Nothing Special   »   [go: up one dir, main page]

Datasheet

Download as pdf or txt
Download as pdf or txt
You are on page 1of 112

AVX Advanced Ceramic Capacitors

for Power Supply, High Voltage


and Tip and Ring Applications
www.avx.com

Version 10.5
Contents

Introduction – Application Specific MLCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3


SMPS (Switch Mode Power Supply) Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
SM Style Stacked MLC Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-28
SMX High Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29-32
CH/CV Style Vertical/Horizontal Mount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33-38
TurboCapTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39-41
MH Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
RH Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43-44
Custom Lead Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Assembly Guidelines (SM, CH, CV & RH Styles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46-47
SK Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48-49
SE Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-51
CECC Offering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
High Voltage MLC Leaded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
ESCC Qualified SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53-58
HV Style (US Preferred Sizes) DIP Lead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59-61
CH/CV Style (European Preferred Sizes)
Vertical/Horizontal Mount, DIP & Radial Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62-65
SV Style Radial Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66-68
MLC Chip Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Basic Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70-73
Surface Mounting Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74-78
High Voltage MLC Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79-80
High Voltage MLCC Tin/Lead Termination “B” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81-82
High Voltage MLC Chips FLEXITERM® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83-84
High Voltage MLC Leaded Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85-86
Hi-Q® High RF Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87-91
Tip & Ring Chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92-93
Tip & Ring Tin/Lead Termination “B” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94-95
MLC Chips, Packaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96-97
Single-In-Line Packages (SIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98-99
Discoidal MLC Feed-Through Capacitors and Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
DC Style (US Preferred Sizes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101-103
XB Style (European Preferred Sizes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104-107
XF Style (Feed-Through Discoidal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104-107
Filtered Arrays XD Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Baseline Management – BS9100 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Advanced Application Specific Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Application Specific MLCs
Problem Solving at the Leading Edge

As the world’s leading manufacturer and innovator in advanced and high reliability ASMLC capacitors. Advanced
application specific multilayer ceramic (ASMLC) capacitors, Products are ISO9001 certified organizations for design
AVX offers a unique technological and production capability and manufacturing of MLC capacitors.
to the field. AVX actively pursues and satisfies the high AVX Advanced Application Capacitors are organized around
reliability and custom needs of a variety of governmental three distinct functions:
and industrial customers. Successful involvement in
• Application Specific Development Laboratories
missile programs, extensive work in ultra-high reliability
telecommunications and sophisticated capacitor design • Advanced Manufacturing Facilities
applications – all have established AVX as the source for • Quality Control

For designs or applications not listed please consult Advanced Products.


Olean, NY, USA - 716-372-6611
Coleraine, Northern Ireland - ++44(0) 28703 44188
St. Appollinaire, France - ++33(0) 38071 7400

International Space Station Defense / Military Telecommunications


Undersea Cable Repeater

2
Application Specific MLCs
Problem Solving at the Leading Edge
APPLICATION SPECIFIC requirements. This includes special lead configurations and
multiple chip packaging that simplifies the mounting of
DEVELOPMENT LABORATORIES specialty capacitors. To the customer, the total capability of
Initially, AVX technical personnel communicate with customers AVX assures a high level of consistent control at all steps of
to learn the requirements that the new capacitor must satisfy. production.
The personnel involved are well-versed in material, manufac-
turing and electronic application technologies. They study the QUALITY CONTROL
overall application and the environment in which the part will The Q. A. organization is an integral part of manufacturing.
function. Programs are begun for selection of appropriate Quality Control tests the product of each manufacturing
ceramic formulations, metal systems and designs. These pro- process, detects flaws or variations from the narrow
grams yield a detailed technology profile from which mechan- acceptable standard and isolates the cause of the deviation.
ical design and process specifications follow. Corrective action can then be taken to return the process to
within its predetermined control levels.
ADVANCED
Quality Assurance has large and well-equipped laboratories
MANUFACTURING FACILITIES where statistical samples are evaluated and tested to
The ability and reputation of AVX in high reliability MLCs is due determine failure rates, characterize products and assure
in part to the company’s complete control over all phases of compliance with specification. Both destructive and non-
the production process. This includes powder processing, destructive testing are used, including advanced ultrasonic
tape casting and/or wet build-up, green MLC assembly and inspection equipment for non-destructive inspection of an
final capacitor assembly/packaging. Recent renovations at entire production quantity.
AVX have upgraded green MLC assembly areas to certified Put the experience, technology and facilities of the leading
clean room levels. company in multilayer ceramics to work for you. No other
A favorite feature with many customers of AVX is our ability source offers the unique combination of capability and
to work with customers in solving special packaging commitment to advanced application specific components.

3
SMPS Capacitors
SMPS Capacitor Applications
FOREWORD Output Filter Capacitor
High speed switch mode power supplies place high The output from the switching circuit of a Switcher consists
demands on the capacitors used in the input or output filters of current on and off. From an elevated DC reference, this
of Resonant DC-DC or Pulse Modulated DC-DC converters. current is an AC ripple additive on the DC. In order to smooth
AVX Corporation has developed several multilayer ceramic this ripple effect, a filter circuit (usually inductive input) is built
(MLC) capacitor styles for these switcher applications. These to allow a storage of energy to take place during the rising
capacitors have been extensively tested and characterized ripple portion and to allow a discharge of energy during the
and found to have almost ideal performances to meet the falling ripple portion.
stringent requirements of these applications. The ESR and ESL of the capacitor contribute to the net ripple
effect. The output filter capacitor is chosen for ESR, and with
previous types of capacitors, multiples were used in an
Input Filter Capacitor attempt to lower the net ESR. The MLC offers ESRs well
The Input Filter capacitor is required to perform two functions: below the minimum allowable to lower noise levels, thus
To supply an unrestricted burst of current to the power supply eliminating the need for multiple units.
switch circuitry and to not only do it without generating any
noise, but to help suppress noise generated in the switch
circuitry. It is, in effect, a very large decoupling capacitor. It Other MLC Capacitors for
must have very low ESL, capabilities for very high dv/dt, as SMPS Applications
well as di/dt and it must have a very low ESR to eliminate
AVX also manufactures coupling, decoupling, resonant and
power loss.
snubber capacitors for SMPS applications. Contact AVX for
The distance from the primary DC source, as well as the type Application Specific S.M.P.S. capacitor requirements.
of capacitor used in this source (usually electrolytics),
Olean, NY, USA 716-372-6611
presents a very high inductance to the input of the Switcher.
The MLC input capacitor, with its excellent ESL and ESR Coleraine, Northern Ireland ++44(0) 28703 44188
characteristics, is located physically close to the switch St. Apollinaire, France ++33(0) 38071 7400
circuitry. Repetitive peak currents, inherent with the Switcher
design, require a high ripple capability, as well as high surge
capability for transients, both induced and conducted from
other sources. MLCs have both these capabilities.

4
SMPS Capacitors
Capacitor Selection and Performance

ASMLC CAPACITOR SELECTION


SMPS Design Information (SM, CH, CV, RH and SK Styles)
Absolute Maximum Output Capacitance Absolute Maximum Capacitance ESL
Assuming no ESL and no ESR Assuming no ESR - Capacitive Induced Ripple
25 2 MHz 25 DIP Leads
1 MHz 50 mV Noise
20 Due to 20 SK Series

Load Current - Amps


Load Current - Amps

Capacitance
50 mV Noise
15 15 Due to ESL
500 KHz
10 10 250 KHz
500 KHz
5 250 KHz 5 1 MHz
2 MHz
0 0
0 5 10 15 20 0 5 10 15 20
Maximum Output Filter Capacitance Maximum Output Filter Capacitance ESL
( ␮F) (nH)

Absolute Maximum Capacitance ESR


Assuming no ESL - Capacitive Induced Ripple
25

20 50 mV Noise
Load Current - Amps

Due to ESR

15

10
DIP Leads

SK Series

0
0 10 20 30 40
Maximum Output Filter Capacitance ESR
(mOhm)

ASMLC CAPACITOR PERFORMANCE


Capacitance as Measured from dv/dt Slope
200 mA/ns Current Pulse
Measurement starts after Inductive Ring Decay
16

14
AI Electrolytic
15 ␮ F
12
MLC SM02
10 ␮ F
10
Capacitance ( ␮F)

Wet Ta
10 ␮ F
8
Solid Ta
5.6 ␮ F
6

4
MLC SM04
4.7 ␮ F
2

0
10 -9 10 -8 10 -7 10 -6 10 -5
Time (Seconds)

5
SMPS Capacitors
Capacitor Performance

AC Ripple Capability SpiCalci program will provide answers to most of the design
engineers’ questions on critical parameters for their specific
Due to the wide range of product offering in this catalog, the applications:
AC ripple capabilities for switch mode power supply capacitors
and high voltage capacitors are provided in the form of IBM • Equivalent Series Resistance
compatible software package called SpiCalci. It is available - function of frequency and temperature
free from AVX and can be downloaded for free from AVX
website: www.avx.com. • Equivalent Series Inductance
- function of design
• Self Resonant Frequency
f = 1/ (2 x π 
L x C)
• Thermal Characteristics
- function of design
• AC Ripple Capabilities
- function of frequency, temperature and design

Examples of Product Performance

TYPICAL ESR -vs- Frequency MAXIMUM RMS CURRENT FOR 50 VDC, CH - X7R
FOR SM04 STYLE CAPACITORS @ 100 KHz & 25ⴗC Ambient
1μF 4.7μF 9μF ASSUMING MAX. CAP. FOR SINGLE CHIP CONSTRUCTION
50
10.000
45
40
1.000 35
ESR (Ohms)

A RMS

30
0.100 25
20

0.010 15
10
5
0.001
1.0 10.0 100.0 1000.0 0
Frequency (kHz) 6.8 8.7 10.4 16.5 11.9 29.9 26.6 28.8
CH41 CH51 CH61 CH71 CH76 CH81 CH86 CH91
STYLE
EXAMPLE (CH ONLY)

MAXIMUM RMS CURRENT FOR 50 WVDC, SM - X7R MAXIMUM RMS CURRENT FOR 25 WVDC, SK - Z5U
@ 100 KHz & 25ⴗC Ambient @ 100 KHz & 25ⴗC Ambient
ASSUMING MAX. CAP. FOR SINGLE CHIP CONSTRUCTION ASSUMING MAX. CAP. FOR EACH STYLE
50
12
45
10
100 KHz ARMS

40
8
100 KHz ARMS

35
6
30
4
25 2
20 0
1.7 4.5 6.2 7.4 7.7 11.0 6.7 8.7
15
SK01 SK04 SK05 SK06 SK07 SK08 SK09 SK10
10 STYLE
EXAMPLE (SK ONLY)
5
0
36.8 28.3 22.7 9.7 5.7 33.8
SM01 SM02 SM03 SM04 SM05 SM06
STYLE
EXAMPLE (SM ONLY)

6
SMPS Capacitors
Application Information on SupraCap®
SUPRACAP® - LARGE CAPACITANCE VALUE MLCs
High speed switch mode power supplies require extremely Output noise spikes are reduced by lowering the filter capac-
low equivalent series resistance (ESR) and equivalent series itance self-inductance. The ripple current is a triangle wave
inductance (ESL) capacitors for input and output filtering. form with constant di/dt except when it changes polarity,
These requirements are beyond the practical limits of then the di/dt is very high. The noise voltage generated by
electrolytic capacitors, both aluminum and tantalums, but the filter capacitor is
are readily met by multilayer ceramic (MLCs) capacitors VNoise = L Capacitor di/dt
(Figure 1).
Theoretical SMPS’s output filter capacitor values are in the AVX SupraCap® devices have inductance value less than 3nH.
range of 6-10 μF/amp at 40KHz and drop to less than Figure 2 compares a 5.6 μF MLC to a 5.6 μF tantalum which
1 μF/amp at 1MHz. Most electrolytic applications use 10 to was specially designed for low ESR and ESL. When subjected
100 times the theoretical value in order to obtain lower ESR to a di/dt of 200 mA/ns the tantalum shows an ESR of 165
from paralleling many capacitors. This is not necessary with mΩ and an ESL of 18nH versus the MLC’s 4 mΩ and 0.3 nH.
SupraCap® MLC capacitors which inherently have ESRs These performance differences allow considerable reduction
in the range of milliohms. These extremely low values of in size and weight of the filter capacitor.
ESR mean low ripple voltage and less self-heating of Additionally, MLCs are compatible with surface mount
the capacitor. technology reflow and assembly techniques which is the
desirable assembly for conversion frequencies exceeding
ESR Comparison of Different Capacitor Technologies
1 MHz. Electrolytic capacitors (both aluminum and tantalum)
ESR -vs- Frequency
100μF Filter Capacitors are not compatible with normal vapor phase (VPS) or infrared
1.E+00 (IR) reflow temperatures (205-215°C) due to electrolyte and
structural problems. AVX SupraCap® devices are supplied
with lead frames for either thru-hole or surface mount
1.E-01
assembly. The lead frames act as stress relief for differences
in coefficients of expansion between the large ceramic chip
ESR (⍀)

(10 ppm/°C) and the PC boards.


1.E-02 50mV 50nS
DSW 16 TPOS-7

Ta
1.E-03
1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Frequency (Hz)
Aluminum Electrolytic 100μF / 50V
Low ESR Solid Tantalum 100μF / 10V
Solid Aluminum Electrolytic 100μF / 16V
MLCC 100μF / 50V
MLC

Figure 1 VZR-0.2
50mV
CSW 1 50nS
⌬V=2.0mV ⌬T=25.5nS

Figure 2

7
SMPS Stacked MLC Capacitors
(SM Style) Technical Information on SMPS Capacitors
ELECTRICAL SPECIFICATIONS
Temperature Coefficient Dielectric Withstanding Voltage 25°C (Flash Test)
C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° to +125°C C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max
X7R: C Temperature Coefficient - ±15%, -55° to +125°C charging current. (500 Volt units @ 750 VDC)
Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C Z5U: 200% rated voltage for 5 seconds with 50 mA max charging
current.
Capacitance Test (MIL-STD-202 Method 305)
C0G: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Life Test (1000 hrs)
X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz C0G and X7R: 200% rated voltage at +125°C. (500 Volt units @
Z5U: 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz 600 VDC)
Z5U: 150% rated voltage at +85°C
Dissipation Factor 25°C
C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Moisture Resistance (MIL-STD-202 Method 106)
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz C0G, X7R, Z5U: Ten cycles with no voltage applied.
Z5U: 3.0% Max @ 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz Thermal Shock (MIL-STD-202 Method 107, Condition A)
Insulation Resistance 25°C (MIL-STD-202 Method 302) Immersion Cycling (MIL-STD-202 Method 104, Condition B)
C0G and X7R: 100K MΩ or 1000 MΩ-μF, whichever is less.
Z5U: 10K MΩ or 1000 MΩ-μF, whichever is less. Resistance To Solder Heat (MIL-STD-202, Method 210,
Condition B, for 20 seconds)
Insulation Resistance 125°C (MIL-STD-202 Method 302)
C0G and X7R: 10K MΩ or 100 MΩ-μF, whichever is less.
Z5U: 1K MΩ or 100 MΩ-μF, whichever is less.

Typical ESR Performance (mΩ)


Aluminum Low ESR Solid Aluminum MLCC MLCC
Electrolytic Solid Tantalum Electrolytic SMPS SMPS
100μF/50V 100μF/10V 100μF/16V 100μF/50V 4.7μF/50V
ESR @ 10KHz 300 72 29 3 66
ESR @ 50KHz 285 67 22 2 23
ESR @ 100KHz 280 62 20 2.5 15
ESR @ 500KHz 265 56 18 4 8
ESR @ 1MHz 265 56 17 7 7.5
ESR @ 5MHz 335 72 17 12.5 8
ESR @ 10MHz 560 91 22 20 14

HOW TO ORDER AVX Styles: SM-1, SM-2, SM-3, SM-4, SM-5, SM-6
SM0 1 7 C 106 M A N 650
AVX Style Size Voltage Temperature Capacitance Capacitance Test Level Termination Height
SM0 = Uncoated See 50V = 5 Coefficient Code Tolerance A = Standard N = Straight Lead Max
SM5 = Epoxy Coated Dimensions 100V = 1 C0G = A (2 significant digits C0G: B = Hi-Rel* J = Leads formed in Dimension “A”
chart 200V = 2 X7R = C + number of zeros) J = ±5% L = Leads formed out 120 = 0.120"
500V = 7 Z5U = E 10 pF = 100 K = ±10% P = P Style Leads 240 = 0.240"
100 pF = 101 M = ±20%
1,000 pF = 102 Z = Z Style Leads 360 = 0.360"
X7R: 480 = 0.480"
22,000 pF = 223
K = ±10% 650 = 0.650"
220,000 pF = 224
M = ±20%
1μF = 105
Z = +80%, -20%
10 μF = 106
100 μF = 107 Z5U:
M = ±20%
Z = +80%, -20%
P = GMV (+100, -0%)

Note: Capacitors with X7R and Z5U dielectrics are not intended for applications *Hi-Rel screening for C0G and X7R only. Screening consists of 100% Group A
across AC supply mains or AC line filtering with polarity reversal. Contact plant (B Level), Subgroup 1 per MIL-PRF-49470.
for recommendations.

8
SMPS Stacked MLC Capacitors
(SM Style) Surface Mount and Thru-Hole Styles (SM0, SM5)
CHIP SEPARATION CHIP SEPARATION
0.254 (0.010) TYP. 0.254 (0.010) TYP.
CAPACITOR
D E E
1.651 ± 0.254
(0.065 ± 0.010)
4.191 ± 0.254
1.397 (0.055) (0.165 ± 0.010)
A R 0.508 2.540 ± 0.254
B
±0.254 (0.010) B (0.020) (0.100 ± 0.010)
3 PLACES
DETAIL A

6.350 (0.250) MIN


0.254
6.35 0.508 (0.020) TYP. (0.010) 0.254
(0.250) TYP. (0.010)
2.54 (0.100) TYP. 1.016 ± 0.254
MIN. C C TYP. (0.040 ± 0.010)
2.54 (0.100) MAX.
0.635 (0.025) MIN.
DETAIL A
“N” STYLE LEADS “P” STYLE LEADS

CHIP SEPARATION CHIP SEPARATION


0.254 (0.010) TYP. 0.254 (0.010) TYP.

D E E
0.254 (0.010)
RAD. (TYP.) 0.254 (0.010)
RAD. (TYP.)
A 1.397 (0.055)
B
±0.254 (0.010)

0.254 (0.010) 0.254 (0.010)


TYP. TYP.
1.778 (0.070) 1.905 (0.075) 1.778 (0.070) 1.905 (0.075)
0.508 (0.020) TYP. ±0.254 (0.010) ±0.635 (0.025) ±0.254 (0.010) ±0.635 (0.025)
C C TYP.
2.54 (0.100) TYP. TYP.
2.54 (0.100) MAX.
0.635 (0.025) MIN.
“J” STYLE LEADS “L” STYLE LEADS

CHIP SEPARATION

(0.110 ± 0.010)
(0.050 ± 0.010)
2.794 ± 0.254
1.270 ± 0.254
0.254 (0.010) TYP.

D E
0.254 (0.010) TYP.

RAD.
0.254
(0.010)
(TYP)
A 1.397 (0.055)
B
±0.254 (0.010)

1.778 ±0.254
(0.070 ± 0.010)
0.508 (0.020) TYP. C
3.048 ± 0.381
2.54 (0.100) TYP. (0.120 ± 0.015)
DETAIL B
2.54 (0.100) MAX.
0.635 (0.025) MIN. DETAIL B
“Z” STYLE LEADS

DIMENSIONS millimeters (inches)


No. of Leads
Style A (max.) B (max.) C ±.635 (±0.025) D ±.635 (±0.025) E (max.) per side
SM-1 11.4 (0.450) 52.1 (2.050) 12.7 (0.500) 20
SM-2 For “N” Style Leads: “A” Dimension Plus 1.651 (0.065) 20.3 (0.800) 38.4 (1.510) 22.1 (0.870) 15
See page 10 for
SM-3 For “J” & “L” Style Leads: “A” Dimension Plus 2.032 (0.080) 11.4 (0.450) 26.7 (1.050) 12.7 (0.500) 10
maximum “A”
SM-4 For “P” Style Leads: “A” Dimension Plus 4.445 (0.175) 10.2 (0.400) 10.2 (0.400) 11.2 (0.440) 4
Dimension
SM-5 For “Z” Style Leads: “A” Dimension Plus 3.048 (0.120) 6.35 (0.250) 6.35 (0.250) 7.62 (0.300) 3
SM-6 31.8 (1.250) 52.1 (2.050) 34.3 (1.350) 20
Note: For SM5 add 0.127 (0.005) to max. and nominal dimensions A, B, D, & E

9
SMPS Stacked MLC Capacitors
(SM Style)
Max Capacitance (μF) Available Versus Style with Height (A) of 0.120" - 3.05mm
SM01 _ _ _ _ _ _ AN120 SM02 _ _ _ _ _ _ AN120 SM03 _ _ _ _ _ _ AN120 SM04 _ _ _ _ _ _ AN120 SM05 _ _ _ _ _ _ AN120 SM06 _ _ _ _ _ _ AN120
AVX
STYLE 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V

C0G 1.0 .70 .40 .18 1.2 1.0 .60 .26 .47 .40 .20 .09 .16 .13 .07 .02 .05 .04 .02 .01 3.2 2.4 1.3 .50
X7R 27 12 7.0 2.6 41 18 11 4.0 18 6.0 3.6 1.3 7.5 1.8 1.1 .40 2.8 .68 .40 .16 80 40 24 9.4
Z5U 84 32 12 – – 110 46 34 –– 40 15 6.0 – – 12 4.6 3.0 – – 4.6 1.8 .72 – – 260 140 92 ––

Max Capacitance (μF) Available Versus Style with Height (A) of 0.240" - 6.10mm
SM01 _ _ _ _ _ _ AN240 SM02 _ _ _ _ _ _ AN240 SM03 _ _ _ _ _ _ AN240 SM04 _ _ _ _ _ _ AN240 SM05 _ _ _ _ _ _ AN240 SM06 _ _ _ _ _ _ AN240
AVX
STYLE 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V

C0G 2.0 1.4 .80 .36 2.4 2.0 1.2 .52 1.0 .80 .40 .18 .32 .26 .14 .05 .10 .08 .05 .02 6.4 4.8 2.6 1.0
X7R 54 24 14 5.2 82 36 22 8.0 36 12 7.2 2.6 15 3.6 2.2 .80 5.6 1.3 .80 .32 160 80 48 18
Z5U 160 64 24 – – 230 92 68 –– 80 30 12 –– 24 9.2 6.0 – – 9.2 3.6 1.4 – – 520 280 180 – –

Max Capacitance (μF) Available Versus Style with Height (A) of 0.360" - 9.14mm
SM01 _ _ _ _ _ _ AN360 SM02 _ _ _ _ _ _ AN360 SM03 _ _ _ _ _ _ AN360 SM04 _ _ _ _ _ _ AN360 SM05 _ _ _ _ _ _ AN360 SM06 _ _ _ _ _ _ AN360
AVX
STYLE 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V

C0G 3.0 2.1 1.2 .54 3.6 3.0 1.8 .78 1.5 1.2 .60 .27 .48 .39 .21 .07 .15 .12 .07 .03 9.6 7.2 3.9 1.5
X7R 82 36 21 7.8 120 54 33 12 54 18 10 3.9 22 5.4 3.3 1.2 8.2 2.0 1.2 .48 240 120 72 28
Z5U 250 96 36 – – 350 130 100 – – 120 45 18 –– 36 13 9.0 – – 13 5.4 2.1 – – 780 430 270 – –

Max Capacitance (μF) Available Versus Style with Height (A) of 0.480" - 12.2mm
SM01 _ _ _ _ _ _ AN480 SM02 _ _ _ _ _ _ AN480 SM03 _ _ _ _ _ _ AN480 SM04 _ _ _ _ _ _ AN480 SM05 _ _ _ _ _ _ AN480 SM06 _ _ _ _ _ _ AN480
AVX
STYLE 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V

C0G 4.0 2.8 1.6 .72 4.8 4.0 2.2 1.0 2.0 1.6 .80 .36 .64 .52 .28 .10 .20 .16 .10 .04 12 9.6 5.2 2.0
X7R 110 48 28 10 160 72 44 16 72 24 14 5.2 30 7.2 4.4 1.6 10 2.7 1.6 .64 320 160 96 37
Z5U 330 120 48 – – 470 180 130 – – 160 60 24 –– 48 18 12 –– 18 7.2 2.8 – – 1000 570 360 – –

Max Capacitance (μF) Available Versus Style with Height (A) of 0.650" - 16.5mm
SM01 _ _ _ _ _ _ AN650 SM02 _ _ _ _ _ _ AN650 SM03 _ _ _ _ _ _ AN650 SM04 _ _ _ _ _ _ AN650 SM05 _ _ _ _ _ _ AN650 SM06 _ _ _ _ _ _ AN650
AVX
STYLE 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V

C0G 5.0 3.5 2.0 .90 6.0 5.0 3.0 1.3 2.5 2.0 1.0 .47 .80 .65 .35 .12 .25 .20 .12 .05 16 12 6.5 2.5
X7R 130 60 35 13 200 90 55 20 90 30 18 6.5 36 9.0 5.5 2.0 12 3.4 2.0 .80 400 200 120 47
Z5U 420 160 60 – – 590 230 170 – – 200 75 30 –– 60 23 15 –– 23 9.0 3.6 – – 1300 720 460 – –

10
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470
AVX IS QUALIFIED TO MIL-PRF-49470/1 DSCC drawing 87106 capacitors. MIL-PRF-49470 specifi-
cation was created to produce a robust replacement for
AND MIL-PRF-49470/2 DSCC 87106. MIL-PRF-49470 offers two product levels.
The SMPS capacitors are designed for high current, high- Level “B” is the standard reliability. Level “T” is the high relia-
power and high-temperature applications. These capacitors bility suitable for space application.
have very low ESR (Equivalent Series Resistance) and ESL
(Equivalent Series Inductance). SMPS Series capacitors offer AVX is qualified to supply MIL-PRF-49470/1 parts. These
design and component engineers a proven technology are unencapsulated ceramic dielectric, switch mode power
specifically designed for programs requiring high reliability supply capacitors. AVX is also qualified to supply MIL-PRF-
performance in harsh environments. 49470/2 parts. These are encapsulated ceramic dielectric,
switch mode power supply capacitors.
MIL-PRF-49470 SMPS Series capacitors are primarily used
in input/output filters of high-power and high-voltage power PLEASE CONTACT THE DSCC WEBSITE
supplies as well as in bus filters and DC snubbers for high [http://www.dscc.dla.mil/Programs/MilSpec/DocSearch.asp]
power inverters and other high-current applications. These for details on testing, electrical, mechanical and part number
capacitors are available with through-hole and surface options.
mount leads. The operating temperature is -55°C to +125°C. PLEASE CONTACT THE DSCC WEBSITE
The MIL-PRF-49470 capacitors are preferred over the [http://www.dscc.dla.mil/Programs/QmlQpl/] for the latest
QPL (Qualified Products List).

HOW TO ORDER
M49470 R 01 474 K C N

Performance Characteristic Performance Capacitance Capacitance Rated Voltage Configuration


specification specification Tolerance (Lead Style)
indicating sheet number
MIL-PRF-49470 01 – indicating
MIL-PRF-49470/1
02 – indicating
MIL-PRF-49470/2

For “T” level parts, replace the “M” in the pin with “T” (for On the pages to follow is the general dimensional outline
example M49470R01474KCN becomes along with a cross reference from 87106 parts to MIL-PRF-
T49470R01474KCN) MIL-PRF-49470 contains additional 49470 parts.
capacitors that are not available in 87106, such as addition-
al lead configurations and lower profile parts.

11
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470/1
MIL-PRF-49470/1
MIL-PRF-49470/1 - capacitor, fixed, ceramic dielectric, switch mode power supply (general purpose and temperature stable),
standard reliability and high reliability unencapsulated, Style PS01.

E
A
B See 1.397 ±0.254
See Note 4 (0.055 ±0.010)
Note 4

SEATING PLANE
6.35 (0.250) MIN See Note 3
0.254 ±0.05
See Note 6 (0.010 ±0.002)
2.54 (0.100) MAX 0.508 ±0.050 6.35 (0.250)
0.635 (0.025) MIN (0.020 ±0.002) MIN C
(See Note 5)
2.54 (0.100) TYP
LEAD STYLE N AND A

E E

0.254 (0.010)
L 0.254 (0.010) L RAD (TYP)
RAD (TYP)
1.27 (0.050) MIN 1.27 (0.050) MIN
C C

LEAD STYLE J AND C CIRCUIT DIAGRAM LEAD STYLE L AND B

DIMENSIONS: millimeters (inches)


D Number of
Case Code C ±0.635 (±0.025) E (max.) Leads
Min. Max. per side
1 11.4 (0.450) 49.5 (1.950) 52.7 (2.075) 12.7 (0.500) 20
2 20.3 (0.800) 36.8 (1.450) 40.0 (1.535) 22.1 (0.870) 15
3 11.4 (0.450) 24.1 (0.950) 27.3 (1.075) 12.7 (0.500) 10
4 10.2 (0.400) 8.89 (0.350) 10.8 (0.425) 11.2 (0.440) 4
5 6.35 (0.250) 6.20 (0.224) 6.97 (0.275) 7.62 (0.300) 3
6 31.8 (1.250) 49.5 (1.950) 52.7 (2.075) 34.3 (1.350) 20

NOTES:
1. Dimensions are in millimeters (inches)
2. Unless otherwise specified, tolerances are 0.254 (±0.010).
3. Lead frame configuration is shown as typical above the seating plane.
4. See table I of MIL-PRF-49470/1 for specific maximum A dimension. For maximum B dimension, add 1.65 (0.065) to
the appropriate A dimension. For all lead styles, the number of chips is determined by the capacitance and voltage
rating.
5. For case code 5, dimensions shall be 2.54 (0.100) maximum and 0.305 (0.012) minimum.
6. Lead alignment within pin rows shall be within ±0.10 (0.005).

12
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470/2
MIL-PRF-49470/2
MIL-PRF-49470/2 - capacitor, fixed, ceramic dielectric, switch mode power supply (general purpose and temperature stable),
standard reliability and high reliability encapsulated, Style PS02.

D
E

A MAX
See Note 3 0.38 ±0.13
(0.015 ±0.005)
SEATING
PLANE

See Note 4 0.254 ±0.05 6.35 (0.250)


0.50 ±0.05 (0.010 ±0.002) MIN
4.45 (0.175) MAX (0.020 ±0.002) C
1.02 (0.040) MIN 2.54 (0.100) TYP
LEAD STYLE N AND A

E
E

0.254 (0.010)
RAD (TYP)
L 0.254 (0.010)
L RAD (TYP)
1.27 (0.050) MIN
1.27 (0.050) MIN
C
C

LEAD STYLE J AND C CIRCUIT DIAGRAM LEAD STYLE L AND B

DIMENSIONS: millimeters (inches)


Number of Leads
Case Code C ±0.635 (±0.025) D ±0.635 (±0.025) E (max)
per side
1 11.4 (0.450) 54.7 (2.155) 14.7 (0.580) 20
2 20.3 (0.800) 41.0 (1.615) 24.1 (0.950) 15
3 11.4 (0.450) 29.3 (1.155) 14.7 (0.580) 10
4 10.2 (0.400) 12.3 (0.485) 12.3 (0.485) 4
5 6.35 (0.250) 9.02 (0.355) 9.02 (0.355) 3
6 31.8 (1.250) 54.7 (2.155) 36.3 (1.430) 20

NOTES:
1. Dimensions are in millimeters (inches)
2. Unless otherwise specified, tolerances are 0.254 (±0.001).
3. See table I of MIL-PRF-49470/2 for specific maximum A dimension. For
all lead styles, the number of chips is determined by the capacitance and
voltage rating.
4. Lead alignment within pin rows shall be within ±0.10 (0.004).

