Mth603 Solved MCQS For Final Term Exam: True False
Mth603 Solved MCQS For Final Term Exam: True False
Mth603 Solved MCQS For Final Term Exam: True False
com
The Jacobi’s method is A method of solving a matrix equation on a matrix that has
____ zeros along its main diagonal.
No
At least one
Jacobi’s method
Newton’s backward difference method
Stirlling formula
Forward difference method
If n x n matrices A and B are similar, then they have the same eigenvalues (with the
same multiplicities).
TRUE
FALSE
www.vustudents.ning.com
www.vustudents.ning.com
TRUE
FALSE
(X-1)^3
(x+1)^3
X^3-1
X^3+1
Two matrices with the same characteristic polynomial need not be similar.
TRUE
FALSE
Bisection method is a
Bracketing method
Open method
Real
Zero
Positive
Negative
TRUE
FALSE
www.vustudents.ning.com
www.vustudents.ning.com
TRUE
FALSE
Positive
Negative
Numerical
Analytical
The Power method can be used only to find the eigenvalue of A that is largest in absolute
value—we call this Eigenvalue the dominant eigenvalue of A.
Select correct option:
TRUE
FALSE
The Jacobi’s method is a method of solving a matrix equation on a matrix that has no
zeros along its ________.
Select correct option:
Main diagonal
Last column
Last row
First row
www.vustudents.ning.com
www.vustudents.ning.com
If A is a nxn triangular matrix (upper triangular, lower triangular) or diagonal matrix , the
eigenvalues of A are the diagonal entries of A.
Select correct option:
TRUE
FALSE
TRUE
FALSE
Bracketing method
Open Method
Iterative Method
Indirect Method
1
3
2
4
Root is bracketed
Root is not bracketed
Convergent
Divergent
www.vustudents.ning.com
www.vustudents.ning.com
In bisection method the two points between which the root lies are
Root may be
Complex
Real
Complex or real
None
www.vustudents.ning.com
www.vustudents.ning.com
Bisection Method
N-R Method
2
3
4
1
Near a simple root Muller’s Method converges than the secant method
Faster
Slower
S 1 S
St S
S 1 S t
All are true
r+2
r+1
R
R-1
P in Newton’s forward difference formula is defined as
x x0
p( )
h
x x0
p( )
h
x xn
p( )
h
x xn
p( )
h
Octal numbers has the base
10
2
8
www.vustudents.ning.com
www.vustudents.ning.com
16
Newton’s divided difference interpolation formula is used when the values
of the independent variable are
Equally spaced
Constant
None of the above
x 0 1 2 4
f ( x) 1 1 2 5
Value of f (2, 4) is
1.5
3
2
( x) y ( x) Pn ( x)
( x) y ( x) Pn ( x)
( x) y ( x) Pn ( x)
( x) Pn ( x) y ( x)
N-1
N+2
N
N+1
www.vustudents.ning.com
www.vustudents.ning.com
1 2 3 4 5
D ( ...)
h 2! 3! 4! 5!
1 2 3 4 5
D ( ...)
h 2 3 4 5
1 2 3 4 5
D ( ...)
h 2 3 4 5
1 2 3 4 5
D ( ...)
h 2! 3! 4! 5!
-0.5
0.5
0.75
-0.75
ax b
► ax 2 bx c
► ax 3 bx 2 cx d
www.vustudents.ning.com
www.vustudents.ning.com
► ax 4 bx3 cx 2 dx e
ba
n
ba
n
a b
n
None of the given choices
7
8
5
3
17.5
12.5
7.5
-12.5
To apply Simpson’s 1/3 rule, the number of intervals in the following must
be
2
3
5
www.vustudents.ning.com
www.vustudents.ning.com
To apply Simpson’s 3/8 rule, the number of intervals in the following must
be
10
11
12
13
If the root of the given equation lies between a and b, then the first
approximation to the root of the equation by bisection method is ……
( a b)
2
( a b)
2
(b a)
2
None of the given choices
Bisection Method
Regula Falsi Method
Secant Method
All of the given choices
For the equation x 3 3x 1 0 , the root of the equation lies in the interval......
