset signal


(active-low)

tdet tPOR tdet tdet tPOR

Figure 2.97 Power-on reset timing

tVOFF

VCC Vdet0

Internal reset signal


(active-low)
tdet tdet tLVD0

Figure 2.98 Voltage detection circuit timing (Vdet0)

R01DS0303EU0120 Rev.1.20 Page 96 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

tVOFF

VCC Vdet1 VLVH

LVCMPCR.LVD1E

td(E-A)
LVD1
Comparator output

LVD1CR0.CMPE

LVD1SR.MON
Internal reset signal
(active-low)
When LVD1CR0.RN = 0

tdet tdet tLVD1

When LVD1CR0.RN = 1

tLVD1

Figure 2.99 Voltage detection circuit timing (Vdet1)

tVOFF

VCC Vdet2 VLVH

LVCMPCR.LVD2E

td(E-A)
LVD2
Comparator output

LVD2CR0.CMPE

LVD2SR.MON
Internal reset signal
(active-low)
When LVD2CR0.RN = 0

tdet tdet tLVD2

When LVD2CR0.RN = 1

tLVD2

Figure 2.100 Voltage detection circuit timing (Vdet2)

R01DS0303EU0120 Rev.1.20 Page 97 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

2.10 VBATT Characteristics

Table 2.48 Battery backup function characteristics


Conditions: VCC = AVCC0 = VCC_USB = 2.7 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, VBATT = 1.8 to 3.6 V
Parameter Symbol Min Typ Max Unit Test conditions
Voltage level for switching to battery backup VDETBATT 2.50 2.60 2.70 V Figure 2.101
Lower-limit VBATT voltage for power supply VBATTSW 2.70 - - V
switching caused by VCC voltage drop
VCC-off period for starting power supply switching tVOFFBATT 200 - - μs

Note: The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum
value of the voltage level for switching to battery backup (VDETBATT).

tVOFFBATT

VDETBATT
VCC

VBATT VBATTSW

Backup power
VCC supply VBATT supply VCC supply
area

Figure 2.101 Battery backup function characteristics

2.11 CTSU Characteristics

Table 2.49 CTSU characteristics


Parameter Symbol Min Typ Max Unit Test conditions
External capacitance connected to TSCAP pin Ctscap 9 10 11 nF -
TS pin capacitive load Cbase - - 50 pF -
Permissible output high current ΣIoH - - -40 mA When the mutual
capacitance method
is applied

2.12 ACMPHS Characteristics

Table 2.50 ACMPHS characteristics


Parameter Symbol Min Typ Max Unit Test conditions
Reference voltage range VREF 0 - AVCC0 V -
Input voltage range VI 0 - AVCC0 V -
Output delay*1 Td - 50 100 ns VI = VREF ± 100 mV
Internal reference voltage Vref 1.13 1.18 1.23 V -

Note 1. This value is the internal propagation delay.

R01DS0303EU0120 Rev.1.20 Page 98 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

2.13 PGA Characteristics

Table 2.51 PGA characteristics in single mode


Parameter Symbol Min Typ Max Unit
PGAVSS input voltage range PGAVSS 0 - 0 V
AIN0 (G = 2.000) 0.050 × AVCC0 - 0.45 × AVCC0 V
AIN1 (G = 2.500) 0.047 × AVCC0 - 0.360 × AVCC0 V
AIN2 (G = 2.667) 0.046 × AVCC0 - 0.337 × AVCC0 V
AIN3 (G = 2.857) 0.046 × AVCC0 - 0.32 × AVCC0 V
AIN4 (G = 3.077) 0.045 × AVCC0 - 0.292 × AVCC0 V
AIN5 (G = 3.333) 0.044 × AVCC0 - 0.265 × AVCC0 V
AIN6 (G = 3.636) 0.042 × AVCC0 - 0.247 × AVCC0 V
AIN7 (G = 4.000) 0.040 × AVCC0 - 0.212 × AVCC0 V
AIN8 (G = 4.444) 0.036 × AVCC0 - 0.191 × AVCC0 V
AIN9 (G = 5.000) 0.033 × AVCC0 - 0.17 × AVCC0 V
AIN10 (G = 5.714) 0.031 × AVCC0 - 0.148 × AVCC0 V
AIN11 (G = 6.667) 0.029 × AVCC0 - 0.127 × AVCC0 V
AIN12 (G = 8.000) 0.027 × AVCC0 - 0.09 × AVCC0 V
AIN13 (G = 10.000) 0.025 × AVCC0 - 0.08 × AVCC0 V
AIN14 (G = 13.333) 0.023 × AVCC0 - 0.06 × AVCC0 V
Gain error Gerr0 (G = 2.000) -1.0 - 1.0 %
Gerr1 (G = 2.500) -1.0 - 1.0 %
Gerr2 (G = 2.667) -1.0 - 1.0 %
Gerr3 (G = 2.857) -1.0 - 1.0 %
Gerr4 (G = 3.077) -1.0 - 1.0 %
Gerr5 (G = 3.333) -1.5 - 1.5 %
Gerr6 (G = 3.636) -1.5 - 1.5 %
Gerr7 (G = 4.000) -1.5 - 1.5 %
Gerr8 (G = 4.444) -2.0 - 2.0 %
Gerr9 (G = 5.000) -2.0 - 2.0 %
Gerr10 (G = 5.714) -2.0 - 2.0 %
Gerr11 (G = 6.667) -2.0 - 2.0 %
Gerr12 (G = 8.000) -2.0 - 2.0 %
Gerr13 (G = 10.000) -2.0 - 2.0 %
Gerr14 (G = 13.333) -2.0 - 2.0 %
Offset error Voff -8 - 8 mV