13
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470

CAP CASE VOLT CAP CASE VOLT


87106- MIL-PRF-49470 PIN AVX PART NUMBER TOL 87106- MIL-PRF-49470 PIN AVX PART NUMBER TOL
(μF) CODE (VDC) (μF) CODE (VDC)
1 M49470X01105KAN SM055C105KHN120 1.0 ±10% 5 50 49 M49470X01187KAN SM065C187KHN480 180 ±10% 6 50
2 M49470X01105MAN SM055C105MHN120 1.0 ±20% 5 50 50 M49470X01187MAN SM065C187MHN480 180 ±20% 6 50
3 M49470X01125KAN SM055C125KHN120 1.2 ±10% 5 50 51 M49470X01227KAN SM065C227KHN480 220 ±10% 6 50
4 M49470X01125MAN SM055C125MHN120 1.2 ±20% 5 50 52 M49470X01227MAN SM065C227MHN480 220 ±20% 6 50
5 M49470X01155KAN SM055C155KHN240 1.5 ±10% 5 50 53 M49470X01277KAN SM065C277KHN650 270 ±10% 6 50
6 M49470X01155MAN SM055C155MHN240 1.5 ±20% 5 50 54 M49470X01277MAN SM065C277MHN650 270 ±20% 6 50
7 M49470X01185KAN SM055C185KHN240 1.8 ±10% 5 50 55 M49470X01684KBN SM051C684KHN120 0.68 ±10% 5 100
8 M49470X01185MAN SM055C185MHN240 1.8 ±20% 5 50 56 M49470X01684MBN SM051C684MHN120 0.68 ±20% 5 100
9 M49470X01225KAN SM055C225KHN240 2.2 ±10% 5 50 57 M49470X01824KBN SM051C824KHN240 0.82 ±10% 5 100
10 M49470X01225MAN SM055C225MHN240 2.2 ±20% 5 50 58 M49470X01824MBN SM051C824MHN240 0.82 ±20% 5 100
11 M49470X01275KAN SM055C275KHN360 2.7 ±10% 5 50 59 M49470X01105KBN SM051C105KHN240 1.0 ±10% 5 100
12 M49470X01275MAN SM055C275MHN360 2.7 ±20% 5 50 60 M49470X01105MBN SM051C105MHN240 1.0 ±20% 5 100
13 M49470X01335KAN SM055C335KHN360 3.3 ±10% 5 50 61 M49470X01125KBN SM051C125KHN240 1.2 ±10% 5 100
14 M49470X01335MAN SM055C335MHN360 3.3 ±20% 5 50 62 M49470X01125MBN SM051C125MHN240 1.2 ±20% 5 100
15 M49470X01395KAN SM055C395KHN480 3.9 ±10% 5 50 63 M49470X01155KBN SM051C155KHN360 1.5 ±10% 5 100
16 M49470X01395MAN SM055C395MHN480 3.9 ±20% 5 50 64 M49470X01155MBN SM051C155MHN360 1.5 ±20% 5 100
17 M49470X01475KAN SM055C475KHN480 4.7 ±10% 5 50 65 M49470X01185KBN SM051C185KHN360 1.8 ±10% 5 100
18 M49470X01475MAN SM055C475MHN480 4.7 ±20% 5 50 66 M49470X01185MBN SM051C185MHN360 1.8 ±20% 5 100
M49470X01475KAA SM045C475KHN240 4.7 ±10% 4 50 67 M49470X01225KBN SM051C225KHN480 2.2 ±10% 5 100
M49470X01475MAA SM045C475MHN240 4.7 ±20% 4 50 68 M49470X01225MBN SM051C225MHN480 2.2 ±20% 5 100
19 M49470X01565KAN SM055C565KHN650 5.6 ±10% 5 50 M49470X01225KBA SM041C225KHN240 2.2 ±10% 4 100
20 M49470X01565MAN SM055C565MHN650 5.6 ±20% 5 50 M49470X01225MBA SM041C225MHN240 2.2 ±20% 4 100
M49470X01565KAA SM045C565KHN240 5.6 ±10% 4 50 69 M49470X01275KBN SM051C275KHN480 2.7 ±10% 5 100
M49470X01565MAA SM045C565KHN240 5.6 ±20% 4 50 70 M49470X01275MBN SM051C275MHN480 2.7 ±20% 5 100
21 M49470X01825KAN SM045C825KHN360 8.2 ±10% 4 50 71 M49470X01335KBN SM051C335KHN650 3.3 ±10% 5 100
22 M49470X01825MAN SM045C825MHN360 8.2 ±20% 4 50 72 M49470X01335MBN SM051C335MHN650 3.3 ±20% 5 100
23 M49470X01106KAN SM045C106KHN480 10 ±10% 4 50 M49470X01335KBA SM041C335KHN240 3.3 ±10% 4 100
24 M49470X01106MAN SM045C106MHN480 10 ±20% 4 50 M49470X01335MBA SM041C335MHN240 3.3 ±20% 4 100
25 M49470X01126KAN SM045C126KHN480 12 ±10% 4 50 73 M49470X01395KBN SM041C395KHN360 3.9 ±10% 4 100
26 M49470X01126MAN SM045C126MHN480 12 ±20% 4 50 74 M49470X01395MBN SM041C395MHN360 3.9 ±20% 4 100
27 M49470X01156KAN SM045C156KHN650 15 ±10% 4 50 75 M49470X01475KBN SM041C475KHN360 4.7 ±10% 4 100
28 M49470X01156MAN SM045C156MHN650 15 ±20% 4 50 76 M49470X01475MBN SM041C475MHN360 4.7 ±20% 4 100
M49470X01156KAA SM035C156KHN240 15 ±10% 3 50 77 M49470X01565KBN SM041C565KHN480 5.6 ±10% 4 100
M49470X01156MAA SM035C156MHN240 15 ±20% 3 50 78 M49470X01565MBN SM041C565MHN480 5.6 ±20% 4 100
29 M49470X01186KAN SM035C186KHN240 18 ±10% 3 50 79 M49470X01685KBN SM041C685KHN480 6.8 ±10% 4 100
30 M49470X01186MAN SM035C186MHN240 18 ±20% 3 50 80 M49470X01685MBN SM041C685MHN480 6.8 ±20% 4 100
31 M49470X01226KAN SM035C226KHN360 22 ±10% 3 50 81 M49470X01825KBN SM041C825KHN650 8.2 ±10% 4 100
32 M49470X01226MAN SM035C226MHN360 22 ±20% 3 50 82 M49470X01825MBN SM041C825MHN650 8.2 ±20% 4 100
33 M49470X01276KAN SM035C276KHN360 27 ±10% 3 50 M49470X01825KBA SM031C825KHN240 8.2 ±10% 3 100
34 M49470X01276MAN SM035C276MHN360 27 ±20% 3 50 M49470X01825MBA SM031C825MHN240 8.2 ±20% 3 100
35 M49470X01336KAN SM035C336KHN360 33 ±10% 3 50 83 M49470X01126KBN SM031C126KHN240 12 ±10% 3 100
36 M49470X01336MAN SM035C336MHN360 33 ±20% 3 50 84 M49470X01126MBN SM031C126MHN240 12 ±20% 3 100
37 M49470X01396KAN SM035C396KHN480 39 ±10% 3 50 85 M49470X01156KBN SM031C156KHN360 15 ±10% 3 100
38 M49470X01396MAN SM035C396MHN480 39 ±20% 3 50 86 M49470X01156MBN SM031C156MHN360 15 ±20% 3 100
39 M49470X01476KAN SM035C476KHN650 47 ±10% 3 50 87 M49470X01186KBN SM031C186KHN360 18 ±10% 3 100
40 M49470X01476MAN SM035C476MHN650 47 ±20% 3 50 88 M49470X01186MBN SM031C186MHN360 18 ±20% 3 100
M49470X01476KAA SM025C476KHN240 47 ±10% 2 50 89 M49470X01226KBN SM031C226KHN480 22 ±10% 3 100
M49470X01476MAA SM025C476MHN240 47 ±20% 2 50 90 M49470X01226MBN SM031C226MHN480 22 ±20% 3 100
41 M49470X01686KAN SM015C686KHN480 68 ±10% 1 50 91 M49470X01276KBN SM031C276KHN650 27 ±10% 3 100
42 M49470X01686MAN SM015C686MHN480 68 ±20% 1 50 92 M49470X01276MBN SM031C276MHN650 27 ±20% 3 100
M49470X01686KAA SM025C686KHN360 68 ±10% 2 50 M49470X01276KBA SM021C276KHN240 27 ±10% 2 100
M49470X01686MAA SM025C686MHN360 68 ±20% 2 50 M49470X01276MBA SM021C276MHN240 27 ±20% 2 100
43 M49470X01826KAN SM015C826KHN480 82 ±10% 1 50 93 M49470X01336KBN SM011C336KHN360 33 ±10% 1 100
44 M49470X01826MAN SM015C826MHN480 82 ±20% 1 50 94 M49470X01336MBN SM011C336MHN360 33 ±20% 1 100
M49470X01826KAA SM025C826KHN360 82 ±10% 2 50 M49470X01336KBA SM021C336KHN240 33 ±10% 2 100
M49470X01826MAA SM025C826MHN360 82 ±20% 2 50 M49470X01336MBA SM021C336MHN240 33 ±20% 2 100
45 M49470X01107KAN SM015C107KHN650 100 ±10% 1 50 95 M49470X01396KBN SM011C396KHN480 39 ±10% 1 100
46 M49470X01107MAN SM015C107MHN650 100 ±20% 1 50 96 M49470X01396MBN SM011C396MHN480 39 ±20% 1 100
M49470X01107KAA SM025C107KHN480 100 ±10% 2 50 M49470X01396KBA SM021C396KHN360 39 ±10% 2 100
M49470X01107MAA SM025C107MHN480 100 ±20% 2 50 M49470X01396MBA SM021C396MHN360 39 ±20% 2 100
47 M49470X01157KAN SM025C157KHN650 150 ±10% 2 50 97 M49470X01476KBN SM011C476KHN480 47 ±10% 1 100
48 M49470X01157MAN SM025C157MHN650 150 ±20% 2 50 98 M49470X01476MBN SM011C476MHN480 47 ±20% 1 100

14
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470

CAP CASE VOLT CAP CASE VOLT


87106- MIL-PRF-49470 PIN AVX PART NUMBER TOL 87106- MIL-PRF-49470 PIN AVX PART NUMBER TOL
(μF) CODE (VDC) (μF) CODE (VDC)
M49470X01476KBA SM021C476KHN360 47 ±10% 2 100 149 M49470R01156KCN SM012C156KHN360 15 ±10% 1 200
M49470X01476MBA SM021C476MHN360 47 ±20% 2 100 150 M49470R01156MCN SM012C156MHN360 15 ±20% 1 200
99 M49470X01566KBN SM011C566KHN650 56 ±10% 1 100 M49470R01156KCA SM022C156KHN240 15 ±10% 2 200
100 M49470X01566MBN SM011C566MHN650 56 ±20% 1 100 M49470R01156MCA SM022C156MHN240 15 ±20% 2 200
101 M49470X01686KBN SM021C686KHN480 68 ±10% 2 100 151 M49470R01186KCN SM012C186KHN480 18 ±10% 1 200
102 M49470X01686MBN SM021C686MHN480 68 ±20% 2 100 152 M49470R01186MCN SM012C186MHN480 18 ±20% 1 200
103 M49470X01826KBN SM021C826KHN650 82 ±10% 2 100 M49470R01186KCA SM022C186KHN360 18 ±10% 2 200
104 M49470X01826MBN SM021C826MHN650 82 ±20% 2 100 M49470R01186MCA SM022C186MHN360 18 ±20% 2 200
105 M49470X01107KBN SM061C107KHN360 100 ±10% 6 100 153 M49470R01226KCN SM012C226KHN650 22 ±10% 1 200
106 M49470X01107MBN SM061C107MHN360 100 ±20% 6 100 154 M49470R01226MCN SM012C226MHN650 22 ±20% 1 200
107 M49470X01127KBN SM061C127KHN360 120 ±10% 6 100 M49470R01226KCA SM022C226KHN360 22 ±10% 2 200
108 M49470X01127MBN SM061C127MHN360 120 ±20% 6 100 M49470R01226MCA SM022C226MHN360 22 ±20% 2 200
109 M49470X01157KBN SM061C157KHN480 150 ±10% 6 100 155 M49470R01276KCN SM012C276KHN650 27 ±10% 1 200
110 M49470X01157MBN SM061C157MHN480 150 ±20% 6 100 156 M49470R01276MCN SM012C276MHN650 27 ±20% 1 200
111 M49470X01187KBN SM061C187KHN650 180 ±10% 6 100 M49470R01276KCA SM022C276KHN480 27 ±10% 2 200
112 M49470X01187MBN SM061C187MHN650 180 ±20% 6 100 M49470R01276MCA SM022C276MHN480 27 ±20% 2 200
113 M49470R01474KCN SM052C474KHN240 0.47 ±10% 5 200 157 M49470R01336KCN SM022C336KHN480 33 ±10% 2 200
114 M49470R01474MCN SM052C474MHN240 0.47 ±20% 5 200 158 M49470R01336MCN SM022C336MHN480 33 ±20% 2 200
115 M49470R01564KCN SM052C564KHN240 0.56 ±10% 5 200 159 M49470R01396KCN SM022C396KHN650 39 ±10% 2 200
116 M49470R01564MCN SM052C564MHN240 0.56 ±20% 5 200 160 M49470R01396MCN SM022C396MHN650 39 ±20% 2 200
117 M49470R01684KCN SM052C684KHN360 0.68 ±10% 5 200 161 M49470R01476KCN SM062C476KHN240 47 ±10% 6 200
118 M49470R01684MCN SM052C684MHN360 0.68 ±20% 5 200 162 M49470R01476MCN SM062C476MHN240 47 ±20% 6 200
119 M49470R01824KCN SM052C824KHN360 0.82 ±10% 5 200 163 M49470R01566KCN SM062C566KHN360 56 ±10% 6 200
120 M49470R01824MCN SM052C824MHN360 0.82 ±20% 5 200 164 M49470R01566MCN SM062C566MHN360 56 ±20% 6 200
121 M49470R01105KCN SM052C105KHN480 1.0 ±10% 5 200 165 M49470R01686KCN SM062C686KHN360 68 ±10% 6 200
122 M49470R01105MCN SM052C105MHN480 1.0 ±20% 5 200 166 M49470R01686MCN SM062C686MHN360 68 ±20% 6 200
M49470R01105KCA SM042C105KHN120 1.0 ±10% 4 200 167 M49470R01826KCN SM062C826KHN480 82 ±10% 6 200
M49470R01105MCA SM042C105MHN120 1.0 ±20% 4 200 168 M49470R01826MCN SM062C826MHN480 82 ±20% 6 200
123 M49470R01125KCN SM052C125KHN480 1.2 ±10% 5 200 169 M49470R01107KCN SM062C107KHN650 100 ±10% 6 200
124 M49470R01125MCN SM052C125MHN480 1.2 ±20% 5 200 170 M49470R01107MCN SM062C107MHN650 100 ±20% 6 200
M49470R01125KCA SM042C125KHN240 1.2 ±10% 4 200 171 M49470R01127KCN SM062C127KHN650 120 ±10% 6 200
M49470R01125MCA SM042C125MHN240 1.2 ±20% 4 200 172 M49470R01127MCN SM062C127MHN650 120 ±20% 6 200
125 M49470R01155KCN SM052C155KHN650 1.5 ±10% 5 200 173 M49470Q01154KEN SM057C154KHN120 0.15 ±10% 5 500
126 M49470R01155MCN SM052C155MHN650 1.5 ±20% 5 200 174 M49470Q01154MEN SM057C154MHN120 0.15 ±20% 5 500
M49470R01155KCA SM042C155KHN240 1.5 ±10% 4 200 175 M49470Q01184KEN SM057C184KHN240 0.18 ±10% 5 500
M49470R01155MCA SM042C155MHN240 1.5 ±20% 4 200 176 M49470Q01184MEN SM057C184MHN240 0.18 ±20% 5 500
127 M49470R01185KCN SM042C185KHN360 1.8 ±10% 4 200 177 M49470Q01224KEN SM057C224KHN240 0.22 ±10% 5 500
128 M49470R01185MCN SM042C185MHN360 1.8 ±20% 4 200 178 M49470Q01224MEN SM057C224MHN240 0.22 ±20% 5 500
129 M49470R01225KCN SM042C225KHN360 2.2 ±10% 4 200 179 M49470Q01274KEN SM057C274KHN240 0.27 ±10% 5 500
130 M49470R01225MCN SM042C225MHN360 2.2 ±20% 4 200 180 M49470Q01274MEN SM057C274MHN240 0.27 ±20% 5 500
131 M49470R01275KCN SM042C275KHN480 2.7 ±10% 4 200 181 M49470Q01334KEN SM057C334KHN360 0.33 ±10% 5 500
132 M49470R01275MCN SM042C275MHN480 2.7 ±20% 4 200 182 M49470Q01334MEN SM057C334MHN360 0.33 ±20% 5 500
133 M49470R01335KCN SM042C335KHN480 3.3 ±10% 4 200 183 M49470Q01394KEN SM057C394KHN360 0.39 ±10% 5 500
134 M49470R01335MCN SM042C335MHN480 3.3 ±20% 4 200 184 M49470Q01394MEN SM057C394MHN360 0.39 ±20% 5 500
135 M49470R01395KCN SM042C395KHN650 3.9 ±10% 4 200 185 M49470Q01474KEN SM057C474KHN360 0.47 ±10% 5 500
136 M49470R01395MCN SM042C395MHN650 3.9 ±20% 4 200 186 M49470Q01474MEN SM057C474MHN360 0.47 ±20% 5 500
M49470R01395KCA SM032C395KHN240 3.9 ±10% 3 200 187 M49470Q01564KEN SM057C564KHN480 0.56 ±10% 5 500
M49470R01395MCA SM032C395MHN240 3.9 ±20% 3 200 188 M49470Q01564MEN SM057C564MHN480 0.56 ±20% 5 500
137 M49470R01475KCN SM032C475KHN240 4.7 ±10% 3 200 M49470Q01564KEA SM047C564KHN240 0.56 ±10% 4 500
138 M49470R01475MCN SM032C475MHN240 4.7 ±20% 3 200 M49470Q01564MEA SM047C564MHN240 0.56 ±20% 4 500
139 M49470R01565KCN SM032C565KHN240 5.6 ±10% 3 200 189 M49470Q01684KEN SM057C684KHN650 0.68 ±10% 5 500
140 M49470R01565MCN SM032C565MHN240 5.6 ±20% 3 200 190 M49470Q01684MEN SM057C684MHN650 0.68 ±20% 5 500
141 M49470R01685KCN SM032C685KHN360 6.8 ±10% 3 200 M49470Q01684KEA SM047C684KHN360 0.68 ±10% 4 500
142 M49470R01685MCN SM032C685MHN360 6.8 ±20% 3 200 M49470Q01684MEA SM047C684MHN360 0.68 ±20% 4 500
143 M49470R01825KCN SM032C825KHN360 8.2 ±10% 3 200 191 M49470Q01105KEN SM047C105KHN360 1.0 ±10% 4 500
144 M49470R01825MCN SM032C825MHN360 8.2 ±20% 3 200 192 M49470Q01105MEN SM047C105MHN360 1.0 ±20% 4 500
145 M49470R01106KCN SM032C106KHN480 10 ±10% 3 200 193 M49470Q01125KEN SM047C125KHN360 1.2 ±10% 4 500
146 M49470R01106MCN SM032C106MHN480 10 ±20% 3 200 194 M49470Q01125MEN SM047C125MHN360 1.2 ±20% 4 500
147 M49470R01126KCN SM032C126KHN650 12 ±10% 3 200 195 M49470Q01155KEN SM047C155KHN480 1.5 ±10% 4 500
148 M49470R01126MCN SM032C126MHN650 12 ±20% 3 200 196 M49470Q01155MEN SM047C155MHN480 1.5 ±20% 4 500
M49470R01126KCA SM022C126KHN240 12 ±10% 2 200 197 M49470Q01185KEN SM047C185KHN650 1.8 ±10% 4 500
M49470R01126MCA SM022C126MHN240 12 ±20% 2 200 198 M49470Q01185MEN SM047C185MHN650 1.8 ±20% 4 500

15
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470

CAP CASE VOLT CAP CASE VOLT


87106- MIL-PRF-49470 PIN AVX PART NUMBER TOL 87106- MIL-PRF-49470 PIN AVX PART NUMBER TOL
(μF) CODE (VDC) (μF) CODE (VDC)
M49470Q01185KEA SM037C185KHN240 1.8 ±10% 3 500 247 M49470X01185KAJ SM055C185KHJ240 1.8 ±10% 5 50
M49470Q01185MEA SM037C185MHN240 1.8 ±20% 3 500 248 M49470X01185MAJ SM055C185MHJ240 1.8 ±20% 5 50
199 M49470Q01275KEN SM037C275KHN360 2.7 ±10% 3 500 249 M49470X01225KAJ SM055C225KHJ240 2.2 ±10% 5 50
200 M49470Q01275MEN SM037C275MHN360 2.7 ±20% 3 500 250 M49470X01225MAJ SM055C225MHJ240 2.2 ±20% 5 50
201 M49470Q01335KEN SM037C335KHN360 3.3 ±10% 3 500 251 M49470X01275KAJ SM055C275KHJ360 2.7 ±10% 5 50
202 M49470Q01335MEN SM037C335MHN360 3.3 ±20% 3 500 252 M49470X01275MAJ SM055C275MHJ360 2.7 ±20% 5 50
203 M49470Q01395KEN SM037C395KHN360 3.9 ±10% 3 500 253 M49470X01335KAJ SM055C335KHJ360 3.3 ±10% 5 50
204 M49470Q01395MEN SM037C395MHN360 3.9 ±20% 3 500 254 M49470X01335MAJ SM055C335MHJ360 3.3 ±20% 5 50
205 M49470Q01475KEN SM037C475KHN480 4.7 ±10% 3 500 255 M49470X01395KAJ SM055C395KHJ480 3.9 ±10% 5 50
206 M49470Q01475MEN SM037C475MHN480 4.7 ±20% 3 500 256 M49470X01395MAJ SM055C395MHJ480 3.9 ±20% 5 50
207 M49470Q01565KEN SM037C565KHN650 5.6 ±10% 3 500 257 M49470X01475KAJ SM055C475KHJ480 4.7 ±10% 5 50
208 M49470Q01565MEN SM037C565MHN650 5.6 ±20% 3 500 258 M49470X01475MAJ SM055C475MHJ480 4.7 ±20% 5 50
M49470Q01565KEA SM027C565KHN240 5.6 ±10% 2 500 M49470X01475KAC SM045C475KHJ240 4.7 ±10% 4 50
M49470Q01565MEA SM027C565MHN240 5.6 ±20% 2 500 M49470X01475MAC SM045C475MHJ240 4.7 ±20% 4 50
209 M49470Q01825KEN SM017C825KHN480 8.2 ±10% 1 500 259 M49470X01565KAJ SM055C565KHJ650 5.6 ±10% 5 50
210 M49470Q01825MEN SM017C825MHN480 8.2 ±20% 1 500 260 M49470X01565MAJ SM055C565MHJ650 5.6 ±20% 5 50
M49470Q01825KEA SM027C825KHN360 8.2 ±10% 2 500 M49470X01565KAC SM045C565KHJ240 5.6 ±10% 4 50
M49470Q01825MEA SM027C825MHN360 8.2 ±20% 2 500 M49470X01565MAC SM045C565MHJ240 5.6 ±10% 4 50
211 M49470Q01106KEN SM017C106KHN480 10 ±10% 1 500 261 M49470X01685KAJ SM045C685KHJ360 6.8 ±10% 4 50
212 M49470Q01106MEN SM017C106MHN480 10 ±20% 1 500 262 M49470X01685MAJ SM045C685MHJ360 6.8 ±20% 4 50
M49470Q01106KEA SM027C106KHN360 10 ±10% 2 500 263 M49470X01825KAJ SM045C825KHJ360 8.2 ±10% 4 50
M49470Q01106MEA SM027C106MHN360 10 ±20% 2 500 264 M49470X01825MAJ SM045C825MHJ360 8.2 ±20% 4 50
213 M49470Q01126KEN SM017C126KHN650 12 ±10% 1 500 265 M49470X01106KAJ SM045C106KHJ480 10 ±10% 4 50
214 M49470Q01126MEN SM017C126MHN650 12 ±20% 1 500 266 M49470X01106MAJ SM045C106MHJ480 10 ±20% 4 50
M49470Q01126KEA SM027C126KHN480 12 ±10% 2 500 267 M49470X01126KAJ SM045C126KHJ480 12 ±10% 4 50
M49470Q01126MEA SM027C126MHN480 12 ±20% 2 500 268 M49470X01126MAJ SM045C126MHJ480 12 ±20% 4 50
215 M49470Q01186KEN SM027C186KHN650 18 ±10% 2 500 269 M49470X01156KAJ SM045C156KHJ650 15 ±10% 4 50
216 M49470Q01186MEN SM027C186MHN650 18 ±20% 2 500 270 M49470X01156MAJ SM045C156MHJ650 15 ±20% 4 50
217 M49470Q01276KEN SM067C276KHN360 27 ±10% 6 500 M49470X01156KAC SM035C156KHJ240 15 ±10% 3 50
218 M49470Q01276MEN SM067C276MHN360 27 ±20% 6 500 M49470X01156MAC SM035C156MHJ240 15 ±20% 3 50
219 M49470Q01336KEN SM067C336KHN480 33 ±10% 6 500 271 M49470X01186KAJ SM035C186KHJ240 18 ±10% 3 50
220 M49470Q01336MEN SM067C336MHN480 33 ±20% 6 500 272 M49470X01186MAJ SM035C186MHJ240 18 ±20% 3 50
221 M49470Q01396KEN SM067C396KHN650 39 ±10% 6 500 273 M49470X01226KAJ SM035C226KHJ360 22 ±10% 3 50
222 M49470Q01396MEN SM067C396MHN650 39 ±20% 6 500 274 M49470X01226MAJ SM035C226MHJ360 22 ±20% 3 50
223 M49470X01685KAN SM045C685KHN360 6.8 ±10% 4 50 275 M49470X01276KAJ SM035C276KHJ360 27 ±10% 3 50
224 M49470X01685MAN SM045C685MHN360 6.8 ±20% 4 50 276 M49470X01276MAJ SM035C276MHJ360 27 ±20% 3 50
225 M49470X01566KAN SM015C566KHN360 56 ±10% 1 50 277 M49470X01336KAJ SM035C336KHJ360 33 ±10% 3 50
226 M49470X01566MAN SM015C566MHN360 56 ±20% 1 50 278 M49470X01336MAJ SM035C336MHJ360 33 ±20% 3 50
M49470X01566KAA SM025C566KHN240 56 ±10% 2 50 279 M49470X01396KAJ SM035C396KHJ480 39 ±10% 3 50
M49470X01566MAA SM025C566MHN240 56 ±20% 2 50 280 M49470X01396MAJ SM035C396MHJ480 39 ±20% 3 50
227 M49470X01127KAN SM025C127KHN480 120 ±10% 2 50 281 M49470X01476KAJ SM035C476KHJ650 47 ±10% 3 50
228 M49470X01127MAN SM025C127MHN480 120 ±20% 2 50 282 M49470X01476MAJ SM035C476MHJ650 47 ±20% 3 50
229 M49470X01106KBN SM031C106KHN240 10 ±10% 3 100 M49470X01476KAC SM025C476KHJ240 47 ±10% 2 50
230 M49470X01106MBN SM031C106MHN240 10 ±20% 3 100 M49470X01476MAC SM025C476MHJ240 47 ±20% 2 50
231 M49470Q01824KEN SM047C824KHN360 0.82 ±10% 4 500 283 M49470X01566KAJ SM015C566KHJ360 56 ±10% 1 50
232 M49470Q01824MEN SM047C824MHN360 0.82 ±20% 4 500 284 M49470X01566MAJ SM015C566MHJ360 56 ±20% 1 50
233 M49470Q01225KEN SM037C225KHN240 2.2 ±10% 3 500 M49470X01566KAC SM025C566KHJ240 56 ±10% 2 50
234 M49470Q01225MEN SM037C225MHN240 2.2 ±20% 3 500 M49470X01566MAC SM025C566MHJ240 56 ±20% 2 50
235 M49470Q01685KEN SM017C685KHN480 6.8 ±10% 1 500 285 M49470X01686KAJ SM015C686KHJ480 68 ±10% 1 50
236 M49470Q01685MEN SM017C685MHN480 6.8 ±20% 1 500 286 M49470X01686MAJ SM015C686MHJ480 68 ±20% 1 50
M49470Q01685KEA SM027C685KHN240 6.8 ±10% 2 500 M49470X01686KAC SM025C686KHJ360 68 ±10% 2 50
M49470Q01685MEA SM027C685MHN240 6.8 ±20% 2 500 M49470X01686MAC SM025C686MHJ360 68 ±20% 2 50
237 M49470Q01156KEN SM027C156KHN650 15 ±10% 2 500 287 M49470X01826KAJ SM015C826KHJ480 82 ±10% 1 50
238 M49470Q01156MEN SM027C156MHN650 15 ±20% 2 500 288 M49470X01826MAJ SM015C826MHJ480 82 ±20% 1 50
239 M49470Q01226KEN SM067C226KHN360 22 ±10% 6 500 M49470X01826KAC SM025C826KHJ360 82 ±10% 2 50
240 M49470Q01226MEN SM067C226MHN360 22 ±20% 6 500 M49470X01826MAC SM025C826MHJ360 82 ±20% 2 50
241 M49470X01105KAJ SM055C105KHJ120 1.0 ±10% 5 50 289 M49470X01107KAJ SM015C107KHJ650 100 ±10% 1 50
242 M49470X01105MAJ SM055C105MHJ120 1.0 ±20% 5 50 290 M49470X01107MAJ SM015C107MHJ650 100 ±20% 1 50
243 M49470X01125KAJ SM055C125KHJ120 1.2 ±10% 5 50 M49470X01107KAC SM025C107KHJ480 100 ±10% 2 50
244 M49470X01125MAJ SM055C125MHJ120 1.2 ±20% 5 50 M49470X01107MAC SM025C107MHJ480 100 ±20% 2 50
245 M49470X01155KAJ SM055C155KHJ240 1.5 ±10% 5 50 291 M49470X01127KAJ SM025C127KHJ480 120 ±10% 2 50
246 M49470X01155MAJ SM055C155MHJ240 1.5 ±20% 5 50 292 M49470X01127MAJ SM025C127MHJ480 120 ±20% 2 50

16
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470

CAP CASE VOLT CAP CASE VOLT


87106- MIL-PRF-49470 PIN AVX PART NUMBER TOL 87106- MIL-PRF-49470 PIN AVX PART NUMBER TOL
(μF) CODE (VDC) (μF) CODE (VDC)
293 M49470X01157KAJ SM025C157KHJ650 150 ±10% 2 50 M49470X01396KBC SM021C396KHJ360 39 ±10% 2 100
294 M49470X01157MAJ SM025C157MHJ650 150 ±20% 2 50 M49470X01396MBC SM021C396MHJ360 39 ±20% 2 100
295 M49470X01187KAJ SM065C187KHJ480 180 ±10% 6 50 345 M49470X01476KBJ SM011C476KHJ480 47 ±10% 1 100
296 M49470X01187MAJ SM065C187MHJ480 180 ±20% 6 50 346 M49470X01476MBJ SM011C476MHJ480 47 ±20% 1 100
297 M49470X01227KAJ SM065C227KHJ480 220 ±10% 6 50 M49470X01476KBC SM021C476KHJ360 47 ±10% 2 100
298 M49470X01227MAJ SM065C227MHJ480 220 ±20% 6 50 M49470X01476MBC SM021C476MHJ360 47 ±20% 2 100
299 M49470X01277KAJ SM065C277KHJ650 270 ±10% 6 50 347 M49470X01566KBJ SM011C566KHJ650 56 ±10% 1 100
300 M49470X01277MAJ SM065C277MHJ650 270 ±20% 6 50 348 M49470X01566MBJ SM011C566MHJ650 56 ±20% 1 100
301 M49470X01684KBJ SM051C684KHJ120 0.68 ±10% 5 100 349 M49470X01686KBJ SM021C686KHJ480 68 ±10% 2 100
302 M49470X01684MBJ SM051C684MHJ120 0.68 ±20% 5 100 350 M49470X01686MBJ SM021C686MHJ480 68 ±20% 2 100
303 M49470X01824KBJ SM051C824KHJ240 0.82 ±10% 5 100 351 M49470X01826KBJ SM021C826KHJ650 82 ±10% 2 100
304 M49470X01824MBJ SM051C824MHJ240 0.82 ±20% 5 100 352 M49470X01826MBJ SM021C826MHJ650 82 ±20% 2 100
305 M49470X01105KBJ SM051C105KHJ240 1.0 ±10% 5 100 353 M49470X01107KBJ SM061C107KHJ360 100 ±10% 6 100
306 M49470X01105MBJ SM051C105MHJ240 1.0 ±20% 5 100 354 M49470X01107MBJ SM061C107MHJ360 100 ±20% 6 100
307 M49470X01125KBJ SM051C125KHJ240 1.2 ±10% 5 100 355 M49470X01127KBJ SM061C127KHJ360 120 ±10% 6 100
308 M49470X01125MBJ SM051C125MHJ240 1.2 ±20% 5 100 356 M49470X01127MBJ SM061C127MHJ360 120 ±20% 6 100
309 M49470X01155KBJ SM051C155KHJ360 1.5 ±10% 5 100 357 M49470X01157KBJ SM061C157KHJ480 150 ±10% 6 100
310 M49470X01155MBJ SM051C155MHJ360 1.5 ±20% 5 100 358 M49470X01157MBJ SM061C157MHJ480 150 ±20% 6 100
311 M49470X01185KBJ SM051C185KHJ360 1.8 ±10% 5 100 359 M49470X01187KBJ SM061C187KHJ650 180 ±10% 6 100
312 M49470X01185MBJ SM051C185MHJ360 1.8 ±20% 5 100 360 M49470X01187MBJ SM061C187MHJ650 180 ±20% 6 100
313 M49470X01225KBJ SM051C225KHJ480 2.2 ±10% 5 100 361 M49470R01474KCJ SM052C474KHJ240 0.47 ±10% 5 200
314 M49470X01225MBJ SM051C225MHJ480 2.2 ±20% 5 100 362 M49470R01474MCJ SM052C474MHJ240 0.47 ±20% 5 200
M49470X01225KBC SM041C225KHJ240 2.2 ±10% 4 100 363 M49470R01564KCJ SM052C564KHJ240 0.56 ±10% 5 200
M49470X01225MBC SM041C225MHJ240 2.2 ±20% 4 100 364 M49470R01564MCJ SM052C564MHJ240 0.56 ±20% 5 200
315 M49470X01275KBJ SM051C275KHJ480 2.7 ±10% 5 100 365 M49470R01684KCJ SM052C684KHJ360 0.68 ±10% 5 200
316 M49470X01275MBJ SM051C275MHJ480 2.7 ±20% 5 100 366 M49470R01684MCJ SM052C684MHJ360 0.68 ±20% 5 200
317 M49470X01335KBJ SM051C335KHJ650 3.3 ±10% 5 100 367 M49470R01824KCJ SM052C824KHJ360 0.82 ±10% 5 200
318 M49470X01335MBJ SM051C335MHJ650 3.3 ±20% 5 100 368 M49470R01824MCJ SM052C824MHJ360 0.82 ±20% 5 200
M49470X01335KBC SM041C335KHJ240 3.3 ±10% 4 100 369 M49470R01105KCJ SM052C105KHJ480 1.0 ±10% 5 200
M49470X01335MBC SM041C335MHJ240 3.3 ±20% 4 100 370 M49470R01105MCJ SM052C105MHJ480 1.0 ±20% 5 200
319 M49470X01395KBJ SM041C395KHJ360 3.9 ±10% 4 100 M49470R01105KCC SM042C105KHJ120 1.0 ±10% 4 200
320 M49470X01395MBJ SM041C395MHJ360 3.9 ±20% 4 100 M49470R01105MCC SM042C105MHJ120 1.0 ±20% 4 200
321 M49470X01475KBJ SM041C475KHJ360 4.7 ±10% 4 100 371 M49470R01125KCJ SM052C125KHJ480 1.2 ±10% 5 200
322 M49470X01475MBJ SM041C475MHJ360 4.7 ±20% 4 100 372 M49470R01125MCJ SM052C125MHJ480 1.2 ±20% 5 200
323 M49470X01565KBJ SM041C565KHJ480 5.6 ±10% 4 100 M49470R01125KCC SM042C125KHJ240 1.2 ±10% 4 200
324 M49470X01565MBJ SM041C565MHJ480 5.6 ±20% 4 100 M49470R01125MCC SM042C125MHJ240 1.2 ±20% 4 200
325 M49470X01685KBJ SM041C685KHJ480 6.8 ±10% 4 100 373 M49470R01155KCJ SM052C155KHJ650 1.5 ±10% 5 200
326 M49470X01685MBJ SM041C685MHJ480 6.8 ±20% 4 100 374 M49470R01155MCJ SM052C155MHJ650 1.5 ±20% 5 200
327 M49470X01825KBJ SM041C825KHJ650 8.2 ±10% 4 100 M49470R01155KCC SM042C155KHJ230 1.5 ±10% 4 200
328 M49470X01825MBJ SM041C825MHJ650 8.2 ±20% 4 100 M49470R01155MCC SM042C155MHJ230 1.5 ±20% 4 200
M49470X01825KBC SM031C825KHJ240 8.2 ±10% 3 100 375 M49470R01185KCJ SM042C185KHJ360 1.8 ±10% 4 200
M49470X01825MBC SM031C825MHJ240 8.2 ±20% 3 100 376 M49470R01185MCJ SM042C185MHJ360 1.8 ±20% 4 200
329 M49470X01106KBJ SM031C106KHJ240 10 ±10% 3 100 377 M49470R01225KCJ SM042C225KHJ360 2.2 ±10% 4 200
330 M49470X01106MBJ SM031C106MHJ240 10 ±20% 3 100 378 M49470R01225MCJ SM042C225MHJ360 2.2 ±20% 4 200
331 M49470X01126KBJ SM031C126KHJ240 12 ±10% 3 100 379 M49470R01275KCJ SM042C275KHJ480 2.7 ±10% 4 200
332 M49470X01126MBJ SM031C126MHJ240 12 ±20% 3 100 380 M49470R01275MCJ SM042C275MHJ480 2.7 ±20% 4 200
333 M49470X01156KBJ SM031C156KHJ360 15 ±10% 3 100 381 M49470R01335KCJ SM042C335KHJ480 3.3 ±10% 4 200
334 M49470X01156MBJ SM031C156MHJ360 15 ±20% 3 100 382 M49470R01335MCJ SM042C335MHJ480 3.3 ±20% 4 200
335 M49470X01186KBJ SM031C186KHJ360 18 ±10% 3 100 383 M49470R01395KCJ SM042C395KHJ650 3.9 ±10% 4 200
336 M49470X01186MBJ SM031C186MHJ360 18 ±20% 3 100 384 M49470R01395MCJ SM042C395MHJ650 3.9 ±20% 4 200
337 M49470X01226KBJ SM031C226KHJ480 22 ±10% 3 100 M49470R01395KCC SM032C395KHJ240 3.9 ±10% 3 200
338 M49470X01226MBJ SM031C226MHJ480 22 ±20% 3 100 M49470R01395MCC SM032C395MHJ240 3.9 ±20% 3 200
339 M49470X01276KBJ SM031C276KHJ650 27 ±10% 3 100 385 M49470R01475KCJ SM032C475KHJ240 4.7 ±10% 3 200
340 M49470X01276MBJ SM031C276MHJ650 27 ±20% 3 100 386 M49470R01475MCJ SM032C475MHJ240 4.7 ±20% 3 200
M49470X01276KBC SM021C276KHJ240 27 ±10% 2 100 387 M49470R01565KCJ SM032C565KHJ240 5.6 ±10% 3 200
M49470X01276MBC SM021C276MHJ240 27 ±20% 2 100 388 M49470R01565MCJ SM032C565MHJ240 5.6 ±20% 3 200
341 M49470X01336KBJ SM011C336KHJ360 33 ±10% 1 100 389 M49470R01685KCJ SM032C685KHJ360 6.8 ±10% 3 200
342 M49470X01336MBJ SM011C336MHJ360 33 ±20% 1 100 390 M49470R01685MCJ SM032C685MHJ360 6.8 ±20% 3 200
M49470X01336KBC SM021C336KHJ240 33 ±10% 2 100 391 M49470R01825KCJ SM032C825KHJ360 8.2 ±10% 3 200
M49470X01336MBC SM021C336MHJ240 33 ±20% 2 100 392 M49470R01825MCJ SM032C825MHJ360 8.2 ±20% 3 200
343 M49470X01396KBJ SM011C396KHJ480 39 ±10% 1 100 393 M49470R01106KCJ SM032C106KHJ480 10 ±10% 3 200
344 M49470X01396MBJ SM011C396MHJ480 39 ±20% 1 100 394 M49470R01106MCJ SM032C106MHJ480 10 ±20% 3 200