(1, 3)
(1, 2)
(0, 1)
(1, 2)
www.vustudents.ning.com
www.vustudents.ning.com
A polynomial equation
If
dy
f ( x, y )
dx
Then the integral of this equation is a curve in
Xt-plane
Yt-plane
Xy-plane
1.44
1.11
1.22
1.33
k1 hf ( xn , yn )
k1 2hf ( xn , yn )
k1 3hf ( xn , yn )
None of the given choices
www.vustudents.ning.com
www.vustudents.ning.com
h k
k2 hf ( xn , yn 1 )
2 2
h k
k2 hf ( xn , yn 1 )
3 3
h k
k2 hf ( xn , yn 1 )
3 3
h k1
k2 hf ( xn , yn )
2 2
k3 hf ( xn 2h, yn 2k3 )
k3 hf ( xn h, yn k3 )
k3 hf ( xn h, yn k3 )
None of the given choices
The need of numerical integration arises for evaluating the definite integral of a
function that has no explicit ____________ or whose antiderivative is not easy to
obtain
Derivatives
Antiderivative
If A 0 then
There is a unique solution
There exists a complete solution
There exists no solution
None of the above options
www.vustudents.ning.com
www.vustudents.ning.com
Gauss Elimination method fails if any one of the pivot values becomes
Greater
Small
Zero
None of the given
Pivoting
Interpretation
Jacobi’s method
Gauss Jordan Elimination method
www.vustudents.ning.com
www.vustudents.ning.com
True
In Jacobi’s method approximation calculated is used for
Nothing
Calculating the next approximation
Replaced by previous one
All above
h, h/2
h, h/3
h, h/4
None
3
4
5
None
www.vustudents.ning.com
www.vustudents.ning.com
True
False
2- Euler's method is only useful for a few steps and small step sizes; however
Euler's method together with Richardson extrapolation may be used to increase the
____________.
3- The first lngrange polynomial with equally spaced nodes produced the formula
for __________.
Simpson's rule
Trapezoidal rule
Newton's method
Richardson's method
4- The need of numerical integration arises for evaluating the indefinite integral of
a function that has no explicit antiderivative or whose antiderivative is not easy to
obtain.
TRUE
FALSE
straight lines
curves
parabolas
constant
www.vustudents.ning.com
www.vustudents.ning.com
True
False
8- The need of numerical integration arises for evaluating the definite integral
of a function that has no explicit ____________ or whose antiderivative is
not easy to obtain.
Antiderivative
Derivatives
True
False
10-An indefinite integral may _________ in the sense that the limit defining it
may not exist.
Diverge
Converge
straight lines
curves
parabolas
constant
www.vustudents.ning.com
www.vustudents.ning.com
True
False
True
False
14-If we wanted to find the value of a definite integral with an infinite limit,
we can instead replace the infinite limit with a variable, and then take the
limit as this variable goes to _________.
Constant
Finite
Infinity
zero
www.vustudents.ning.com
www.vustudents.ning.com
2
1
www.vustudents.ning.com
www.vustudents.ning.com
unique
no solution
infinite many
finite many
Gauss-Seidel
Jacobi
Gauss-Jordan elimination
None of the given choices
Jacobi’s method
Gauss-Seidel method
Relaxation methods
Gauss-Jordan elimination method
Stable
www.vustudents.ning.com
www.vustudents.ning.com
Unstable
Convergent
Divergent
Iteration’s method
Regula-Falsi method
Jacobi’s method
None of the given choices
(1, 0.75)
(0,0)
(1,0)
(0,1)
www.vustudents.ning.com
www.vustudents.ning.com
Indirect
Iterative
Jacobi
None of the given choices
www.vustudents.ning.com
www.vustudents.ning.com
Easiest
Complicated
► (1, 3)
► (1, 2)
► (0, 1)
► (1, 2)
► Bisection Method
► Regula Falsi Method
► Secant Method
► all of the given choices
www.vustudents.ning.com
www.vustudents.ning.com
( a b)
► 2
( a b)
► 2
(b a)
► 2
► None of the given choices
www.vustudents.ning.com
www.vustudents.ning.com
► 10
► 11
► 12
► 13
TRUE
FALSE
main diagonal
www.vustudents.ning.com
www.vustudents.ning.com
last column
last row
first row
Forward difference Δ
Central difference
Backward difference
www.vustudents.ning.com
www.vustudents.ning.com
atleast one
www.vustudents.ning.com
www.vustudents.ning.com
www.vustudents.ning.com
www.vustudents.ning.com
1. False
Question : Central Difference method is the finite difference
method.
True
1. False
True
False1 .
TRUE
FALSE
www.vustudents.ning.com
www.vustudents.ning.com
True
False
Pos I t ive
Negative
Question : .The determinant of a diagonal matrix
is the product of the diagonal elements.
