Nothing Special   »   [go: up one dir, main page]

P2 Moment of Force

Download as pdf or txt
Download as pdf or txt
You are on page 1of 42

M

O
M
EN
T
AN
D
TO
R
Q
U
E
O
F
C
O
U
PL
E
Topic : MOMENTS 1
5 For
Examiner’s
Use
3 (a) Explain what is meant by the centre of gravity of an object.

..........................................................................................................................................

..........................................................................................................................................

......................................................................................................................................[2]

(b) A non-uniform plank of wood XY is 2.50 m long and weighs 950 N. Force-meters (spring
balances) A and B are attached to the plank at a distance of 0.40 m from each end, as
illustrated in Fig. 3.1.

force-meter A force-meter B

0.40 m 0.40 m

X Y

2.50 m
Fig. 3.1

When the plank is horizontal, force-meter A records 570 N.

(i) Calculate the reading on force-meter B.

reading = ................................................ N

(ii) On Fig. 3.1, mark a likely position for the centre of gravity of the plank.

(iii) Determine the distance of the centre of gravity from the end X of the plank.

distance = ............................................... m
[6]

9702/2 M/J02 [Turn over


Topic : MOMENTS 2
10 For
Examiner’s
Use
5 Two forces, each of magnitude F, form a couple acting on the edge of a disc of radius r, as
shown in Fig. 5.1.

F r
F

Fig. 5.1

(a) The disc is made to complete n revolutions about an axis through its centre, normal to
the plane of the disc. Write down an expression for

(i) the distance moved by a point on the circumference of the disc,

distance = .........................................................

(ii) the work done by one of the two forces.

work done = ..........................................................


[2]

(b) Using your answer to (a), show that the work W done by a couple producing a torque T
when it turns through n revolutions is given by

W = 2πnT. [2]

© UCLES 2004 9702/02/M/J/04


Topic : MOMENTS 3
11 For
Examiner’s
Use
(c) A car engine produces a torque of 470 N m at 2400 revolutions per minute. Calculate
the output power of the engine.

power = .................................. W [2]

© UCLES 2004 9702/02/M/J/04 [Turn over


Topic : MOMENTS 4
6 For
Examiner’s
Use
2 A rod AB is hinged to a wall at A. The rod is held horizontally by means of a cord BD,
attached to the rod at end B and to the wall at D, as shown in Fig. 2.1.

wall D
cord

T
hinge P
F
C
B
A

rod
W

Fig. 2.1

The rod has weight W and the centre of gravity of the rod is at C. The rod is held in
equilibrium by a force T in the cord and a force F produced at the hinge.

(a) Explain what is meant by

(i) the centre of gravity of a body,

...................................................................................................................................

...................................................................................................................................

.............................................................................................................................. [2]

(ii) the equilibrium of a body.

...................................................................................................................................

...................................................................................................................................

...................................................................................................................................

.............................................................................................................................. [2]

© UCLES 2006 9702/02/M/J/06


Topic : MOMENTS 5
7 For
Examiner’s
Use
(b) The line of action of the weight W of the rod passes through the cord at point P.

Explain why, for the rod to be in equilibrium, the force F produced at the hinge must also
pass through point P.

..........................................................................................................................................

..........................................................................................................................................

..........................................................................................................................................

..................................................................................................................................... [2]

(c) The forces F and T make angles α and β respectively with the rod and AC =  AB, as
shown in Fig. 2.1.

Write down equations, in terms of F, W, T, α and β, to represent

(i) the resolution of forces horizontally,

.............................................................................................................................. [1]

(ii) the resolution of forces vertically,

.............................................................................................................................. [1]

(iii) the taking of moments about A.

.............................................................................................................................. [1]

© UCLES 2006 9702/02/M/J/06 [Turn over


Topic : MOMENTS 6
8

3 (a) Define the torque of a couple. For


Examiner’s
.......................................................................................................................................... Use

..........................................................................................................................................

.................................................................................................................................... [2]

(b) A torque wrench is a type of spanner for tightening a nut and bolt to a particular torque,
as illustrated in Fig. 3.1.

force F
nut torque scale

C 

45 cm

Fig. 3.1

The wrench is put on the nut and a force is applied to the handle. A scale indicates the
torque applied.