17
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles MIL-PRF-49470

CAP CASE VOLT CAP CASE VOLT


87106- MIL-PRF-49470 PIN AVX PART NUMBER TOL 87106- MIL-PRF-49470 PIN AVX PART NUMBER TOL
(μF) CODE (VDC) (μF) CODE (VDC)
395 M49470R01126KCJ SM032C126KHJ650 12 ±10% 3 200 443 M49470Q01125KEJ SM047C125KHJ360 1.2 ±10% 4 500
396 M49470R01126MCJ SM032C126MHJ650 12 ±20% 3 200 444 M49470Q01125MEJ SM047C125MHJ360 1.2 ±20% 4 500
M49470R01126KCC SM022C126KHJ240 12 ±10% 2 200 445 M49470Q01155KEJ SM047C155KHJ480 1.5 ±10% 4 500
M49470R01126MCC SM022C126MHJ240 12 ±20% 2 200 446 M49470Q01155MEJ SM047C155MHJ480 1.5 ±20% 4 500
397 M49470R01156KCJ SM012C156KHJ360 15 ±10% 1 200 447 M49470Q01185KEJ SM047C185KHJ650 1.8 ±10% 4 500
398 M49470R01156MCJ SM012C156MHJ360 15 ±20% 1 200 448 M49470Q01185MEJ SM047C185MHJ650 1.8 ±20% 4 500
M49470R01156KCC SM022C156KHJ240 15 ±10% 2 200 M49470Q01185KEC SM037C185KHJ240 1.8 ±10% 3 500
M49470R01156MCC SM022C156MHJ240 15 ±20% 2 200 M49470Q01185MEC SM037C185MHJ240 1.8 ±20% 3 500
399 M49470R01186KCJ SM012C186KHJ480 18 ±10% 1 200 449 M49470Q01225KEJ SM037C225KHJ240 2.2 ±10% 3 500
400 M49470R01186MCJ SM012C186MHJ480 18 ±20% 1 200 450 M49470Q01225MEJ SM037C225MHJ240 2.2 ±20% 3 500
M49470R01186KCC SM022C186KHJ360 18 ±10% 2 200 451 M49470Q01275KEJ SM037C275KHJ360 2.7 ±10% 3 500
M49470R01186MCC SM022C186MHJ360 18 ±20% 2 200 452 M49470Q01275MEJ SM037C275MHJ360 2.7 ±20% 3 500
401 M49470R01226KCJ SM012C226KHJ650 22 ±10% 1 200 453 M49470Q01335KEJ SM037C335KHJ360 3.3 ±10% 3 500
402 M49470R01226MCJ SM012C226MHJ650 22 ±20% 1 200 454 M49470Q01335MEJ SM037C335MHJ360 3.3 ±20% 3 500
M49470R01226KCC SM022C226KHJ360 22 ±10% 2 200 455 M49470Q01395KEJ SM037C395KHJ360 3.9 ±10% 3 500
M49470R01226MCC SM022C226MHJ360 22 ±20% 2 200 456 M49470Q01395MEJ SM037C395MHJ360 3.9 ±20% 3 500
403 M49470R01276KCJ SM012C276KHJ650 27 ±10% 1 200 457 M49470Q01475KEJ SM037C475KHJ480 4.7 ±10% 3 500
404 M49470R01276MCJ SM012C276MHJ650 27 ±20% 1 200 458 M49470Q01475MEJ SM037C475MHJ480 4.7 ±20% 3 500
M49470R01276KCC SM022C276KHJ480 27 ±10% 2 200 459 M49470Q01565KEJ SM037C565KHJ650 5.6 ±10% 3 500
M49470R01276MCC SM022C276MHJ480 27 ±20% 2 200 460 M49470Q01565MEJ SM037C565MHJ650 5.6 ±20% 3 500
405 M49470R01336KCJ SM022C336KHJ480 33 ±10% 2 200 M49470Q01565KEC SM027C565KHJ240 5.6 ±10% 2 500
406 M49470R01336MCJ SM022C336MHJ480 33 ±20% 2 200 M49470Q01565MEC SM027C565MHJ240 5.6 ±20% 2 500
407 M49470R01396KCJ SM022C396KHJ650 39 ±10% 2 200 461 M49470Q01685KEJ SM017C685KHJ480 6.8 ±10% 1 500
408 M49470R01396MCJ SM022C396MHJ650 39 ±20% 2 200 462 M49470Q01685MEJ SM017C685MHJ480 6.8 ±20% 1 500
409 M49470R01476KCJ SM062C476KHJ240 47 ±10% 6 200 M49470Q01685KEC SM027C685KHJ240 6.8 ±10% 2 500
410 M49470R01476MCJ SM062C476MHJ240 47 ±20% 6 200 M49470Q01685MEC SM027C685MHJ240 6.8 ±20% 2 500
411 M49470R01566KCJ SM062C566KHJ360 56 ±10% 6 200 463 M49470Q01825KEJ SM017C825KHJ480 8.2 ±10% 1 500
412 M49470R01566MCJ SM062C566MHJ360 56 ±20% 6 200 464 M49470Q01825MEJ SM017C825MHJ480 8.2 ±20% 1 500
413 M49470R01686KCJ SM062C686KHJ360 68 ±10% 6 200 M49470Q01825KEC SM027C825KHJ360 8.2 ±10% 2 500
414 M49470R01686MCJ SM062C686MHJ360 68 ±20% 6 200 M49470Q01825MEC SM027C825MHJ360 8.2 ±20% 2 500
415 M49470R01826KCJ SM062C826KHJ480 82 ±10% 6 200 465 M49470Q01106KEJ SM017C106KHJ480 10 ±10% 1 500
416 M49470R01826MCJ SM062C826MHJ480 82 ±20% 6 200 466 M49470Q01106MEJ SM017C106MHJ480 10 ±20% 1 500
417 M49470R01107KCJ SM062C107KHJ650 100 ±10% 6 200 M49470Q01106KEC SM027C106KHJ360 10 ±10% 2 500
418 M49470R01107MCJ SM062C107MHJ650 100 ±20% 6 200 M49470Q01106MEC SM027C106MHJ360 10 ±20% 2 500
419 M49470R01127KCJ SM062C127KHJ650 120 ±10% 6 200 467 M49470Q01126KEJ SM017C126KHJ650 12 ±10% 1 500
420 M49470R01127MCJ SM062C127MHJ650 120 ±20% 6 200 468 M49470Q01126KEJ SM017C126KHJ650 12 ±10% 1 500
421 M49470Q01154KEJ SM057C154KHJ120 0.15 ±10% 5 500 M49470Q01126MEC SM027C126MHJ480 12 ±20% 2 500
422 M49470Q01154MEJ SM057C154MHJ120 0.15 ±20% 5 500 M49470Q01126MEC SM027C126MHJ480 12 ±20% 2 500
423 M49470Q01184KEJ SM057C184KHJ240 0.18 ±10% 5 500 469 M49470Q01156KEJ SM027C156KHJ650 15 ±10% 2 500
424 M49470Q01184MEJ SM057C184MHJ240 0.18 ±20% 5 500 470 M49470Q01156MEJ SM027C156MHJ650 15 ±20% 2 500
425 M49470Q01224KEJ SM057C224KHJ240 0.22 ±10% 5 500 471 M49470Q01186KEJ SM027C186KHJ650 18 ±10% 2 500
426 M49470Q01224MEJ SM057C224MHJ240 0.22 ±20% 5 500 472 M49470Q01186MEJ SM027C186MHJ650 18 ±20% 2 500
427 M49470Q01274KEJ SM057C274KHJ240 0.27 ±10% 5 500 473 M49470Q01226KEJ SM067C226KHJ360 22 ±10% 6 500
428 M49470Q01274MEJ SM057C274MHJ240 0.27 ±20% 5 500 474 M49470Q01226MEJ SM067C226MHJ360 22 ±20% 6 500
429 M49470Q01334KEJ SM057C334KHJ360 0.33 ±10% 5 500 475 M49470Q01276KEJ SM067C276KHJ360 27 ±10% 6 500
430 M49470Q01334MEJ SM057C334MHJ360 0.33 ±20% 5 500 476 M49470Q01276MEJ SM067C276MHJ360 27 ±20% 6 500
431 M49470Q01394KEJ SM057C394KHJ360 0.39 ±10% 5 500 477 M49470Q01336KEJ SM067C336KHJ480 33 ±10% 6 500
432 M49470Q01394MEJ SM057C394MHJ360 0.39 ±20% 5 500 478 M49470Q01336MEJ SM067C336MHJ480 33 ±20% 6 500
433 M49470Q01474KEJ SM057C474KHJ360 0.47 ±10% 5 500 479 M49470Q01396KEJ SM067C396KHJ650 39 ±10% 6 500
434 M49470Q01474MEJ SM057C474MHJ360 0.47 ±20% 5 500 480 M49470Q01396MEJ SM067C396MHJ650 39 ±20% 6 500
435 M49470Q01564KEJ SM057C564KHJ480 0.56 ±10% 5 500
436 M49470Q01564MEJ SM057C564MHJ480 0.56 ±20% 5 500
M49470Q01564KEC SM047C564KHJ240 0.56 ±10% 4 500
M49470Q01564MEC SM047C564MHJ240 0.56 ±20% 4 500
437 M49470Q01684KEJ SM057C684KHJ650 0.68 ±10% 5 500
438 M49470Q01684MEJ SM057C684MHJ650 0.68 ±20% 5 500
M49470Q01684KEC SM047C684KHJ240 0.68 ±10% 4 500
M49470Q01684MEC SM047C684MHJ240 0.68 ±20% 4 500
439 M49470Q01824KEJ SM047C824KHJ360 0.82 ±10% 4 500
440 M49470Q01824MEJ SM047C824MHJ360 0.82 ±20% 4 500
441 M49470Q01105KEJ SM047C105KHJ360 1.0 ±10% 4 500
442 M49470Q01105MEJ SM047C105MHJ360 1.0 ±20% 4 500

18
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles DSCC Dwg. #87106 & #88011

CHIP SEPARATION
0.254 (0.010) TYP.

D E

A 1.397 (0.055)
B
±0.254 (0.010)

0.254
6.35 0.508 (0.020) TYP. (0 010)
(0.250) 2 54 (0 100) TYP
“N” STYLE LEADS

0.254 (0.010) RAD. TYP.

1.905 (0.075)
1.778 (0.070) ±0.635 (0.025)
±0.254 (0.010) TYP.

SCHEMATIC
“J” STYLE LEADS

DIMENSIONS millimeters (inches)


Case A (max.) B (max.) No. of Leads
Code (See Note 2) (See Note 2) C ±.635 (±0.025) D ±.635 (±0.025) E (max.) per side

1 16.5 (0.650) 18.2 (0.715) 11.4 (0.450) 52.1 (2.050) 12.7 (0.500) 20

2 16.5 (0.650) 18.2 (0.715) 20.3 (0.800) 38.4 (1.510) 22.1 (0.870) 15
3 16.5 (0.650) 18.2 (0.715) 11.4 (0.450) 26.7 (1.050) 12.7 (0.500) 10

4 16.5 (0.650) 18.2 (0.715) 10.2 (0.400) 10.2 (0.400) 11.2 (0.440) 4

5 16.5 (0.650) 18.2 (0.715) 6.35 (0.250) 6.35 (0.250) 7.62 (0.300) 3
6 16.5 (0.650) 18.2 (0.715) 31.8 (1.250) 52.1 (2.050) 34.3 (1.350) 20

NOTES:
1. Unless otherwise specified, tolerances 0.254 (±0.010).
2. “A” dimensions are maximum (see tables on pages 22 thru 25 for specific part number dimensions).
3. “N” straight leads; “J” leads formed in.
4. For case code 5, dimensions shall be 2.54 (0.100) maximum, 0.305 (0.012) minimum.

19
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles DSCC Dwg. #87106 & #88011
Ordering Information Insulation Resistance.
At +25°C, rated voltage: 100K MΩ or 1,000 MΩ-μF,
Part Number: The complete part number shall be as follows: whichever is less.
X7R: 87106 XXX At +125°C, rated voltage: 10K MΩ or 100 MΩ-μF,
whichever is less.
_________________ ______________
Drawing number Dash number
(see list) Dielectric Withstanding Voltage. Dielectric withstanding volt-
Ordering Data. The contract or purchase order should age shall be 250 percent of rated voltage except 500V rated
specify the following: parts at 150 percent of rated voltage.

a. Complete part number.


Capacitance Tolerance. J = ±5 percent, K = ±10 percent,
b. Requirements for delivery of one copy of the quality con- M = ±20 percent.
formance inspection data with each shipment of parts by
the manufacturer.

c. Whether the manufacturer performs the group B tests, or Solderability of Terminals. In accordance with MIL-PRF-
provides certification of compliance with group B require- 49470.
ments.

d. Requirements for notification of change of products to Resistance to Soldering Heat. In accordance with MIL-STD-
acquiring activity, if applicable. 202, method 210, condition B, for 20 seconds.
e. Requirements for packaging and packing.

Source of Supply. Shock. In accordance with MIL-PRF-49470.


Vendor CAGE Vendor name
number
_____________ and address
_________________________
Immersion Cycling. In accordance with MIL-PRF-49470.
96095 Olean Advanced Products
A Division of AVX Corporation
1695 Seneca Avenue
Olean, NY 14760 Moisture Resistance. In accordance with MIL-PRF-49470.

Performance Characteristics Life. Life shall be 200 percent of rated voltage except 500V
rated parts at 120 percent of rated voltage applied at +125°C for
Operating Temperature Range. The operating temperature 1,000 hours.
range shall be -55°C to +125°C.

Electrical Characteristics.
Rated Voltage. See tables on pages 22, 23, 24 & 25. Thermal Shock. MIL-STD-202, method 107, test condition A,
except high temperature is +125°C.
Capacitance. Measured in accordance with method 305 of
MIL-STD-202 (1KHz at 1.0Vrms, open circuit voltage, at +25°C).
Dissipation Factor (+25°C). X7R: Dissipation factor shall be Voltage Conditioning. In accordance with MIL-PRF-49470,
2.5 percent maximum (measured under the same conditions except 500V rated parts at 120 percent of rated voltage at
as capacitance.) C0G: Dissipation factor shall be 0.15 percent +125°C.
maximum.

Terminal Strength. MIL-STD-202, method 211, condition B,


Temperature Coefficient. except that each lead shall be bent away from the body 90
DSCC Dwg. Bias = 0 volt Bias = rated voltage degrees from the original position and back, two bends.
88011 All Voltages 0±30 ppm/°C 0±30 ppm/°C
87106 50 WVDC ±15% +15, -25%
and 100 WVDC Marking. Marking shall be in accordance with MIL-STD-1285,
87106 200 WVDC ±15% +15, -40% except the part number shall be as specified in paragraph 1.2
87106 500 WVDC ±15% +15, -50% of 87106, or 88011 with the manufacturer’s name or code and
date code minimum, except case sizes 4 and 5 shall be marked
with coded cap and tolerance minimum. Full marking shall be
included on the package.

20
SMPS Stacked MLC Capacitors
(SM Style) DSCC #87106 and #88011
Table II. Group A inspection.
Requirement Test method
Inspection paragraph of paragraph of Sampling procedure
MIL-PRF-49470 MIL-PRF-49470
Subgroup 1
Thermal shock and voltage conditioning 1/ 3.9 4.8.5 100% inspection
Subgroup 2
Visual and mechanical examination:
Material 3.4 4.8.4
Physical dimensions 3.1 13 samples
Interface requirements 3.5 and 3.5.1 0 failures
(other than physical dimensions)
Marking 2/ 3.28
Workmanship 3.30
1/ Post checks are required (see paragraph 3.9 of MIL-PRF-49470).
2/ Marking defects are based on visual examination only. Any subsequent electrical defects shall not
be used as a basis for determining marking defects.

Table III. Group B inspection. 1/


Requirement Test method Number of Number of
Inspection paragraph of paragraph of sample units defectives
MIL-PRF-49470 MIL-PRF-49470 to be inspected permitted 2/
Subgroup 1 3/
Temperature coefficient 4/ 4/
Resistance to solvents 5/ 6/ 3.23 4.8.20
Immersion 3.18 4.8.15 12 1
Terminal strength 5/ 3.24 4.8.10
Subgroup 2
Resistance to soldering heat 3.20 4.8.17 12 1 6/ 1
Moisture resistance 3.21 4.8.18
Subgroup 3
Marking legibility 3.28.1 4.8.4.1 6 1
(laser marking only)
Subgroup 4
Solderability 3.15 4.8.12 3 0
Subgroup 5
Life 3.26 4.8.22 5 minimum 0
per case code
1/ Unless otherwise specified herein, when necessary, mounting of group B samples shall be at the
discretion of the manufacturer.
2/ A sample unit having one or more defects shall be charged as a single defective.
3/ Order of tests is at discretion of manufacturer.
4/ See 3.2.3 of DSCC 87106.
5/ Sample size shall be 3 pieces with zero defectives permitted.
6/ Total of one defect allowed for combination of subgroup 1, subgroup 2, and subgroup 3 inspections.

21
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles DSCC Dwg. #87106 (X7R)
Electrical characteristics
DSCC Cap. Max. A DSCC Cap. Max. A DSCC Cap. Max. A
Dwg. Value Cap. Case Lead Dimension Dwg. Value Cap. Case Lead Dimension Dwg. Value Cap. Case Lead Dimension
87106- (μF) Tol. Code Style mm (inches) 87106- (μF) Tol. Code Style mm (inches) 87106- (μF) Tol. Code Style mm (inches)
50V 50V 100V
001 1.0 K 5 N 3.05 (0.120) 272 18 M 3 J 6.10 (0.240) 055 .68 K 5 N 3.05 (0.120)
002 1.0 M 5 N 3.05 (0.120) 272 18 M 3 J 6.10 (0.240) 056 .68 M 5 N 3.05 (0.120)
241 1.0 K 5 J 3.05 (0.120) 301 .68 K 5 J 3.05 (0.120)
242 1.0 M 5 J 3.05 (0.120) 031 22 K 3 N 9.14 (0.360) 302 .68 M 5 J 3.05 (0.120)
003 1.2 K 5 N 3.05 (0.120) 032 22 M 3 N 9.14 (0.360)
004 1.2 M 5 N 3.05 (0.120) 273 22 K 3 J 9.14 (0.360) 057 .82 K 5 N 6.10 (0.240)
243 1.2 K 5 J 3.05 (0.120) 274 22 M 3 J 9.14 (0.360) 058 .82 M 5 N 6.10 (0.240)
244 1.2 M 5 J 3.05 (0.120) 033 27 K 3 N 9.14 (0.360) 303 .82 K 5 J 6.10 (0.240)
034 27 M 3 N 9.14 (0.360) 304 .82 M 5 J 6.10 (0.240)
005 1.5 K 5 N 6.10 (0.240) 275 27 K 3 J 9.14 (0.360) 059 1.0 K 5 N 6.10 (0.240)
006 1.5 M 5 N 6.10 (0.240) 276 27 M 3 J 9.14 (0.360) 060 1.0 M 5 N 6.10 (0.240)
245 1.5 K 5 J 6.10 (0.240) 035 33 K 3 N 9.14 (0.360) 305 1.0 K 5 J 6.10 (0.240)
246 1.5 M 5 J 6.10 (0.240) 036 33 M 3 N 9.14 (0.360) 306 1.0 M 5 J 6.10 (0.240)
007 1.8 K 5 N 6.10 (0.240) 277 33 K 3 J 9.14 (0.360) 061 1.2 K 5 N 6.10 (0.240)
008 1.8 M 5 N 6.10 (0.240) 278 33 M 3 J 9.14 (0.360) 062 1.2 M 5 N 6.10 (0.240)
247 1.8 K 5 J 6.10 (0.240) 307 1.2 K 5 J 6.10 (0.240)
248 1.8 M 5 J 6.10 (0.240) 037 39 K 3 N 12.2 (0.480)
308 1.2 M 5 J 6.10 (0.240)
009 2.2 K 5 N 6.10 (0.240) 038 39 M 3 N 12.2 (0.480)
010 2.2 M 5 N 6.10 (0.240) 279 39 K 3 J 12.2 (0.480) 063 1.5 K 5 N 9.14 (0.360)
249 2.2 K 5 J 6.10 (0.240) 280 39 M 3 J 12.2 (0.480) 064 1.5 M 5 N 9.14 (0.360)
250 2.2 M 5 J 6.10 (0.240) 309 1.5 K 5 J 9.14 (0.360)
039 47 K 3 N 16.5 (0.650) 310 1.5 M 5 J 9.14 (0.360)
011 2.7 K 5 N 9.14 (0.360) 040 47 M 3 N 16.5 (0.650) 065 1.8 K 5 N 9.14 (0.360)
012 2.7 M 5 N 9.14 (0.360) 281 47 K 3 J 16.5 (0.650) 066 1.8 M 5 N 9.14 (0.360)
251 2.7 K 5 J 9.14 (0.360) 282 47 M 3 J 16.5 (0.650) 311 1.8 K 5 J 9.14 (0.360)
252 2.7 M 5 J 9.14 (0.360) 225 56 K 1 N 9.14 (0.360) 312 1.8 M 5 J 9.14 (0.360)
013 3.3 K 5 N 9.14 (0.360) 226 56 M 1 N 9.14 (0.360)
014 3.3 M 5 N 9.14 (0.360) 067 2.2 K 5 N 12.2 (0.480)
283 56 K 1 J 9.14 (0.360)
253 3.3 K 5 J 9.14 (0.360) 068 2.2 M 5 N 12.2 (0.480)
284 56 M 1 J 9.14 (0.360) 313 2.2 K 5 J 12.2 (0.480)
254 3.3 M 5 J 9.14 (0.360)
041 68 K 1 N 12.2 (0.480) 314 2.2 M 5 J 12.2 (0.480)
015 3.9 K 5 N 12.2 (0.480) 042 68 M 1 N 12.2 (0.480) 069 2.7 K 5 N 12.2 (0.480)
016 3.9 M 5 N 12.2 (0.480) 285 68 K 1 J 12.2 (0.480) 070 2.7 M 5 N 12.2 (0.480)
255 3.9 K 5 J 12.2 (0.480) 286 68 M 1 J 12.2 (0.480) 315 2.7 K 5 J 12.2 (0.480)
256 3.9 M 5 J 12.2 (0.480) 043 82 K 1 N 12.2 (0.480) 316 2.7 M 5 J 12.2 (0.480)
017 4.7 K 5 N 12.2 (0.480) 044 82 M 1 N 12.2 (0.480)
018 4.7 M 5 N 12.2 (0.480) 071 3.3 K 5 N 16.5 (0.650)
287 82 K 1 J 12.2 (0.480)
257 4.7 K 5 J 12.2 (0.480) 072 3.3 M 5 N 16.5 (0.650)
288 82 M 1 J 12.2 (0.480) 317 3.3 K 5 J 16.5 (0.650)
258 4.7 M 5 J 12.2 (0.480)
045 100 K 1 N 16.5 (0.650) 318 3.3 M 5 J 16.5 (0.650)
019 5.6 K 5 N 16.5 (0.650) 046 100 M 1 N 16.5 (0.650)
020 5.6 M 5 N 16.5 (0.650) 073 3.9 K 4 N 9.14 (0.360)
289 100 K 1 J 16.5 (0.650)
259 5.6 K 5 J 16.5 (0.650) 074 3.9 M 4 N 9.14 (0.360)
290 100 M 1 J 16.5 (0.650) 319 3.9 K 4 J 9.14 (0.360)
260 5.6 M 5 J 16.5 (0.650)
227 120 K 2 N 12.2 (0.480) 320 3.9 M 4 J 9.14 (0.360)
223 6.8 K 4 N 9.14 (0.360) 228 120 M 2 N 12.2 (0.480) 075 4.7 K 4 N 9.14 (0.360)
224 6.8 M 4 N 9.14 (0.360) 291 120 K 2 J 12.2 (0.480) 076 4.7 M 4 N 9.14 (0.360)
261 6.8 K 4 J 9.14 (0.360) 292 120 M 2 J 12.2 (0.480) 321 4.7 K 4 J 9.14 (0.360)
262 6.8 M 4 J 9.14 (0.360) 322 4.7 M 4 J 9.14 (0.360)
047 150 K 2 N 16.5 (0.650)
021 8.2 K 4 N 9.14 (0.360) 048 150 M 2 N 16.5 (0.650) 077 5.6 K 4 N 12.2 (0.480)
022 8.2 M 4 N 9.14 (0.360) 293 150 K 2 J 16.5 (0.650) 078 5.6 M 4 N 12.2 (0.480)
263 8.2 K 4 J 9.14 (0.360) 294 150 M 2 J 16.5 (0.650) 323 5.6 K 4 J 12.2 (0.480)
264 8.2 M 4 J 9.14 (0.360) 324 5.6 M 4 J 12.2 (0.480)
049 180 K 6 N 12.2 (0.480) 079 6.8 K 4 N 12.2 (0.480)
023 10 K 4 N 12.2 (0.480) 050 180 M 6 N 12.2 (0.480)
024 10 M 4 N 12.2 (0.480) 080 6.8 M 4 N 12.2 (0.480)
295 180 K 6 J 12.2 (0.480) 325 6.8 K 4 J 12.2 (0.480)
265 10 K 4 J 12.2 (0.480) 296 180 M 6 J 12.2 (0.480)
266 10 M 4 J 12.2 (0.480) 326 6.8 M 4 J 12.2 (0.480)
051 220 K 6 N 12.2 (0.480)
025 12 K 4 N 12.2 (0.480) 052 220 M 6 N 12.2 (0.480) 081 8.2 K 4 N 16.5 (0.650)
026 12 M 4 N 12.2 (0.480) 297 220 K 6 J 12.2 (0.480) 082 8.2 M 4 N 16.5 (0.650)
267 12 K 4 J 12.2 (0.480) 298 220 M 6 J 12.2 (0.480) 327 8.2 K 4 J 16.5 (0.650)
268 12 M 4 J 12.2 (0.480) 328 8.2 M 4 J 16.5 (0.650)
053 270 K 6 N 16.5 (0.650)
027 15 K 4 N 16.5 (0.650) 054 270 M 6 N 16.5 (0.650) 229 10 K 3 N 6.10 (0.240)
028 15 M 4 N 16.5 (0.650) 299 270 K 6 J 16.5 (0.650) 230 10 M 3 N 6.10 (0.240)
269 15 K 4 J 16.5 (0.650) 300 270 M 6 J 16.5 (0.650) 329 10 K 3 J 6.10 (0.240)
270 15 M 4 J 16.5 (0.650) 330 10 M 3 J 6.10 (0.240)
083 12 K 3 N 6.10 (0.240)
029 18 K 3 N 6.10 (0.240) 084 12 M 3 N 6.10 (0.240)
030 18 M 3 N 6.10 (0.240) 331 12 K 3 J 6.10 (0.240)
271 18 K 3 J 6.10 (0.240) 332 12 M 3 J 6.10 (0.240)

22
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles DSCC Dwg. #87106 (X7R)
Electrical characteristics
DSCC Cap. Max. A DSCC Cap. Max. A DSCC Cap. Max. A
Dwg. Value Cap. Case Lead Dimension Dwg. Value Cap. Case Lead Dimension Dwg. Value Cap. Case Lead Dimension
87106- (μF) Tol. Code Style mm (inches) 87106- (μF) Tol. Code Style mm (inches) 87106- (μF) Tol. Code Style mm (inches)
100V 200V 200V
085 15 K 3 N 9.14 (0.360) 113 .47 K 5 N 6.10 (0.240) 145 10 K 3 N 12.2 (0.480)
086 15 M 3 N 9.14 (0.360) 114 .47 M 5 N 6.10 (0.240) 146 10 M 3 N 12.2 (0.480)
333 15 K 3 J 9.14 (0.360) 361 .47 K 5 J 6.10 (0.240) 393 10 K 3 J 12.2 (0.480)
334 15 M 3 J 9.14 (0.360) 362 .47 M 5 J 6.10 (0.240) 394 10 M 3 J 12.2 (0.480)
087 18 K 3 N 9.14 (0.360) 115 .56 K 5 N 6.10 (0.240)
088 18 M 3 N 9.14 (0.360) 147 12 K 3 N 16.5 (0.650)
116 .56 M 5 N 6.10 (0.240)
335 18 K 3 J 9.14 (0.360) 148 12 M 3 N 16.5 (0.650)
363 .56 K 5 J 6.10 (0.240)
395 12 K 3 J 16.5 (0.650)
336 18 M 3 J 9.14 (0.360) 364 .56 M 5 J 6.10 (0.240)
396 12 M 3 J 16.5 (0.650)
089 22 K 3 N 12.2 (0.480) 117 .68 K 5 N 9.14 (0.360)
090 22 M 3 N 12.2 (0.480) 149 15 K 1 N 9.14 (0.360)
118 .68 M 5 N 9.14 (0.360)
337 22 M 3 K 12.2 (0.480) 150 15 M 1 N 9.14 (0.360)
365 .68 K 5 J 9.14 (0.360)
397 15 K 1 J 9.14 (0.360)
338 22 M 3 J 12.2 (0.480) 366 .68 M 5 J 9.14 (0.360)
398 15 M 1 J 9.14 (0.360)
119 .82 K 5 N 9.14 (0.360)
091 27 K 3 N 16.5 (0.650) 120 .82 M 5 N 9.14 (0.360)
092 27 M 3 N 16.5 (0.650) 151 18 K 1 N 12.2 (0.480)
367 .82 M 5 J 9.14 (0.360) 152 18 M 1 N 12.2 (0.480)
339 27 K 3 J 16.5 (0.650) 368 .82 M 5 J 9.14 (0.360) 399 18 K 1 J 12.2 (0.480)
340 27 M 3 J 16.5 (0.650)
400 18 M 1 J 12.2 (0.480)
121 1.0 K 5 N 12.2 (0.480)
093 33 K 1 N 9.14 (0.360) 122 1.0 M 5 N 12.2 (0.480)
094 33 M 1 N 9.14 (0.360) 153 22 K 1 N 16.5 (0.650)
369 1.0 K 5 J 12.2 (0.480) 154 22 M 1 N 16.5 (0.650)
341 33 K 1 J 9.14 (0.360) 370 1.0 M 5 J 12.2 (0.480) 401 22 K 1 J 16.5 (0.650)
342 33 M 1 J 9.14 (0.360) 123 1.2 K 5 N 12.2 (0.480) 402 22 M 1 J 16.5 (0.650)
124 1.2 M 5 N 12.2 (0.480) 155 27 K 1 N 16.5 (0.650)
095 39 K 1 N 12.2 (0.480) 371 1.2 K 5 J 12.2 (0.480)
096 39 M 1 N 12.2 (0.480) 156 27 M 1 N 16.5 (0.650)
372 1.2 M 5 J 12.2 (0.480)
343 39 K 1 J 12.2 (0.480) 403 27 K 1 J 16.5 (0.650)
344 39 M 1 J 12.2 (0.480) 125 1.5 K 5 N 16.5 (0.650) 404 27 M 1 J 16.5 (0.650)
097 47 K 1 N 12.2 (0.480) 126 1.5 M 5 N 16.5 (0.650)
098 47 M 1 N 12.2 (0.480) 373 1.5 K 5 J 16.5 (0.650) 157 33 K 2 N 12.2 (0.480)
345 47 K 1 J 12.2 (0.480) 374 1.5 M 5 J 16.5 (0.650) 158 33 M 2 N 12.2 (0.480)
405 33 K 2 J 12.2 (0.480)
346 47 M 1 J 12.2 (0.480)
127 1.8 K 4 N 9.14 (0.360) 406 33 M 2 J 12.2 (0.480)
099 56 K 1 N 16.5 (0.650) 128 1.8 M 4 N 9.14 (0.360)
100 56 M 1 N 16.5 (0.650) 375 1.8 K 4 J 9.14 (0.360) 159 39 K 2 N 16.5 (0.650)
347 56 K 1 J 16.5 (0.650) 376 1.8 M 4 J 9.14 (0.360) 160 39 M 2 N 16.5 (0.650)
129 2.2 K 4 N 9.14 (0.360) 407 39 K 2 J 16.5 (0.650)
348 56 M 1 J 16.5 (0.650)
130 2.2 M 4 N 9.14 (0.360) 408 39 M 2 J 16.5 (0.650)
101 68 K 2 N 12.2 (0.480) 377 2.2 K 4 J 9.14 (0.360)
102 68 M 2 N 12.2 (0.480) 378 2.2 M 4 J 9.14 (0.360) 161 47 K 6 N 6.10 (0.240)
349 68 K 2 J 12.2 (0.480) 162 47 M 6 N 6.10 (0.240)
131 2.7 K 4 N 12.2 (0.480) 409 47 K 6 J 6.10 (0.240)
350 68 M 2 J 12.2 (0.480)
132 2.7 M 4 N 12.2 (0.480) 410 47 M 6 J 6.10 (0.240)
103 82 K 2 N 16.5 (0.650) 379 2.7 K 4 J 12.2 (0.480)
104 82 M 2 N 16.5 (0.650) 380 2.7 M 4 J 12.2 (0.480) 163 56 K 6 N 9.14 (0.360)
351 82 K 2 J 16.5 (0.650) 133 3.3 K 4 N 12.2 (0.480) 164 56 M 6 N 9.14 (0.360)
134 3.3 M 4 N 12.2 (0.480) 411 56 K 6 J 9.14 (0.360)
352 82 M 2 J 16.5 (0.650)
381 3.3 K 4 J 12.2 (0.480) 412 56 M 6 J 9.14 (0.360)
105 100 K 6 N 9.14 (0.360) 382 3.3 M 4 J 12.2 (0.480) 165 68 K 6 N 9.14 (0.360)
106 100 M 6 N 9.14 (0.360) 166 68 M 6 N 9.14 (0.360)
353 100 K 6 J 9.14 (0.360) 135 3.9 K 4 N 16.5 (0.650) 413 68 K 6 J 9.14 (0.360)
354 100 M 6 J 9.14 (0.360) 136 3.9 M 4 N 16.5 (0.650) 414 68 M 6 J 9.14 (0.360)
107 120 K 6 N 9.14 (0.360) 383 3.9 K 4 J 16.5 (0.650)
108 120 M 6 N 9.14 (0.360) 384 3.9 M 4 J 16.5 (0.650) 167 82 K 6 N 12.2 (0.480)
355 120 K 6 J 9.14 (0.360) 168 82 M 6 N 12.2 (0.480)
137 4.7 K 3 N 6.10 (0.240) 415 82 K 6 J 12.2 (0.480)
356 120 M 6 J 9.14 (0.360)
138 4.7 M 3 N 6.10 (0.240) 416 82 M 6 J 12.2 (0.480)
109 150 K 6 N 12.2 (0.480) 385 4.7 K 3 J 6.10 (0.240)
110 150 M 6 N 12.2 (0.480) 386 4.7 M 3 J 6.10 (0.240) 169 100 K 6 N 16.5 (0.650)
357 150 K 6 J 12.2 (0.480) 139 5.6 K 3 N 6.10 (0.240) 170 100 M 6 N 16.5 (0.650)
140 5.6 M 3 N 6.10 (0.240) 417 100 K 6 J 16.5 (0.650)
358 150 M 6 J 12.2 (0.480)
387 5.6 K 3 J 6.10 (0.240) 418 100 M 6 J 16.5 (0.650)
111 180 K 6 N 16.5 (0.650) 388 5.6 M 3 J 6.10 (0.240) 171 120 K 6 N 16.5 (0.650)
112 180 M 6 N 16.5 (0.650) 172 120 M 6 N 16.5 (0.650)
359 180 K 6 J 16.5 (0.650) 141 6.8 K 3 N 9.14 (0.360) 419 120 K 6 J 16.5 (0.650)
360 180 M 6 J 16.5 (0.650) 142 6.8 M 3 N 9.14 (0.360) 420 120 M 6 J 16.5 (0.650)
389 6.8 K 3 J 9.14 (0.360)
390 6.8 M 3 J 9.14 (0.360)
143 8.2 K 3 N 9.14 (0.360)
144 8.2 M 3 N 9.14 (0.360)
391 8.2 K 3 J 9.14 (0.360)
392 8.2 M 3 J 9.14 (0.360)