Table 2.52 PGA characteristics in differential mode (1 of 2)


Parameter Symbol Min Typ Max Unit
PGAVSS input voltage range PGAVSS -0.5 - 0.3 V
Differential input G = 1.500 AIN-PGAVSS -0.5 - 0.5 V
voltage range
G = 2.333 -0.4 - 0.4 V
G = 4.000 -0.2 - 0.2 V
G = 5.667 -0.15 - 0.15 V

R01DS0303EU0120 Rev.1.20 Page 99 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Table 2.52 PGA characteristics in differential mode (2 of 2)


Parameter Symbol Min Typ Max Unit
Gain error G = 1.500 Gerr -1.0 - 1.0 %
G = 2.333 -1.0 - 1.0
G = 4.000 -1.0 - 1.0
G = 5.667 -1.0 - 1.0

2.14 Flash Memory Characteristics

2.14.1 Code Flash Memory Characteristics

Table 2.53 Code flash memory characteristics


Conditions: Program or erase: FCLK = 4 to 60 MHz
Read: FCLK ≤ 60 MHz

FCLK = 4 MHz 20 MHz ≤ FCLK ≤ 60 MHz


Test
Parameter Symbol Min Typ Max Min Typ Max Unit conditions
Programming time 128-byte tP128 - 0.75 13.2 - 0.34 6.0 ms
NPEC  100 times
8-KB tP8K - 49 176 - 22 80 ms
32-KB tP32K - 194 704 - 88 320 ms
Programming time 128-byte tP128 - 0.91 15.8 - 0.41 7.2 ms
NPEC > 100 times
8-KB tP8K - 60 212 - 27 96 ms
32-KB tP32K - 234 848 - 106 384 ms
Erasure time 8-KB tE8K - 78 216 - 43 120 ms
NPEC  100 times
32-KB tE32K - 283 864 - 157 480 ms
Erasure time 8-KB tE8K - 94 260 - 52 144 ms
NPEC > 100 times
32-KB tE32K - 341 1040 - 189 576 ms
Reprogramming/erasure cycle*Note: NPEC 10000*1 - - 10000*1 - - Times
Suspend delay during programming tSPD - - 264 - - 120 μs
First suspend delay during erasure in tSESD1 - - 216 - - 120 μs
suspend priority mode
Second suspend delay during tSESD2 - - 1.7 - - 1.7 ms
erasure in suspend priority mode
Suspend delay during erasure in tSEED - - 1.7 - - 1.7 ms
erasure priority mode
Forced stop command tFD - - 32 - - 20 μs
Data hold time*2 tDRP 10*2, *3 - - 10*2, *3 - - Years
30*2, *3 - - 30*2, *3 - - Ta = +85°C

Note: The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 10,000),
erasing can be performed n times for each block. For example, when 128-byte programming is performed 64 times for different
addresses in 8-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,
programming the same address several times as one erasure is not enabled. (Overwriting is prohibited.)
Note 1. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1
to the minimum value.
Note 2. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.
Note 3. This result is obtained from reliability testing.

