Nothing Special   »   [go: up one dir, main page]

Flexible Pavement Design

Download as pdf or txt
Download as pdf or txt
You are on page 1of 12

3/21/12

CE 563
Airport Design

  VERY  important  pavement  design  factor  


  Consideration  MUST  be  given  to:  
  Load  magnitude  
  Load  configuration  
  Total  load  repetitions  (volume)  

1
3/21/12

  Three  procedures  for  considering  traffic  


effects  for  pavement  design    
  Fixed  vehicle  
  Fixed  traffic  
  Variable  vehicle  and  traffic  

  Pavement  thickness  is  governed  by  the  number  


of  repetitions  of  a  standard  vehicle  or  axle  Load  
  Usually  the  18kip  (80kN)  axle  load  
  All  other  axle  loads  are  converted  to  18kip  axle  
loads  by  Equivalent  Axle  Load  Factors  (EALF)  or  
(LEF)  

2
3/21/12

  Summation  of  the  equivalent  effects  of  all  axle  loads  


over  the  design  period  (life)  gives  the  Equivalent  
Single  Axle  Load  (ESAL)  used  in  design  
  Used  in  AASHTO  pavement  design  methods  

  Pavement  thickness  governed  by  


single  wheel  load  (ESWL)  
  Number  of  load  repetitions  not  
considered  
  Used  in  airport  and  industrial  
design  
▪  WWII,  B-­‐29  bombers  had  dual  
gear  and  methods  were  based  
on  single  wheel  loads  at  that  
time,  thus  ESWL  
  ESWL  =   worst  case  load  

  Considers  both  traffic  (number  of  repetitions)  


and  load  uniquely  
  σ,  ε,  δ  resulting  from  each  load  is  considered  in  
design  
  Used  in  mechanistic  design  procedures  
  Must  use  computers  to  solve  problems  

3
3/21/12

  Series  of  design  curves  based  on  the  CBR  design  


method  
  Design  curves  depend  on  gear  configuration  
  Curves  provide  total  pavement  thickness  
  Curves  based  on  20  year  design  life  

  Load  
  Pavement  design  based  on  maximum  anticipated  
takeoff  weight  
  Assumes  95%  of  the  load  on  main  gear  
 

  Landing  gear  type  and  geometry  


  Single  
  Dual  
  Dual  tandem  
  Wide  body  aircraft  (B-­‐747)  
  Tire  pressure  (75-­‐200  psi)  
  Traffic  volume  (annual  departures  by  aircraft  type)  

4
3/21/12

  Subgrade  CBR  value  


  Subbase  CBR  value  
  Design  aircraft  gross  weight  
  Number  of  annual  departures  of  the  design  aircraft  

  One  standard  deviation  below  the  mean  


  Minimum  Design  CBR=3  
  If  less,  use  stabilization,  etc.  

  Can  be  determined  in  the  laboratory  


  FAA  P-­‐154  is  subbase  specification  
  Assumes  a  CBR=20  

5
3/21/12

  Forecast  annual  departures  by  aircraft  type  


  Determine  required  pavement  thickness  for  each  
aircraft  type  
  Aircraft  requiring  the  thickest  pavement  is  the  
design  aircraft  
  Will  not  necessarily  be  heaviest  aircraft  

Ave.  Annual   Max.  Takeoff  


Aircraft   Gear  Type   Departures   Weight  (lbs)  
727-­‐100   Dual   3,760   160,000  
727-­‐200   Dual   9,080   190,500  
707-­‐320B   Dual  tandem   3,050   327,000  
DC-­‐9-­‐30   Dual   5,800   108,000  
CV-­‐800   Dual  tandem   400   184,500  
737-­‐200   Dual   2,650   115,500  
L1011-­‐100   Dual  tandem   1,710   450,000  
747-­‐100   2-­‐dual  tandem   85   700,000  

6
3/21/12

  For  given  data,  assuming  a  CBR=6  


  Design  aircraft  is  the  727-­‐200  

  Group  all  aircraft  traffic  into  gear  configuration  of  


design  aircraft  
  Convert  all  departures  into  equivalent  annual  
departures  of  the  design  aircraft  (see  table)  
  Assume  a  load  of  300,000  lbs  and  dual  tandem  for  
all  wide  body  aircraft  