23
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles DSCC Dwg. #87106 (X7R)
Electrical characteristics
DSCC Cap. Max. A DSCC Cap. Max. A
Dwg. Value Cap. Case Lead Dimension Dwg. Value Cap. Case Lead Dimension
87106- (μF) Tol. Code Style mm (inches) 87106- (μF) Tol. Code Style mm (inches)
500V 500V
173 .15 K 5 N 3.05 (0.120) 201 3.3 K 3 N 9.14 (0.360)
174 .15 M 5 N 3.05 (0.120) 202 3.3 M 3 N 9.14 (0.360)
421 .15 K 5 J 3.05 (0.120) 453 3.3 K 3 J 9.14 (0.360)
422 .15 M 5 J 3.05 (0.120) 454 3.3 M 3 J 9.14 (0.360)
203 3.9 K 3 N 9.14 (0.360)
175 .18 K 5 N 6.10 (0.240) 204 3.9 M 3 N 9.14 (0.360)
176 .18 M 5 N 6.10 (0.240) 455 3.9 K 3 J 9.14 (0.360)
423 .18 K 5 J 6.10 (0.240) 456 3.9 M 3 J 9.14 (0.360)
424 .18 M 5 J 6.10 (0.240)
177 .22 K 5 N 6.10 (0.240) 205 4.7 K 3 N 12.2 (0.480)
178 .22 M 5 N 6.10 (0.240) 206 4.7 M 3 N 12.2 (0.480)
425 .22 K 5 J 6.10 (0.240) 457 4.7 K 3 J 12.2 (0.480)
426 .22 M 5 J 6.10 (0.240) 458 4.7 M 3 J 12.2 (0.480)
179 .27 K 5 N 6.10 (0.240)
180 .27 M 5 N 6.10 (0.240) 207 5.6 K 3 N 16.5 (0.650)
427 .27 K 5 J 6.10 (0.240) 208 5.6 M 3 N 16.5 (0.650)
428 .27 M 5 J 6.10 (0.240) 459 5.6 K 3 J 16.5 (0.650)
460 5.6 M 3 J 16.5 (0.650)
181 .33 K 5 N 9.14 (0.360)
182 .33 M 5 N 9.14 (0.360) 235 6.8 K 1 N 12.2 (0.480)
429 .33 K 5 J 9.14 (0.360) 236 6.8 M 1 N 12.2 (0.480)
430 .33 M 5 J 9.14 (0.360) 461 6.8 K 1 J 12.2 (0.480)
183 .39 K 5 N 9.14 (0.360) 462 6.8 M 1 J 12.2 (0.480)
184 .39 M 5 N 9.14 (0.360) 209 8.2 K 1 N 12.2 (0.480)
431 .39 K 5 J 9.14 (0.360) 210 8.2 M 1 N 12.2 (0.480)
432 .39 M 5 J 9.14 (0.360) 463 8.2 K 1 J 12.2 (0.480)
185 .47 K 5 N 9.14 (0.360) 464 8.2 M 1 J 12.2 (0.480)
186 .47 M 5 N 9.14 (0.360) 211 10 K 1 N 12.2 (0.480)
433 .47 K 5 J 9.14 (0.360) 212 10 M 1 N 12.2 (0.480)
434 .47 M 5 J 9.14 (0.360) 465 10 K 1 J 12.2 (0.480)
466 10 M 1 J 12.2 (0.480)
187 .56 K 5 N 12.2 (0.480)
188 .56 M 5 N 12.2 (0.480) 213 12 K 1 N 16.5 (0.650)
435 .56 K 5 J 12.2 (0.480) 214 12 M 1 N 16.5 (0.650)
436 .56 M 5 J 12.2 (0.480) 467 12 K 1 J 16.5 (0.650)
468 12 M 1 J 16.5 (0.650)
189 .68 K 5 N 16.5 (0.650) 237 15 K 2 N 16.5 (0.650)
190 .68 M 5 N 16.5 (0.650) 238 15 M 2 N 16.5 (0.650)
437 .68 K 5 J 16.5 (0.650) 469 15 K 2 J 16.5 (0.650)
438 .68 M 5 J 16.5 (0.650) 470 15 M 2 J 16.5 (0.650)
231 .82 K 4 N 9.14 (0.360) 215 18 K 2 N 16.5 (0.650)
232 .82 M 4 N 9.14 (0.360) 216 18 M 2 N 16.5 (0.650)
439 .82 K 4 J 9.14 (0.360) 471 18 K 2 J 16.5 (0.650)
440 .82 M 4 J 9.14 (0.360) 472 18 M 2 J 16.5 (0.650)
191 1.0 K 4 N 9.14 (0.360)
192 1.0 M 4 N 9.14 (0.360) 239 22 K 6 N 9.14 (0.360)
441 1.0 K 4 J 9.14 (0.360) 240 22 M 6 N 9.14 (0.360)
442 1.0 M 4 J 9.14 (0.360) 473 22 K 6 J 9.14 (0.360)
193 1.2 K 4 N 9.14 (0.360) 474 22 M 6 J 9.14 (0.360)
194 1.2 M 4 N 9.14 (0.360) 217 27 K 6 N 9.14 (0.360)
443 1.2 K 4 J 9.14 (0.360) 218 27 M 6 N 9.14 (0.360)
444 1.2 M 4 J 9.14 (0.360) 475 27 K 6 J 9.14 (0.360)
476 27 M 6 J 9.14 (0.360)
195 1.5 K 4 N 12.2 (0.480)
196 1.5 M 4 N 12.2 (0.480) 219 33 K 6 N 12.2 (0.480)
445 1.5 K 4 J 12.2 (0.480) 220 33 M 6 N 12.2 (0.480)
446 1.5 M 4 J 12.2 (0.480) 477 33 K 6 J 12.2 (0.480)
478 33 M 6 J 12.2 (0.480)
197 1.8 K 4 N 16.5 (0.650)
198 1.8 M 4 N 16.5 (0.650) 221 39 K 6 N 16.5 (0.650)
447 1.8 K 4 J 16.5 (0.650) 222 39 M 6 N 16.5 (0.650)
448 1.8 M 4 J 16.5 (0.650) 479 39 K 6 J 16.5 (0.650)
480 39 M 6 J 16.5 (0.650)
233 2.2 K 3 N 6.10 (0.240)
234 2.2 M 3 N 6.10 (0.240)
449 2.2 K 3 J 6.10 (0.240)
450 2.2 M 3 J 6.10 (0.240)
199 2.7 K 3 N 9.14 (0.360)
200 2.7 M 3 N 9.14 (0.360)
451 2.7 K 3 J 9.14 (0.360)
452 2.7 M 3 J 9.14 (0.360)

24
SMPS Stacked MLC Capacitors
(SM Style) SM Military Styles DSCC Dwg. #88011 (C0G)
CG (C0G) Electrical characteristics per MIL-C-20
DSCC Cap. Max. A DSCC Cap. Max. A DSCC Cap. Max. A
Dwg. Value Cap. Case Lead Dimension Dwg. Value Cap. Case Lead Dimension Dwg. Value Cap. Case Lead Dimension
88011- (μF) Tol. Code Style mm (inches) 88011- (μF) Tol. Code Style mm (inches) 88011- (μF) Tol. Code Style mm (inches)
50V 100V (continued) 200V (continued)
001* .056 J 5 N 3.05 (0.120) 080* .27 K 4 N 9.14 (0.360) 159* .82 J 3 N 16.5 (0.650)
002* .056 K 5 N 3.05 (0.120) 081* .33 J 4 N 12.2 (0.480) 160* .82 K 3 N 16.5 (0.650)
003* .068 J 5 N 6.10 (0.240) 082* .33 K 4 N 12.2 (0.480) 161* 1.0 J 3 N 16.5 (0.650)
004* .068 K 5 N 6.10 (0.240) 083* .39 J 4 N 12.2 (0.480) 162* 1.0 K 3 N 16.5 (0.650)
005* .082 J 5 N 6.10 (0.240) 084* .39 K 4 N 12.2 (0.480) 163* 1.2 J 1 N 12.2 (0.480)
006* .082 K 5 N 6.10 (0.240) 085* .47 J 4 N 16.5 (0.650) 164* 1.2 K 1 N 12.2 (0.480)
007* .10 J 5 N 6.10 (0.240) 086* .47 K 4 N 16.5 (0.650) 165* 1.5 J 1 N 12.2 (0.480)
008* .10 K 5 N 6.10 (0.240) 087* .56 J 4 N 16.5 (0.650) 166* 1.5 K 1 N 12.2 (0.480)
009* .12 J 5 N 9.14 (0.360) 088* .56 K 4 N 16.5 (0.650) 167* 1.8 J 1 N 16.5 (0.650)
010* .12 K 5 N 9.14 (0.360) 089* .68 J 3 N 6.10 (0.240) 168* 1.8 K 1 N 16.5 (0.650)
011* .15 J 5 N 9.14 (0.360) 090* .68 K 3 N 6.10 (0.240) 169* 2.2 J 2 N 12.2 (0.480)
012* .15 K 5 N 9.14 (0.360) 091* .82 J 3 N 9.14 (0.360) 170* 2.2 K 2 N 12.2 (0.480)
013* .18 J 5 N 12.2 (0.480) 092* .82 K 3 N 9.14 (0.360) 171* 2.7 J 2 N 16.5 (0.650)
014* .18 K 5 N 12.2 (0.480) 093* 1.0 J 3 N 9.14 (0.360) 172* 2.7 K 2 N 16.5 (0.650)
015* .22 J 5 N 12.2 (0.480) 094* 1.0 K 3 N 9.14 (0.360) 173* 3.3 J 6 N 9.14 (0.360)
016* .22 K 5 N 12.2 (0.480) 095* 1.2 J 3 N 12.2 (0.480) 174* 3.3 K 6 N 9.14 (0.360)
017* .27 J 5 N 16.5 (0.650) 096* 1.2 K 3 N 12.2 (0.480) 175* 3.9 J 6 N 9.14 (0.360)
018* .27 K 5 N 16.5 (0.650) 097* 1.5 J 3 N 12.2 (0.480) 176* 3.9 K 6 N 9.14 (0.360)
019* .33 J 4 N 9.14 (0.360) 098* 1.5 K 3 N 12.2 (0.480) 177* 4.7 J 6 N 12.2 (0.480)
020* .33 K 4 N 9.14 (0.360) 099* 1.8 J 3 N 16.5 (0.650) 178* 4.7 K 6 N 12.2 (0.480)
021* .39 J 4 N 12.2 (0.480) 100* 1.8 K 3 N 16.5 (0.650) 179* 5.6 J 6 N 16.5 (0.650)
022* .39 K 4 N 12.2 (0.480) 101* 2.2 J 1 N 12.2 (0.480) 180* 5.6 K 6 N 16.5 (0.650)
023* .47 J 4 N 12.2 (0.480) 102* 2.2 K 1 N 12.2 (0.480)
024* .47 K 4 N 12.2 (0.480) 103* 2.7 J 1 N 12.2 (0.480) 500V
025* .56 J 4 N 16.5 (0.650) 104* 2.7 K 1 N 12.2 (0.480) 181* .010 J 5 N 3.05 (0.120)
026* .56 K 4 N 16.5 (0.650) 105* 3.3 J 1 N 16.5 (0.650) 182* .010 K 5 N 3.05 (0.120)
027* .68 J 3 N 6.10 (0.240) 106* 3.3 K 1 N 16.5 (0.650) 183* .012 J 5 N 6.10 (0.240)
028* .68 K 3 N 6.10 (0.240) 107* 3.9 J 2 N 12.2 (0.480) 184* .012 K 5 N 6.10 (0.240)
029* .82 J 3 N 6.10 (0.240) 108* 3.9 K 2 N 12.2 (0.480) 185* .015 J 5 N 6.10 (0.240)
030* .82 K 3 N 6.10 (0.240) 109* 4.7 J 2 N 16.5 (0.650) 186* .015 K 5 N 6.10 (0.240)
031* 1.0 J 3 N 9.14 (0.360) 110* 4.7 K 2 N 16.5 (0.650) 187* .018 J 5 N 6.10 (0.240)
032* 1.0 K 3 N 9.14 (0.360) 111* 5.6 J 6 N 9.14 (0.360) 188* .018 K 5 N 6.10 (0.240)
033* 1.2 J 3 N 9.14 (0.360) 112* 5.6 K 6 N 9.14 (0.360) 189* .022 J 5 N 9.14 (0.360)
034* 1.2 K 3 N 9.14 (0.360) 113* 6.8 J 6 N 9.14 (0.360) 190* .022 K 5 N 9.14 (0.360)
035* 1.5 J 3 N 12.2 (0.480) 114* 6.8 K 6 N 9.14 (0.360) 191* .027 J 5 N 9.14 (0.360)
036* 1.5 K 3 N 12.2 (0.480) 115* 8.2 J 6 N 12.2 (0.480) 192* .027 K 5 N 9.14 (0.360)
037* 1.8 J 3 N 12.2 (0.480) 116* 8.2 K 6 N 12.2 (0.480) 193* .033 J 5 N 12.2 (0.480)
038* 1.8 K 3 N 12.2 (0.480) 117* 10 J 6 N 16.5 (0.650) 194* .033 K 5 N 12.2 (0.480)
039* 2.2 J 3 N 16.5 (0.650) 118* 10 K 6 N 16.5 (0.650) 195* .039 J 5 N 12.2 (0.480)
040* 2.2 K 3 N 16.5 (0.650) 119* 12 J 6 N 16.5 (0.650) 196* .039 K 5 N 12.2 (0.480)
041* 2.7 J 1 N 9.14 (0.360) 120* 12 K 6 N 16.5 (0.650) 197* .047 J 5 N 16.5 (0.650)
042* 2.7 K 1 N 9.14 (0.360) 198* .047 K 5 N 16.5 (0.650)
043* 3.3 J 1 N 12.2 (0.480) 200V 199* .056 J 4 N 9.14 (0.360)
044* 3.3 K 1 N 12.2 (0.480) 121* .022 J 5 N 3.05 (0.120) 200* .056 K 4 N 9.14 (0.360)
045* 3.9 J 1 N 12.2 (0.480) 122* .022 K 5 N 3.05 (0.120) 201* .068 J 4 N 9.14 (0.360)
046* 3.9 K 1 N 12.2 (0.480) 123* .027 J 5 N 6.10 (0.240) 202* .068 K 4 N 9.14 (0.360)
047* 4.7 J 1 N 16.5 (0.650) 124* .027 K 5 N 6.10 (0.240) 203* .082 J 4 N 12.2 (0.480)
048* 4.7 K 1 N 16.5 (0.650) 125* .033 J 5 N 6.10 (0.240) 204* .082 K 4 N 12.2 (0.480)
049* 5.6 J 2 N 16.5 (0.650) 126* .033 K 5 N 6.10 (0.240) 205* .10 J 4 N 12.2 (0.480)
050* 5.6 K 2 N 16.5 (0.650) 127* .039 J 5 N 6.10 (0.240) 206* .10 K 4 N 12.2 (0.480)
051* 6.8 J 6 N 9.14 (0.360) 128* .039 K 5 N 6.10 (0.240) 207* .12 J 4 N 16.5 (0.650)
052* 6.8 K 6 N 9.14 (0.360) 129* .047 J 5 N 9.14 (0.360) 208* .12 K 4 N 16.5 (0.650)
053* 8.2 J 6 N 9.14 (0.360) 130* .047 K 5 N 9.14 (0.360) 209* .15 J 3 N 6.10 (0.240)
054* 8.2 K 6 N 9.14 (0.360) 131* .056 J 5 N 9.14 (0.360) 210* .15 K 3 N 6.10 (0.240)
055* 10 J 6 N 12.2 (0.480) 132* .056 K 5 N 9.14 (0.360) 211* .18 J 3 N 6.10 (0.240)
056* 10 K 6 N 12.2 (0.480) 133* .068 J 5 N 12.2 (0.480) 212* .18 K 3 N 6.10 (0.240)
057* 12 J 6 N 12.2 (0.480) 134* .068 K 5 N 12.2 (0.480) 213* .22 J 3 N 9.14 (0.360)
058* 12 K 6 N 12.2 (0.480) 135* .082 J 5 N 12.2 (0.480) 214* .22 K 3 N 9.14 (0.360)
059* 15 J 6 N 16.5 (0.650) 136* .082 K 5 N 12.2 (0.480) 215* .27 J 3 N 9.14 (0.360)
060* 15 K 6 N 16.5 (0.650) 137* .10 J 5 N 16.5 (0.650) 216* .27 K 3 N 9.14 (0.360)
138* .10 K 5 N 16.5 (0.650) 217* .33 J 3 N 12.2 (0.480)
100V 139* .12 J 4 N 9.14 (0.360) 218* .33 K 3 N 12.2 (0.480)
061* .047 J 5 N 6.10 (0.240) 140* .12 K 4 N 9.14 (0.360) 219* .39 J 3 N 16.5 (0.650)
062* .047 K 5 N 6.10 (0.240) 141* .15 J 4 N 9.14 (0.360) 220* .39 K 3 N 16.5 (0.650)
063* .056 J 5 N 6.10 (0.240) 142* .15 K 4 N 9.14 (0.360) 221* .47 J 1 N 9.14 (0.360)
064* .056 K 5 N 6.10 (0.240) 143* .18 J 4 N 12.2 (0.480) 222* .47 K 1 N 9.14 (0.360)
065* .068 J 5 N 6.10 (0.240) 144* .18 K 4 N 12.2 (0.480) 223* .56 J 1 N 12.2 (0.480)
066* .068 K 5 N 6.10 (0.240) 145* .22 J 4 N 12.2 (0.480) 224* .56 K 1 N 12.2 (0.480)
067* .082 J 5 N 6.10 (0.240) 146* .22 K 4 N 12.2 (0.480) 225* .68 J 1 N 12.2 (0.480)
068* .082 K 5 N 6.10 (0.240) 147* .27 J 4 N 16.5 (0.650) 226* .68 K 1 N 12.2 (0.480)
069* .10 J 5 N 9.14 (0.360) 148* .27 K 4 N 16.5 (0.650) 227* .82 J 1 N 16.5 (0.650)
070* .10 K 5 N 9.14 (0.360) 149* .33 J 3 N 6.10 (0.240) 228* .82 K 1 N 16.5 (0.650)
071* .12 J 5 N 9.14 (0.360) 150* .33 K 3 N 6.10 (0.240) 229* 1.0 J 2 N 12.2 (0.480)
072* .12 K 5 N 9.14 (0.360) 151* .39 J 3 N 6.10 (0.240) 230* 1.0 K 2 N 12.2 (0.480)
073* .15 J 5 N 12.2 (0.480) 152* .39 K 3 N 6.10 (0.240) 231* 1.2 J 2 N 16.5 (0.650)
074* .15 K 5 N 12.2 (0.480) 153* .47 J 3 N 9.14 (0.360) 232* 1.2 K 2 N 16.5 (0.650)
075* .18 J 5 N 12.2 (0.480) 154* .47 K 3 N 9.14 (0.360) 233* 1.5 J 6 N 9.14 (0.360)
076* .18 K 5 N 12.2 (0.480) 155* .56 J 3 N 9.14 (0.360) 234* 1.5 K 6 N 9.14 (0.360)
077* .22 J 5 N 16.5 (0.650) 156* .56 K 3 N 9.14 (0.360) 235* 1.8 J 6 N 12.2 (0.480)
078* .22 K 5 N 16.5 (0.650) 157* .68 J 3 N 12.2 (0.480) 236* 1.8 K 6 N 12.2 (0.480)
079* .27 J 4 N 9.14 (0.360) 158* .68 K 3 N 12.2 (0.480) 237* 2.2 J 6 N 16.5 (0.650)
238* 2.2 K 6 N 16.5 (0.650)
*Add J or L for applicable formed leads

25
SMPS Stacked MLC Capacitors
(SM9 Style) Technical Information on SMPS Capacitors
ELECTRICAL SPECIFICATIONS
Temperature Coefficient Dielectric Withstanding Voltage 25°C (Flash Test)
C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° to +125°C C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max
X7R: C Temperature Coefficient - ±15%, -55° to +125°C charging current. (500 Volt units @ 750 VDC)
Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C Z5U: 200% rated voltage for 5 seconds with 50 mA max charging
current.
Capacitance Test (MIL-STD-202 Method 305)
C0G: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Life Test (1000 hrs)
X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz C0G and X7R: 200% rated voltage at +125°C. (500 Volt units @
Z5U: 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz 600 VDC)
Z5U: 150% rated voltage at +85°C
Dissipation Factor 25°C
C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Moisture Resistance (MIL-STD-202 Method 106)
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz C0G, X7R, Z5U: Ten cycles with no voltage applied.
Z5U: 3.0% Max @ 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz Thermal Shock (MIL-STD-202 Method 107, Condition A)
Insulation Resistance 25°C (MIL-STD-202 Method 302) Immersion Cycling (MIL-STD-202 Method 104, Condition B)
C0G and X7R: 100K MΩ or 1000 MΩ-μF, whichever is less.
Z5U: 10K MΩ or 1000 MΩ-μF, whichever is less. Resistance To Solder Heat (MIL-STD-202, Method 210,
Condition B, for 20 seconds)
Insulation Resistance 125°C (MIL-STD-202 Method 302)
C0G and X7R: 10K MΩ or 100 MΩ-μF, whichever is less.
Z5U: 1K MΩ or 100 MΩ-μF, whichever is less.

Typical ESR Performance (mΩ)


Aluminum Low ESR Solid Aluminum MLCC MLCC
Electrolytic Solid Tantalum Electrolytic SMPS SMPS
100μF/50V 100μF/10V 100μF/16V 100μF/50V 4.7μF/50V
ESR @ 10KHz 300 72 29 3 66
ESR @ 50KHz 285 67 22 2 23
ESR @ 100KHz 280 62 20 2.5 15
ESR @ 500KHz 265 56 18 4 8
ESR @ 1MHz 265 56 17 7 7.5
ESR @ 5MHz 335 72 17 12.5 8
ESR @ 10MHz 560 91 22 20 14

HOW TO ORDER AVX Styles: SM91, SM92, SM93, SM94, SM95, SM96
SM9 1 7 C 106 M A N 660

AVX Style Size Voltage Temperature Capacitance Capacitance Test Termination Height
Size See 50V = 5 Coefficient Code Tolerance Level N = Straight Lead See table
SM9 = Plastic dimen- 100V = 1 C0G = A (2 significant C0G: J = ±5% A = Standard J = Leads formed on
Case sions 200V = 2 X7R = C digits + no. K = ±10% B = Hi-Rel* in page 28 for
chart 500V = 7 Z5U = E of zeros) M = ±20% L = Leads formed max cap.
10 pF = 100 X7R: K = ±10% out per
100 pF = 101 M = ±20% height
1,000 pF = 102 Z = +80, -20%
22,000 pF = 223 Z5U: Z = +80, -20%
220,000 pF = 224 P = GMV (+100, -0%)
1 μF = 105
10 μF = 106
100 μF = 107
Note: Capacitors with X7R and Z5U dielectrics are not intended for applications *Hi-Rel screening for C0G and X7R only. Screening consists of 100% Group A
across AC supply mains or AC line filtering with polarity reversal. Contact plant (B Level), Subgroup 1 per MIL-PRF-49470.
for recommendations.

26
SMPS Stacked MLC Capacitors
Encapsulated in DAP (Diallyl Phthalate) Case
(SM9 Style)
D E

Maximum Height 0.381 (0.015)


(see table) ±0.127 (0.005)

6.35 (0.250) (MIN.)


4.445 (0.175) MAX
0.254 (0.010) TYP.
1.016 (0.040) MIN
0.508 (0.020) TYP. C
2.54 (0.100)
CENTERS TYP.
“N” STYLE LEADS
D E

Maximum Height 0.381 (0.015) 0.254 (0.010)


(see table) ±0.127 (0.005) RAD. TYP.

1.778 (0.070)
±0.254 (0.010)
0.254 (0.010)
TYP.
0.508 (0.020) TYP. 1.905 (0.075)
±0.635 (0.025) TYP.
4.445 (0.175) MAX
1.016 (0.040) MIN
2.54 (0.100) C
CENTERS TYP.

“J” STYLE LEADS

D E

Maximum Height 0.381 (0.015) 0.254 (0.010)


(see table) ±0.127 (0.005) RAD. TYP.

1.778 (0.070)
±0.254 (0.010)
0.254 (0.010)
TYP.
0.508 (0.020)TYP. 1.905 (0.075)
±0.635 (0.025) TYP.
4.445 (0.175) MAX
1.016 (0.040) MIN
2.54 (0.100) C
CENTERS TYP.

“L” STYLE LEADS

DIMENSIONS millimeters (inches)


C D E No. of Leads
Case Code ±0.635 (0.025) ±0.254 (0.010) +0.000 (0.000) -0.254 (0.010) per side*
SM91 11.4 (0.450) 54.7 (2.155) 14.7 (0.580) 20
SM92 20.3 (0.800) 41.0 (1.615) 24.1 (0.950) 15
SM93 11.4 (0.450) 29.3 (1.155) 14.7 (0.580) 10
SM94 10.2 (0.400) 12.3 (0.485) 12.3 (0.485) 4
SM95 6.35 (0.250) 9.02 (0.355) 9.02 (0.355) 3
SM96 31.8 (1.250) 54.7 (2.155) 36.3 (1.430) 20
*Leads styles N, J or L available

27
SMPS Stacked MLC Capacitors
Encapsulated in DAP (Diallyl Phthalate) Case
(SM9 Style)

Max Capacitance (μF) Available Versus Style with Height of 0.270" - 6.86mm
SM91 _ _ _ _ _ _ AN270 SM92 _ _ _ _ _ _ AN270 SM93 _ _ _ _ _ _ AN270 SM94 _ _ _ _ _ _ AN270 SM95 _ _ _ _ _ _ AN270 SM96 _ _ _ _ _ _ AN270
AVX
STYLE 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V

C0G 1.0 .70 .40 .18 1.2 1.0 .60 .26 .47 .40 .20 .09 .16 .13 .07 .02 .05 .04 .02 .01 3.2 2.4 1.3 .50
X7R 27 12 7.0 2.6 41 18 11 4.0 18 6.0 3.6 1.3 7.5 1.8 1.1 .40 2.8 .68 .40 .16 80 40 24 9.4
Z5U 84 32 12 – – 110 46 34 –– 40 15 6.0 – – 12 4.6 3.0 – – 4.6 1.8 .72 – – 260 140 92 ––

Max Capacitance (μF) Available Versus Style with Height of 0.390" - 9.91mm
SM91 _ _ _ _ _ _ AN390 SM92 _ _ _ _ _ _ AN390 SM93 _ _ _ _ _ _ AN390 SM94 _ _ _ _ _ _ AN390 SM95 _ _ _ _ _ _ AN390 SM96 _ _ _ _ _ _ AN390
AVX
STYLE 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V

C0G 2.0 1.4 .80 .36 2.4 2.0 1.2 .52 1.0 .80 .40 .18 .32 .26 .14 .05 .10 .08 .05 .02 6.4 4.8 2.6 1.0
X7R 54 24 14 5.2 82 36 22 8.0 36 12 7.2 2.6 15 3.6 2.2 .80 5.6 1.3 .80 .32 160 80 48 18
Z5U 160 64 24 – – 230 92 68 –– 80 30 12 –– 24 9.2 6.0 – – 9.2 3.6 1.4 – – 520 280 180 – –

Max Capacitance (μF) Available Versus Style with Height of 0.530" - 13.46mm
SM91 _ _ _ _ _ _ AN530 SM92 _ _ _ _ _ _ AN530 SM93 _ _ _ _ _ _ AN530 SM94 _ _ _ _ _ _ AN530 SM95 _ _ _ _ _ _ AN530 SM96 _ _ _ _ _ _ AN530
AVX
STYLE 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V

C0G 3.0 2.1 1.2 .54 3.6 3.0 1.8 .78 1.5 1.2 .60 .27 .48 .39 .21 .07 .15 .12 .07 .03 9.6 7.2 3.9 1.5
X7R 82 36 21 7.8 120 54 33 12 54 18 10 3.9 22 5.4 3.3 1.2 8.2 2.0 1.2 .48 240 120 72 28
Z5U 250 96 36 – – 350 130 100 – – 120 45 18 –– 36 13 9.0 – – 13 5.4 2.1 – – 780 430 270 – –

Max Capacitance (μF) Available Versus Style with Height of 0.660" - 16.76mm
SM91 _ _ _ _ _ _ AN660 SM92 _ _ _ _ _ _ AN660 SM93 _ _ _ _ _ _ AN660 SM94 _ _ _ _ _ _ AN660 SM95 _ _ _ _ _ _ AN660 SM96 _ _ _ _ _ _ AN660
AVX
STYLE 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V

C0G 4.0 2.8 1.6 .72 4.8 4.0 2.4 1.0 2.0 1.6 .80 .36 .64 .52 .28 .10 .20 .16 .10 .04 12 9.6 5.2 2.0
X7R 110 48 28 10 160 72 44 16 72 24 14 5.2 30 7.2 4.4 1.6 10 2.7 1.6 .64 320 160 96 37
Z5U 330 120 48 – – 470 180 130 – – 160 60 24 –– 48 18 12 –– 18 7.2 2.8 – – 1000 570 360 – –

Max Capacitance (μF) Available Versus Style with Height of 0.800" - 20.3mm
SM91 _ _ _ _ _ _ AN800 SM92 _ _ _ _ _ _ AN800 SM93 _ _ _ _ _ _ AN800 SM94 _ _ _ _ _ _ AN800 SM95 _ _ _ _ _ _ AN800 SM96 _ _ _ _ _ _ AN800
AVX
STYLE 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V 50V 100V 200V 500V
C0G 5.0 3.5 2.0 .90 6.0 5.0 3.0 1.3 2.5 2.0 1.0 .47 .80 .65 .35 .12 .25 .20 .12 .05 16 12 6.5 2.5
X7R 130 60 35 13 200 90 55 20 90 30 18 6.5 36 9.0 5.5 2.0 12 3.4 2.0 .80 400 200 120 47
Z5U 420 160 60 – – 590 230 170 – – 200 75 30 –– 60 23 15 –– 23 9.0 3.6 – – 1300 720 460 – –

28
SMPS Stacked MLC Capacitors
SMX Style for High Temperature Applications up to 200ºC
SMX-style, stacked Switch Mode Power Supply Capacitors (SMPS) utilizing
Multilayer Ceramic (MLCC) construction are ideally suited for high temperature
applications up to 200ºC. This product is intended for downhole oil exploration,
including logging while drilling, geophysical probes, as well as space and aerospace
electronics. The high temperature solder utilized in the construction of SMX-style
parts assures reliable operation in harsh environments. The wide product offering
provides designers a solution for high capacitance value and high voltage capaci-
tors rated at 200ºC. The SMX-style capacitors are ideally suited for applications as
DC filters in high power, high frequency motor drives, high pulsed-current circuitry,
as well as low power electronics.
SMX-style, SMPS capacitors are characterized with excellent performance in
comparison to wet tantalum products. The main benefits of SMX-product over wet
tantalum capacitors include:
• Much lower ESR and lower losses
• Excellent capacitance retention with frequency
• Excellent high frequency performance
• Low DC leakage current
• Much higher current handling capabilities

Typical Extended Temperature TCC Typical Extended Temperature TCC


Characterization of C0G, SMPS Capacitors Characterization of X7R/X9U, SMPS Capacitors
Test conditions: 1 Vrms, 1 kHz, 0 VDC bias Test conditions: 1 Vrms, 1 kHz, 0 VDC bias
1.0 20
Percentage Capacitance

0.8 0

0.6
-20
Percentage Capacitance

Change

0.4
-40
0.2
Change

-60
0.0
-80
-0.2
-100
-0.4
-75 -50 -25 0 25 50 75 100 125 150 175 200
-0.6 Temperature (ºC)
-0.8

-1.0
-75 -50 -25 0 25 50 75 100 125 150 175 200

Temperature (ºC)

Typical Extended Temperature IR Characterization of Typical Extended Temperature IR Characterization of


C0G, SMPS Capacitors X7R/X9U, SMPS Capacitors
10000 10000
RC Product (⍀*F)

RC Product (⍀*F)

1000
1000

100
100

10

10
120 130 140 150 160 170 180 190 200 1
120 130 140 150 160 170 180 190 200
Temperature (ºC)
Temperature (ºC)

29
SMPS Stacked MLC Capacitors
SMX Style for High Temperature Applications up to 200ºC
ELECTRICAL SPECIFICATIONS
Temperature Coefficient
C0G: A Temperature Coefficient 0 ±30 ppm/°C, -55° to +200°C
X7R/X9U: C Temperature Coefficient ±15%, -55°C to +125°C
+15% - 56%, -55ºC to +200°C
Capacitance Test (MIL-STD-202 Method 305)
25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Dissipation Factor 25°C
C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
X7R/X9U: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz
Insulation Resistance 25°C (MIL-STD-202 Method 302)
100K MΩ or 1000 MΩ-μF, whichever is less.
Insulation Resistance 125°C (MIL-STD-202 Method 302)
10K MΩ or 100 MΩ-μF, whichever is less.
Insulation Resistance 200°C (MIL-STD-202 Method 302)
100 MΩ or 1 MΩ -μF, whichever is less.
Dielectric Withstanding Voltage 25°C (Flash Test)
250% rated voltage for 5 seconds with 50 mA max
charging current. (500 Volt units @ 750 VDC)
Moisture Resistance (MIL-STD-202 Method 106)
Ten cycles with no voltage applied.
Thermal Shock (MIL-STD-202 Method 107, Condition A)
Immersion Cycling (MIL-STD-202 Method 104, Condition B)
Resistance To Solder Heat (MIL-STD-202, Method 210,
Condition B, for 20 seconds)

HOW TO ORDER AVX Styles: SMX1, SMX2, SMX3, SMX4, SMX5, SMX6
SMX 1 7 C 106 M A N 650
AVX Style Size Voltage Temperature Capacitance Capacitance Test Level Termination Height
SMX = Uncoated See 25 = 3 Coefficient Code Tolerance A = Standard N = Straight Lead Max
Dimensions 50V = 5 C0G = A (2 significant digits C0G: J = Leads formed in Dimension “A”
chart 100V = 1 X7R/X9U = C + number of zeros) J = ±5% L = Leads formed out 120 = 0.120"
200V = 2 10 pF = 100 K = ±10% P = P Style Leads 240 = 0.240"
500V = 7 100 pF = 101 M = ±20%
1,000 pF = 102 Z = Z Style Leads 360 = 0.360"
X7R: 480 = 0.480"
22,000 pF = 223
K = ±10% 650 = 0.650"
220,000 pF = 224
M = ±20%
1μF = 105
Z = +80%, -20%
10 μF = 106
100 μF = 107

Note: Capacitors with X7R/X9U dielectric is not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.