The wheel nuts on a particular car must be tightened to a torque of 130 N m. This is
achieved by applying a force F to the wrench at a distance of 45 cm from its centre
of rotation C. This force F may be applied at any angle  to the axis of the handle, as
shown in Fig. 3.1.

For the minimum value of F to achieve this torque,

(i) state the magnitude of the angle  that should be used,

 = .............................................. ° [1]

(ii) calculate the magnitude of F.

F = ............................................. N [2]

© UCLES 2009 9702/21/M/J/09


Topic : MOMENTS 7
8

3 (a) Explain what is meant by centre of gravity. For


Examiner’s
.......................................................................................................................................... Use

..................................................................................................................................... [2]

(b) Define moment of a force.

..........................................................................................................................................

..................................................................................................................................... [1]

(c) A student is being weighed. The student, of weight W, stands 0.30 m from end A of a
uniform plank AB, as shown in Fig. 3.1.

P
A B
0.30 m 0.20 m

W 80 N 70 N
0.50 m
2.0 m

Fig. 3.1 (not to scale)

The plank has weight 80 N and length 2.0 m. A pivot P supports the plank and is 0.50 m
from end A.
A weight of 70 N is moved to balance the weight of the student. The plank is in equilibrium
when the weight is 0.20 m from end B.

(i) State the two conditions necessary for the plank to be in equilibrium.

1. ...............................................................................................................................

..................................................................................................................................

2. ...............................................................................................................................

..................................................................................................................................
[2]

© UCLES 2011 9702/21/M/J/11


Topic : MOMENTS 8
9

(ii) Determine the weight W of the student. For


Examiner’s
Use

W = ............................................. N [3]

(iii) If only the 70 N weight is moved, there is a maximum weight of student that can
be determined using the arrangement shown in Fig. 3.1. State and explain one
change that can be made to increase this maximum weight.

..................................................................................................................................

..................................................................................................................................

............................................................................................................................. [2]

© UCLES 2011 9702/21/M/J/11 [Turn over


Topic : MOMENTS 9
8

3 A uniform plank AB of length 5.0 m and weight 200 N is placed across a stream, as shown in
Fig. 3.1.

FA FB

plank

A B

880 N
200 N
x

5.0 m

stream

Fig. 3.1

A man of weight 880 N stands a distance x from end A. The ground exerts a vertical force FA on
the plank at end A and a vertical force FB on the plank at end B.
As the man moves along the plank, the plank is always in equilibrium.

(a) (i) Explain why the sum of the forces FA and FB is constant no matter where the man stands
on the plank.

...........................................................................................................................................

...........................................................................................................................................

...................................................................................................................................... [2]

(ii) The man stands a distance x = 0.50 m from end A. Use the principle of moments to
calculate the magnitude of FB.

FB = ...................................................... N [4]
© UCLES 2014 9702/21/M/J/14
Topic : MOMENTS 10
9

(b) The variation with distance x of force FA is shown in Fig. 3.2.

1000

force / N
FA
500

0
0 1.0 2.0 3.0 4.0 5.0
x /m

Fig. 3.2

On the axes of Fig. 3.2, sketch a graph to show the variation with x of force FB. [3]

© UCLES 2014 9702/21/M/J/14 [Turn over


Topic : MOMENTS 11
8 For
Examiner’s
Use
3 (a) Define the moment of a force.

..........................................................................................................................................

..................................................................................................................................... [2]

(b) State the two conditions necessary for a body to be in equilibrium.

1. ...................................................................................................................................

..........................................................................................................................................

2. ...................................................................................................................................

..................................................................................................................................... [2]

(c) Two parallel strings S1 and S2 are attached to a disc of diameter 12 cm, as shown in
Fig. 3.1.

Fig. 3.1

The disc is free to rotate about an axis normal to its plane. The axis passes through the
centre C of the disc.

A lever of length 30 cm is attached to the disc. When a force F is applied at right angles
to the lever at its end, equal forces are produced in S1 and S2. The disc remains in
equilibrium.

(i) On Fig. 3.1, show the direction of the force in each string that acts on the disc.
[1]

9702/2/O/N03
Topic : MOMENTS 12
9 For
Examiner’s
Use
(ii) For a force F of magnitude 150 N, determine
1. the moment of force F about the centre of the disc,

moment = …………………………………… N m

2. the torque of the couple produced by the forces in the strings,

torque = …………………………………… N m

3. the force in S1.

force = ……………………………………. N
[4]

9702/2/O/N03 [Turn over


Topic : MOMENTS 13
8

3 (a) Distinguish between the moment of a force and the torque of a couple. For
Examiner’s
moment of a force ........................................................................................................... Use

..........................................................................................................................................