R01DS0303EU0120 Rev.1.20 Page 100 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

• Suspension during programming

FCU command Program Suspend

tSPD

FSTATR0.FRDY Ready Not Ready Ready

Programming pulse Programming

• Suspension during erasure in suspend priority mode

FCU command Erase Suspend Resume Suspend

tSESD1 tSESD2

FSTATR0.FRDY Ready Not Ready Ready Not Ready

Erasure pulse Erasing Erasing

• Suspension during erasure in erasure priority mode

FCU command Erase Suspend

tSEED

FSTATR0.FRDY Ready Not Ready Ready

Erasure pulse Erasing

• Forced Stop

FACI command Forced Stop

tFD

FSTATR.FRDY Not Ready Ready

Figure 2.102 Suspension and forced stop timing for flash memory programming and erasure

2.14.2 Data Flash Memory Characteristics

Table 2.54 Data flash memory characteristics (1 of 2)


Conditions: Program or erase: FCLK = 4 to 60 MHz
Read: FCLK ≤ 60 MHz
FCLK = 4 MHz 20 MHz ≤ FCLK ≤ 60 MHz
Test
Parameter Symbol Min Typ Max Min Typ Max Unit conditions
Programming time 4-byte tDP4 - 0.36 3.8 - 0.16 1.7 ms
8-byte tDP8 - 0.38 4.0 - 0.17 1.8
16-byte tDP16 - 0.42 4.5 - 0.19 2.0
Erasure time 64-byte tDE64 - 3.1 18 - 1.7 10 ms
128-byte tDE128 - 4.7 27 - 2.6 15
256-byte tDE256 - 8.9 50 - 4.9 28
Blank check time 4-byte tDBC4 - - 84 - - 30 μs
Reprogramming/erasure cycle*1 NDPEC 125000 - - 125000 - - -
*2 *2

R01DS0303EU0120 Rev.1.20 Page 101 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Table 2.54 Data flash memory characteristics (2 of 2)


Conditions: Program or erase: FCLK = 4 to 60 MHz
Read: FCLK ≤ 60 MHz

FCLK = 4 MHz 20 MHz ≤ FCLK ≤ 60 MHz


Test
Parameter Symbol Min Typ Max Min Typ Max Unit conditions
Suspend delay during 4-byte tDSPD - - 264 - - 120 μs
programming
8-byte - - 264 - - 120
16-byte - - 264 - - 120
First suspend delay 64-byte tDSESD1 - - 216 - - 120 μs
during erasure in
128-byte - - 216 - - 120
suspend priority mode
256-byte - - 216 - - 120
Second suspend delay 64-byte tDSESD2 - - 300 - - 300 μs
during erasure in
128-byte - - 390 - - 390
suspend priority mode
256-byte - - 570 - - 570
Suspend delay during 64-byte tDSEED - - 300 - - 300 μs
erasing in erasure
128-byte - - 390 - - 390
priority mode
256-byte - - 570 - - 570
Forced stop command tFD - - 32 - - 20 μs
Data hold time*3 tDRP 10*3,*4 - - 10*3,*4 - - Year
30*3,*4 - - 30*3,*4 - - Ta = +85°C

Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 125,000),
erasing can be performed n times for each block. For example, when 4-byte programming is performed 16 times for different
addresses in 64-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,
programming the same address several times as one erasure is not enabled. (Overwriting is prohibited.)
Note 2. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1
to the minimum value.
Note 3. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.
Note 4. This result is obtained from reliability testing.

2.15 Boundary Scan

Table 2.55 Boundary scan characteristics


Test
Parameter Symbol Min Typ Max Unit conditions
TCK clock cycle time tTCKcyc 100 - - ns Figure 2.103
TCK clock high pulse width tTCKH 45 - - ns
TCK clock low pulse width tTCKL 45 - - ns
TCK clock rise time tTCKr - - 5 ns
TCK clock fall time tTCKf - - 5 ns
TMS setup time tTMSS 20 - - ns Figure 2.104
TMS hold time tTMSH 20 - - ns
TDI setup time tTDIS 20 - - ns
TDI hold time tTDIH 20 - - ns
TDO data delay tTDOD - - 40 ns
Boundary scan circuit startup time*1 TBSSTUP tRESWP - - - Figure 2.105

Note 1. Boundary scan does not function until the power-on reset becomes negative.