30
SMPS Stacked MLC Capacitors
SMX Style for High Temperature Applications up to 200ºC
CHIP SEPARATION CHIP SEPARATION
0.254 (0.010) TYP. 0.254 (0.010) TYP.
CAPACITOR
D E E
1.651 ± 0.254
(0.065 ± 0.010)
4.191 ± 0.254
1.397 (0.055) (0.165 ± 0.010)
A R 0.508 2.540 ± 0.254
B
±0.254 (0.010) B (0.020) (0.100 ± 0.010)
3 PLACES
DETAIL A

6.350 (0.250) MIN


0.254
6.35 0.508 (0.020) TYP. (0.010) 0.254
(0.250) TYP. (0.010)
2.54 (0.100) TYP. 1.016 ± 0.254
MIN. C C TYP. (0.040 ± 0.010)
2.54 (0.100) MAX.
0.635 (0.025) MIN.
DETAIL A
“N” STYLE LEADS “P” STYLE LEADS

CHIP SEPARATION CHIP SEPARATION


0.254 (0.010) TYP. 0.254 (0.010) TYP.

D E E
0.254 (0.010)
RAD. (TYP.) 0.254 (0.010)
RAD. (TYP.)
A 1.397 (0.055)
B
±0.254 (0.010)

0.254 (0.010) 0.254 (0.010)


TYP. TYP.
1.778 (0.070) 1.905 (0.075) 1.778 (0.070) 1.905 (0.075)
0.508 (0.020) TYP. ±0.254 (0.010) ±0.635 (0.025) ±0.254 (0.010) ±0.635 (0.025)
C C TYP.
2.54 (0.100) TYP. TYP.
2.54 (0.100) MAX.
0.635 (0.025) MIN.
“J” STYLE LEADS “L” STYLE LEADS

CHIP SEPARATION

(0.110 ± 0.010)
(0.050 ± 0.010)
2.794 ± 0.254
1.270 ± 0.254
0.254 (0.010) TYP.

D E
0.254 (0.010) TYP.

RAD.
0.254
(0.010)
(TYP)
A 1.397 (0.055)
B
±0.254 (0.010)

1.778 ±0.254
(0.070 ± 0.010)
0.508 (0.020) TYP. C
3.048 ± 0.381
2.54 (0.100) TYP. (0.120 ± 0.015)
DETAIL B
2.54 (0.100) MAX.
0.635 (0.025) MIN. DETAIL B
“Z” STYLE LEADS

DIMENSIONS millimeters (inches)


No. of Leads
Style A (max.) B (max.) C ±.635 (±0.025) D ±.635 (±0.025) E (max.) per side
SMX1 11.4 (0.450) 52.1 (2.050) 12.7 (0.500) 20
SMX2 For “N” Style Leads: “A” Dimension Plus 1.651 (0.065) 20.3 (0.800) 38.4 (1.510) 22.1 (0.870) 15
See page 32 for
SMX3 For “J” & “L” Style Leads: “A” Dimension Plus 2.032 (0.080) 11.4 (0.450) 26.7 (1.050) 12.7 (0.500) 10
maximum “A”
SMX4 For “P” Style Leads: “A” Dimension Plus 4.445 (0.175) 10.2 (0.400) 10.2 (0.400) 11.2 (0.440) 4
Dimension
SMX5 For “Z” Style Leads: “A” Dimension Plus 3.048 (0.120) 6.35 (0.250) 6.35 (0.250) 7.62 (0.300) 3
SMX6 31.8 (1.250) 52.1 (2.050) 34.3 (1.350) 20

31
SMPS Stacked MLC Capacitors
SMX Style for High Temperature Applications up to 200ºC

Max Capacitance (μF) Available Versus Style with Height (A) of 0.120" - 3.05mm
AVX SMX1 _ _ _ _ _ _ AN120 SMX2 _ _ _ _ _ _ AN120 SMX3 _ _ _ _ _ _ AN120 SMX4 _ _ _ _ _ _ AN120 SMX5 _ _ _ _ _ _ AN120 SMX6 _ _ _ _ _ _ AN120
STYLE 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V
C0G 1.0 .70 .40 .18 .068 1.2 1.0 .60 .26 .10 .50 .40 .20 .09 .033 .16 .13 .07 .02 .01 .05 .04 .02 .01 .0039 3.2 2.4 1.3 .50 .20
X7R/X9U 22 12 7.0 2.6 1.0 33 18 11 4.0 1.5 11 6.0 3.6 1.3 .50 3.3 1.8 1.1 .40 .15 1.2 .68 .40 .16 .056 68 40 24 9.4 3.3

Max Capacitance (μF) Available Versus Style with Height (A) of 0.240" - 6.10mm
AVX SMX1 _ _ _ _ _ _ AN240 SMX2 _ _ _ _ _ _ AN240 SMX3 _ _ _ _ _ _ AN240 SMX4 _ _ _ _ _ _ AN240 SMX5 _ _ _ _ _ _ AN240 SMX6 _ _ _ _ _ _ AN240
STYLE 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V
C0G 2.0 1.4 .80 .36 .13 2.4 2.0 1.2 .52 .20 1.0 .80 .40 .18 .068 .33 .26 .14 .05 .02 .10 .08 .05 .02 .0078 6.4 4.8 2.6 1.0 .40
X7R/X9U 44 24 14 5.2 2.0 66 36 22 8.0 3.0 22 12 7.2 2.6 1.0 6.6 3.6 2.2 .80 .30 2.4 1.3 .80 .32 .110 130 80 48 18 6.6

Max Capacitance (μF) Available Versus Style with Height (A) of 0.360" - 9.14mm
AVX SMX1 _ _ _ _ _ _ AN360 SMX2 _ _ _ _ _ _ AN360 SMX3 _ _ _ _ _ _ AN360 SMX4 _ _ _ _ _ _ AN360 SMX5 _ _ _ _ _ _ AN360 SMX6 _ _ _ _ _ _ AN360
STYLE 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V
C0G 3.0 2.1 1.2 .54 .22 3.6 3.0 1.8 .78 .30 1.5 1.2 .60 .27 .10 .48 .39 .21 .07 .03 .15 .12 .07 .03 .011 10 7.2 3.9 1.5 .60
X7R/X9U 68 36 21 7.8 3.0 100 54 33 12 4.5 33 18 10 3.9 1.5 10 5.4 3.3 1.2 .47 3.6 2.0 1.2 .48 .160 200 120 72 28 10

Max Capacitance (μF) Available Versus Style with Height (A) of 0.480" - 12.2mm
AVX SMX1 _ _ _ _ _ _ AN480 SMX2 _ _ _ _ _ _ AN480 SMX3 _ _ _ _ _ _ AN480 SMX4 _ _ _ _ _ _ AN480 SMX5 _ _ _ _ _ _ AN480 SMX6 _ _ _ _ _ _ AN480
STYLE 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V
C0G 4.0 2.8 1.6 .72 .27 4.8 4.0 2.2 1.0 .40 2.0 1.6 .80 .36 .130 .64 .52 .28 .10 .04 .20 .16 .10 .04 .015 13 9.6 5.2 2.0 .80
X7R/X9U 88 48 28 10 4.0 130 72 44 16 6.0 44 24 14 5.2 2.0 13 7.2 4.4 1.6 .60 4.8 2.7 1.6 .64 .22 270 160 96 37 13

Max Capacitance (μF) Available Versus Style with Height (A) of 0.650" - 16.5mm
AVX SMX1 _ _ _ _ _ _ AN650 SMX2 _ _ _ _ _ _ AN650 SMX3 _ _ _ _ _ _ AN650 SMX4 _ _ _ _ _ _ AN650 SMX5 _ _ _ _ _ _ AN650 SMX6 _ _ _ _ _ _ AN650
STYLE 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V 25V 50V 100V 200V 500V
C0G 5.0 3.5 2.0 .90 .34 6.0 5.0 3.0 1.3 .50 2.5 2.0 1.0 .45 .160 .82 .65 .35 .12 .05 .25 .20 .12 .05 .019 16 12 6.5 2.5 1.0
X7R/X9U 110 60 35 13 5.0 160 90 55 20 7.5 56 30 18 6.5 2.5 16 9.0 5.5 2.0 .80 6.0 3.4 2.0 .80 .28 340 200 120 47 16

32
SMPS Capacitors Chip Assemblies
CH/CV - Radial, Dual-in-Line,
4 Terminal/SMT ‘J’ & ‘L’ Ranges

10nF to 180 μF BS9100 approved


50V to 500 VDC Low ESR/ESL
-55ºC to +125ºC 1B/C0G and 2C1/X7R Dielectrics
This range allows SMPS engineers to select the best volumetric
solution for input and output filter applications in high reliability designs.
Utilizing advanced multilayer ceramic techniques to minimize ESR/ESL
giving high current handling properties appropriate for filtering,
smoothing and decoupling circuits.

ELECTRICAL SPECIFICATIONS
Temperature Coefficient CECC 30 000, (4.24.1) Dielectric Withstanding Voltage 25°C (Flash Test)
1B/C0G: A Temperature Coefficient - 0 ± 30 ppm/ºC, -55º to +125ºC 1B/C0G & 2C1/X7R: 250% rated voltage for 5 seconds with 50 mA
2C1/X7R: C Temperature Characteristic - ± 15%, -55º to +125ºC max charging current. (500 Volt units @ 150% rated voltage)
Capacitance Test 25ºC Life Test (1000 hrs) CECC 30 000 (4.23)
1B/C0G: Measured at 1 VRMS max at 1KHz (1MHz for 100 pF or less) 1B/C0G & 2C1/X7R: 200% rated voltage at +125ºC.
2C1/X7R: Measured at 1 VRMS max at 1KHz (500 Volt units @ 120% rated voltage)
Dissipation Factor 25°C Damp Heat IEC 68-2-3, 56 days.
1B/C0G: 0.15% max at 1KHz, 1 VRMS max (1MHz for 100 pF or less) Thermal Shock IEC 68-2-14
2C1/X7R: 2.5% max at 1KHz, 1 VRMS max -55ºC to +125ºC, 5 cycles
Insulation Resistance 25°C Resistance to Solder Heat IEC 68-2-20
1B/C0G & 2C1/X7R: 100K megohms or 1000 megohms-μF, whichever
is less Vibration IEC 68-2-6
10Hz - 2000Hz, 0.75mm or 98m/sec2, 6 hrs.
Dielectric Withstanding Voltage 25°C (Flash Test)
1B/C0G & 2C1/X7R: 250% rated voltage for 5 seconds with 50 mA max Bump IEC 68-2-29
charging current. (500 Volt units @ 150% rated voltage) 390m/sec2, 4000 bumps

MARKING
CH and CV 4x, 5x, 81-84
A5C Top line A (AVX). Voltage code, dielectric code.
225K Middle line capacitance code, tolerance code.
xxxxxx Bottom line 6 digit batch code.

Other CH, CV Styles


AVX Top line AVX.
5C Second line voltage code, dielectric code.
156M Third line capacitance code, tolerance code.
xxxxxx Bottom line, 6 digit batch code.

33
SMPS Capacitors (CV Style)
Chip Assemblies
VERTICALLY MOUNTED RADIAL PRODUCT
Part Number format (CVxxxxxxxxxxxA2) DIMENSIONS millimeters (inches)
Typical Part Number CV525C106MA30A2 Lead
Style L H S Dia
(max) (max) (nom)
(nom)
CV41-44 10.6 (0.417) 8.7 (0.342) 8.2 (0.322) 0.7 (0.028)
T Max. L Max.
CV51-54 11.9 (0.468) 10.7 (0.421) 10.2 (0.400) 0.9 (0.035)
CV61-64 16.5 (0.649) 13.6 (0.535) 15.2 (0.600) 0.9 (0.035)
CV71-74 17.8 (0.700) 21.6 (0.850) 15.2 (0.600) 0.9 (0.035)
H Max.
CV76-79 22.7 (0.893) 16.6 (0.653) 21.2* (0.834) 0.9 (0.035)
*Tolerance ± 0.8

25 (0.984) millimeters (inches)


±3 (0.118)
Style T max
Lead Dia.
See Table CV41/51/61/71/76 3.80 (0.150)
CV42/52/62/72/77 7.40 (0.291)
S ±0.5 CV43/53/63/73/78 11.1 (0.437)
(0.020) CV44/54/64/74/79 14.8 (0.583)

VERTICALLY MOUNTED 4 TERMINAL RADIAL PRODUCT


Part Number format (CVxxxxxxxxx3xx4) DIMENSIONS millimeters (inches)
Typical Part Number CV435C106MA30A4 Lead
Style L H S Dia
(max) (max) (nom)
(nom)
CV43-44 10.6 (0.417) 8.7 (0.342) 8.2 (0.322) 0.7 (0.028)
T Max.
M1 = M2 ±0.5 (0.020) CV53-54 11.9 (0.468) 10.7 (0.421) 10.2 (0.400) 0.9 (0.035)
CV63-64 16.5 (0.649) 13.6 (0.535) 15.2 (0.600) 0.9 (0.035)
H Max. L Max. CV73-74 17.8 (0.700) 21.6 (0.850) 15.2 (0.600) 0.9 (0.035)
CV78-79 22.7 (0.893) 16.6 (0.653) 21.2* (0.834) 0.9 (0.035)
*Tolerance ± 0.8 (0.031)
25 (0.984)
±3 (0.118) Lead Dia. millimeters (inches)
See Table
M1 M2 Style T max S1

S1 ±0.5 S1 ±0.5 CV43/53/63/73/78 11.1 (0.437) 5.08 (0.200)


(0.020) (0.020)
CV44/54/64/74/79 14.8 (0.583) 7.62 (0.300)
Note 1. This style is only available in 3 & 4 chip assemblies

HOW TO ORDER
CV 52 5 C 106 M A 3 0 A 2

Style Size Voltage Dielectric Capacitance Capacitance Specification Finish Lead Dia. Lead Space Lead Style
Code Code Code Code Code Tolerance Code Code Code Code Code
(see product section) 5 = 50V A = C0G (2 significant C0G: J = ±5% A = Non-customized 3 = Uncoated 0 = Standard A = Standard 2 = 2 Terminal
1 = 100V C = X7R digits + no. K = ±10% 8 = Coated 4 = 4 Terminal
2 = 200V of zeros) M = ±20% (classified as See Note 1
7 = 500V eg. 105 = 1 μF X7R: K = ±10% uninsulated) above
106 = 10 μF M = ±20%
107 = 100 μF P = +100, -0%

Note: See page 109 for How to Order BS9100 parts

34
SMPS Capacitors (CH Style)
Chip Assemblies
HORIZONTALLY MOUNTED 4 TERMINAL RADIAL PRODUCT
Part Number format (CHxxxxxxxxx3xx4) DIMENSIONS millimeters (inches)
Typical Part Number CH782C106MA30A4 S Lead
Style L W S Dia S1
W max L max (max) (max) (nom) (nom)
(nom)
CH42-44 10.6 (0.417) 8.7 (0.342) 8.2 (0.322) 0.7 (0.028) 5.08 (0.200)
CH52-54 11.9 (0.468) 10.7 (0.421) 10.2 (0.400) 0.9 (0.035) 7.62 (0.300)
CH62-64 16.5 (0.649) 13.6 (0.535) 15.2 (0.600) 0.9 (0.035) 7.62 (0.300)
T max
CH72-74 17.8 (0.700) 21.6 (0.850) 15.2 (0.600) 0.9 (0.035) 15.2 (0.600)
CH77-79 22.7 (0.893) 16.6 (0.653) 21.2* (0.834) 0.9 (0.035) 10.2 (0.400)
CH82-84 14.1 (0.555) 38.2 (1.503) 10.2 (0.400) 0.9 (0.035) 27.9 (1.100)
Lead dia
25 (0.984) (see table) CH87-89 17.8 (0.700) 38.2 (1.503) 15.2 (0.600) 1.0 (0.039) 27.9 (1.100)
±3 (0.118) CH92-94 22.7 (0.893) 40.6 (1.598) 21.2* (0.834) 1.2 (0.047) 30.5 (1.200)
*Tolerance ± 0.8
M1 M2
NOTE: This style is only available in 2, 3 & 4 chip assemblies only millimeters (inches)

S1 ± 0.5 Style T max


S ± 0.5
(0.020) (0.020) CH42/52/62/72/77/87/92 7.4 (0.291)
M1 = M2 ± 0.5 (0.020) CH43/53/63/73/78/88/93 11.1 (0.437)
CH44/54/64/74/79/89/94 14.8 (0.583)

HORIZONTALLY MOUNTED DUAL-IN-LINE PRODUCT


Part Number format (CHxxxxxxxxxx0A0) DIMENSIONS millimeters (inches)
Typical Part Number CH615C106MA30A0 No. of
Style L W S Leads
(max) (max) (nom)
per side
CH41-44 9.2 (0.362) 8.7 (0.342) 8.2 (0.322) 3
W max L max CH51-54 10.7 (0.421) 10.7 (0.421) 10.2 (0.400) 4
CH61-64 14.9 (0.586) 13.6 (0.535) 14.0 (0.551) 5
2.0 (0.079) CH71-74 16.8 (0.661) 21.6 (0.850) 15.2 (0.600) 7
T max
max CH76-79 21.6 (0.850) 16.6 (0.653) 20.3* (0.800) 6
CH81-84 12.0 (0.472) 38.2 (1.503) 10.2 (0.400) 14
CH86-89 18.9 (0.744) 38.2 (1.503) 15.2 (0.600) 14
CH91-94 24.0 (0.944) 40.6 (1.598) 20.3* (0.800) 14
13 (0.512) *Tolerance ± 0.8 (0.031)
± 1 (0.039) S ± 0.5
(0.020) millimeters (inches)
L2 L1 Style T max
CH41/51/61/71/76/81/86/91 3.8 (0.150)
CH42/52/62/72/77/82/87/92 7.4 (0.291)
2.54 (0.100) CH43/53/63/73/78/83/88/93 11.1 (0.437)
± 0.05 (0.002) CH44/54/64/74/79/84/89/94 14.8 (0.583)
Lead width 0.5 (0.020)
Lead thickness 0.254 (0.010)
L1 = L2 ± 0.5 (0.020)

HOW TO ORDER
CH 52 5 C 106 M A 3 0 A 0

Style Size Voltage Dielectric Capacitance Capacitance Specification Finish Lead Dia. Lead Space Lead Style
Code Code Code Code Code Tolerance Code Code Code Code Code
(see product section) 5 = 50V A = C0G (2 significant C0G: J = ±5% A = Non-customized 3 = Uncoated 0 = Standard A = Standard 0 = Straight dual
1 = 100V C = X7R digits + no. K = ±10% 8 = Coated in line
2 = 200V of zeros) M = ±20% (classified as 4 = 4 Terminal
7 = 500V eg. 105 = 1 μF X7R: K = ±10% uninsulated)
106 = 10 μF M = ±20%
107 = 100 μF P = +100, -0%

Note: See page 109 for How to Order BS9100 parts

35
SMPS Capacitors (CH Style)
Chip Assemblies
HORIZONTALLY MOUNTED ‘L’ LEAD SMT PRODUCT
Part Number format (CHxxxxxxxxxx0A7) DIMENSIONS millimeters (inches)
Typical Part Number CH411C275KA30A7 No. of
Style L W S Leads
(max) (max) (nom)
per side
W max CH41-44 9.2 (0.362) 8.7 (0.342) 8.2 (0.322) 3
2.54 (0.1) CH51-54 10.7 (0.421) 10.7 (0.421) 10.2 (0.400) 4
± 0.5 (0.02) CH61-64 14.9 (0.586) 13.6 (0.535) 14.0 (0.551) 5
T max CH71-74 16.8 (0.661) 21.6 (0.850) 15.2 (0.600) 7
CH76-79 21.6 (0.850) 16.6 (0.653) 20.3* (0.800) 6
L CH81-84 12.0 (0.472) 38.2 (1.503) 10.2 (0.400) 14
max CH86-89 18.9 (0.744) 38.2 (1.503) 15.2 (0.600) 14
S ± 0.5 (0.02) CH91-94 24.0 (0.944) 40.6 (1.598) 20.3* (0.800) 14
2.54 (0.1)
± 0.5 (0.02) *Tolerance ± 0.8 (0.031)

NOTE: A ‘L’ lead low profile version


(CH....0A5) is available with lead height millimeters (inches)
1.1 (0.043) max. for single chip assemblies eg. Style T max
L1 CH415C225MA30A5
L2 CH41/51/61/71/76/81/86/91 3.8 (0.150)
CH42/52/62/72/77/82/87/92 7.4 (0.291)
Lead width 0.5 (0.020)
Lead thickness 0.254 (0.010)
CH43/53/63/73/78/83/88/93 11.1 (0.437)
L1 = L2 ± 0.5 (0.020) CH44/54/64/74/79/84/89/94 14.8 (0.583)

HORIZONTALLY MOUNTED ‘J’ LEAD SMT PRODUCT


Part Number format (CHxxxxxxxxxx0A8)
Typical Part Number CH411C275KA30A8 DIMENSIONS millimeters (inches)
No. of
L2 L1 Style L W S Leads
2.54 (0.100) (max) (max) (nom)
± 0.5 (0.020) per side
CH41-44 9.2 (0.362) 8.7 (0.342) 8.2 (0.322) 3
T max CH51-54 10.7 (0.421) 10.7 (0.421) 10.2 (0.400) 4
L CH61-64 14.9 (0.586) 13.6 (0.535) 14.0 (0.551) 5
max CH71-74 16.8 (0.661) 21.6 (0.850) 15.2 (0.600) 7
CH76-79 21.6 (0.850) 16.6 (0.653) 20.3* (0.800) 6
S ± 0.5 (0.020) CH81-84 12.0 (0.472) 38.2 (1.503) 10.2 (0.400) 14
CH86-89 18.9 (0.744) 38.2 (1.503) 15.2 (0.600) 14
CH91-94 24.0 (0.944) 40.6 (1.598) 20.3* (0.800) 14
*Tolerance ± 0.8 (0.031)
W max 2.54 (0.100)
± 0.5 (0.020) millimeters (inches)
Style T max
NOTE: A ‘J’ lead low profile version (CH....0A3) is available with lead height
1.1 (0.043) max. for single chip assemblies eg. CH515C475MA30A3 CH41/51/61/71/76/81/86/91 3.8 (0.150)
CH42/52/62/72/77/82/87/92 7.4 (0.291)
Lead width 0.5 (0.020) CH43/53/63/73/78/83/88/93 11.1 (0.437)
Lead thickness 0.254 (0.010) CH44/54/64/74/79/84/89/94 14.8 (0.583)
L1 = L2 ± 0.5 (0.020)

HOW TO ORDER
CH 52 5 C 106 M A 3 0 A 7

Style Size Voltage Dielectric Capacitance Capacitance Specification Finish Lead Dia. Lead Space Lead Style
Code Code Code Code Code Tolerance Code Code Code Code Code
(see product section) 5 = 50V A = C0G (2 significant C0G: J = ±5% A = Non-customized 3 = Uncoated 0 = Standard A = Standard 3 = Low profile ‘J’
8 = Coated
1 = 100V C = X7R digits + no. K = ±10% (single chip)
(classified as
2 = 200V of zeros) M = ±20% uninsulated) 5 = Low profile ‘L’
7 = 500V eg. 105 = 1 μF X7R: K = ±10% (single chip)
106 = 10 μF M = ±20% 7 = ‘L’ Dual in line
107 = 100 μF P = +100, -0% 8 = ‘J’ Dual in line

Note: See page 109 for How to Order BS9100 parts

36
SMPS Capacitors (CH/CV Style)
Chip Assemblies
C0G DIELECTRIC ULTRA STABLE CERAMIC
CH/CV41-44 CH/CV51-54 CH/CV61-64 CH/CV71-74 CH/CV76-79 CH81-84 CH86-89 CH91-94
Styles Styles Styles Styles Styles Styles Styles Styles
Voltage DC
Cap μF 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500
0.01 41
0.012 41
0.015 41
0.018 41
0.022 42 51
0.027 42 51
0.033 41 42 52 61
0.039 41 42 52 61
0.047 41 41 43 52 61
0.056 41 41 43 52 61
0.068 41 41 41 44 51 53 62 71 76 81
0.082 41 41 42 51 53 62 71 76 81
0.1 41 42 42 51 51 54 62 71 76 81
0.12 42 42 42 51 51 52 61 62 72 77 81 86
0.15 42 42 42 51 52 52 61 61 63 72 77 81 86
0.18 42 42 43 51 52 52 61 61 63 72 77 82 86
0.22 42 43 43 52 52 52 61 61 62 64 71 72 76 77 81 82 86 91
0.27 43 43 44 52 52 53 61 62 62 71 71 73 76 76 78 81 81 82 87 91
0.33 43 44 52 53 53 61 62 62 71 71 73 76 76 78 81 81 82 87 91
0.39 44 52 53 54 62 62 62 71 71 72 74 76 76 77 79 81 81 81 83 86 87 92
0.47 53 54 62 62 63 71 71 72 76 76 77 81 81 81 83 86 87 92
0.56 53 62 63 63 71 72 72 76 77 77 81 81 82 84 86 86 88 92
0.68 54 62 63 64 72 72 72 77 77 77 81 82 82 86 86 86 88 92
0.82 63 64 72 72 73 77 77 78 82 82 82 86 86 87 89 91 93
1 63 64 72 72 73 77 77 78 82 82 82 86 87 87 91 91 93
1.2 64 72 73 74 77 78 79 82 82 83 87 87 87 91 91 92 94
1.5 73 73 78 78 82 83 83 87 87 87 91 92 92
1.8 73 74 78 79 83 83 84 87 87 88 92 92 92
2.2 74 79 83 84 87 88 88 92 92 92
2.7 84 88 88 89 92 92 93
3.3 88 89 92 93 93
3.9 89 93 93 94
4.7 93 94
5.6 94

NB Figures in cells refer to size within ordering information

37
SMPS Capacitors (CH/CV Style)
Chip Assemblies
X7R DIELECTRIC STABLE CERAMIC
CH/CV41-44 CH/CV51-54 CH/CV61-64 CH/CV71-74 CH/CV76-79 CH81-84 CH86-89 CH91-94
Styles Styles Styles Styles Styles Styles Styles Styles
Voltage DC
Cap μF 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500
0.12 41
0.15 41
0.18 41
0.22 41
0.27 42 51
0.33 41 42 51
0.39 41 42 51
0.47 41 42 52 61
0.56 41 43 52 61
0.68 42 43 51 52 61
0.82 42 44 51 52 61 71 76 81
1 41 42 44 51 53 61 62 71 76 81
1.2 41 42 52 53 61 62 71 76 81
1.5 41 43 52 54 61 62 71 76 81 86
1.8 41 41 43 52 61 62 72 77 82 86
2.2 41 41 44 51 52 61 63 71 72 76 77 81 82 86
2.7 41 41 51 53 62 63 71 72 76 77 81 82 87 91
3.3 41 42 51 53 62 64 71 72 76 77 81 82 87 91
3.9 42 42 51 51 54 62 72 73 77 78 81 83 86 87 91
4.7 42 42 51 52 61 62 72 73 77 78 82 83 86 87 91
5.6 42 42 51 52 61 63 72 74 77 79 82 84 86 88 92
6.8 42 43 52 52 61 61 63 72 77 82 86 88 92
8.2 43 43 52 52 61 61 64 71 73 76 78 82 87 89 91 92
10 43 44 52 53 61 62 64 71 73 76 78 83 87 91 92
12 44 53 53 62 62 71 71 74 76 76 79 81 83 87 92 93
15 53 54 62 62 71 71 76 76 81 81 84 86 87 92 93
18 54 62 63 71 72 76 77 81 81 86 88 92 94
22 54 62 63 72 72 77 77 81 82 86 86 88 92
27 63 64 72 72 77 77 82 82 86 86 89 93
33 63 64 72 73 77 78 82 82 86 87 91 93
39 64 72 73 77 78 82 82 87 87 91 91 94
47 73 74 78 79 82 83 87 87 91 92
56 73 78 83 83 87 87 92 92
68 74 79 83 84 87 88 92 92
82 84 88 88 92 92
100 88 89 92 93
120 89 93 93
150 93 94
180 94

NB Figures in cells refer to size within ordering information

38
TurboCapTM
High-CV SMPS Capacitors
The TurboCapTM, MLC capacitors from AVX Corporation are
characterized with very high capacitance in a small volume.
By vertical stacking of the ceramic elements, the footprint
required for mounting the capacitors is greatly reduced.
TurboCapsTM are ideally suited as filters in the input and
output stages of switch mode power supplies (SMPS). With
their ultra-low ESR, these capacitors are designed to handle
high ripple current at high frequencies and high power levels.
The DIP leads in either thru-hole or surface mount
configurations offer superior stress relief to the ceramic
elements. The leads effectively decouple the parts from the
board and minimize thermally or mechanically induced
stresses encountered during assembly, temperature cycling
or other environmental conditions.

TYPICAL APPLICATION OF TURBOCAPTM SMPS CAPACITORS FOR INPUT


AND OUTPUT FILTERS IN DC/DC CONVERTERS

SNUBBER Vout
Vin

OUTPUT
INPUT FILTER
FILTER

VCC

G FB
PWM
CONTROLLER

GND

39
TurboCapTM
High-CV SMPS Capacitors
ELECTRICAL SPECIFICATIONS
Temperature Coefficient Dielectric Withstanding Voltage 25°C (Flash Test)
Temperature Coefficient ±15%, -55° to +125°C 250% rated voltage for 5 seconds with 50 mA max charging current.
Capacitance Test (MIL-STD-202 Method 305) Life Test (1000 hrs)
25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz X7R: 150% rated voltage at +125°C.
Dissipation Factor 25°C Moisture Resistance (MIL-STD-202 Method 106)
2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Ten cycles with no voltage applied.
Insulation Resistance 25°C (MIL-STD-202 Method 302) Thermal Shock (MIL-STD-202 Method 107, Condition A)
500 MΩ-μF, whichever is less. Immersion Cycling (MIL-STD-202 Method 104, Condition B)
Insulation Resistance 125°C (MIL-STD-202 Method 302) Resistance To Solder Heat (MIL-STD-202, Method 210,
50 MΩ-μF, whichever is less. Condition B, for 20 seconds)

Typical ESR Performance (Ω)


27μF 47μF 100μF
ESR @ 10KHz 0.007 0.004 0.003
ESR @ 50KHz 0.003 0.002 0.0015
ESR @ 100KHz 0.002 0.0015 0.001

HOW TO ORDER AVX Styles: ST12 and ST20

ST12 5 C 186 M A N 03
AVX Voltage Temperature Capacitance Code Capacitance Test Level Termination Number
Style 25V = 3 Coefficient (2 significant digits Tolerance A = Standard N = Straight Lead of Leads
ST12 50V = 5 X7R = C + no. of zeros) M = ±20% J = Leads formed in Per Side
ST20 100V = 1 1 μF = 105 L = Leads formed out 03 = 3
10 μF = 106 05 = 5
100 μF = 107 10 = 10

CAPACITANCE (μF)
ST12 ST20
Voltage
Cap (μF) 50V 100V 25V 50V 100V 500V
.82
1.3
2.7
8.2 ...03
12 ...05
14 ...03
18 ...03
22 ...10 ...05
Development
27 ...05 ...03
47 ...05 ...10 Numbers inside
50 ...10 shaded areas refer
to the number of
68 ...03 leads per side (the
100 ...05 ...10 last two digits of
220 ...10 the part number.

40
TurboCapTM
High-CV SMPS Capacitors

E
D

B A 1.397 (0.055)
±0.254 (0.010)

6.35 (0.25)
MIN.

0.508 (0.020) TYP. 0.254 (0.010) TYP.


3, 5 or 10 leads per side C
2.54 (0.100) TYP.

2.54 (0.100) MAX.


0.635 (0.025) MIN.

“N” STYLE LEADS

E
D
0.254 (0.010) RAD. TYP.

A 1.397 (0.055) 1.778 (0.070)


B
±0.254 (0.010) ± 0.254 (0.010)
B

0.508 (0.020) TYP. 1.397 (0.055)


3, 5 or 10 leads per side ± 0.127 (0.005)
C

2.54 (0.100) TYP.

2.54 (0.100) MAX.


0.635 (0.025) MIN.

“J” STYLE LEADS

E
D

A 1.397 (0.055) 1.778 (0.070)


B
±0.254 (0.010) ± 0.254 (0.010)
B
0.254 (0.010) RAD. TYP.

0.508 (0.020) TYP. 1.397 (0.055)


3, 5 or 10 leads per side ± 0.127 (0.005)
C

2.54 (0.100) TYP.

2.54 (0.100) MAX.


0.635 (0.025) MIN.

“L” STYLE LEADS

DIMENSIONS millimeters (inches)


C D Lead No. of Leads
Style A (max.) B (max.)* E (max.)
± 0.635 (± 0.025) ± 1.27 (± 0.050) Style Per Side
ST125C***M*N03 3.56 (0.140) 5.21 (0.205) 5.08 (0.200) 9.53 (0.375) 6.35 (0.250) N 03
ST125C***M*N05 3.56 (0.140) 5.21 (0.205) 5.08 (0.200) 14.61 (0.575) 6.35 (0.250) N 05
ST125C***M*N10 3.56 (0.140) 5.21 (0.205) 5.08 (0.200) 26.67 (1.050) 6.35 (0.250) N 10
ST205C***M*N03 5.59 (0.220) 7.24 (0.285) 6.35 (0.250) 8.26 (0.325) 7.62 (0.300) N 03
ST205C***M*N05 5.59 (0.220) 7.24 (0.285) 6.35 (0.250) 13.34 (0.525) 7.62 (0.300) N 05
ST205C***M*N10 5.59 (0.220) 7.24 (0.285) 6.35 (0.250) 26.04 (1.025) 7.62 (0.300) N 10
*The “B” dimension is defined for the “N” Style leads. The “L” and “J” Style Leads are 0.381 (0.015) longer. The ST12 will be 5.89 (0.220), the ST20 will be 7.62 (0.300).

41
MH Ceramic Capacitor
Lead Free Ceramic Capacitor in Molded SM Leadframe
AVX are pleased to introduce the MH range of multi layer ceramic capacitors. The MH components
are surface mount molded parts with a multi layer ceramic insert.
MH capacitors combine the ceramic attributes of very low ESR, non polar construction, excellent
high frequency behavior, excellent voltage stress capabilities and wide temperature range; with the
enhanced mechanical protection of a molded case.
The MH range provides a lead free solution to customers who have previously been unable to use
large case ceramic capacitors because of mechanical stressing concerns.

HOW TO ORDER
MH V 1 1 C 225 M A T 2 A
MH Series Case MLCC Voltage Dielectric Capacitance Capacitance Failure Terminations Packaging Special
Size Count 3 = 25V C = X7R Code (In pF) Tolerance Rate T = Tin Plated 2 = 7" Reel Code
see table 5 = 50V 2 Sig. Digits K = ±10% A = Not 4 = 13" Reel A=
below 1 = 100V + Number of M = ±20% Applicable 6 = Waffle Std.
Pack Product
Zeros

MH X7R TARGET RANGE PACKAGING


Cap μF 25V 50V 100V 7" Reels 400
105 1.0 13" Reels 1500
125 1.2 Waffle Pack 108
155 1.5
185 1.8
225 2.2 CASE DIMENSIONS: millimeters (inches)
275 2.7
335 3.3 EIA W+0.20 (0.008) H+0.20 (0.008)
Code L±0.20 (0.008)
395 3.9 Code -0.10 (0.004) -0.10 (0.004)
475 4.7 3.45±0.30
565 5.6 V 7361-38 7.30 (0.287) 6.10 (0.240)
(0.136±0.012)
685 6.8
825 8.2
106 10
126 12
156 15
186 18
226 22
276 27
336 33
396 39
476 47

= In development, contact plant for detail

NOTICE: Specifications are subject to change without notice. Contact your nearest AVX Sales Office for the latest specifications. All
statements, information and data given herein are believed to be accurate and reliable, but are presented without guarantee,
warranty, or responsibility of any kind, expressed or implied. Statements or suggestions concerning possible use of our products LEAD-FREE COMPATIBLE
COMPONENT
are made without representation or warranty that any such use is free of patent infringement and are not recommendations to
infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required.
Specifications are typical and may not apply to all applications. TS 16949, ISO 14001
Certified Manufacture

42
SMPS Capacitors (RH Style)
RH - Surface Mount ‘J’ Lead Range
0.047 μF to 47.0 μF Low ESR/ESL
25V to 500 VDC X7R Dielectric
-55ºC to +125ºC
This range of uncoated MLC capacitors are processed for
input and output filter capacitors in high frequency DC-DC
convertor applications above 10 Watts e.g. telecomms and
instrumentation, where high volume and low cost is required.
These products are available in surface mount ‘J’ leaded
versions and can be supplied in bulk and tape/reel packaging.