..........................................................................................................................................

torque of a couple ............................................................................................................

..........................................................................................................................................

..........................................................................................................................................
[4]

(b) One type of weighing machine, known as a steelyard, is illustrated in Fig. 3.1.

4.8 cm pivot 12 N sliding weight metal rod

hook 2.5 N sliding weight

Fig. 3.1

The two sliding weights can be moved independently along the rod.

With no load on the hook and the sliding weights at the zero mark on the metal rod, the
metal rod is horizontal. The hook is 4.8 cm from the pivot.

A sack of flour is suspended from the hook. In order to return the metal rod to the
horizontal position, the 12 N sliding weight is moved 84 cm along the rod and the 2.5 N
weight is moved 72 cm.

© UCLES 2008 9702/02/O/N/08


Topic : MOMENTS 14
9

(i) Calculate the weight of the sack of flour. For


Examiner’s
Use

weight = …………………………N [2]

(ii) Suggest why this steelyard would be imprecise when weighing objects with a weight of
about 25 N.

..........................................................................................................................................

......................................................................................................................................[1]

© UCLES 2008 9702/02/O/N/08 [Turn over


Topic : MOMENTS 15
8

3 (a) State the relation between force and momentum. For


Examiner’s
.................................................................................................................................... [1] Use

(b) A rigid bar of mass 450 g is held horizontally by two supports A and B, as shown in
Fig. 3.1.

ball

45 cm

C A

B
50 cm 25 cm

Fig. 3.1

The support A is 45 cm from the centre of gravity C of the bar and support B is 25 cm
from C.

A ball of mass 140 g falls vertically onto the bar such that it hits the bar at a distance of
50 cm from C, as shown in Fig. 3.1.
The variation with time t of the velocity v of the ball before, during and after hitting the
bar is shown in Fig. 3.2.

4
velocity
downwards
/ m s–1
2

0
0 0.2 0.4 0.6 0.8 1.0 1.2
time / s

–2

–4

–6

Fig. 3.2
© UCLES 2010 9702/21/O/N/10
Topic : MOMENTS 16
9

For the time that the ball is in contact with the bar, use Fig. 3.2 For
Examiner’s
(i) to determine the change in momentum of the ball, Use

change = .................................. kg m s–1 [2]

(ii) to show that the force exerted by the ball on the bar is 33 N.

[1]

(c) For the time that the ball is in contact with the bar, use data from Fig. 3.1 and (b)(ii) to
calculate the force exerted on the bar by

(i) the support A,

force = ............................................ N [3]

(ii) the support B.

force = ............................................ N [2]


© UCLES 2010 9702/21/O/N/10 [Turn over
Topic : MOMENTS 17
5

2 (a) Define the torque of a couple. For


Examiner’s
.......................................................................................................................................... Use

..................................................................................................................................... [2]

(b) A uniform rod of length 1.5 m and weight 2.4 N is shown in Fig. 2.1.

1.5 m

rope A 8.0 N
pin

rod
weight 2.4 N
8.0 N rope B

Fig. 2.1

The rod is supported on a pin passing through a hole in its centre. Ropes A and B
provide equal and opposite forces of 8.0 N.

(i) Calculate the torque on the rod produced by ropes A and B.

torque = .......................................... N m [1]

(ii) Discuss, briefly, whether the rod is in equilibrium.

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

............................................................................................................................. [2]

© UCLES 2011 9702/21/O/N/11 [Turn over


Topic : MOMENTS 18
6

(c) The rod in (b) is removed from the pin and supported by ropes A and B, as shown in For
Fig. 2.2. Examiner’s
Use

1.5 m

rope A rope B
0.30 m

P
weight 2.4 N

Fig. 2.2

Rope A is now at point P 0.30 m from one end of the rod and rope B is at the other end.

