Nothing Special   »   [go: up one dir, main page]

C3 Trigonometry D - Questions

Download as pdf or txt
Download as pdf or txt
You are on page 1of 2

PMT

C3 TRIGONOMETRY Worksheet D

1 a Write down the identities for sin (A + B) and cos (A + B).


b Use these identities to obtain similar identities for sin (A − B) and cos (A − B).
c Use the above identities to obtain similar identities for tan (A + B) and tan (A − B).

2 Express each of the following in the form sin α, where α is acute.


a sin 10° cos 30° + cos 10° sin 30° b sin 67° cos 18° − cos 67° sin 18°
c sin 62° cos 74° + cos 62° sin 74° d cos 14° cos 39° − sin 14° sin 39°

3 Express as a single trigonometric ratio


a cos A cos 2A − sin A sin 2A b sin 4A cos B − cos 4A sin B
tan 2 A + tan 5 A
c d cos A cos 3A + sin A sin 3A
1 − tan 2 A tan 5 A

4 Find in exact form, with a rational denominator, the value of


a sin 15° b sin 165° c cosec 15° d cos 75°
e cos 15° f sec 195° g tan 75° h cosec 105°

5 Find the maximum value that each expression can take and the smallest positive value of x, in
degrees, for which this maximum occurs.
a cos x cos 30° + sin x sin 30° b 3 sin x cos 45° + 3 cos x sin 45°
c sin x cos 67° − cos x sin 67° d 4 sin x sin 108° − 4 cos x cos 108°

6 Find the minimum value that each expression can take and the smallest positive value of x, in
radians in terms of π, for which this minimum occurs.
π π π π
a sin x cos 3
− cos x sin 3
b 2 cos x cos 6
− 2 sin x sin 6

c cos 4x cos x + sin 4x sin x d 6 sin 2x cos 3x − 6 sin 3x cos 2x

7 Given that sin A = 45 , 0 < A < 90° and that cos B = 2


3
, 0 < B < 90°, find without using a
calculator the value of
a tan A b sin B c cos (A + B) d sin (A + B)

8 Given that cosec C = 53 , 0 < C < 90° and that sin D = 5


13
, 90° < D < 180°, find without using
a calculator the value of
a cos C b cos D c sin (C − D) d sec (C − D)

9 Solve each equation for θ in the interval 0 ≤ θ ≤ 360.


Give your answers to 1 decimal place where appropriate.
tan 2θ ° − tan 60°
a sin θ ° cos 15° + cos θ ° sin 15° = 0.4 b =1
1 + tan 2θ ° tan 60°
c cos (θ − 60)° = sin θ ° d 2 sin θ ° + sin (θ + 45)° = 0
e sin (θ + 30)° = cos (θ − 45)° f 3 cos (2θ + 60)° − sin (2θ − 30)° = 0

 Solomon Press
PMT

C3 TRIGONOMETRY Worksheet D continued

10 Find the value of k such that for all real values of x


π π
cos (x + 3
) − cos (x − 3
) ≡ k sin x.

11 Prove each identity.


π π
a cos x − cos (x − 3
) ≡ cos (x + 3
)
π π
b sin (x − 6
) + cos x ≡ sin (x + 6
)

12 a Use the identity for sin (A + B) to express sin 2A in terms of sin A and cos A.
b Use the identity for cos (A + B) to express cos 2A in terms of sin A and cos A.
c Hence, express cos 2A in terms of
i cos A ii sin A
d Use the identity for tan (A + B) to express tan 2A in terms of tan A.

13 Solve each equation for x in the interval 0 ≤ x ≤ 360°.


Give your answers to 1 decimal place where appropriate.
a cos 2x + cos x = 0 b sin 2x + cos x = 0
c 2 cos 2x = 7 sin x d 11 cos x = 4 + 3 cos 2x
e tan 2x − tan x = 0 f sec x − 4 sin x = 0
g 5 sin 4x = 2 sin 2x h 2 sin2 x − cos 2x − cos x = 0

14 Prove each identity.


a (cos x + sin x)2 ≡ 1 + sin 2x b tan x (1 + cos 2x) ≡ sin 2x
2sin x
c ≡ tan 2x d tan x + cot x ≡ 2 cosec 2x
2cos x − sec x
e cosec 2x − cot 2x ≡ tan x f (cos x + sin x)(cosec x − sec x) ≡ 2 cot 2x
1 − sin 2 x
g ≡ sin x h cos 3x ≡ 4 cos3 x − 3 cos x
cosec x − 2cos x

15 Use the double angle identities to prove that


x x
a cos x ≡ 2 cos2 −1 b sin2 ≡ 1
2
(1 − cos x)
2 2

7 A
16 a Given that cos A = 9
, 0 < A < 90°, find the exact value of sin without using a calculator.
2
B
b Given that cos B = − 83 , 90° < B < 180°, find the value of cos , giving your answer in the
2
form k 5 .

17 Prove each identity.


2 x 1 + cos x x
a ≡ sec2 b ≡ cot2
1 + cos x 2 1 − cos x 2

 Solomon Press

You might also like