ELECTRICAL SPECIFICATIONS
Temperature Coefficient CECC 30 000, (4.24.1) Typical ESR (mΩ) 3 μF, 100V X7R
X7R: C Temperature Characteristic - ± 15%, -55ºC to +125ºC ESR @ 100KHz 17
ESR @ 500KHz 12
Capacitance Test
ESR @ 1MHz 14
Measured at 1 VRMS max at 1KHz
Dissipation Factor 25°C DIMENSIONS millimeters (inches)
2.5% max at 1KHz, 1 VRMS max S ± 0.1 No. of leads
Style L max W max H max (±0.004) h per side
Insulation Resistance 25°C
1.50 ±0.30
100K megohms or 1000 megohms-μF, whichever is less RH21 7.62 (0.300) 5.40 (0.213) 4.60 (0.181) 2.50 (0.098) 2
(0.059 ±0.012)
Dielectric Withstanding Voltage 25°C (Flash Test) 1.50 ±0.30
RH22 7.62 (0.300) 5.40 (0.213) 7.50 (0.295) 2.50 (0.098) 2
(0.059 ±0.012)
250% rated voltage for 5 seconds with 50 mA max 1.78 ±0.25
charging current. (500 Volt units @ 150% rated voltage) RH31 7.62 (0.300) 7.00 (0.270) 5.08 (0.200) 5.08 (0.200) 3
(0.070 ±0.010)
1.78 ±0.25
Life Test (1000 hrs) CECC 30 000 (4.23) RH32 7.62 (0.300) 7.00 (0.270) 8.13 (0.320) 5.08 (0.200) 3
(0.070 ±0.010)
200% rated voltage at +125ºC. 1.60 ±0.10
RH41 9.20 (0.362) 8.70 (0.342) 4.90 (0.192) 5.08 (0.200) 3
(500 Volt units @ 120% rated voltage) (0.062 ±0.004)
1.60 ±0.10
Thermal Shock IEC 68.2.14 RH42 9.20 (0.362) 8.70 (0.342) 8.20 (0.323) 5.08 (0.200) 3
(0.062 ±0.004)
-55ºC to +125ºC, 5 cycles 1.60 ±0.10
RH51 10.7 (0.421) 10.7 (0.421) 4.90 (0.192) 7.62 (0.300) 4
(0.062 ±0.004)
Resistance to Solder Heat IEC 68.2.20 1.60 ±0.10
RH52 10.7 (0.421) 10.7 (0.421) 8.20 (0.323) 7.62 (0.300) 4
(0.062 ±0.004)
1.60 ±0.10
RH61 14.9 (0.586) 13.6 (0.535) 4.90 (0.192) 10.2 (0.400) 5
(0.062 ±0.004)
1.60 ±0.10
RH62 14.9 (0.586) 13.6 (0.535) 8.20 (0.323) 10.2 (0.400) 5
(0.062 ±0.004)

DIMENSIONS millimeters (inches)


0.6 (0.024)
L Max. W Max. ±0.1 (0.004)

M1

H Max. M1 = M2 ±0.5 (0.020)

h M2
2.54 (0.100) 1.4 (0.055) Typ.
±0.05 (0.002)
0.25 (0.010)Typ. Non-Accum. 1.65 (0.065) ±0.15 (0.006)
Bend Radius S
90° ±5°

43
SMPS Capacitors (RH Style)
RH - Surface Mount ‘J’ Lead Range
X7R STABLE DIELECTRIC
RH21/RH22 RH31/RH32 RH41/RH42 RH51/RH52 RH61/RH62
Style Style Style Style Style
Voltage DC
Cap μF 25 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500
0.047
0.056
0.068 RH31
0.082
0.1
0.12
0.15 RH32 RH41
0.18
0.22
0.27 RH31
0.33 RH42
0.39 RH51
RH41
0.47
0.56 RH32
0.68 RH52 RH61
0.78 RH51
0.82 RH31 RH42
1
1.2 RH62
1.5 RH21 RH31 RH52 RH61
1.8 RH41
2.2 RH32
2.7 RH41
3 RH51 RH62
3.3 RH21
3.9
RH22 RH32
4.4
RH42 RH51
4.7 RH42
5.6 RH52 RH61
6.8
8.2 RH52 RH61
10
12
15
RH62
RH21 RH22 RH62
18
22
27
33
39 RH22
47
For availability of further parts in the RH21/RH22 Series, contact manufacturing.

PACKAGING
Style Qty/Reel 13" Max. Qty/Waffle Pack
RH21 800 270
RH22 500 270
RH31 800 108
RH32 500 108
RH41 800 108
RH42 see note 100
RH51 750 88
RH52 see note 88
RH61 500 42
RH62 see note 42
Note: T&R is not yet available. Contact manufacturing for further information as this will be available in the future.

HOW TO ORDER
RH 31 5 C 225 M A 3 0 A 3
Style Size Voltage Dielectric Capacitance Capacitance Specification Package Lead Dia. Lead Space Lead Style
Code Code Code Code Code Tolerance Code Code Code Code Code
(see table above) 3 = 25V C = X7R (2 significant K = ±10% A = Non 3 = Waffle Pack 0 = Standard A = Standard 3 = ‘J’ Lead
5 = 50V digits + no. M = ±20% customized A = Tape & Reel R = RoHS Compliant
1 = 100V of zeros)
2 = 200V eg. 105 = 1 μF
7 = 500V 104 = 0.1 μF

44
SMPS Capacitors
Custom Lead Configurations
For the requirements that cannot be satisfied by standard • eliminate soldering requirements altogether by providing
SMPS style products (SM0-style or SM9-style), AVX offers means of electrical/mechanical connection to the circuit
leading edge solutions in custom lead configuration and • provide options for remote soldering away from large
custom packaging. Custom lead configurations offering ceramic capacitor body and eliminating the risk of thermal
optimum packaging, high current handling capabilities and shock (refer to photograph with soft, insulated leads
stress relief mounting options are all possible with AVX. The soldered to the stacked capacitor using high melting point
custom solutions provided by AVX maintain high reliability of SN10 solder)
stacked capacitor product originally developed by AVX and
Many other innovations are available from AVX Olean
historically recognized as the highest reliability product in the
Advanced Products. Let them apply these ideas to your
market. Custom packaging options provide solutions that
application specific requirements. Please consult with AVX’s
eliminate reliability concerns in the next level assembly. These
Application Engineering staff for a custom solution that will
custom options provide the following benefits:
meet demands of your program requirements.

CUSTOM LEAD CUSTOM PACKAGING…


CONFIGURATIONS…

45
SMPS Capacitors
Assembly Guidelines
If bonding the SupraCap® to the board with adhesive, consider-
Reliability ation of the CTE (coefficient of thermal expansion) is necessary.
AVX has been involved in numerous military and customer High A mismatch between the CTE of the ceramic and adhesive can
Reliability programs for over 40 years. cause the ceramic to crack during temperature cycles.
Reliability [% Failure Rate (FR%) or Mean Time Between Failure
(MTBF)] is based on the number of failures and the cumulative Processing Guidelines*
test hours expanded by test versus use acceleration factors. The
There are practical size limitations for MLCs which prohibit reli-
acceleration factors are calculated according to the following
able direct mounting of chip capacitors larger than 2225 (.22" x
relationships:


TT – TU .25") to a substrate. These large chips are subject to thermal
25 shock cracking and thermal cycling solder joint fatigue. Even
Temperature Where:
= 10 1812 (.18" x .12") and 2225 chip capacitors will have solder joint
Acceleration TT = test temp. (°C) failures due to mechanical fatigue after  1500 thermal cycles
TU = use temp. (°C) from 0 to 85°C on FR4 and  3000 cycles on alumina from -55
to 125°C. This is due to differences in the Coefficient of Thermal
២ ២

Voltage VT 3 Where: Expansion (CTE) between MLCs and substrate materials used in
=
Acceleration Vu VT = test voltage hybrids and surface mount assemblies. Materials used in the
VU = use voltage manufacture of all electronic components and substrates have
wide ranges of CTEs as shown in Table 1.
Military Reliability levels are usually expressed in terms of rated
conditions versus test conditions (generally 125°C and 2X Table I
WVDC). If actual conditions are less than rated, the reliability lev-
els will improve significantly over rated and can be calculated by
CTEs of Typical Components and Substrates
use of the above relationship for determining accelerated test Material CTE (ppm/°C)
hours. For example, if the actual use conditions were 75°C and
Alloy 42 5.3
1/2 WVDC rating for a 125°C rated part, the acceleration factors
are 64X for voltage and 100X for temperature. Reliabilities based Alumina 7
on current testing can be obtained by contacting AVX. Barium Titanate Capacitor Body 10-12
Copper 17.6
General Processing Guidelines Copper Clad Invar 6-7
Soldering Filled Epoxy Resin (<TR) 18-25
The SM styles capacitors are generally quite large relative to FR4/G-10 PC Board (X, Y) 18
other types of MLC capacitors. As a result of the size, precau- Nickel or Steel 15
tions must be taken before subjecting the parts to any soldering Polyimide/Glass PCB (X, Y) 12
operation in order to prevent thermal shock. Preheat prior to sol- Polyimide/Kevlar PCB (X, Y) 7
dering is essential. The heating rate of the SupraCap® ceramic Tantalum 6.5
bodies during preheat must not exceed 4°C/second. The preheat
Tin Lead Alloys 27
temperature must be within 50°C of the peak temperature
reached by the ceramic bodies, adjacent to lead material, through
the soldering process. The leads are attached to the chip stack
with 10 / 88 / 2 (Sn / Pb / Ag, Solidus 268°C, Liquidus 290°C). Linear Displacement
This CTE difference translates into mechanical stress that is
due to the linear displacement of substrate and component. Linear
Vibration Specifications* displacement is a function of ⌬CTE (CTEsub – CTEcomp) and the
overall length of the component. Long components/ substrates
Due to the weight of the SupraCap® and the size and strength of
have large linear displacements even with a small ⌬CTE which will
the lead frame used, when the SupraCap® is to be used in an
cause high stress in the solder joints and fatigue after a few tem-
application where it will undergo high frequency vibration, we
perature cycles. Figure 1 shows linear displacement for conditions
strongly recommend using our potted SM9 styles SupraCap®.
where ⌬CTE is positive and negative.
If other DIP styles SupraCap® are to be used in a high frequency
vibration environment, the SupraCap® should be supported in
some way to prevent oscillation of the capacitor assembly which
will result in lead breakage. If “strapping” the SupraCap® to the
board is the chosen method of support, care should be taken
not to chip the ceramic or apply undue pressure so that crack-
ing of the ceramic results. * Reference AVX Technical Information paper, “Processing Guidelines for
SMPS Capacitors.”

46
SMPS Capacitors
Assembly Guidelines
CAPACITOR DIMENSIONS
AT AMBIENT
TEMPERATURE "J" LEADS
SUBSTRATE CAPACITOR CAPACITOR
BODY BODY
"L" LEADS

SUBSTRATE LINEAR SOLDER


CAPACITOR
DISPLACEMENT SOLDER LAND FILLETS
PUTS SOLDER JOINT
AND CAPACITOR IN
SUBSTRATE
TENSION
Toper > T amb CTE sub > CTE cap

SUBSTRATE
SUBSTRATE LINEAR
CAPACITOR
DISPLACEMENT
PUTS SOLDER JOINT
AND CAPACITOR IN
SUBSTRATE
COMPRESSION Figure 3. “J” and “L” Leadframes Mounted on
Toper > T amb CTE sub < CTE cap Capacitors to Relieve Stress
Figure 1. Linear Displacement Between
Component and Substrate Inductance
General Processing Guidelines Adding leadframes has a small impact on component induc-
tance but this is the price that must be paid for reliable operation
Figure 2 shows the location of maximum stress in the solder over temperature. Figure 4 shows typical leadframe inductance
joint due to positive and negative DCTE and linear displace- that is added for two lead standoff distances (0.020" and 0.050")
ment. versus the number of leads along one side of SupraCap® which
SOLDER
FILLET
are specifically designed output filter capacitors for 1 MHz and
above switchers. The actual inductance will be somewhat less
CAPACITOR
because the leadframes flare out from the lead where the lead-
frame is attached to the capacitor body.
MAXIMUM STRESS

0.4
SUBSTRATE

0.3
Total Leadframe
Inductance (nH)

Stress for Toper > T amb CTE sub > CTE cap
0.2
0.050"
Standoff
MAXIMUM STRESS 0.1 0.020"
CAPACITOR Standoff
SOLDER
FILLET

0 5 10 15 20
SUBSTRATE Number of leads on one side of Capacitor

Figure 4. Number of Leads on One Side of Capacitor vs. Total


Leadframe Inductance vs. Substrate Standoff Height

Stress for Toper > T amb CTE sub < CTE cap Very high frequency switch mode power supplies place
tremendous restrictions on output filter capacitors. In addition
Figure 2 to handling high ripple current (low ESR), ESL must approach
zero nano henrys, part must be truly surface mountable
Stress Relief and be available in new configurations to be integrated into
Leadframes on larger capacitor sizes (greater than 2225) must transmission lines to further reduce inductance with load
be used to minimize mechanical stress on the solder joints dur- currents greater than 40A at 1 MHz and as frequencies move
ing temperature cycling which is normal operation for power above 1-2 MHz.
supplies (Figure 3). Failing solder joints increase both ESR and The total inductance is the sum of each side of the part where
ESL causing an increase in ripple, noise and heat, accelerating the inductance of one side is the parallel combination of each
failure. lead in the leadframe. That inductance is given by:
L (nH) = 5x [In (2x) / (B+C) + 1/2]
Layout Where  = lead length in inches
Effective solder dams must be used to keep all molten solder In = natural log
on the solder lands during reflow or solder will migrate away B+C = lead cross section in inches
so L1 (nH) = 2xL (nH) where L1 is the total inductance of the
from the land, causing opens or weak solder joints. High fre- leadframe.
quency output filters cannot use low power layout techniques
such as necked down conductors because of the stringent
inductance requirements.

47
SMPS Capacitors (SK Style)
Commercial Radial Range
PRODUCT OFFERING – C0G, X7R AND Z5U
AVX SK styles are conformally coated MLC capacitors for input or output
filtering in switch mode power supplies. They are specially processed to
handle high currents and are low enough in cost for commercial SMPS
application.

ELECTRICAL SPECIFICATIONS
Temperature Coefficient Insulation Resistance 125°C (MIL-STD-202 Method 302)
C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° to +125°C C0G and X7R: 10K MΩ or 100 MΩ-μF, whichever is less.
X7R: C Temperature Coefficient - ±15%, -55° to +125°C Z5U: 1K MΩ or 100 MΩ-μF, whichever is less.
Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C Dielectric Withstanding Voltage 25°C (Flash Test)
Capacitance Test (MIL-STD-202 Method 305) C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max
C0G: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz charging current. (500 Volt units @ 750 VDC)
X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Z5U: 200% rated voltage for 5 seconds with 50 mA max charging current.
Z5U: 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz Life Test (1000 hrs)
Dissipation Factor 25°C C0G and X7R: 200% rated voltage at +125°C. (500 Volt units @ 600 VDC)
C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Z5U: 150% rated voltage at +85°C
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Moisture Resistance (MIL-STD-202 Method 106)
Z5U: 3.0% Max @ 25°C, 0.5 Vrms max (open circuit voltage) at 1KHz C0G, X7R, Z5U: Ten cycles with no voltage applied.
Insulation Resistance 25°C (MIL-STD-202 Method 302) Thermal Shock (MIL-STD-202 Method 107, Condition A)
C0G and X7R: 100K MΩ or 1000 MΩ-μF, whichever is less. Immersion Cycling (MIL-STD-202 Method 104, Condition B)
Z5U: 10K MΩ or 1000 MΩ-μF, whichever is less. Resistance To Solder Heat (MIL-STD-202, Method 210,
Condition B, for 20 seconds)
HOW TO ORDER
SK 01 3 E 125 Z A A *
Style Size Voltage Temperature Capacitance Capacitance Test Leads Packaging
See chart 25V = 3 Coefficient Code Tolerance Level A = Tin/Lead (See Note 1)
below 50V = 5 Z5U = E (2 significant C0G: J = ±5% A = Standard R = RoHS
100V = 1 X7R = C digits + no. K = ±10% B = Hi-Rel* Compliant
200V = 2 C0G = A of zeros) M = ±20%
500V = 7 22 nF = 223 X7R: K = ±10% Note 1: No suffix signifies bulk packaging,
M = ±20% which is AVX standard packaging.
220 nF = 224 SK01, SK*3, SK*4, SK*5, SK*6, SK*9
1 μF = 105 Z = +80, -20% & SK*0 are available taped and reel
100 μF = 107 Z5U: M = ±20% per EIA-468. Use suffix “TR1” if tape &
Z = +80, -20% reel is required.
P = GMV (+100, -0%)
Note: Capacitors with X7R and Z5U dielectrics are not intended for applications *Hi-Rel screening for C0G and X7R only. Screening consists of 100% Group A
across AC supply mains or AC line filtering with polarity reversal. Contact plant (B Level), Subgroup 1 per MIL-PRF-49470.
for recommendations.

TAPE & REEL QUANTITY RoHS


Part Pieces Part Available
SK01 2000 SK01 Yes
SK03/SK53 1000 SK03/SK53 Yes
SK04/SK54 1000 SK04/SK54 Yes
SK05/SK55 500 SK05/SK55 Yes
SK06/SK56 500 SK06/SK56 Yes
SK07 N/A SK07 No
SK08 N/A SK08 No
SK09/SK59 500 SK09/SK59 Yes
SK10/SK60 400 SK10/SK60 Yes

48
SMPS Capacitors (SK Style)
Product Offering – C0G, X7R and Z5U

L L L T

H H H
H + 3.683
(0.145)
M
M M
LL LL
LL LD LD LD

LS LS LS

SK01 SK03 – SK10 SK53 - SK56 and SK59 – SK60

C0G Capacitance Range (μF) X7R Capacitance Range (μF)


25 50 100 200 500 25 50 100 200 500
Style WVDC WVDC WVDC WVDC WVDC Style WVDC WVDC WVDC WVDC WVDC
min./max. min./max. min./max. min./max. min./max. min./max. min./max. min./max. min./max. min./max.
SK01 .001/0.015 .001/0.012 .001/0.010 .0010/0.0056 .0010/0.0018 SK01 .01/0.39 .01/0.33 .01/0.27 .01/0.12 .001/0.047
SK03/SK53 .01/0.056 .01/0.047 .01/0.039 .001/0.022 .001/0.0068 SK03/SK53 .10/2.2 .10/1.8 .01/1.5 .01/0.68 .01/0.27
SK04/SK54 .01/0.12 .01/0.10 .01/0.082 .01/0.047 .001/0.015 SK04/SK54 .10/4.7 .10/3.3 .10/2.7 .01/1.0 .01/0.47
SK05/SK55 .01/0.18 .01/0.15 .01/0.12 .01/0.068 .001/0.022 SK05/SK55 .10/6.8 .10/6.8 .10/3.9 .10/1.8 .01/0.68
SK06/SK56 .10/0.56 .01/0.47 .01/0.39 .01/0.22 .01/0.068 SK06/SK56 1.0/15 1.0/10 .10/5.6 .10/3.9 .10/1.5
SK07 .10/0.68 .01/0.56 .01/0.47 .01/0.27 .01/0.082 SK07 1.0/18 1.0/14 1.0/8.2 .10/4.7 .10/2.2
SK08 .82/1.20 .68/1.10 .56/0.82 .33/0.47 .10/0.15 SK08 22/33 15/22 10/15 5.6/8.2 2.2/3.9
SK09/SK59 .10/0.27 .01/0.22 .01/0.18 .01/0.10 .001/0.039 SK09/SK59 .10/8.2 .10/5.6 .10/3.3 .10/2.2 .10/1.2
SK10/SK60 .10/0.68 .01/0.56 .01/0.47 .01/0.27 .01/0.082 SK10/SK60 1.0/18 1.0/12 .10/6.8 .10/4.7 .10/2.2

Z5U Capacitance Range (μF)


Style 25 WVDC 50 WVDC 100 WVDC 200 WVDC
min./max. min./max. min./max. min./max.
SK01 .10/1.2 .10/0.82 .10/0.47 .10/0.33
SK03/SK53 .10/5.6 .10/3.30 .10/2.20 .10/1.50
SK04/SK54 1.0/10.0 1.0/8.20 .10/4.70 .10/3.30
SK05/SK55 1.0/18.0 1.0/10.00 1.0/6.80 .10/4.70
SK06/SK56 1.0/47.0 1.0/39.00 1.0/22.00 1.0/15.00
SK07 1.0/68.0 1.0/47.00 1.0/27.00 1.0/18.00
SK08 82/120.0 56/100.00 33/47.00 22/33.00
SK09/SK59 1.0/27.0 1.0/18.00 1.0/10.00 1.0/6.80
SK10/SK60 1.0/56.0 1.0/39.00 1.0/22.00 1.0/18.00

DIMENSIONS millimeters (inches)


Style L (max.) H (max.) T (max.) LS (nom.) LD (nom.)
SK01 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 0.508 (0.020)
SK03/SK53 7.62 (0.300) 7.62 (0.300) 5.08 (0.200) 5.08 (0.200) 0.508 (0.020)
SK04/SK54 10.2 (0.400) 10.2 (0.400) 5.08 (0.200) 5.08 (0.200) 0.508 (0.020)
SK05/SK55 12.7 (0.500) 12.7 (0.500) 5.08 (0.200) 10.2 (0.400) 0.635 (0.025)
SK06/SK56 22.1 (0.870) 15.2 (0.600) 5.08 (0.200) 20.1 (0.790) 0.813 (0.032)
SK07 27.9 (1.100) 15.2 (0.600) 5.08 (0.200) 24.9 (0.980) 0.813 (0.032)
SK08 27.9 (1.100) 15.2 (0.600) 8.89 (0.350) 24.9 (0.980) 0.813 (0.032)
SK09/SK59 17.0 (0.670) 13.7 (0.540) 5.08 (0.200) 14.6 (0.575) 0.635 (0.025)
SK10/SK60 23.6 (0.930) 18.3 (0.720) 6.35 (0.250) 20.3 (0.800) 0.813 (0.032)
L = Length T = Thickness LS = Lead Spacing Nominal ±.787 (0.031)
H = Height M = Meniscus 1.52 (0.060) max. LL = Lead Length 50.8 (2.000) max./25.4 (1.000) min.
LD = Lead Diameter Nominal ±.050 (0.002)

49
SMPS Capacitors (SE Style)
Extended Commercial Radial Range
PRODUCT OFFERING – X7R
AVX SE styles offer capacitance extension to popular SK ranges. The CV
product for SE-series, X7R capacitors (TCC: ±15% over -55 to +125°C)
compares favorably to high CV ranges offered by other suppliers in much
less stable Y5U dielectric (TCC: +22/-56% over -30 to +85°C). SE style
capacitors are conformally coated and are designed for input and output
filtering applications in switch mode power supplies.

ELECTRICAL SPECIFICATIONS
Temperature Coefficient Dielectric Withstanding Voltage 25°C (Flash Test)
X7R: Temperature Coefficient ±15%, -55° to +125°C X7R: 250% rated voltage for 5 seconds with 50 mA max
Capacitance Test (MIL-STD-202 Method 305) charging current.
X7R: 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Life Test (1000 hrs)
Dissipation Factor 25°C X7R: 200% rated voltage at +125°C
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms (open circuit voltage) at 1KHz Moisture Resistance (MIL-STD-202 Method 106)
Insulation Resistance 25°C (MIL-STD-202 Method 302) X7R: Ten cycles with no voltage applied.
X7R: 100K MΩ or 1000 MΩ-μF, whichever is less. Thermal Shock (MIL-STD-202 Method 107, Condition A)
Insulation Resistance 125°C (MIL-STD-202 Method 302) Immersion Cycling (MIL-STD-202 Method 104, Condition B)
X7R: 10K MΩ or 100 MΩ-μF, whichever is less. Resistance To Solder Heat (MIL-STD-202, Method 210,
Condition B, for 20 seconds)

HOW TO ORDER
SE 01 3 C 125 M A A *
Style Size Voltage Temperature Capacitance Capacitance Test Leads Packaging
See chart 25V = 3 Coefficient Code Tolerance Level A = Tin/Lead (See Note 1)
below 50V = 5 X7R = C (2 significant X7R: K = ±10% A = Standard R = RoHS
100V = 1 digits + no. M = ±20% B = Hi-Rel* Compliant
of zeros) Z = +80, -20%
22 nF = 223 Note 1: No suffix signifies bulk packaging,
220 nF = 224 which is AVX standard packaging.
1 μF = 105 Parts available tape and reel per EIA-
100 μF = 107 468. Use suffix “TR1” if tape & reel is
required.

Note: Capacitors with X7R dielectrics are not intended for applications across *Hi-Rel screening consists of 100% Group A, Subgroup 1 per MIL-PRF-39014.
AC supply mains or AC line filtering with polarity reversal. Contact plant for
recommendations.

TAPE & REEL QUANTITY RoHS


Part Pieces Part Available
SE01 2000 SE01 Yes
SE03/SE53 1000 SE03/SE53 Yes
SE04/SE54 1000 SE04/SE54 Yes
SE05/SE55 500 SE05/SE55 Yes
SE06/SE56 500 SE06/SE56 Yes

50
SMPS Capacitors (SE Style)
Product Offering – X7R

L L L T

H H H
H + 3.683
(0.145)
M
M M
LL LL
LL LD LD LD

LS LS LS

SE01 SE03 – SE06 SE53 – SE56

X7R Capacitance Range (μF)


25 50 100
Style WVDC WVDC WVDC
min./max. min./max. min./max.
SE01 0.47/1.5 0.39/1.0 0.33/0.68
SE03/SE53 2.7/6.8 2.2/4.7 1.8/3.3
SE04/SE54 5.6/12 3.9/10 3.3/6.8
SE05/SE55 8.2/18 6.8/12 4.7/10.0
SE06/SE56 18/39 12/27 6.8/15

DIMENSIONS millimeters (inches)


Style L (max.) H (max.) T (max.) LS (nom.) LD (nom.)
SE01 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 5.08 (0.200) 0.508 (0.020)
SE03/SE53 7.62 (0.300) 7.62 (0.300) 5.08 (0.200) 5.08 (0.200) 0.508 (0.020)
SE04/SE54 10.2 (0.400) 10.2 (0.400) 5.08 (0.200) 5.08 (0.200) 0.508 (0.020)
SE05/SE55 12.7 (0.500) 12.7 (0.500) 5.08 (0.200) 10.2 (0.400) 0.635 (0.025)
SE06/SE56 22.1 (0.870) 15.2 (0.600) 5.08 (0.200) 20.1 (0.790) 0.813 (0.032)
L = Length T = Thickness LS = Lead Spacing Nominal ±.787 (0.031)
H = Height M = Meniscus 1.52 (0.060) max. LL = Lead Length 50.8 (2.000) max./25.4 (1.000 min.)
LD = Lead Diameter Nominal ±.050 (0.002)

51
SMPS Capacitors (CECC Offering)

L T

1.50
31.7 (0.059)
(1.248) MAX.
MIN.
t

DIMENSIONS millimeters (inches)


Size Code Length (L) Height (H) Thickness (T) Nom (t) S ±0.4
(max.) (max.) (max.)
BR40 10.16 (0.400) 11.7 (0.460) 3.81 (0.150) 0.51 (0.020) 5.08 (0.200)
BR50 12.7 (0.500) 12.7 (0.500) 5.1 (0.200) 0.64 (0.025) 10.16 (0.400)
BR84 23.6 (0.930) 17.78 (0.700) 6.35 (0.250) 0.76 (0.030) 20.32 (0.800)

CECC APPROVED RANGE


1B/C0G 2C1/X7R
CECC 30 601 801 Issue 1 CECC 30 701 801 Issue 1
50V 100V 200V 500V 50V 100V 200V 500V
BR40 683-104 473-683 333-473 4R5-153 185-275 125-185 334-474 473-154
BR50 124-224 104-154 683-104 820-333 395-475 225-275 684-105 104-394
BR84 104-564 104-474 104-334 223-104 475-186 475-156 105-335 474-155

HOW TO ORDER
BR 84 1 C 156 K T A

Style Size Voltage Dielectric Capacitance Capacitance Specification Lead Length


Code Code Code Code Code Tolerance Code Code
See 5 = 50V A = C0G (2 significant G = ±2% T = CECC A = 31.7mm min.
table 1 = 100V C = X7R digits + no. C0G only
above 2 = 200V of zeros) J = ±5%
7 = 500V C0G only
K = ±10%
M = ±20%
P = -0 +100%

Note: If tape and reel is required, add TR to the end of the part number

52
ESCC Qualified SMPS Capacitors
High Voltage Chip/Leaded Capacitors
HIGH VOLTAGE CHIP CAPACITORS
Capacitors, Fixed, Chip, Ceramic Dielectric, Type II, High
Voltage, Based on Styles 1812 and 1825 for use in ESCC
space programs, according to ESCC Generic Specification
3009 and associated Detail Specification 3009/034 as
recommended by the Space Components Coordination
Group. (ranges in table below)
Note: Variants 01 to 12: metallized pads

Rated
Size Variant Voltage Tolerance Capacitance
(kV) (%) Code (E12)
1812 01
1.0
±10
392 - 223 HOW TO ORDER
02 ±20 Parts should be ordered using the ESCC variant number as follows:
03 ±10
2.0 152 - 182 3009034 XX B XXX
04 ±20
05 ±10
3.0 821 - 102
06 ±20
1825 07 ±10 Detail Spec Type Test Level Capacitance
1.0 273 - 563 Number Variant C = Standard test level Code
08 ±20
09 ±10 (per table) B = Level C plus serialized The first two digits represent
2.0 222 - 682 and capacitance significant figures and the third
10 ±20
11 ±10 recorded before and digit specifies the number of
3.0 821 - 392 after 100% burn-in. zeros to follow; i.e.
12 ±20
102 = 1000pF
Eg 300903401C223 103 = 10000pF

HIGH VOLTAGE LEADED CAPACITORS Case Lead Capacitance Code (E12)


Capacitors, Fixed, Ceramic Dielectric, Type II, High Voltage, Size Variant Type 1.0kV 2.0kV 3.0kV 4.0kV 5.0kV
1.0 to 5.0 kV, Based on Case Styles VR, CV and CH for use VR30S 01 a 392 - 203 152 - 182 821 - 102
in ESCC space programs, according to ESCC Generic VR30 02 a 273 - 563 222 - 682 821 - 392
Specification 3001 and associated Detail Specification VR40 03 a 473 - 124 822 - 153 472 - 103 182 - 222
VR50 04 a 154 - 274 183 - 333 123 - 183 562 - 822 332 - 392
3001/034 as recommended by the Space Components VR66 05 a 224 - 564 393 - 823 223 - 393 103 - 153 682 - 103
Coordination Group. (ranges in table) VR84 06 a 684 - 105 473 - 154 473 - 683 183 - 393 123 - 183
VR90 07 a 125 - 275 184 - 334 823 - 184 473 - 124 223 - 563
Note 1: Lead Types
a - Leaded Radial (epoxy coated) CV41 08 b 473 - 124 822 - 153 472 - 103 182 - 222
b - Leaded Radial (Polyurethane Varnish) CH41 09 c 473 - 124 822 - 153 472 - 103 182 - 222
c - Straight Dual in Line CH41 10 d 473 - 124 822 - 153 472 - 103 182 - 222
d - L Dual in Line CV51 11 b 154 - 274 183 - 333 123 - 183 562 - 822 332 - 392
Note 2: Tolerances of ±10% and ±20% are available CH51 12 c 154 - 274 183 - 333 123 - 183 562 - 822 332 - 392
CH51 13 d 154 - 274 183 - 333 123 - 183 562 - 822 332 - 392
CV61 14 b 224 - 564 393 - 823 223 - 393 103 - 153 682 - 103
CH61 15 c 224 - 564 393 - 823 223 - 393 103 - 153 682 - 103
CH61 16 d 224 - 564 393 - 823 223 - 393 103 - 153 682 - 103
CV76 17 b 684 - 105 473 - 154 473 - 683 183 - 393 123 - 183
CH76 18 c 684 - 105 473 - 154 473 - 683 183 - 393 123 - 183
CH76 19 d 684 - 105 473 - 154 473 - 683 183 - 393 123 - 183
HOW TO ORDER CV91 20 b 125 - 275 184 - 334 823 - 184 473 - 124 223 - 563
Parts should be ordered using the ESCC variant CH91 21 c 125 - 275 184 - 334 823 - 184 473 - 124 223 - 563
CH91 22 d 125 - 275 184 - 334 823 - 184 473 - 124 223 - 563
number as follows:

3001034 XX B XXX K X

Detail Spec Type Variant Test Level Capacitance Capacitance Voltage


Number (per table above) C = Standard test level Code Tolerance M = 1kV
B = Level C plus serialized The first two digits represent K = 10% P = 2kV
and capacitance recorded significant figures and the third M = 20% R = 3kV
before and after 100% digit specifies the number of S = 4kV
burn-in. zeros to follow; i.e. Z = 5kV
102 = 1000pF
Eg 300103412C274KM 103 = 10000pF