Convert  From To Multiply  By


Single  wheel Dual  wheel 0.8
Single  wheel Dual  tandem 0.5
Dual  wheel Single  wheel 1.3
Dual  wheel Dual  tandem 0.6
Dual  tandem Single  wheel 2.0
Dual  tandem Dual  wheel 1.7
2-­‐dual  tandem Dual  tandem 1.0
2-­‐dual  tandem Dual  wheel 1.7

7
3/21/12

  To  convert  CV-­‐800  departures  into  727-­‐200  


(design  aircraft)  departures  

Eq. Dual Gear Departures = 400 !1.7


= 680

Eq.  Annual  
Eq.  Dual  Gear   Wheel   Departures  Design  
Aircraft   Departures   Load  (lbs)   Aircraft  
727-­‐100   3,760   38,000   1,891  
727-­‐200   9,080   45,240   9,080  
707-­‐320B   5,185   38,830   2,764  
DC-­‐9-­‐30   5,800   25,650   682  
CV-­‐800   680   21,910   94  
737-­‐200   2,650   27,430   463  
L1011-­‐100   2,907   35,625   1,184  
747-­‐100   145   35,625   83  

  Aircraft  wheel  loads  

190,500 × 0.95 × 0.5


Wheel Load =
2
= 45,240

8
3/21/12

Eq.  Annual  
Eq.  Dual  Gear   Wheel   Departures  Design  
Aircraft   Departures   Load  (lbs)   Aircraft  
727-­‐100   3,760   38,000   1,891  
727-­‐200   9,080   45,240   9,080  
707-­‐320B   5,185   38,830   2,764  
DC-­‐9-­‐30   5,800   25,650   682  
CV-­‐800   680   21,910   94  
737-­‐200   2,650   27,430   463  
L1011-­‐100   2,907   35,625   1,184  
747-­‐100   145   35,625   83  

  To  convert  to  equivalent  annual  departures  of  


the  design  aircraft  

W2
log R1 = log R2
W1

  R1  =  equivalent  annual  departures  by  the  design  


aircraft  
  R2  =  annual  departures  expressed  in  design  aircraft  
landing  gear  
  W1  =  wheel  load  of  the  design  aircraft  
  W2  =  wheel  load  of  the  aircraft  in  question  

9
3/21/12

  Equivalent  annual  departures,  design  aircraft  

21,910
log R1 = log(680 ) ×
45,240
R1 = 94

Eq.  Annual  
Eq.  Dual  Gear   Wheel   Departures  Design  
Aircraft   Departures   Load  (lbs)   Aircraft  
727-­‐100   3,760   38,000   1,891  
727-­‐200   9,080   45,240   9,080  
707-­‐320B   5,185   38,830   2,764  
DC-­‐9-­‐30   5,800   25,650   682  
CV-­‐800   680   21,910   94  
737-­‐200   2,650   27,430   463  
L1011-­‐100   2,907   35,625   1,184  
747-­‐100   145   35,625   83  

  Sum  to  find  the  total  equivalent  annual  departures  


of  the  design  aircraft  
  Total  =  16,241  
  The  design  should  be  completed  with  16,241  
departures  of  a  190,500  lbs  aircraft  

10
3/21/12

  Complete  frost  protection  


  Limited  subgrade  frost  penetration  
  65%  of  frost  penetration  depth  is  composed  of  
non-­‐frost  susceptible  material  
  Reduced  subgrade  strength  
  Increase  pavement  thickness  

  Full-­‐depth  design  thickness  required  where  


departing  aircraft  use  pavement  
  Aprons  
  Holding  areas  
  Center  of  runways  and  taxiways  

11
3/21/12

  90%  of  design  thickness  required  where  arriving  


aircraft  will  use  pavement  
  High  speed  turnouts  
  70%  of  design  thickness  required  where  pavement  
use  is  unlikely  
  Outer  edges  of  runways  and  taxiways  

12

You might also like