(i) Calculate the tension in rope B.

tension in B = ............................................. N [2]

(ii) Calculate the tension in rope A.

tension in A = ............................................. N [1]

© UCLES 2011 9702/21/O/N/11


Topic : MOMENTS 19
6

2 Two planks of wood AB and BC are inclined at an angle of 15° to the horizontal. The two For
wooden planks are joined at point B, as shown in Fig. 2.1. Examiner’s
Use

M
C
A
0.26 m 0.26 m
15° B 15°

Fig. 2.1

A small block of metal M is released from rest at point A. It slides down the slope to B and
up the opposite side to C. Points A and C are 0.26 m above B. Assume frictional forces are
negligible.

(a) (i) Describe and explain the acceleration of M as it travels from A to B and from B to C.

..................................................................................................................................

..................................................................................................................................

..................................................................................................................................

............................................................................................................................ [3]

(ii) Calculate the time taken for M to travel from A to B.

time = ............................................. s [3]


(iii) Calculate the speed of M at B.

speed = ...................................... m s–1 [2]

(b) The plank BC is adjusted so that the angle it makes with the horizontal is 30°. M is
released from rest at point A and slides down the slope to B. It then slides a distance
along the plank from B towards C.

Use the law of conservation of energy to calculate this distance. Explain your working.

distance = ............................................ m [2]


© UCLES 2012 9702/23/O/N/12
Topic : MOMENTS 20
10

4 (a) Define the torque of a couple. For


Examiner’s
.......................................................................................................................................... Use

...................................................................................................................................... [2]

(b) A wheel is supported by a pin P at its centre of gravity, as shown in Fig. 4.1.

25 cm

35 N

35 N

Fig. 4.1

The plane of the wheel is vertical. The wheel has radius 25 cm.
Two parallel forces each of 35 N act on the edge of the wheel in the vertical directions
shown in Fig. 4.1. Friction between the pin and the wheel is negligible.

(i) List two other forces that act on the wheel. State the direction of these forces and
where they act.

1. ...............................................................................................................................

2. ...............................................................................................................................
[2]

(ii) Calculate the torque of the couple acting on the wheel.

torque = .......................................... N m [2]

(iii) The resultant force on the wheel is zero. Explain, by reference to the four forces
acting on the wheel, how it is possible that the resultant force is zero.

..................................................................................................................................

.............................................................................................................................. [1]

(iv) State and explain whether the wheel is in equilibrium.

.............................................................................................................................. [1]

© UCLES 2013 9702/21/O/N/13


8

3 (a) A cylinder is made from a material of density 2.7 g cm–3. The cylinder has diameter 2.4 cm and
length 5.0 cm.

Show that the cylinder has weight 0.60 N.

[3]

(b) The cylinder in (a) is hung from the end A of a non-uniform bar AB, as shown in Fig. 3.1.

50 cm
20 cm
bar 12 cm
A B
P
cylinder X
0.25 N

0.60 N

Fig. 3.1

The bar has length 50 cm and has weight 0.25 N. The centre of gravity of the bar is 20 cm
from B. The bar is pivoted at P. The pivot is 12 cm from B.

An object X is hung from end B. The weight of X is adjusted until the bar is horizontal and in
equilibrium.

(i) Explain what is meant by centre of gravity.

...........................................................................................................................................

.......................................................................................................................................[1]

© UCLES 2017 9702/21/M/J/17


9

(ii) Calculate the weight of X.

weight of X = ............................................... N [3]

(c) The cylinder is now immersed in water, as illustrated in Fig. 3.2.

A B
P
water X
0.25 N

Fig. 3.2

An upthrust acts on the cylinder and the bar is not in equilibrium.

(i) Explain the origin of the upthrust.

...........................................................................................................................................

...........................................................................................................................................

...........................................................................................................................................

.......................................................................................................................................[2]

(ii) Explain why the weight of X must be reduced in order to obtain equilibrium for AB.

...........................................................................................................................................

...........................................................................................................................................

.......................................................................................................................................[1]

[Total: 10]

© UCLES 2017 9702/21/M/J/17 [Turn over


10

3 (a) State what is meant by the centre of gravity of a body.

...................................................................................................................................................

...............................................................................................................................................[1]

(b) A uniform square sign with sides of length 0.68 m is fixed at its corner points A and B to a wall.
The sign is also supported by a wire CD, as shown in Fig. 3.1.

D wire

54 N

35°
B C
sign

E
wall 0.68 m

0.68 m

Fig. 3.1 (not to scale)

The sign has weight W and centre of gravity at point E. The sign is held in a vertical plane
with side BC horizontal. The wire is at an angle of 35° to side BC. The tension in the wire is
54 N.