53
ESCC Qualified SMPS Capacitors
High Capacitance
HIGH CAPACITANCE LEADED CAPACITORS
Capacitors, Fixed, Ceramic Dielectric, Type II, High Note 1: Lead Types
a - Leaded Radial (epoxy coated)
Capacitance, Based on Case Styles BR, CV and CH for use b - Leaded Radial (Polyurethane Varnish)
in ESCC space programs, according to ESCC Generic c - Straight Dual in Line
Specification 3001 and associated Detail Specification d - L Dual in Line
3001/030 as recommended by the Space Components Note 2: Tolerances of ±10% and ±20% are available
Coordination Group. (see ranges in table below)
Case Capacitance Code (E12) Case Capacitance Code (E12)
Size Variant Figure 50V 100V 200V 500V Size Variant Figure 50V 100V 200V 500V
BR40 01 a 185 - 335 125 - 395 334 - 564 124 - 224 CH73 38 c 476 - 566 336 - 396 825 - 106 395 - 475
BR50 02 a 395 - 565 225 - 395 684 - 105 274 - 394 CH73 39 d 476 - 566 336 - 396 825 - 106 395 - 475
BR66 03 a 685 - 106 475 - 825 105 - 225 474 - 105 CH74 40 c 686 476 126 565
BR72 04 a 126 - 186 825 - 156 225 - 335 824 - 155 CH74 41 d 686 476 126 565
BR84 05 a 126 - 186 825 - 156 225 - 335 824 - 155 CV76 42 b 126 - 186 825 - 156 225 - 335 824 - 155
CV41 06 b 185 - 335 125 - 275 334 - 564 124 - 224 CH76 43 c 126 - 186 825 - 156 225 - 335 824 - 155
CH41 07 c 185 - 335 125 - 275 334 - 564 124 - 224 CH76 44 d 126 - 186 825 - 156 225 - 335 824 - 155
CH41 08 d 185 - 335 125 - 275 334 - 564 124 - 224 CH77 45 c 226 - 396 186 - 276 395 - 685 185 - 335
CH42 09 c 395 - 685 335 - 565 684 - 125 274 - 474 CH77 46 d 226 - 396 186 - 276 395 - 685 185 - 335
CH42 10 d 395 - 685 335 - 565 684 - 125 274 - 474 CH78 47 c 476 - 566 336 - 396 825 - 106 395 - 475
CH43 11 c 825 - 106 685 - 825 155 - 185 564 - 684 CH78 48 d 476 - 566 336 - 396 825 - 106 395 - 475
CH43 12 d 825 - 106 685 - 825 155 - 185 564 - 684 CH79 49 c 686 476 126 565
CH44 13 c 126 106 225 824 - 105 CH79 50 d 686 476 126 565
CH44 14 d 126 106 225 824 - 105 CH81 51 c 156 - 226 126 - 186 225 - 395 824 - 155
CV51 15 b 395 - 565 225 - 395 684 - 105 274 - 394 CH81 52 d 156 - 226 126 - 186 225 - 395 824 - 155
CH51 16 c 395 - 565 225 - 395 684 - 105 274 - 394 CH82 53 c 276 - 476 226 - 396 475 - 825
CH51 17 d 395 - 565 225 - 395 684 - 105 274 - 394 CH82 54 d 276 - 476 226 - 396 475 - 825
CH52 18 c 685 - 106 475 - 825 125 - 225 474 - 824 CH83 55 c 566 - 686 476 - 566 106 - 126
CH52 19 d 685 - 106 475 - 825 125 - 225 474 - 824 CH83 56 d 566 - 686 476 - 566 106 - 126
CH53 20 c 126 - 156 106 - 126 275 - 335 105 - 125 CH84 57 c 826 686 156
CH53 21 d 126 - 156 106 - 126 275 - 335 105 - 125 CH84 58 d 826 686 156
CH54 22 c 186 - 226 156 395 155 CH86 59 c 226 - 336 156 - 276 395 - 685 155 - 225
CH54 23 d 186 - 226 156 395 155 CH86 60 d 226 - 336 156 - 276 395 - 685 155 - 225
CV61 24 b 685 - 106 475 - 825 105 - 225 474 - 105 CH87 61 c 396 - 686 336 - 566 825 - 156
CH61 25 c 685 - 106 475 - 825 105 - 225 474 - 105 CH87 62 d 396 - 686 336 - 566 825 - 156
CH61 26 d 685 - 106 475 - 825 105 - 225 474 - 105 CH88 63 c 826 - 107 686 - 826 186 - 226
CH62 27 c 126 - 226 106 - 156 275 - 475 105 - 185 CH88 64 d 826 - 107 686 - 826 186 - 226
CH62 28 d 126 - 226 106 - 156 275 - 475 105 - 185 CH89 65 c 127 107 276
CH63 29 c 276 - 336 186 - 226 565 - 685 225 - 275 CH89 66 d 127 107 276
CH63 30 d 276 - 336 186 - 226 565 - 685 225 - 275 CH91 67 c 396 - 476 336 - 396 825 - 106
CH64 ˜31 c 396 276 - 336 825 - 106 335 CH91 68 d 396 - 476 336 - 396 825 - 106
CH64 32 d 396 276 - 336 825 - 106 335 CH92 69 c 566 - 107 476 - 826 126 - 226
CV71 33 b 126 - 186 825 - 156 225 - 335 824 - 155 CH92 70 d 566 - 107 476 - 826 126 - 226
CH71 34 c 126 - 186 825 - 156 225 - 335 824 - 155 CH93 71 c 127 - 157 107 - 127 276 - 336
CH71 35 d 126 - 186 825 - 156 225 - 335 824 - 155 CH93 72 d 127 - 157 107 - 127 276 - 336
CH72 36 c 226 - 396 186 - 276 395 - 685 185 - 335 CH94 73 c 187 157 396
CH72 37 d 226 - 396 186 - 276 395 - 685 185 - 335 CH94 74 d 187 157 396

HOW TO ORDER
Parts should be ordered using the ESCC variant number as follows:
3001030 XX B XXX K X

Detail Spec Type Variant Test Level Capacitance Capacitance Voltage


Number (per table above) C = Standard test level Code Tolerance C = 50V
B = Level C plus serialized and The first two digits represent K = 10% E = 100V
capacitance recorded before significant figures and the third M = 20% G = 200V
and after 100% burn-in. digit specifies the number of L = 500V
zeros to follow; i.e.
102 = 1000pF
EG 300103018C106KC 103 = 10000pF

Lot Acceptance Testing is available for all our ESCC qualified ranges.
LAT 1 42 samples → 12 mechanical + 20 life test + 6 for TC + 4 for solder
LAT 2 30 samples → 20 life test + 6 for TC + 4 for solder
LAT 3 10 samples → 6 for TC + 4 for solder

54
SMPS Capacitors

ESCC DETAIL SPECIFICATION NO. 3009/034


PHYSICAL DIMENSIONS
Millimeters (Inches)
L Symbol Variants 01 to 06 Variants 07 to 12
Min. Max. Min. Max.
I 4.20 5.00 4.20 5.00
L (0.165) (0.197) (0.165) (0.197)
2.80 3.60 5.67 6.67
l (0.110) (0.142) (0.223) (0.263)
e – 3.00 – 3.30
e (0.118) (0.130)
0.25 0.75 0.25 0.75
M
M = = M (0.010) (0.030) (0.010) (0.030)

ESCC DETAIL SPECIFICATION NO. 3001/034


PHYSICAL DIMENSIONS – VR STYLE
Millimeters (Inches)

B F Variant Case B Ød E F H J L
Size Max. Min. Max. Min. Max. Max. Max. Max. Min.
7.62 0.46 0.56 4.58 5.58 5.00 4.60 1.50 31.7
01 VR30S
(0.300) (0.018) (0.022) (0.180) (0.220) (0.197) (0.181) (0.059) (1.248)
H J 7.62 0.46 0.56 4.58 5.58 5.00 9.62 1.50 31.7
02 VR30
(0.300) (0.018) (0.022) (0.180) (0.220) (0.197) (0.379) (0.059) (1.248)
10.16 0.46 0.56 4.58 5.58 5.00 11.7 1.50 31.7
03 VR40
(0.400) (0.018) (0.022) (0.180) (0.220) (0.197) (0.461) (0.059) (1.248)
12.7 0.59 0.69 9.66 10.66 5.10 14.2 1.50 31.7
04 VR50
L (0.500) (0.023) (0.027) (0.380) (0.420) (0.201) (0.559) (0.059) (1.248)
17.5 0.86 0.96 14.2 15.2 6.40 16.5 1.50 31.7
05 VR66
(0.689) (0.034) (0.038) (0.559) (0.598) (0.252) (0.650) (0.059) (1.248)
23.62 0.86 0.96 20.4 22.0 6.40 19.78 1.50 31.7
06 VR84
(0.930) (0.034) (0.038) (0.803) (0.866) (0.252) (0.779) (0.059) (1.248)
E Ød 23.5 0.86 0.96 20.4 22.0 6.40 42.0 1.50 31.7
07 VR90
(0.925) (0.034) (0.038) (0.803) (0.866) (0.252) (1.654) (0.059) (1.248)

ESCC DETAIL SPECIFICATION NO. 3001/034


PHYSICAL DIMENSIONS – CV STYLE
Millimeters (Inches)

F Case B Ød E F H L
Variant Size Max. Min. Max. Min. Max. Max. Max. Min. Max.
10.6 0.65 0.75 7.70 8.70 3.80 8.70 22.0 28.0
08 CV41
(0.417) (0.026) (0.030) (0.303) (0.343) (0.150) (0.343) (0.866) (1.102)
B Ød 11.9 0.85 0.95 9.66 10.66 3.80 10.7 22.0 28.0
11 CV51
(0.469) (0.033) (0.037) (0.380) (0.420) (0.150) (0.421) (0.866) (1.102)
16.5 0.85 0.95 14.74 15.74 3.80 13.6 22.0 28.0
14 CV61
H (0.650) (0.033) (0.037) (0.580) (0.620) (0.150) (0.535) (0.866) (1.102)
22.7 0.85 0.95 20.4 22.0 3.80 16.6 22.0 28.0
17 CV76
(0.894) (0.033) (0.037) (0.803) (0.866) (0.150) (0.654) (0.866) (1.102)
22.7 1.15 1.25 20.4 22.0 3.80 40.6 22.0 28.0
20 CV91
(0.894) (0.045) (0.049) (0.803) (0.866) (0.150) (1.598) (0.866) (1.102)
L L

55
SMPS Capacitors

ESCC DETAIL SPECIFICATION NO. 3001/034


PHYSICAL DIMENSIONS – CH STYLE, D.I.L. Millimeters (Inches)
Case A D E F
a1 Variant Size Max. Max. Min. Max. Max.
A 07 CH41 3.80 (0.150) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)
09 CH42 7.40 (0.291) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)
L b1 11 CH43 11.1 (0.437) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)
13 CH44 14.8 (0.583) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)
b e E 16 CH51 3.80 (0.150) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
18 CH52 7.40 (0.291) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
20 CH53 11.1 (0.437) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
D 22 CH54 14.8 (0.583) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
25 CH61 3.80 (0.150) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
27 CH62 7.40 (0.291) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
29 CH63 11.1 (0.437) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
31 CH64 14.8 (0.583) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
F 34 CH71 3.80 (0.150) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
36 CH72 7.40 (0.291) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
38 CH73 11.1 (0.437) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
40 CH74 14.8 (0.583) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
43 CH76 3.80 (0.150) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
45 CH77 7.40 (0.291) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
Symbol Min. Max. Notes 47 CH78 11.1 (0.437) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
2.00 49 CH79 14.8 (0.583) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
a1 - 1
(0.079) 51 CH81 3.80 (0.150) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
0.45 0.55 53 CH82 7.40 (0.291) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
b 1
(0.018) (0.022) 55 CH83 11.1 (0.437) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
b1
0.204 0.304
1
57 CH84 14.8 (0.583) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
(0.008) (0.012) 59 CH86 3.80 (0.150) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
e
2.49 2.59
2
61 CH87 7.40 (0.291) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
(0.098) (0.102) 63 CH88 11.1 (0.437) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
12.0 14.0 65 CH89 14.8 (0.583) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
L 1
(0.472) (0.551) 67 CH91 3.80 (0.150) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
69 CH92 7.40 (0.291) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
Notes: 1 – All leads 71 CH93 11.1 (0.437) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
2 – Each space 73 CH94 14.8 (0.583) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)

ESCC DETAIL SPECIFICATION NO. 3001/034


PHYSICAL DIMENSIONS – CH STYLE, L Millimeters (Inches)
Case A D E F
Variant
A Size Max. Max. Min. Max. Max.
10 CH41 3.80 (0.150) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)
L 13 CH51 3.80 (0.150) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
16 CH61 3.80 (0.150) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
19 CH76 3.80 (0.150) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
b e L E L 22 CH91 3.80 (0.150) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)

D
Symbol Min. Max. Notes
0.45 0.55
b 1
(0.018) (0.022)
2.49 2.59
e 2
(0.098) (0.102)
2.04 3.01
F L
(0.080) (0.120)
1

Notes: 1 – All leads


2 – Each space

56
SMPS Capacitors

ESCC DETAIL SPECIFICATION NO. 3001/030


PHYSICAL DIMENSIONS – BR STYLE
Millimeters (Inches)

Case B Ød E F H J L
B F Variant Size Max. Min. Max. Min. Max. Max. Max. Max. Min.
10.16 0.46 0.56 4.58 5.58 5.00 11.7 1.50 31.7
01 BR40
(0.400) (0.018) (0.022) (0.180) (0.220) (0.197) (0.461) (0.059) (1.248)
H J 12.7 0.59 0.69 9.66 10.66 5.10 14.2 1.50 31.7
02 BR50
(0.500) (0.023) (0.027) (0.380) (0.420) (0.201) (0.559) (0.059) (1.248)
17.5 0.86 0.96 14.2 15.2 6.40 16.5 1.50 31.7
03 BR66
(0.689) (0.034) (0.038) (0.559) (0.598) (0.252) (0.650) (0.059) (1.248)
19.3 0.86 0.96 14.74 15.74 6.40 24.0 1.50 31.7
L 04 BR72
(0.760) (0.034) (0.038) (0.580) (0.620) (0.252) (0.945) (0.059) (1.248)
23.62 0.71 0.81 18.93 20.83 6.40 19.78 1.50 31.7
05 BR84
(0.930) (0.028) (0.032) (0.745) (0.820) (0.252) (0.779) (0.059) (1.248)

E Ød

ESCC DETAIL SPECIFICATION NO. 3001/030


PHYSICAL DIMENSIONS – CV STYLE
Millimeters (Inches)

F Case B Ød E F H L
Variant Size Max. Min. Max. Min. Max. Max. Max. Min. Max.
10.6 0.65 0.75 7.70 8.70 3.80 8.70 22.0 28.0
06 CV41
(0.417) (0.026) (0.030) (0.303) (0.343) (0.150) (0.343) (0.866) (1.102)
B Ød 11.9 0.85 0.95 9.66 10.66 3.80 10.7 22.0 28.0
15 CV51
(0.469) (0.033) (0.037) (0.380) (0.420) (0.150) (0.421) (0.866) (1.102)
16.5 0.85 0.95 14.74 15.74 3.80 13.6 22.0 28.0
24 CV61
(0.650) (0.033) (0.037) (0.580) (0.620) (0.150) (0.535) (0.866) (1.102)
H 17.8 0.85 0.95 14.74 15.74 3.80 21.6 22.0 28.0
33 CV71
(0.701) (0.033) (0.037) (0.580) (0.620) (0.150) (0.850) (0.866) (1.102)
22.7 0.85 0.95 20.4 22.0 3.80 16.6 22.0 28.0
42 CV76
(0.894) (0.033) (0.037) (0.803) (0.866) (0.150) (0.654) (0.866) (1.102)

L L

57
SMPS Capacitors

ESCC DETAIL SPECIFICATION NO. 3001/030


PHYSICAL DIMENSIONS – CH STYLE, D.I.L. Millimeters (Inches)

Case A D E F
a1 Variant Size Max. Max. Min. Max. Max.
A 07 CH41 3.80 (0.150) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)
09 CH42 7.40 (0.291) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)
L b1 11 CH43 11.1 (0.437) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)
13 CH44 14.8 (0.583) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343) 9.20 (0.362)
e E 16 CH51 3.80 (0.150) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
b 18 CH52 7.40 (0.291) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
20 CH53 11.1 (0.437) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
22 CH54 14.8 (0.583) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
D 25 CH61 3.80 (0.150) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
27 CH62 7.40 (0.291) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
29 CH63 11.1 (0.437) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
31 CH64 14.8 (0.583) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
F 34 CH71 3.80 (0.150) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
36 CH72 7.40 (0.291) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
38 CH73 11.1 (0.437) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
40 CH74 14.8 (0.583) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
43 CH76 3.80 (0.150) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
45 CH77 7.40 (0.291) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
Symbol Min. Max. Notes 47 CH78 11.1 (0.437) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
a1 -
2.00
1
49 CH79 14.8 (0.583) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
(0.079) 51 CH81 3.80 (0.150) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
b
0.45 0.55
1
53 CH82 7.40 (0.291) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
(0.018) (0.022) 55 CH83 11.1 (0.437) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
0.204 0.304 57 CH84 14.8 (0.583) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
b1 1
(0.008) (0.012) 59 CH86 3.80 (0.150) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
2.49 2.59 61 CH87 7.40 (0.291) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
e 2 63 CH88 11.1 (0.437) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
(0.098) (0.102)
2.04 3.04 65 CH89 14.8 (0.583) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
L 1 67 CH91 3.80 (0.150) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
(0.080) (0.120)
69 CH92 7.40 (0.291) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
Notes: 1 – All leads 71 CH93 11.1 (0.437) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
2 – Each space 73 CH94 14.8 (0.583) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)

ESCC DETAIL SPECIFICATION NO. 3001/030


PHYSICAL DIMENSIONS – CH STYLE, L Millimeters (Inches)

Case A D E F
Variant Size Max. Max. Min. Max. Max.
A 08 CH41 3.80 (0.150) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343 9.20 (0.362)
10 CH42 7.40 (0.291) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343 9.20 (0.362)
L 12 CH43 11.1 (0.437) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343 9.20 (0.362)
14 CH44 14.8 (0.583) 8.70 (0.343) 7.70 (0.303) 8.70 (0.343 9.20 (0.362)
b e L E L 17 CH51 3.80 (0.150) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
19 CH52 7.40 (0.291) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
21 CH53 11.1 (0.437) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
D 23 CH54 14.8 (0.583) 10.7 (0.421) 9.66 (0.380) 10.66 (0.420) 10.7 (0.421)
26 CH61 3.80 (0.150) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
28 CH62 7.40 (0.291) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
30 CH63 11.1 (0.437) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
32 CH64 14.8 (0.583) 13.6 (0.535) 13.5 (0.531) 14.5 (0.571) 14.9 (0.587)
35 CH71 3.80 (0.150) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
F 37 CH72 7.40 (0.291) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
39 CH73 11.1 (0.437) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
41 CH74 14.8 (0.583) 21.6 (0.850) 14.74 (0.580) 15.74 (0.620) 16.8 (0.661)
44 CH76 3.80 (0.150) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
46 CH77 7.40 (0.291) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
48 CH78 11.1 (0.437) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
50 CH79 14.8 (0.583) 16.6 (0.654) 19.52 (0.769) 21.12 (0.831) 21.6 (0.850)
Symbol Min. Max. Notes 52 CH81 3.80 (0.150) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
0.45 0.55 54 CH82 7.40 (0.291) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
b
(0.018) (0.022)
1 56 CH83 11.1 (0.437) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
58 CH84 14.8 (0.583) 38.2 (1.504) 9.66 (0.380) 10.66 (0.420) 12.0 (0.472)
2.49 2.59
e
(0.098) (0.102)
2 60 CH86 3.80 (0.150) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
62 CH87 7.40 (0.291) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
2.04 3.04
L 1 64 CH88 11.1 (0.437) 38.2 (1.504) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
(0.080) (0.120)
66 CH89 14.8 (0.583) 38.2 (1.504)) 14.74 (0.580) 15.74 (0.620) 18.9 (0.744)
Notes: 1 – All leads 68 CH91 3.80 (0.150) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
2 – Each space 70 CH92 7.40 (0.291) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
72 CH93 11.1 (0.437) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)
74 CH94 14.8 (0.583) 40.6 (1.598) 19.52 (0.769) 21.12 (0.831) 24.0 (0.945)

58
High Voltage DIP Leaded (HV Style)

C0G Dielectric N1500 X7R Dielectric


General General General
Specifications Specifications Specifications
Capacitance Range Capacitance Range Capacitance Range
100 pF to 1.2 μF 100 pF to 1.9 μF 100 pF to 15 μF
(25°C, 1.0±0.2 Vrms (open circuit voltage) (25°C, 1.0±0.2 Vrms (open circuit voltage) (25°C, 1.0±0.2 Vrms (open circuit voltage)
at 1 KHz, for ≤100 pF use 1 MHz) at 1 KHz) at 1 KHz)
Capacitance Tolerances Capacitance Tolerances Capacitance Tolerances
±5%, ±10%, ±20% ±5%, ±10%, ±20% ±10%, ±20%, +80%, -20%
Operating Temperature Range Operating Temperature Range Operating Temperature Range
-55°C to +125°C -55°C to +125°C -55°C to +125°C
Temperature Characteristic Temperature Characteristic Temperature Characteristic
0 ± 30 ppm/°C -1500 ±250 ppm/°C ±15% (0 VDC)
Voltage Ratings Voltage Ratings Voltage Ratings
1000 VDC thru 5000 VDC (+125°C) 1000 VDC thru 5000 VDC (+125°C) 1000 VDC thru 5000 VDC (+125°C)
Dissipation Factor Dissipation Factor Dissipation Factor
0.15% max. 0.15% max. 2.5% max.
(25°C, 1.0±0.2 Vrms (open circuit voltage) (25°C, 1.0±0.2 Vrms (open circuit voltage) (25°C, 1.0±0.2 Vrms (open circuit voltage)
at 1 KHz, for ≤100 pF use 1 MHz) at 1 KHz) at 1 KHz)
Insulation Resistance (+25°C, at 500V) Insulation Resistance (+25°C, at 500V) Insulation Resistance (+25°C, at 500V)
100K MΩ min., or 1000 MΩ-μF min., 100K MΩ min., or 1000 MΩ-μF min., 100K MΩ min., or 1000 MΩ-μF min.,
whichever is less whichever is less whichever is less
Insulation Resistance (+125°C, at 500V) Insulation Resistance (+125°C, at 500V) Insulation Resistance (+125°C, at 500V)
10K MΩ min., or 100 MΩ-μF min., 10K MΩ min., or 100 MΩ-μF min., 10K MΩ min., or 100 MΩ-μF min.,
whichever is less whichever is less whichever is less
Dielectric Strength Dielectric Strength Dielectric Strength
120% rated voltage, 5 seconds 120% rated voltage, 5 seconds 120% rated voltage, 5 seconds
Life Test Life Test Life Test
100% rated and +125°C 100% rated and +125°C 100% rated and +125°C

HOW TO ORDER AVX Styles: HV01 THRU HV06


HV 01 A C 105 M A N 650
AVX Style Size Voltage Temperature Capacitance Capacitance Test Level Termination Height
See 1K = A Coefficient Code Tolerance A = Does not apply N = Straight Lead Max
Dimensions 2K = G C0G = A (2 significant digits C0G: J = Leads formed in Dimension “A”
chart 3K = H X7R = C + number of zeros) J = ±5% L = Leads formed out 120 = 0.120"
4K = J N1500 = 4 10 pF = 100 K = ±10% P = P Style Leads 240 = 0.240"
5K = K 100 pF = 101 M = ±20%
1,000 pF = 102 Z = Z Style Leads 360 = 0.360"
X7R: 480 = 0.480"
22,000 pF = 223
K = ±10% 650 = 0.650"
220,000 pF = 224
M = ±20%
1μF = 105
Z = +80%, -20%
10 μF = 106
100 μF = 107 N1500:
J = ±5%
K = ±10%
M = ±20%

Note: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.

59
High Voltage DIP Leaded (HV Style)
Surface Mount and Thru-Hole HV Styles
CHIP SEPARATION CHIP SEPARATION
0.254 (0.010) TYP. 0.254 (0.010) TYP.
CAPACITOR
D E E
1.651 ± 0.254
(0.065 ± 0.010)
4.191 ± 0.254
1.397 (0.055) (0.165 ± 0.010)
A R 0.508 2.540 ± 0.254
B
±0.254 (0.010) B (0.020) (0.100 ± 0.010)
3 PLACES
DETAIL A

6.350 (0.250) MIN


0.254
6.35 0.508 (0.020) TYP. (0.010) 0.254
(0.250) TYP. (0.010)
2.54 (0.100) TYP. 1.016 ± 0.254
MIN. C C TYP. (0.040 ± 0.010)
2.54 (0.100) MAX.
0.635 (0.025) MIN.
DETAIL A
“N” STYLE LEADS “P” STYLE LEADS

CHIP SEPARATION CHIP SEPARATION


0.254 (0.010) TYP. 0.254 (0.010) TYP.

D E E
0.254 (0.010)
RAD. (TYP.) 0.254 (0.010)
RAD. (TYP.)
A 1.397 (0.055)
B
±0.254 (0.010)

0.254 (0.010) 0.254 (0.010)


TYP. TYP.
1.778 (0.070) 1.905 (0.075) 1.778 (0.070) 1.905 (0.075)
0.508 (0.020) TYP. ±0.254 (0.010) ±0.635 (0.025) ±0.254 (0.010) ±0.635 (0.025)
C C TYP.
2.54 (0.100) TYP. TYP.
2.54 (0.100) MAX.
0.635 (0.025) MIN.
“J” STYLE LEADS “L” STYLE LEADS

CHIP SEPARATION

(0.110 ± 0.010)
(0.050 ± 0.010)
2.794 ± 0.254
1.270 ± 0.254
0.254 (0.010) TYP.

D E
0.254 (0.010) TYP.

RAD.
0.254
(0.010)
(TYP)
A 1.397 (0.055)
B
±0.254 (0.010)

1.778 ±0.254
(0.070 ± 0.010)
0.508 (0.020) TYP. C
3.048 ± 0.381
2.54 (0.100) TYP. (0.120 ± 0.015)
DETAIL B
2.54 (0.100) MAX.
0.635 (0.025) MIN. DETAIL B
“Z” STYLE LEADS

DIMENSIONS millimeters (inches)


No. of Leads
Style A (max.) B (max.) C ±.635 (±0.025) D ±.635 (±0.025) E (max.) per side
HV01 53.3 (2.100) 10.5 (0.415) 54.9 (2.160) 4
HV02 For “N” Style Leads: “A” Dimension Plus 1.651 (0.065) 39.1 (1.540) 20.3 (0.800) 40.7 (1.600) 8
See page 61 for
HV03 For “J” & “L” Style Leads: “A” Dimension Plus 2.032 (0.080) 27.2 (1.070) 10.5 (0.415) 28.2 (1.130) 4
maximum “A”
HV04 For “P” Style Leads: “A” Dimension Plus 4.445 (0.175) 10.2 (0.400) 10.2 (0.400) 11.2 (0.440) 4
Dimension
HV05 For “Z” Style Leads: “A” Dimension Plus 3.048 (0.120) 6.35 (0.250) 6.35 (0.250) 7.62 (0.300) 3
HV06 53.3 (2.100) 29.0 (1.140) 54.9 (2.160) 11

60
High Voltage DIP Leaded (HV Style)
Surface Mount and Thru-Hole HV Styles
Max Capacitance (μF) Available Versus Style with Height (A) of 0.120" - 3.05mm
HV01 _ _ _ _ _ _ AN120 HV02 _ _ _ _ _ _ AN120 HV03 _ _ _ _ _ _ AN120 HV04 _ _ _ _ _ _ AN120 HV05 _ _ _ _ _ _ AN120 HV06 _ _ _ _ _ _ AN120
AVX
STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 1KV 2KV 3KV 4KV 5KV

C0G .086 .024 .011 .0062 .0052 .120 .034 .015 .0088 .0074 .042 .013 .0058 .0030 .0024 .012 .0040 .0018 .0009 .0007 .0048 .0013 .240 .066 .028 .018 .015

N1500 .140 .042 .018 .010 .0084 .200 .058 .024 .014 .012 .068 .020 .0090 .0050 .0040 .020 .0066 .0028 .0014 .0012 .0078 .0022 .380 .100 .046 .030 .026

X7R 1.10 .260 .150 .066 .052 1.50 .360 .200 .094 .078 .520 .130 .072 .032 .024 .160 .042 --- --- --- .060 --- 3.00 .700 .440 .200 .170

Max Capacitance (μF) Available Versus Style with Height (A) of 0.240" - 6.10mm
HV01 _ _ _ _ _ _ AN240 HV02 _ _ _ _ _ _ AN240 HV03 _ _ _ _ _ _ AN240 HV04 _ _ _ _ _ _ AN240 HV05 _ _ _ _ _ _ AN240 HV06 _ _ _ _ _ _ AN240
AVX
STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 1KV 2KV 3KV 4KV 5KV

C0G .170 .048 .022 .012 .010 .240 .068 .031 .017 .015 .084 .026 .011 .0060 .0048 .025 .0082 .0036 .0018 .0014 .0096 .0027 .480 .130 .056 .036 .031

N1500 .280 .084 .036 .020 .016 .400 .110 .048 .028 .024 .130 .040 .018 .010 .0080 .040 .013 .0056 .0028 .0025 .015 .0044 .760 .210 .092 .060 .052

X7R 2.20 .520 .300 .130 .100 3.10 .720 .400 .180 .150 1.00 .270 .140 .064 .048 .330 .084 --- --- --- .120 --- 6.00 1.40 .880 .400 .340

Max Capacitance (μF) Available Versus Style with Height (A) of 0.360" - 9.15mm
HV01 _ _ _ _ _ _ AN360 HV02 _ _ _ _ _ _ AN360 HV03 _ _ _ _ _ _ AN360 HV04 _ _ _ _ _ _ AN360 HV05 _ _ _ _ _ _ AN360 HV06 _ _ _ _ _ _ AN360
AVX
STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 1KV 2KV 3KV 4KV 5KV

C0G .250 .072 .033 .018 .015 .360 .100 .047 .026 .022 .120 .039 .017 .0090 .0072 .038 .012 .0054 .0027 .0022 .014 .0040 .720 .200 .084 .055 .047

N1500 .420 .120 .055 .030 .025 .600 .170 .072 .043 .036 .200 .060 .027 .015 .012 .060 .020 .0084 .0043 .0037 .023 .0066 1.10 .310 .130 .090 .078

X7R 3.30 .780 .450 .200 .150 4.70 1.00 .600 .280 .230 1.50 .410 .210 .096 .072 .490 .120 --- --- --- .180 --- 9.00 2.10 1.30 .600 .510

Max Capacitance (μF) Available Versus Style with Height (A) of 0.480" - 12.2mm
HV01 _ _ _ _ _ _ AN480 HV02 _ _ _ _ _ _ AN480 HV03 _ _ _ _ _ _ AN480 HV04 _ _ _ _ _ _ AN480 HV05 _ _ _ _ _ _ AN480 HV06 _ _ _ _ _ _ AN480
AVX
STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 1KV 2KV 3KV 4KV 5KV

C0G .340 .096 .044 .024 .020 .480 .130 .063 .035 .030 .160 .052 .023 .012 .0096 .051 .016 .0072 .0036 .0029 .019 .0054 .960 .260 .110 .073 .062
N1500 .560 .160 .073 .040 .033 .800 .230 .096 .057 .048 .270 .080 .036 .020 .016 .080 .026 .011 .0057 .0050 .031 .0088 1.50 .420 .180 .120 .100
X7R
4.40 1.00 .600 .260 .200 6.30 1.40 .800 .370 .310 2.00 .550 .280 .120 .096 .650 .160 --- --- --- .240 --- 12.0 2.80 1.70 .800 .68

Max Capacitance (μF) Available Versus Style with Height (A) of 0.650" - 16.5mm
HV01 _ _ _ _ _ _ AN650 HV02 _ _ _ _ _ _ AN650 HV03 _ _ _ _ _ _ AN650 HV04 _ _ _ _ _ _ AN650 HV05 _ _ _ _ _ _ AN650 HV06 _ _ _ _ _ _ AN650
AVX
STYLE 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 3KV 4KV 5KV 1KV 2KV 1KV 2KV 3KV 4KV 5KV

C0G .430 .120 .056 .031 .026 .610 .170 .079 .044 .037 .210 .065 .029 .015 .012 .064 .020 .009 .0045 .0037 .024 .0068 1.20 .330 .140 .092 .078
N1500 .700 .210 .092 .050 .042 1.00 .290 .120 .072 .060 .340 .100 .045 .025 .020 .100 .033 .014 .0072 .0063 .039 .011 1.90 .530 .230 .150 .130
X7R
5.50 1.30 .750 .330 .260 7.90 1.80 1.00 .470 .390 2.60 .690 .360 .160 .120 .820 .210 --- --- --- .300 --- 15.0 3.50 2.20 1.00 .850

61
High Voltage Leaded (CH Style)
Radial, Dual-in-Line & ‘L’ Lead SMT
330 pF to 2.7 μF This range of radial, dual-in-line for both through hole and
1kV to 5kV surface mount products is intended for use in high voltage
power supplies and voltage multiplier circuits. The multilayer
-55ºC to +125ºC
ceramic construction offers excellent volumetric efficiency
1B/C0G and 2C1/X7R Dielectrics compared with other high voltage dielectrics. They are suitable
for both high reliability and industrial applications.

ELECTRICAL SPECIFICATIONS
Temperature Coefficient CECC 30 000, (4.24.1) Dielectric Withstanding Voltage 25°C
1B/C0G: A Temperature Coefficient - 0 ± 30ppm/ºC 130% rated voltage for 5 seconds
2C1/X7R: C Temperature Characteristic - ± 15% (0v dc) Life Test (1000 hrs) CECC 30000 (4.23)
Capacitance Test 25ºC 1B/C0G & 2C1/X7R: 120% rated voltage at +125ºC.
1B/C0G: Measured at 1 VRMS max at 1KHz (1MHz <100 pF) Aging
2C1/X7R: Measured at 1 VRMS max at 1KHz 1B/C0G: Zero
Dissipation Factor 25°C 2C1/X7R: 2.5%/decade hour
1B/C0G: 0.15% max at 1KHz, 1 VRMS (1MHz for <100 pF)
2C1/X7R: 2.5% max at 1KHz, 1 VRMS
Insulation Resistance
1B/C0G & 2C1/X7R: 100K megohms or 1000 megohms-μF,
whichever is less

DUAL-IN-LINE
3.8
(0.149)
max.
W max. 2.0 W max.
(0.079)
max.
L max.
L 2.54 (0.100)
max. ±0.5 (0.200)
13 (0.512) 3.8 (0.149)
±1.0 (0.039) max.

S ±0.5 (0.020)
L2 L1 2.54 (0.100) ±0.5 (0.200) S ±0.5
(0.020)
2.54 (0.100) ±0.5 (0.200) L2 L1

DIMENSIONS millimeters (inches)


No. of
Style L W S Leads
(max) (max) (nom)
per side
CH41 9.2 (0.362) 8.7 (0.342) 8.2 (0.323) 3 Lead width 0.5 (0.020)
CH51 10.7 (0.421) 10.7 (0.421) 10.2 (0.400) 4 Lead thickness 0.254 (0.010)
L1 = L2 ± 0.5 (0.020)
CH61 14.9 (0.587) 13.6 (0.535) 14.0 (0.551) 5
CH76 21.6 (0.850) 16.6 (0.654) 20.3* (0.800) 6
CH91 24.0 (0.944) 40.6 (1.598) 20.3* (0.800) 14
*Tolerance ± 0.8

HOW TO ORDER
CH 41 A C 104 K A 8 0 A 7

Style Size Voltage Dielectric Capacitance Capacitance Specification Finish Lead Dia. Lead Space Lead Style
Code Code Code Code Code Tolerance Code Code Code Code Code
A = 1kV A = C0G (2 significant C0G: J = ±5% A = Non customized 8 = Varnish 0 = Standard A = Standard 0 = Dual in line
G = 2kV C = X7R digits + no. K = ±10% straight
H = 3kV of zeros) M = ±20% 7 = Dual in line
J = 4kV eg. 105 = 1 μF X7R: K = ±10% ‘L’ style
K = 5kV 106 = 10 μF M = ±20%
107 = 100 μF P = +100, -0%

62
High Voltage Leaded (CV Style)
Chip Assemblies
VERTICALLY MOUNTED RADIAL PRODUCT
Part Number format (CVxxxxxxxxxxxA2)
Typical Part Number CV51AC154MA80A2

T Max. L Max.
DIMENSIONS millimeters (inches)
Lead
Style L H T S Dia
H Max. (max) (max) (max) (nom)
(nom)
CV41 10.6 (0.417) 8.70 (0.343) 3.80 (0.150) 8.20 (0.323) 0.70 (0.028)
CV51 11.9 (0.469) 10.7 (0.421) 3.80 (0.150) 10.2 (0.402) 0.90 (0.035)
25 (0.984) CV61 16.5 (0.650) 13.6 (0.536) 3.80 (0.150) 15.2 (0.599) 0.90 (0.035)
±3 (0.118)
Lead Dia. CV76 22.7 (0.893) 16.6 (0.654) 3.80 (0.150) 21.2* (0.835) 0.90 (0.035)
See Table CV91 22.7 (0.893) 40.6 (1.598) 3.80 (0.150) 21.2* (0.835) 1.20 (0.047)
S ±0.5
*Tolerance ± 0.8mm (0.031)
(0.020)

HOW TO ORDER
CV 51 A C 154 M A 8 0 A 2

Style Size Voltage Dielectric Capacitance Capacitance Specification Finish Lead Dia. Lead Space Lead Style
Code Code Code Code Code Tolerance Code Code Code Code Code
A = 1kV A = C0G (2 significant C0G: J = ±5% A = Non customized 8 = Varnish 0 = Standard A = Standard
G = 2kV C = X7R digits + no. K = ±10%
H = 3kV of zeros) M = ±20%
J = 4kV eg. 105 = 1 μF X7R: K = ±10%
K = 5kV 106 = 10 μF M = ±20%
107 = 100 μF P = +100, -0%

63
High Voltage Leaded (CH/CV Style)
Chip Assemblies
1B/C0G ULTRA STABLE CERAMIC
CV41-CH41 CV51-CH51 CV61-CH61 CV76-CH76 CV91-CH91
Styles Styles Styles Styles Styles
Cap pF
330 K
390 J K
470 J K
560 J K
680 J K
820 H J K
1000 H J K
1200 H J K
1500 H J K
1800 G H J K
2200 G H J K
2700 G H J K
3300 G G H J K
3900 G G H J K
4700 G G H J K
5600 A G H J K
6800 A G G H J K
8200 A G G H J K
10000 A G G H J K
12000 A A G H J K
15000 A A G G H J
18000 A G G H J
22000 A A G H
27000 A A G H
33000 A A G H
39000 A G G
47000 A A G
56000 A A G
68000 A A G
82000 A G
100000 A G
120000 A
150000 A
180000 A
220000 A
270000 A
330000 A
NB Figures in cells refer to size within ordering information

64
High Voltage Leaded (CH/CV Style)
Chip Assemblies
2C1/X7R STABLE CERAMIC
CV41-CH41 CV51-CH51 CV61-CH61 CV76-CH76 CV91-CH91
Styles Styles Styles Styles Styles
Cap nF
1.2 K
1.3 K
1.5 J K
2.2 J K
2.7 J K
3.3 J K
3.9 J K
4.7 H J J K
5.6 H J K
6.8 H J K
8.2 G H J K
10 G H J K
12 G H J K
15 G H J K
18 A G H H J K
22 A G H J K
27 A G H J K
33 A G H J K
39 A A G H J K
47 A A G H J K
56 A A G H J K
68 A A G H J
82 A A G G H J
100 A A A G H J
120 A A A G H J
150 A A G H
180 A A A G H
220 A A A G
270 A A A G
330 A A G
390 A A A
470 A A A
560 A A A
680 A A
820 A A
1000 A A
1200 A
1500 A
1800 A
2200 A
2700 A

NB Figures in cells refer to size within ordering information

65
High Voltage MLC Radials (SV Style)
Application Information on High Voltage MLC Capacitors
High value, low leakage and small size are difficult parameters
to obtain in capacitors for high voltage systems. AVX special
high voltage MLC radial leaded capacitors meet these
performance characteristics. The added advantage of these
capacitors lies in special internal design minimizing the electric
field stresses within the MLC. These special design criteria
result in significant reduction of partial discharge activity within
the dielectric and having, therefore, a major impact on long-
term reliability of the product. The SV high voltage radial
capacitors are conformally coated with high insulation
resistance, high dielectric strength epoxy eliminating the
possibility of arc flashover.
The SV high voltage radial MLC designs exhibit low ESRs at
high frequency. The same criteria governing the high voltage
design carries the added benefits of extremely low ESR in
relatively low capacitance and small packages. These
capacitors are designed and are ideally suited for applications
such as snubbers in high frequency power converters,
resonators in SMPS, and high voltage coupling/DC blocking.