True
False1
Question : Power method is applicable if the eigen vectors corresponding to
eigen values are linearly independent.
True
False
Question : Power method is applicable if the eigen values are
______________.
Quadratic
Linear
Cubic
Quartic
www.vustudents.ning.com
www.vustudents.ning.com
True
False
Question : The predictor-corrector method an implicit method. (multi-step
methods)
True
False
Question : Generally, Adams methods are superior
if output at many points is needed.
True
False
Indefinite integral
Definite integral
Improper integral
Function
Question : The need of numerical integration arises for evaluating the
definite integral of a function that has no explicit ____________ or whose
antiderivative is not easy to obtain.
diverge
Converge
Question : An improper integral is the limit of a definite integral
as an endpoint of the interval of integration approaches either a
specified real number or ∞ or -∞ or, in some cases, as both
endpoints approach limits.
www.vustudents.ning.com
www.vustudents.ning.com
TRUE
FALSE
Question : Euler's Method numerically computes
the approximate derivative of a function.
TRUE
FALSE
Question :.Euler's Method numerically computes
the approximate ________ of a function.
Antiderivative
Derivative
Error
Value
Question: I f w e w a n t e d t o f i n d t h e v a l u e o f a d e f i n i t e
integral with an infinite limit, we can instead
replace the infinite limit with a variable, and then take the limit
as this variable goes to _________.
Chose the correct option :
Constant
Finite
Infinity
Zero
Question : Euler's Method numerically computes the
approximate derivative of a function.
•
TRUE
•
FALSE
converges
Diverges
Question :. T w o m a t r i c e s w i t h t h e s a m e c h a r a c t e r i s t i c
polynomial need not be similar.
www.vustudents.ning.com
www.vustudents.ning.com
TRUE
fALSE
Question :. D i f f e r e n c e s m e t h o d s f i n d t h e _ _ _ _ _ _ _ _
solution of the system.
Nu me rical
Analytica
Question : . B y u s i n g d e t e r m i n a n t s , w e c a n e a s i l y c h e c k
t h a t t h e s o l u t i o n o f t h e g i v e n s y s t e m o f l i n e a r equation
exits and it is unique.
TRUE
FALSE
Question : The absolute value of a determinant (|detA|) is the product of the
absolute values of the eigen values of matrix A
TRUE
FALSE
TRUE
FALSE
.
Question : Let A be an n ×n matrix. The number x is an
eigenvalue of A if there exists a non-zero vector v such that _______.
Av = xv
Ax = xv not shore
Av + xv=0
Av = Ax1
Question : In Jacobi’s Method, the rate of
convergence is quite ______ compared with
o t h e r methods.
slow
Fast
www.vustudents.ning.com
www.vustudents.ning.com
0.667
0.6666
0.6667
0.666671 .
Question : Symbol used for forward
differences is
∆ Correct
δ
µ
Question : .The relationship between central
difference operator and the shift operator is given by
δ = Ε − Ε - 1
δ = Ε + Ε - 1
1 / 2
δ = Ε 1 / 2 + Ε
δ = E 1 / 2 − Ε 1 / 2
Question : Muller’s method requires
--------starting points
www.vustudents.ning.com
www.vustudents.ning.com
nontrivial, inconsistent
Question : Two matrices with the _______ characteristic polynomial need
not be similar.
www.vustudents.ning.com
www.vustudents.ning.com
www.vustudents.ning.com
www.vustudents.ning.com
www.vustudents.ning.com
www.vustudents.ning.com
www.vustudents.ning.com
www.vustudents.ning.com
www.vustudents.ning.com
www.vustudents.ning.com
Direct method
Iterative method
www.vustudents.ning.com
www.vustudents.ning.com
Easiest
Complicated
Question # 9 of 10
If x is an eigen value corresponding to eigen value of V of a matrix A. If a is
any constant, then x – a is an eigen value corresponding to eigen vector V
is an of the matrix A - a I.
www.vustudents.ning.com
www.vustudents.ning.com
Question # 10 of 10
An eigenvector V is said to be normalized if the coordinate of largest
magnitude is equal to zero.