The force exerted on the sign at B is only in the vertical direction.

(i) Calculate the vertical component of the tension in the wire.

vertical component of tension = ...................................................... N [1]

(ii) Explain why the force on the sign at B does not have a moment about point A.

...........................................................................................................................................

.......................................................................................................................................[1]

© UCLES 2019 9702/22/M/J/19


11

(iii) By taking moments about point A, show that the weight W of the sign is 150 N.

[2]

(iv) Calculate the total vertical force exerted by the wall on the sign at points A and B.

total vertical force = ...................................................... N [1]

(c) The sign in (b) is held together by nuts and bolts. One of the nuts falls vertically from rest
through a distance of 4.8 m to the pavement below. The nut lands on the pavement with a
speed of 9.2 m s−1.

Determine, for the nut falling from the sign to the pavement, the ratio

change in gravitational potential energy


.
final kinetic energy

ratio = .......................................................... [4]

[Total: 10]

© UCLES 2019 9702/22/M/J/19 [Turn over


8

3 (a) State the two conditions for an object to be in equilibrium.

1. ...............................................................................................................................................

...................................................................................................................................................

2. ...............................................................................................................................................

...................................................................................................................................................
[2]

(b) A uniform beam AC is attached to a vertical wall at end A. The beam is held horizontal by a
rigid bar BD, as shown in Fig. 3.1.

0.30 m 0.10 m

A C
52° B
beam :
33 N wire
wall

bar bucket
D

12 N

Fig. 3.1 (not to scale)

The beam is of length 0.40 m and weight W. An empty bucket of weight 12 N is suspended
by a light metal wire from end C. The bar exerts a force on the beam of 33 N at 52° to the
horizontal. The beam is in equilibrium.

(i) Calculate the vertical component of the force exerted by the bar on the beam.

component of the force = ...................................................... N [1]

(ii) By taking moments about A, calculate the weight W of the beam.

W = ...................................................... N [3]

© UCLES 2016 9702/22/O/N/16


9

(c) The metal of the wire in (b) has a Young modulus of 2.0 × 1011 Pa.
Initially the bucket is empty. When the bucket is filled with paint of weight 78 N, the strain of
the wire increases by 7.5 × 10–4. The wire obeys Hooke’s law.

Calculate, for the wire,

(i) the increase in stress due to the addition of the paint,

increase in stress = .................................................... Pa [2]

(ii) its diameter.

diameter = ...................................................... m [3]

[Total: 11]

© UCLES 2016 9702/22/O/N/16 [Turn over


7

2 (a) Define the moment of a force.

...................................................................................................................................................

...............................................................................................................................................[1]

(b) A thin disc of radius r is supported at its centre O by a pin. The disc is supported so that it is
vertical. Three forces act in the plane of the disc, as shown in Fig. 2.1.

A
1.2 N

r
r
2 O
θ C pin disc

6.0 N r

1.2 N
B

Fig. 2.1

Two horizontal and opposite forces, each of magnitude 1.2 N, act at points A and B on the
edge of the disc. A force of 6.0 N, at an angle θ below the horizontal, acts on the midpoint
C of a radial line of the disc, as shown in Fig. 2.1. The disc has negligible weight and is in
equilibrium.

(i) State an expression, in terms of r, for the torque of the couple due to the forces at A and
B acting on the disc.

.......................................................................................................................................[1]

(ii) Friction between the disc and the pin is negligible.


Determine the angle θ.

θ = ........................................................ ° [2]

(iii) State the magnitude of the force of the pin on the disc.

force = ....................................................... N [1]

[Total: 5]

© UCLES 2017 9702/22/O/N/17 [Turn over


4

Answer all the questions in the spaces provided.

1 (a) Mass, length and time are all SI base quantities.

State two other SI base quantities.

1. ...............................................................................................................................................

2. ...............................................................................................................................................
[2]

(b) A wire hangs between two fixed points, as shown in Fig. 1.1.

fixed horizontal fixed


point 17° 17° point
150 N 150 N
wire
hook

rope tyre

Fig. 1.1 (not to scale)

A child’s swing is made by connecting a car tyre to the wire using a rope and a hook. The
system is in equilibrium with the wire hanging at an angle of 17° to the horizontal. The tension
in the wire is 150 N. Assume that the rope and hook have negligible weight.