R01DS0303EU0120 Rev.1.20 Page 102 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

tTCKcyc
tTCKH

TCK tTCKf

tTCKr
tTCKL

Figure 2.103 Boundary scan TCK timing

TCK

tTMSS tTMSH

TMS

tTDIS tTDIH

TDI

tTDOD

TDO

Figure 2.104 Boundary scan input/output timing

VCC

RES

tBSSTUP Boundary scan


(= tRESWP) execute

Figure 2.105 Boundary scan circuit startup timing

2.16 Joint Test Action Group (JTAG)

Table 2.56 JTAG


Test
Parameter Symbol Min Typ Max Unit conditions
TCK clock cycle time tTCKcyc 40 - - ns Figure 2.103
TCK clock high pulse width tTCKH 15 - - ns
TCK clock low pulse width tTCKL 15 - - ns
TCK clock rise time tTCKr - - 5 ns
TCK clock fall time tTCKf - - 5 ns

R01DS0303EU0120 Rev.1.20 Page 103 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

Table 2.56 JTAG


Test
Parameter Symbol Min Typ Max Unit conditions
TMS setup time tTMSS 8 - - ns Figure 2.104
TMS hold time tTMSH 8 - - ns
TDI setup time tTDIS 8 - - ns
TDI hold time tTDIH 8 - - ns
TDO data delay time tTDOD - - 20 ns

tTCKcyc

tTCKH

TCK tTCKf

tTCKr
tTCKL

Figure 2.106 JTAG TCK timing

TCK

tTMSS tTMSH

TMS

tTDIS tTDIH

TDI

tTDOD

TDO

Figure 2.107 JTAG input/output timing

R01DS0303EU0120 Rev.1.20 Page 104 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

2.17 Serial Wire Debug (SWD)

Table 2.57 SWD


Test
Parameter Symbol Min Typ Max Unit conditions
SWCLK clock cycle time tSWCKcyc 40 - - ns Figure 2.108
SWCLK clock high pulse width tSWCKH 15 - - ns
SWCLK clock low pulse width tSWCKL 15 - - ns
SWCLK clock rise time tSWCKr - - 5 ns
SWCLK clock fall time tSWCKf - - 5 ns
SWDIO setup time tSWDS 8 - - ns Figure 2.109
SWDIO hold time tSWDH 8 - - ns
SWDIO data delay time tSWDD 2 - 28 ns

tSWCKcyc

tSWCKH

SWCLK

tSWCKL

Figure 2.108 SWD SWCLK timing

R01DS0303EU0120 Rev.1.20 Page 105 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

SWCLK

tSWDS tSWDH

SWDIO
(Input)

tSWDD

SWDIO
(Output)

tSWDD

SWDIO
(Output)

tSWDD

SWDIO
(Output)

Figure 2.109 SWD input/output timing

2.18 Embedded Trace Macro Interface (ETM)

Table 2.58 ETM


Conditions: High drive output is selected in the port drive capability bit in the PmnPFS register.
Test
Parameter Symbol Min Typ Max Unit conditions
TCLK clock cycle time tTCLKcyc 33.3 - - ns Figure 2.110
TCLK clock high pulse width tTCLKH 13.6 - - ns
TCLK clock low pulse width tTCLKL 13.6 - - ns
TCLK clock rise time tTCLKr - - 3 ns
TCLK clock fall time tTCLKf - - 3 ns
TDATA[3:0] output setup time tTRDS 3.5 - - ns Figure 2.111
TDATA[3:0] output hold time tTRDH 2.5 - - ns

R01DS0303EU0120 Rev.1.20 Page 106 of 116


Aug 10, 2018
S5D9 Datasheet 2. Electrical Characteristics

tTCLKcyc

tTCLKH

TCLK tTCLKf

tTCLKr
tTCLKL

Figure 2.110 ETM TCLK timing

TCLK

tTRDS tTRDH tTRDS tTRDH

TDATA[3:0]

Figure 2.111 ETM output timing

R01DS0303EU0120 Rev.1.20 Page 107 of 116


Aug 10, 2018
S5D9 Datasheet Appendix 1. Package Dimensions

Appendix 1.Package Dimensions


For information on the latest version of the package dimensions or mountings, go to “Packages” on the Renesas
Electronics Corporation website.

JEITA Package Code RENESAS Code Previous Code MASS (TYP.)