►
►
►
►
The relationship between central difference operator and the shift operator is
given by
►
1
►
1
1 1
►
2 2
1 1
► 2 2
►1
►2
www.vustudents.ning.com
www.vustudents.ning.com
►3
►4
► r+2
► r+1
►r
► r-1
x x0
p( )
► h
x x0
p( )
► h
x xn
p( )
► h
x xn
p( )
► h
►2
►8
► 10
www.vustudents.ning.com
www.vustudents.ning.com
► 16
Newton’s divided difference interpolation formula is used when the values of the
independent variable are
► Equally spaced
► Constant
► None of the above
x 0 1 2 4
f ( x) 1 1 2 5
Value of f (2, 4) is
► 1.5
►3
►2
►1
►
( x) y ( x) Pn ( x)
► ( x ) Pn ( x) y ( x)
► ( x ) y ( x) Pn ( x)
www.vustudents.ning.com
www.vustudents.ning.com
► n-1
► n+2
►n
► n+1
1 2 3 4 5
D ( ...)
► h 2! 3! 4! 5!
1 2 3 4 5
D ( ...)
► h 2 3 4 5
1 2 3 4 5
D ( ...)
► h 2 3 4 5
1 2 3 4 5
D ( ...)
► h 2! 3! 4! 5!
www.vustudents.ning.com
www.vustudents.ning.com
► -0.5
► 0.5
► 0.75
► -0.75
► ax b
► ax bx c
2
► ax bx cx d
3 2
► ax bx cx dx e
4 3 2
b
I f ( x)dx
While integrating a , h , width of the interval, is found by the
formula-----.
ba
► n
ba
► n
ab
► n
► None of the given choices
►7
►8
►5
►3
www.vustudents.ning.com
www.vustudents.ning.com
► 17.5
► 12.5
► 7.5
► -12.5
To apply Simpson’s 1/3 rule, the number of intervals in the following must be
►2
►3
►5
►7
To apply Simpson’s 3/8 rule, the number of intervals in the following must be
► 10
► 11
► 12
► 13
If the root of the given equation lies between a and b, then the first
approximation to the root of the equation by bisection method is ……
( a b)
► 2
( a b)
► 2
www.vustudents.ning.com
www.vustudents.ning.com
(b a)
► 2
► None of the given choices
► Bisection Method
► Regula Falsi Method
► Secant Method
► All the given choices
For the equation x 3 x 1 0 , the root of the equation lies in the interval......
3
► (1, 3)
► (1, 2)
► (0, 1)
► (1, 2)
► A polynomial equation
If
dy
f ( x, y )
dx
Then the integral of this equation is a curve in
► xt-plane
www.vustudents.ning.com
www.vustudents.ning.com
► yt-plane
► xy-plane
► 1.44
► 1.11
► 1.22
► 1.33
► k1 hf ( xn , yn )
► k1 2hf ( xn , yn )
► k1 3hf ( xn , yn )
► None of the given choices
h k
k2 hf ( xn , yn 1 )
► 2 2
h k
k2 hf ( xn , yn 1 )
► 3 3
h k
k2 hf ( xn , yn 1 )
► 3 3
h k
k2 hf ( xn , yn 1 )
► 2 2
www.vustudents.ning.com
www.vustudents.ning.com
► k3 hf ( xn 2h, yn 2k3 )
► k3 hf ( xn h, yn k3 )
► k3 hf ( xn h, yn k3 )
► None of the given choices
No
At least one
www.vustudents.ning.com
www.vustudents.ning.com
FALSE
Jacobi’s method
Newton’s backward difference method
Stirlling formula
Forward difference method
If n x n matrices A and B are similar, then they have the same eigenvalues (with the
same multiplicities).
TRUE
FALSE
TRUE
FALSE
(X-1)^3
(x+1)^3
X^3-1
X^3+1
Two matrices with the same characteristic polynomial need not be similar.
TRUE
FALSE
Bisection method is a
Bracketing method
Open method
www.vustudents.ning.com
www.vustudents.ning.com
Real
Zero
Positive
Negative
TRUE
FALSE
TRUE
FALSE
Positive
Negative
Numerical
Analytical
The Power method can be used only to find the eigenvalue of A that is largest in absolute
value—we call this Eigenvalue the dominant eigenvalue of A.
Select correct option:
TRUE
www.vustudents.ning.com
www.vustudents.ning.com
FALSE
The Jacobi’s method is a method of solving a matrix equation on a matrix that has no
zeros along its ________.
Select correct option:
Main diagonal
Last column
Last row
First row
If A is a nxn triangular matrix (upper triangular, lower triangular) or diagonal matrix , the
eigenvalues of A are the diagonal entries of A.
