Test-III - Class XII
Test-III - Class XII
Test-III - Class XII
A) 1 B) 2 C) 3 D) 4
𝑑𝑥
(iii) Find at 𝜃 = 𝜋 , if 𝑥 = 𝑎(𝜃 + sin 𝜃) , 𝑦 = 𝑎(1 − cos 𝜃)
𝑑𝑦
A) 0 B) -1 C) 1 D) ∞
𝜋
(iv) sin−1 (1 − 𝑥) − 2 sin−1 𝑥 = , then 𝑥 is equal to
2
0 6 − 5𝑥
(iv) If the matrix [ 2 ] is symmetric, then find x , where x is an negative integer.
𝑥 𝑥+3
𝜋
(v) Find the derivative of sin(sin 𝑥 2 ) at x = √ [5 × 1=5]
2
1−𝑥 𝑑𝑦
Q-3 If y = 𝑠𝑖𝑛2 (2 tan−1 √ ) , find [2]
1+𝑥 𝑑𝑥
Q-4 Show that the function f(x)= x |x| is continuous at x = 0. Is it differentiable at x = 0? [2]
𝑑𝑦
Q-5 Find , in terms of y , given that x sin ( a+y) + sin a cos ( a+y) = 0 [2]
𝑑𝑥
√1+𝑥 2 −1 2𝑥
Q-6 Differentiate tan−1 ( ) with respect to sin−1 ( ) [4]
𝑥 1+𝑥 2