P-LFBGA176-13x13-0.80 PLBG0176GE-A 176FHS-A 0.45 g

D
w S A w S B

x4
v
y1 S
S
A
A1

y S

e ZD
A Dimension in Millimeters
Reference
Symbol
Min Nom Max
D 13.0
R
e

P E 13.0
N
v 0.15
M
L w 0.20
B
K
J
A 1.40
H A1 0.35 0.40 0.45
G
F e 0.80
E b 0.45 0.50 0.55
D
x 0.08
ZE

C
B
y 0.10
A
y1 0.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 SD
b SE
xM S A B
ZD 0.90
ZE 0.90

Figure 1.1 176-pin BGA

R01DS0303EU0120 Rev.1.20 Page 108 of 116


Aug 10, 2018
S5D9 Datasheet Appendix 1. Package Dimensions

JEITA Package Code RENESAS Code Previous Code MASS[Typ.]


P-LFQFP176-24x24-0.50 PLQP0176KB-A 176P6Q-A/FP-176E/FP-176EV 1.8g

HD
*1
D

132 89

133 88

NOTE)
1. DIMENSIONS "*1" AND "*2"
DO NOT INCLUDE MOLD FLASH.
2. DIMENSION "*3" DOES NOT
INCLUDE TRIM OFFSET.
bp
b1

c1

c
HE
E
*2
Reference Dimension in Millimeters
Terminal cross section
Symbol
Min Nom Max
D 23.9 24.0 24.1
E 23.9 24.0 24.1
A2 1.4
HD 25.8 26.0 26.2
176
HE 25.8 26.0 26.2
ZE

45
A 1.7
A1 0.05 0.1 0.15
1 44
bp 0.15 0.20 0.25

A2
Index mark
A

c
ZD F b1 0.18
S c 0.09 0.145 0.20

θ
c1
A1
0.125
L
θ 0° 8°
L1
y S *3
bp
e 0.5
e
x M x 0.08
Detail F y 0.10
ZD 1.25
ZE 1.25
L 0.35 0.5 0.65
L1 1.0

Figure 1.2 176-pin LQFP

JEITA Package Code RENESAS Code Previous Code MASS[Typ.]


P-TFLGA145-7x7-0.50 PTLG0145KA-A 145F0G 0.1g

φb1
φ M S AB
w S B

φb
D φ M S AB
w S A
ZD e
A
A

N
e

M
L
K
J
H B
E

G
F
E
D
C
B
A
ZE

1 2 3 4 5 6 7 8 9 10 11 12 13 Reference Dimension in Millimeters


x4 y S Symbol
v
Min Nom Max
Index mark D 7.0
S
(Laser mark)
E 7.0
v 0.15
w 0.20
A 1.05
e 0.5
b 0.21 0.25 0.29
b1 0.29 0.34 0.39
x 0.08
y 0.08
ZD 0.5
ZE 0.5

Figure 1.3 145-pin LGA

R01DS0303EU0120 Rev.1.20 Page 109 of 116


Aug 10, 2018
S5D9 Datasheet Appendix 1. Package Dimensions

JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g]
P-LFQFP144-20x20-0.50 PLQP0144KA-B — 1.2

HD Unit: mm
*1 D

108 73

109 72

HE
E
144 *2
37

1 36 NOTE 4
NOTE)
Index area
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.
NOTE 3
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
F LOCATED WITHIN THE HATCHED AREA.
S 4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.

Reference Dimensions in millimeters


*3 Symbol
e bp Min Nom Max
y S M
D 19.9 20.0 20.1
E 19.9 20.0 20.1
A2  1.4 
HD 21.8 22.0 22.2
HE 21.8 22.0 22.2
A   1.7
0.25
A2

A1 0.05  0.15
A

bp 0.17 0.20 0.27


T

c 0.09  0.20
A1

Lp
T 0q 3.5q 8q
L1 e  0.5 
x   0.08
Detail F
y   0.08
Lp 0.45 0.6 0.75
L1  1.0 

© 2016 Renesas Electronics Corporation. All rights reserved.

Figure 1.4 144-pin LQFP

R01DS0303EU0120 Rev.1.20 Page 110 of 116


Aug 10, 2018
S5D9 Datasheet Appendix 1. Package Dimensions

JEITA Package Code RENESAS Code Previous Code MASS (Typ) [g]
P-LFQFP100-14x14-0.50 PLQP0100KB-B — 0.6

HD
Unit: mm
*1 D

75 51

76 50

HE
E
*2

100
26

1 25 NOTE 4
Index area NOTE)
NOTE 3 1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.
F
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
S
LOCATED WITHIN THE HATCHED AREA.
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.