Select correct option:
TRUE
FALSE
TRUE
FALSE
Bracketing method
Open Method
Iterative Method
Indirect Method
www.vustudents.ning.com
www.vustudents.ning.com
3
2
4
Root is bracketed
Root is not bracketed
Convergent
Divergent
In bisection method the two points between which the root lies are
Root may be
Complex
Real
Complex or real
None
www.vustudents.ning.com
www.vustudents.ning.com
1 and 2
0 and 1
0 and -2
2
3
4
1
Near a simple root Muller’s Method converges than the secant method
Faster
Slower
S 1 S
St S
S 1 S t
All are true
r+2
r+1
R
www.vustudents.ning.com
www.vustudents.ning.com
R-1
P in Newton’s forward difference formula is defined as
x x0
p( )
h
x x0
p( )
h
x xn
p( )
h
x xn
p( )
h
Octal numbers has the base
10
2
8
16
Newton’s divided difference interpolation formula is used when the values
of the independent variable are
Equally spaced
Constant
None of the above
x 0 1 2 4
f ( x) 1 1 2 5
Value of f (2, 4) is
1.5
3
2
www.vustudents.ning.com
www.vustudents.ning.com
( x) y ( x) Pn ( x)
( x) y ( x) Pn ( x)
( x) y ( x) Pn ( x)
( x) Pn ( x) y ( x)
N-1
N+2
N
N+1
1 2 3 4 5
D ( ...)
h 2! 3! 4! 5!
1 2 3 4 5
D ( ...)
h 2 3 4 5
1 2 3 4 5
D ( ...)
h 2 3 4 5
1 2 3 4 5
D ( ...)
h 2! 3! 4! 5!
www.vustudents.ning.com
www.vustudents.ning.com
-0.5
0.5
0.75
-0.75
ax b
► ax 2 bx c
► ax 3 bx 2 cx d
► ax 4 bx3 cx 2 dx e
ba
n
ba
n
a b
n
None of the given choices
7
8
5
3
www.vustudents.ning.com
www.vustudents.ning.com
17.5
12.5
7.5
-12.5
To apply Simpson’s 1/3 rule, the number of intervals in the following must
be
2
3
5
7
To apply Simpson’s 3/8 rule, the number of intervals in the following must
be
10
11
12
13
If the root of the given equation lies between a and b, then the first
approximation to the root of the equation by bisection method is ……
( a b)
2
( a b)
2
(b a)
2
None of the given choices
www.vustudents.ning.com
www.vustudents.ning.com
Bisection Method
Regula Falsi Method
Secant Method
All of the given choices
For the equation x 3 3x 1 0 , the root of the equation lies in the interval......
(1, 3)
(1, 2)
(0, 1)
(1, 2)
A polynomial equation
If
dy
f ( x, y )
dx
Then the integral of this equation is a curve in
Xt-plane
Yt-plane
Xy-plane
www.vustudents.ning.com
www.vustudents.ning.com
1.44
1.11
1.22
1.33
k1 hf ( xn , yn )
k1 2hf ( xn , yn )
k1 3hf ( xn , yn )
None of the given choices
h k
k2 hf ( xn , yn 1 )
2 2
h k
k2 hf ( xn , yn 1 )
3 3
h k
k2 hf ( xn , yn 1 )
3 3
h k1
k2 hf ( xn , yn )
2 2
k3 hf ( xn 2h, yn 2k3 )
k3 hf ( xn h, yn k3 )
k3 hf ( xn h, yn k3 )
None of the given choices
www.vustudents.ning.com
www.vustudents.ning.com
The need of numerical integration arises for evaluating the definite integral of a
function that has no explicit ____________ or whose antiderivative is not easy to
obtain
Derivatives
Antiderivative
If A 0 then
There is a unique solution
There exists a complete solution
There exists no solution
None of the above options
Gauss Elimination method fails if any one of the pivot values becomes
Greater
Small
Zero
None of the given
Pivoting
Interpretation
www.vustudents.ning.com
www.vustudents.ning.com
Jacobi’s method
Gauss Jordan Elimination method
www.vustudents.ning.com
www.vustudents.ning.com
h h
F ( ) 257.1379 F1 ( )
If F (h) 256.2354 and 2 , then find 2 using Richardson’s
extrapolation limit.
(cos x 2)dx
0
Take h= 4
Write a general formula for Modified Euler’s method of solving the given
differential equation.
x dx
2
(log x 2)dx
3
(x x)dx
2
Take h=1
1
y/ (2 x3 y ), y (1) 2 taking h 0.1
2
www.vustudents.ning.com