(i) Determine the weight of the tyre.

weight = ....................................................... N [2]

© UCLES 2018 9702/23/O/N/18


7

2 (a) The kilogram, metre and second are all SI base units.

State two other SI base units.

1. ...............................................................................................................................................

2. ...............................................................................................................................................
[2]

(b) A uniform beam AB of length 6.0 m is placed on a horizontal surface and then tilted at an
angle of 31° to the horizontal, as shown in Fig. 2.1.

90 N

A
6.0 m

W Y
X 31°
B

Fig. 2.1 (not to scale)

The beam is held in equilibrium by four forces that all act in the same plane. A force of 90 N
acts perpendicular to the beam at end A. The weight W of the beam acts at its centre of
gravity. A vertical force Y and a horizontal force X both act at end B of the beam.

(i) State the name of force X.

.......................................................................................................................................[1]

(ii) By taking moments about end B, calculate the weight W of the beam.

W = ...................................................... N [2]

(iii) Determine the magnitude of force X.

magnitude of force X = ...................................................... N [1]

[Total: 6]

© UCLES 2018 9702/22/O/N/18 [Turn over


4

Answer all the questions in the spaces provided.

1 (a) Determine the SI base units of the moment of a force.

SI base units ......................................................... [1]

(b) A uniform square sheet of card ABCD is freely pivoted by a pin at a point P. The card is held
in a vertical plane by an external force in the position shown in Fig. 1.1.

17 cm

45° P
A C
4.0 cm G

0.15 N

Fig. 1.1 (not to scale)

The card has weight 0.15 N which may be considered to act at the centre of gravity G. Each
side of the card has length 17 cm. Point P lies on the horizontal line AC and is 4.0 cm from
corner A. Line BD is vertical.

The card is released by removing the external force. The card then swings in a vertical plane
until it comes to rest.

© UCLES 2019 9702/23/O/N/19


5

(i) Calculate the magnitude of the resultant moment about point P acting on the card
immediately after it is released.

moment = .................................................. N m [2]

(ii) Explain why, when the card has come to rest, its centre of gravity is vertically below
point P.

...........................................................................................................................................

...........................................................................................................................................

...........................................................................................................................................

..................................................................................................................................... [2]

[Total: 5]

© UCLES 2019 9702/23/O/N/19 [Turn over


10

4 (a) A sphere in a liquid accelerates vertically downwards from rest. For the viscous force acting
on the moving sphere, state:

(i) the direction

..................................................................................................................................... [1]

(ii) the variation, if any, in the magnitude.

..................................................................................................................................... [1]

(b) A man of weight 750 N stands a distance of 3.6 m from end D of a horizontal uniform beam
AD, as shown in Fig. 4.1.

FB FC

A B C D

2.0 m 2.0 m
380 N 750 N
3.6 m

9.0 m

Fig. 4.1 (not to scale)

The beam has a weight of 380 N and a length of 9.0 m. The beam is supported by a vertical
force FB at pivot B and a vertical force FC at pivot C. Pivot B is a distance of 2.0 m from end A
and pivot C is a distance of 2.0 m from end D. The beam is in equilibrium.

(i) State the principle of moments.

...........................................................................................................................................

...........................................................................................................................................

..................................................................................................................................... [2]

© UCLES 2019 9702/22/O/N/19


11

(ii) By using moments about pivot C, calculate FB.

FB = ...................................................... N [2]

(iii) The man walks towards end D. The beam is about to tip when FB becomes zero.

Determine the minimum distance x from end D that the man can stand without tipping
the beam.

x = ...................................................... m [2]

[Total: 8]

© UCLES 2019 9702/22/O/N/19 [Turn over


MS OF MOMENTS

JUN/02

JUN/04

JUN/06
JUN/09/21

JUN/11/21

JUN/14/21`
NOV/03

NOV/08

NOV/10/21
NOV/11/21

NOV/12/23
NOV/13/21

JUN/17/21/Q.3
JUN/19/22/Q.3

NOV/16/22/Q.3
NOV/17/22/Q.2

NOV/18/23/Q.1

NOV/18/22/Q.2
NOV/19/23/Q.1

NOV/19/22/Q.4

You might also like