Reference Dimensions in millimeters


y S Symbol
*3 Min Nom Max
e bp
M
D 13.9 14.0 14.1
E 13.9 14.0 14.1
A2  1.4 
HD 15.8 16.0 16.2
HE 15.8 16.0 16.2
0.25

A   1.7
A2
A

A1 0.05  0.15
T

bp 0.15 0.20 0.27


A1

c 0.09  0.20
Lp
T 0q 3.5q 8q
L1
e  0.5 
Detail F
x   0.08
y   0.08
Lp 0.45 0.6 0.75
L1  1.0 

© 2015 Renesas Electronics Corporation. All rights reserved.

Figure 1.5 100-pin LQFP

R01DS0303EU0120 Rev.1.20 Page 111 of 116


Aug 10, 2018
Revision History S5D9 Microcontroller Group Datasheet

Rev. Date Summary


1.00 Feb 23, 2016 1st release
1.10 Mar 23, 2018 Updated for 1.10
1.20 Aug 10, 2018 Updated for 1.20

Website and Support


Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components and related
documentation, and get support.

Synergy Software renesassynergy.com/software


Synergy Software Package renesassynergy.com/ssp
Software add-ons renesassynergy.com/addons
Software glossary renesassynergy.com/softwareglossary
Development tools renesassynergy.com/tools

Synergy Hardware renesassynergy.com/hardware


Microcontrollers renesassynergy.com/mcus
MCU glossary renesassynergy.com/mcuglossary
Parametric search renesassynergy.com/parametric
Kits renesassynergy.com/kits

Synergy Solutions Gallery renesassynergy.com/solutionsgallery


Partner projects renesassynergy.com/partnerprojects
Application projects renesassynergy.com/applicationprojects

Self-service support resources:


Documentation renesassynergy.com/docs
Knowledgebase renesassynergy.com/knowledgebase
Forums renesassynergy.com/forum
Training renesassynergy.com/training
Videos renesassynergy.com/videos
Chat and web ticket renesassynergy.com/support

Proprietary Notice
All text, graphics, photographs, trademarks, logos, artwork and computer code, collectively known as content, contained in
this document is owned, controlled or licensed by or to Renesas, and is protected by trade dress, copyright, patent and
trademark laws, and other intellectual property rights and unfair competition laws. Except as expressly provided herein, no
part of this document or content may be copied, reproduced, republished, posted, publicly displayed, encoded, translated,
transmitted or distributed in any other medium for publication or distribution or for any commercial enterprise, without prior
written consent from Renesas.
Arm® and Cortex® are registered trademarks of Arm Limited. CoreSight™ is a trademark of Arm Limited.
CoreMark® is a registered trademark of the Embedded Microprocessor Benchmark Consortium.
Magic Packet™ is a trademark of Advanced Micro Devices, Inc.
SuperFlash® is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States
and Japan.
Other brands and names mentioned in this document may be the trademarks or registered trademarks of their respective
holders.
Colophon

S5D9 Microcontroller Group Datasheet

Publication Date: Rev.1.20 Aug 10, 2018

Published by: Renesas Electronics Corporation


Address List
General Precautions
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately
degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and
quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used.
This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be
stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap.
Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit
boards with mounted semiconductor devices.

2. Processing at power-on
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are
indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished
product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time
when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset
by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches
the level at which resetting is specified.

3. Input of signal during power-off state


Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results
from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in
the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-
off state as described in your product documentation.

4. Handling of unused pins


Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins
of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state,
extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally,
and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the
clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated
with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full
stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or
by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin


Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device
stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to
prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the
input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses


Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of
functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products


Before changing from one product to another, for example to a product with a different part number, confirm that the
change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the
same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and
other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins,
immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a
system-evaluation test for the given product.
Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by
you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or
arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application
examples.
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by
you or third parties arising from such alteration, modification, copying or reverse engineering.
5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the
product’s quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic
equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are
not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause
serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all
liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or
other Renesas Electronics document.
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the
reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified
ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a
certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury
or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult
and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and
sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable
laws and regulations.
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws
or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
transactions.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third
party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

SALES OFFICES http://www.renesas.com


Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.


1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

© 2018 Renesas Electronics Corporation. All rights reserved.


Colophon 7.1
Back cover

Renesas Synergy™ Platform


S5D9 Microcontroller Group

R01DS0303EU0120

You might also like