C0G Dielectric X7R Dielectric


General Specifications General Specifications
Capacitance Range Capacitance Range
10 pF to .15 μF 100 pF to 2.2 μF
(+25°C, 1.0 ±0.2 Vrms at 1kHz, (+25°C, 1.0 ±0.2 Vrms at 1kHz)
for ≤100 pF use 1 MHz)
Capacitance Tolerances
Capacitance Tolerances ±10%; ±20%; +80%, -20%
±5%; ±10%; ±20%
Operating Temperature Range
Operating Temperature Range -55°C to +125°C
-55°C to +125°C
Temperature Characteristic
Temperature Characteristic ±15% (0 VDC)
0 ± 30 ppm/°C
Voltage Ratings
Voltage Ratings 600 VDC thru 5000 VDC (+125°C)
600 VDC thru 5000 VDC (+125°C)
Dissipation Factor
Dissipation Factor 2.5% max.
0.15% max. (+25°C, 1.0 ±0.2 Vrms at 1kHz)
(+25°C, 1.0 ±0.2 Vrms at 1kHz,
for ≤100 pF use 1 MHz) Insulation Resistance (+25°C, at 500V)
100K MΩ min., or 1000 MΩ-μF min.,
Insulation Resistance (+25°C, at 500V) whichever is less
100K MΩ min. or 1000 MΩ-μF min.,
whichever is less Insulation Resistance (+125°C, at 500V)
10K MΩ min., or 100 MΩ-μF min.,
Insulation Resistance (+125°C, at 500V) whichever is less
10K MΩ min., or 100 MΩ-μF min.,
whichever is less Dielectric Strength
120% rated voltage, 5 seconds
Dielectric Strength
120% rated voltage, 5 seconds Life Test
100% rated and +125°C
Life Test
100% rated and +125°C

66
High Voltage MLC Radials (SV Style)

L
L T

H H + 3.683 H
(0.145)

31.75 31.75
(1.25) (1.250)
MIN LD
LD
min.

S
SV01 thru SV17 SV52 thru SV59 and SV63 thru SV67

HIGH VOLTAGE RADIAL LEAD


HOW TO ORDER AVX Styles: SV01 THRU SV67
SV01 A A 102 K A A *

AVX Voltage Temperature Capacitance Code Capacitance Test Leads Packaging


Style 600V/630V = C Coefficient (2 significant digits Tolerance Level A = Tin/Lead (See Note 1)
1000V = A C0G = A + no. of zeros) C0G: J = ±5% A = Standard R = RoHS
1500V = S X7R = C Examples: K = ±10% B = Hi-Rel* Compliant
2000V = G 10 pF = 100 M = ±20%
2500V = W 100 pF = 101 X7R: K = ±10% Note 1: No suffix signifies bulk packaging
3000V = H 1,000 pF = 102 M = ±20% which is AVX standard packaging.
4000V = J 22,000 pF = 223 Z = +80 -20% Use suffix “TR1” if tape and reel is
required. Parts are reel packaged
5000V = K 220,000 pF = 224
per EIA-468.
1 μF = 105
Note: Capacitors with X7R dielectrics are not intended for applications across *Hi-Rel screening consists of 100% Group A, Subgroup 1 per MIL-PRF-49467.
AC supply mains or AC line filtering with polarity reversal. Contact plant for (Except partial discharge testing is not performed and DWV is at 120% rated voltage).
recommendations.

DIMENSIONS millimeters (inches)


Length (L) Height (H) Thickness (T) Lead Spacing
AVX Style max max max ±.762 (.030) (S) LD (Nom)
TAPE & REEL QUANTITY RoHS
SV01 6.35 (0.250) 5.59 (0.220) 5.08 (0.200) 4.32 (0.170) 0.64 (0.025)
Part Pieces Part Available
SV02/SV52 8.13 (0.320) 7.11 (0.280) 5.08 (0.200) 5.59 (0.220) 0.64 (0.025) SV01 1000 SV01 Yes
SV03/SV53 9.40 (0.370) 7.62 (0.300) 5.08 (0.200) 6.99 (0.275) 0.64 (0.025) SV02/SV52 1000 SV02/SV52 Yes
SV04/SV54 11.4 (0.450) 5.59 (0.220) 5.08 (0.200) 7.62 (0.300) 0.64 (0.025) SV03/SV53 1000 SV03/SV53 Yes
SV05/SV55 11.9 (0.470) 10.2 (0.400) 5.08 (0.200) 9.52 (0.375) 0.64 (0.025) SV04/SV54 1000 SV04/SV54 Yes
SV06/SV56 14.0 (0.550) 7.11 (0.280) 5.08 (0.200) 10.16 (0.400) 0.64 (0.025) SV05/SV55 1000 SV05/SV55 Yes
SV07/SV57 14.5 (0.570) 12.7 (0.500) 5.08 (0.200) 12.1 (0.475) 0.64 (0.025) SV06/SV56 500 SV06/SV56 Yes
SV08/SV58 17.0 (0.670) 15.2 (0.600) 5.08 (0.200) 14.6 (0.575) 0.64 (0.025) SV07/SV57 500 SV07/SV57 Yes
SV09/SV59 19.6 (0.770) 18.3 (0.720) 5.08 (0.200) 17.1 (0.675) 0.64 (0.025) SV08/SV58 500 SV08/SV58 Yes
SV09/SV59 500 SV09/SV59 Yes
SV10 26.7 (1.050) 12.7 (0.500) 5.08 (0.200) 22.9 (0.900) 0.64 (0.025)
SV10 N/A SV10 No
SV11 31.8 (1.250) 15.2 (0.600) 5.08 (0.200) 27.9 (1.100) 0.64 (0.025)
SV11 N/A SV11 No
SV12 36.8 (1.450) 18.3 (0.720) 5.08 (0.200) 33.0 (1.300) 0.64 (0.025)
SV12 N/A SV12 No
SV13/SV63 7.62 (0.300) 9.14 (0.360) 5.08 (0.200) 5.08 (0.200) 0.51 (0.020)
SV13/SV63 1000 SV13/SV63 Yes
SV14/SV64 10.2 (0.400) 11.7 (0.460) 5.08 (0.200) 5.08 (0.200) 0.51 (0.020)
SV14/SV64 1000 SV14/SV64 Yes
SV15/SV65 12.7 (0.500) 14.2 (0.560) 5.08 (0.200) 10.2 (0.400) 0.64 (0.025) SV15/SV65 500 SV15/SV65 Yes
SV16/SV66 22.1 (0.870) 16.8 (0.660) 5.08 (0.200) 20.1 (0.790) 0.81 (0.032) SV16/SV66 500 SV16/SV66 Yes
SV17/SV67 23.6 (0.930) 19.8 (0.780) 6.35 (0.250) 20.3 (0.800) 0.81 (0.032) SV17/SV67 400 SV17/SV67 Yes

67
High Voltage MLC Radials (SV Style)

CAPACITANCE VALUE
C0G
Style 600/630V 1000V 1500V 2000V 2500V 3000V 4000V 5000V
min./max. min./max. min./max. min./max. min./max. min./max. min./max. min./max.
SV01 100 pF / 1500 pF 100 pF / 1000 pF 10 pF / 330 pF 10 pF / 220 pF 10 pF / 120 pF 10 pF / 82 pF — —
SV02/SV52 100 pF / 6800 pF 100 pF / 4700 pF 100 pF / 1500 pF 10 pF / 1000 pF 10 pF / 680 pF 10 pF / 560 pF 10 pF / 150 pF 10 pF / 100 pF
SV03/SV53 100 pF /0.012 μF 100 pF / 8200 pF 100 pF / 2700 pF 100 pF / 1800 pF 10 pF /1000 pF 10 pF / 680 pF 10 pF / 390 pF 10 pF / 220 pF
SV04/SV54 100 pF / 3900 pF 100 pF / 2700 pF 10 pF / 820 pF 10 pF / 560 pF 10 pF / 270 pF 10 pF / 180 pF 10 pF / 100 pF 10 pF / 68 pF
SV05/SV55 1000 pF /0.027 μF 1000 pF / 0.018 μF 100 pF / 6800 pF 100 pF / 4700 pF 100 pF /2700 pF 100 pF / 1500 pF 10 pF /1000 pF 10 pF / 560 pF
SV06/SV56 100 pF /0.012 μF 100 pF / 0.010 μF 100 pF / 3300 pF 100 pF / 2200 pF 10 pF /1200 pF 10 pF / 820 pF 10 pF / 470 pF 10 pF / 390 pF
SV07/SV57 1000 pF /0.056 μF 1000 pF / 0.033 μF 1000 pF / 0.015 μF 100 pF /0.010 μF 100 pF /5600 pF 100 pF / 3900 pF 100 pF /2200 pF 10 pF /1200 pF
SV08/SV58 1000 pF /0.082 μF 1000 pF / 0.047 μF 1000 pF / 0.022 μF 1000 pF /0.015 μF 100 pF /0.010 μF 100 pF / 6800 pF 100 pF /3300 pF 100 pF /2200 pF
SV09/SV59 1000 pF /0.150 μF 1000 pF / 0.082 μF 1000 pF / 0.039 μF 1000 pF /0.022 μF 1000 pF /0.015 μF 100 pF / 8200 pF 100 pF /4700 pF 100 pF /3300 pF
SV10 1000 pF /0.100 μF 1000 pF / 0.056 μF 1000 pF / 0.022 μF 1000 pF /0.012 μF 100 pF /8200 pF 100 pF / 5600 pF 100 pF /3300 pF 100 pF /2200 pF
SV11 1000 pF /0.150 μF 1000 pF / 0.082 μF 1000 pF / 0.039 μF 1000 pF /0.022 μF 1000 pF /0.015 μF 100 pF / 8200 pF 100 pF /4700 pF 100 pF /3300 pF
SV12 0.01 μF /0.220 μF 0.01 μF / 0.15 μF 1000 pF / 0.056 μF 1000 pF /0.033 μF 1000 pF /0.022 μF 1000 pF /0.015 μF 100 pF /8200 pF 100 pF /5600 pF
SV13/SV63 100 pF /0.018 μF 100 pF / 0.012 μF 100 pF / 4700 pF 100 pF / 2700 pF 100 pF /1800 pF 100 pF / 1000 pF 10 pF / 470 pF 10 pF / 390 pF
SV14/SV64 1000 pF /0.039 μF 1000 pF / 0.022 μF 100 pF / 8200 pF 100 pF / 5600 pF 100 pF /3300 pF 100 pF / 1800 pF 10 pF / 820 pF 10 pF / 680 pF
SV15/SV65 1000 pF /0.056 μF 1000 pF / 0.033 μF 1000 pF /0.015 μF 100 pF / 0.01 μF 100 pF /5600 pF 100 pF / 2700 pF 100 pF /1800 pF 100 pF /1200 pF
SV16/SV66 1000 pF /0.120 μF 1000 pF / 0.082 μF 1000 pF /0.039 μF 1000 pF /0.027 μF 1000 pF /0.015 μF 100 pF / 8200 pF 100 pF /4700 pF 100 pF /3300 pF
SV17/SV67 1000 pF /0.150 μF 1000 pF / 0.10 μF 1000 pF /0.056 μF 1000 pF /0.039 μF 1000 pF /0.022 μF 1000 pF /0.012 μF 100 pF /6800 pF 100 pF /4700 pF
X7R
SV01 1000 pF /0.018 μF 1000 pF / 0.012 μF 100 pF / 5600 pF 100 pF / 3900 pF — — — —
SV02/SV52 1000 pF /0.082 μF 1000 pF / 0.047 μF 1000 pF / 0.015 μF 100 pF / 6800 pF 100 pF /3900 pF 100 pF / 2700 pF — —
SV03/SV53 1000 pF /0.180 μF 1000 pF / 0.082 μF 1000 pF / 0.018 μF 1000 pF / 0.01 μF 100 pF /6800 pF 100 pF / 4700 pF 100 pF /1800 pF —
SV04/SV54 1000 pF /0.056 μF 1000 pF / 0.033 μF 100 pF / 6800 pF 100 pF / 3900 pF 100 pF /2200 pF 100 pF / 1800 pF 100 pF / 820 pF —
SV05/SV55 0.01 μF /0.470 μF 0.01 μF / 0.22 μF 1000 pF / 0.056 μF 1000 pF /0.027 μF 1000 pF /0.018 μF 1000 pF /0.012 μF 100 pF /4700 pF —
SV06/SV56 0.01 μF /0.180 μF 0.01 μF / 0.10 μF 1000 pF / 0.033 μF 1000 pF /0.012 μF 100 pF /8200 pF 100 pF / 6800 pF 100 pF /2700 pF 100 pF /1200 pF
SV07/SV57 0.01 μF /0.820 μF 0.01 μF / 0.39 μF 0.01 μF / 0.10 μF 1000 pF /0.047 μF 1000 pF /0.033 μF 1000 pF /0.027 μF 1000 pF / 0.01 μF 100 pF /6800 pF
SV08/SV58 0.01 μF / 1.20 μF 0.01 μF / 0.68 μF 0.01 μF / 0.18 μF 1000 pF /0.082 μF 1000 pF /0.068 μF 1000 pF /0.047 μF 1000 pF /0.018 μF 1000 pF /0.012 μF
SV09/SV59 0.10 μF / 1.80 μF 0.10 μF / 1.00 μF 0.01 μF / 0.27 μF 0.01 μF / 0.12 μF 0.01 μF / 0.10 μF 1000 pF /0.068 μF 1000 pF /0.027 μF 1000 pF /0.018 μF
SV10 0.01 μF / 1.50 μF 0.01 μF / 0.82 μF 0.01 μF / 0.22 μF 0.01 μF / 0.10 μF 1000 pF /0.082 μF 1000 pF /0.056 μF 1000 pF /0.022 μF 1000 pF /0.022 μF
SV11 0.10 μF / 2.20 μF 0.10 μF / 1.2 μF 0.01 μF / 0.39 μF 0.01 μF / 0.18 μF 0.01 μF / 0.15 μF 0.01 μF / 0.10 μF 1000 pF /0.039 μF 1000 pF /0.027 μF
SV12 0.10 μF / 3.90 μF 0.10 μF / 2.20 μF 0.01 μF / 0.56 μF 0.01 μF / 0.27 μF 0.01 μF / 0.22 μF 0.01 μF / 0.15 μF 1000 pF /0.056 μF 1000 pF /0.033 μF
SV13/SV63 0.01 μF /0.270 μF 0.01 μF / 0.10 μF 1000 pF / 0.033 μF 1000 pF /0.012 μF 1000 pF / 0.01 μF 100 pF / 6800 pF 100 pF /2700 pF —
SV14/SV64 0.01 μF /0.470 μF 0.01 μF / 0.18 μF 1000 pF / 0.068 μF 1000 pF /0.022 μF 1000 pF /0.018 μF 1000 pF /0.015 μF 100 pF /5600 pF —
SV15/SV65 0.01 μF /0.680 μF 0.01 μF / 0.33 μF 0.01 μF / 0.10 μF 1000 pF /0.033 μF 1000 pF /0.027 μF 1000 pF /0.022 μF 1000 pF /8200 pF 100 pF /4700 pF
SV16/SV66 0.01 μF / 1.80 μF 0.01 μF / 1.0 μF 0.01 μF / 0.27 μF 0.01 μF / 0.12 μF 0.01 μF / 0.10 μF 1000 pF /0.068 μF 1000 pF /0.027 μF 1000 pF /0.018 μF
SV17/SV67 0.01 μF / 2.20 μF 0.01 μF / 1.2 μF 0.01 μF / 0.39 μF 0.01 μF / 0.15 μF 0.01 μF / 0.12 μF 1000 pF /0.082 μF 1000 pF /0.039 μF 1000 pF /0.027 μF
Note: Contact factory for other voltage ratings or values.

AVX IS QUALIFIED TO THE FOLLOWING DSCC DRAWINGS


Specification # Description Capacitance Range
87046 C0G-1000 VDC 10 pF - 0.025 μF
87043 X7R-1000 VDC 100 pF - 0.47 μF
87040 X7R-2000 VDC 100 pF - 0.22 μF
87114 C0G-3000 VDC 10 pF - 8200 pF
87047 X7R-3000 VDC 100 pF - 0.1 μF
87076 C0G-4000 VDC 10 pF - 6800 pF
89044 X7R-4000 VDC 100 pF - 0.056 μF
87077 C0G-5000 VDC 10 pF - 5600 pF
87070 X7R-5000 VDC 100 pF - 0.033 μF

These specifications require group A and B testing per MIL-PRF-49467


Note: Customers may accept, at their discretion, a certificate of compliance with group B requirements in lieu of performing group B tests.

68
MLC Chip Capacitors
Basic Construction
A multilayer ceramic (MLC) capacitor is a monolithic block considerable amount of sophistication, both in material and
of ceramic containing two sets of offset, interleaved in manufacture, to produce it in the quality and quantities
planar electrodes that extend to two opposite surfaces of needed in today’s electronic equipment.
the ceramic dielectric. This simple structure requires a

Terminations
• Standard Nickel Barrier
Lead Free Tin Plate (RoHS Compliant)
5% minimum Lead Plated
• Leach resistance to 90 seconds at 260°C
• Solderable plated for dimensional control
• Special materials as required
Electrode
Ceramic Layer

End Terminations

Terminated
Edge

Terminated
Edge
Margin Electrodes

QUALITY STATEMENT
AVX focus is customer satisfaction – Customer satisfaction in upon military and commercial standards and systems
the broadest sense: Products, service, price, delivery, tech- including ISO9001. QV2000 is a natural extension of past
nical support, and all the aspects of a business that impact quality efforts with world class techniques for ensuring a total
you, the customer. quality environment to satisfy our customers during this
Our long term strategy is for continuous improvement which decade and into the 21st century.
is defined by our Quality Vision 2000. This is a total quality As your components supplier, we invite you to experience
management system developed by and supported by AVX the quality, service, and commitment of AVX.
corporate management. The foundation of QV2000 is built

69
General Description
Table 1: EIA and MIL Temperature Stable and General Effects of Voltage – Variations in voltage have little effect
Application Codes on Class 1 dielectric but does affect the capacitance and
dissipation factor of Class 2 dielectrics. The application of
EIA CODE DC voltage reduces both the capacitance and dissipation
Percent Capacity Change Over Temperature Range factor while the application of an AC voltage within a
RS198 Temperature Range reasonable range tends to increase both capacitance and
dissipation factor readings. If a high enough AC voltage is
X7 -55°C to +125°C applied, eventually it will reduce capacitance just as a DC
X5 -55°C to +85°C voltage will. Figure 2 shows the effects of AC voltage.
Y5 -30°C to +85°C
Cap. Change vs. A.C. Volts
Z5 +10°C to +85°C
X7R
Code Percent Capacity Change

Capacitance Change Percent


D ±3.3% 50
E ±4.7%
40
F ±7.5%
P ±10% 30
R ±15%
S ±22% 20
T +22%, -33%
U +22%, - 56% 10
V +22%, -82% 0
EXAMPLE – A capacitor is desired with the capacitance value at 25°C 12.5 25 37.5 50
to increase no more than 7.5% or decrease no more than 7.5% from
-30°C to +85°C. EIA Code will be Y5F. Volts AC at 1.0 KHz
Figure 2

MIL CODE
Capacitor specifications specify the AC voltage at which to
measure (normally 0.5 or 1 VAC) and application of the
Symbol Temperature Range wrong voltage can cause spurious readings.
A -55°C to +85°C
B -55°C to +125°C Typical Cap. Change vs. Temperature
C -55°C to +150°C X7R
Symbol Cap. Change Cap. Change
Zero Volts Rated Volts
Capacitance Change Percent

+20
Q +15%, -15% +15%, -50%
R +15%, -15% +15%, -40% +10
0VDC
W +22%, -56% +22%, -66%
0
X +15%, -15% +15%, -25%
Y +30%, -70% +30%, -80% -10
Z +20%, -20% +20%, -30%
Temperature characteristic is specified by combining range and change -20
symbols, for example BR or AW. Specification slash sheets indicate the
characteristic applicable to a given style of capacitor. -30
-55 -35 -15 +5 +25 +45 +65 +85 +105 +125
Temperature Degrees Centigrade
In specifying capacitance change with temperature for Class
2 materials, EIA expresses the capacitance change over an Figure 3
operating temperature range by a 3 symbol code. The
first symbol represents the cold temperature end of the
temperature range, the second represents the upper limit of
the operating temperature range and the third symbol repre-
sents the capacitance change allowed over the operating
temperature range. Table 1 provides a detailed explanation of
the EIA system.

70
General Description

Effects of Time – Class 2 ceramic capacitors change Effects of Frequency – Frequency affects capacitance
capacitance and dissipation factor with time as well as and impedance characteristics of capacitors. This effect is
temperature, voltage and frequency. This change with time is much more pronounced in high dielectric constant ceramic
known as aging. Aging is caused by a gradual re-alignment formulation than in low K formulations. AVX’s SpiCalci
of the crystalline structure of the ceramic and produces an software generates impedance, ESR, series inductance,
exponential loss in capacitance and decrease in dissipation series resonant frequency and capacitance all as functions
factor versus time. A typical curve of aging rate for semi- of frequency, temperature and DC bias for standard chip
stable ceramics is shown in Figure 4. sizes and styles. It is available free from AVX and can be
If a Class 2 ceramic capacitor that has been sitting on the downloaded for free from AVX website: www.avx.com.
shelf for a period of time, is heated above its curie point,
(125°C for 4 hours or 150°C for 1⁄2 hour will suffice) the part
will de-age and return to its initial capacitance and dissi-
pation factor readings. Because the capacitance changes
rapidly, immediately after de-aging, the basic capacitance
measurements are normally referred to a time period some-
time after the de-aging process. Various manufacturers use
different time bases but the most popular one is one day
or twenty-four hours after “last heat.” Change in the aging
curve can be caused by the application of voltage and
other stresses. The possible changes in capacitance due to
de-aging by heating the unit explain why capacitance changes
are allowed after test, such as temperature cycling, moisture
resistance, etc., in MIL specs. The application of high voltages
such as dielectric withstanding voltages also tends to de-age
capacitors and is why re-reading of capacitance after 12 or 24
hours is allowed in military specifications after dielectric
strength tests have been performed.

Typical Curve of Aging Rate


X7R
+1.5 Effects of Mechanical Stress – High “K” dielectric ceramic
capacitors exhibit some low level piezoelectric reactions
0 under mechanical stress. As a general statement, the piezo-
electric output is higher, the higher the dielectric constant of
Capacitance Change Percent

the ceramic. It is desirable to investigate this effect before


-1.5
using high “K” dielectrics as coupling capacitors in extreme-
ly low level applications.
-3.0 Reliability – Historically ceramic capacitors have been one
of the most reliable types of capacitors in use today.
-4.5 The approximate formula for the reliability of a ceramic
capacitor is:


-6.0
Lo Vt X Tt Y
=
Lt Vo To
-7.5 where
1 10 100 1000 10,000 100,000
Hours Lo = operating life Tt = test temperature and
Characteristic Max. Aging Rate %/Decade Lt = test life To = operating temperature
C0G (NP0) None Vt = test voltage in °C
X7R, X5R 2 Vo = operating voltage X,Y = see text
Figure 4
Historically for ceramic capacitors exponent X has been
considered as 3. The exponent Y for temperature effects
typically tends to run about 8.

71
General Description

A capacitor is a component which is capable of storing Equivalent Circuit – A capacitor, as a practical device,
electrical energy. It consists of two conductive plates (elec- exhibits not only capacitance but also resistance and
trodes) separated by insulating material which is called the inductance. A simplified schematic for the equivalent circuit is:
dielectric. A typical formula for determining capacitance is: C = Capacitance L = Inductance
Rs = Series Resistance Rp = Parallel Resistance
C = .224 KA
t
RP
C =capacitance (picofarads)
K =dielectric constant (Vacuum = 1)
A =area in square inches
t =separation between the plates in inches L RS
(thickness of dielectric)
.224 = conversion constant C
(.0884 for metric system in cm)
Capacitance – The standard unit of capacitance is the Reactance – Since the insulation resistance (Rp) is
farad. A capacitor has a capacitance of 1 farad when 1 normally very high, the total impedance of a capacitor is:
coulomb charges it to 1 volt. One farad is a very large unit
and most capacitors have values in the micro (10-6), nano
where
Z=  R 2S + (XC - XL )2
(10-9) or pico (10-12) farad level.
Dielectric Constant – In the formula for capacitance given
Z = Total Impedance
above the dielectric constant of a vacuum is arbitrarily cho-
Rs = Series Resistance
sen as the number 1. Dielectric constants of other materials
XC = Capacitive Reactance = 1
are then compared to the dielectric constant of a vacuum.
2 π fC
Dielectric Thickness – Capacitance is indirectly propor- XL = Inductive Reactance = 2 π fL
tional to the separation between electrodes. Lower voltage
requirements mean thinner dielectrics and greater capaci- The variation of a capacitor’s impedance with frequency
tance per volume. determines its effectiveness in many applications.
Area – Capacitance is directly proportional to the area of the Phase Angle – Power Factor and Dissipation Factor are
electrodes. Since the other variables in the equation are often confused since they are both measures of the loss in
usually set by the performance desired, area is the easiest a capacitor under AC application and are often almost iden-
parameter to modify to obtain a specific capacitance within tical in value. In a “perfect” capacitor the current in the
a material group. capacitor will lead the voltage by 90°.
Energy Stored – The energy which can be stored in a I (Ideal)
capacitor is given by the formula: I (Actual)

E = 1⁄2CV2
Loss
Phase
Angle ␦
E = energy in joules (watts-sec) Angle
V = applied voltage
C = capacitance in farads
Potential Change – A capacitor is a reactive component
f
which reacts against a change in potential across it. This is
V
shown by the equation for the linear charge of a capacitor: IR s
In practice the current leads the voltage by some other
I ideal = C dV phase angle due to the series resistance RS. The comple-
dt
ment of this angle is called the loss angle and:
where
I = Current Power Factor (P.F.) = Cos f or Sine ␦
C = Capacitance Dissipation Factor (D.F.) = tan ␦
dV/dt = Slope of voltage transition across capacitor
Thus an infinite current would be required to instantly for small values of ␦ the tan and sine are essentially equal
change the potential across a capacitor. The amount of which has led to the common interchangeability of the two
current a capacitor can “sink” is determined by the above terms in the industry.
equation.

72
General Description

Equivalent Series Resistance – The term E.S.R. or Insulation Resistance – Insulation Resistance is the
Equivalent Series Resistance combines all losses both series resistance measured across the terminals of a capacitor and
and parallel in a capacitor at a given frequency so that the consists principally of the parallel resistance R P shown in the
equivalent circuit is reduced to a simple R-C series equivalent circuit. As capacitance values and hence the area
connection. of dielectric increases, the I.R. decreases and hence the
product (C x IR or RC) is often specified in ohm farads or
more commonly megohm-microfarads. Leakage current is
determined by dividing the rated voltage by IR (Ohm’s Law).
E.S.R. C Dielectric Strength – Dielectric Strength is an expression of
the ability of a material to withstand an electrical stress.
Dissipation Factor – The DF/PF of a capacitor tells what
Although dielectric strength is ordinarily expressed in volts, it
percent of the apparent power input will turn to heat in the
is actually dependent on the thickness of the dielectric and
capacitor.
thus is also more generically a function of volts/mil.
Dissipation Factor = E.S.R. = (2 π fC) (E.S.R.) Dielectric Absorption – A capacitor does not discharge
XC
instantaneously upon application of a short circuit, but drains
The watts loss are: gradually after the capacitance proper has been discharged.
It is common practice to measure the dielectric absorption
Watts loss = (2 π fCV2 ) (D.F.)
by determining the “reappearing voltage” which appears
Very low values of dissipation factor are expressed as their across a capacitor at some point in time after it has been fully
reciprocal for convenience. These are called the “Q” or discharged under short circuit conditions.
Quality factor of capacitors. Corona – Corona is the ionization of air or other vapors
Parasitic Inductance – The parasitic inductance of capac- which causes them to conduct current. It is especially
itors is becoming more and more important in the decoupling prevalent in high voltage units but can occur with low voltages
of today’s high speed digital systems. The relationship as well where high voltage gradients occur. The energy
between the inductance and the ripple voltage induced on discharged degrades the performance of the capacitor and
the DC voltage line can be seen from the simple inductance can in time cause catastrophic failures.
equation:
V = L di
dt

di
The dt seen in current microprocessors can be as high as
0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic
inductance can cause a voltage spike of 30mV. While this
does not sound very drastic, with the Vcc for microproces-
sors decreasing at the current rate, this can be a fairly large
percentage.
Another important, often overlooked, reason for knowing
the parasitic inductance is the calculation of the resonant
frequency. This can be important for high frequency, by-pass
capacitors, as the resonant point will give the most signal
attenuation. The resonant frequency is calculated from the
simple equation:
fres = 1
2␲ LC

73
Surface Mounting Guide
MLC Chip Capacitors
REFLOW SOLDERING
millimeters (inches)
Case Size D1 D2 D3 D4 D5
D2
0805 (LD05) 3.00 (0.120) 1.00 (0.040) 1.00 (0.040) 1.00 (0.040) 1.25 (0.050)
1206 (LD06) 4.00 (0.160) 1.00 (0.040) 2.00 (0.090) 1.00 (0.040) 1.60 (0.060)
*1210 (LD10) 4.00 (0.160) 1.00 (0.040) 2.00 (0.090) 1.00 (0.040) 2.50 (0.100)
D1 D3
*1808 (LD08) 5.60 (0.220) 1.00 (0.040) 3.60 (0.140) 1.00 (0.040) 2.00 (0.080)
*1812 (LD12) 5.60 (0.220) 1.00 (0.040) 3.60 (0.140) 1.00 (0.040) 3.00 (0.120)
D4 *1825 (LD13) 5.60 (0.220) 1.00 (0.040) 3.60 (0.140) 1.00 (0.040) 6.35 (0.250)
*2220 (LD20) 6.60 (0.260) 1.00 (0.040) 4.60 (0.180) 1.00 (0.040) 5.00 (0.200)
*2225 (LD14) 6.60 (0.260) 1.00 (0.040) 4.60 (0.180) 1.00 (0.040) 6.35 (0.250)
*HQCC 6.60 (0.260) 1.00 (0.040) 4.60 (0.180) 1.00 (0.040) 6.35 (0.250)
D5
*3640 (LD40) 10.67 (0.427) 1.52 (0.060) 7.62 (0.300) 1.52 (0.060) 10.16 (0.400)
Dimensions in *HQCE 10.67 (0.427) 1.52 (0.060) 7.62 (0.300) 1.52 (0.060) 10.16 (0.400)
millimeters (inches) *AVX recommends reflow soldering only.

Component Pad Design


Component pads should be designed to achieve good • Pad width equal to component width. It is permissible to
solder filets and minimize component movement during decrease this to as low as 85% of component width but it
reflow soldering. Pad designs are given below for the most is not advisable to go below this.
common sizes of multilayer ceramic capacitors for both • Pad overlap 0.5mm beneath component.
wave and reflow soldering. The basis of these designs is:
• Pad extension 0.5mm beyond components for reflow and
1.0mm for wave soldering.

WAVE SOLDERING
D2

Case Size D1 D2 D3 D4 D5
D1 D3
0805 4.00 (0.15) 1.50 (0.06) 1.00 (0.04) 1.50 (0.06) 1.25 (0.05)
D4
1206 5.00 (0.19) 1.50 (0.06) 2.00 (0.09) 1.50 (0.06) 1.60 (0.06)
Dimensions in millimeters (inches)

D5

Component Spacing Preheat & Soldering


For wave soldering components, must be spaced sufficiently The rate of preheat should not exceed 4°C/second to
far apart to avoid bridging or shadowing (inability of solder to prevent thermal shock. A better maximum figure is about
penetrate properly into small spaces). This is less important 2°C/second.
for reflow soldering but sufficient space must be allowed to
For capacitors size 1206 and below, with a maximum
enable rework should it be required.
thickness of 1.25mm, it is generally permissible to allow a
temperature differential from preheat to soldering of 150°C.
In all other cases this differential should not exceed 100°C.
For further specific application or process advice, please
consult AVX.
Cleaning
≥1.5mm (0.06) Care should be taken to ensure that the capacitors are
thoroughly cleaned of flux residues especially the space
≥1mm (0.04)
beneath the capacitor. Such residues may otherwise
become conductive and effectively offer a low resistance
bypass to the capacitor.
≥1mm (0.04)
Ultrasonic cleaning is permissible, the recommended
conditions being 8 Watts/litre at 20-45 kHz, with a process
cycle of 2 minutes vapor rinse, 2 minutes immersion in the
ultrasonic solvent bath and finally 2 minutes vapor rinse.

74
Surface Mounting Guide
Recommended Soldering Profiles
REFLOW SOLDER PROFILES 275
Recommended Reflow Profiles
Maximum Reflow Profile With Care
AVX RoHS compliant products utilize termination 250 Recommended Pb-Free Reflow Profile
finishes (e.g.Sn or SnAg) that are compatible Recommended SnPb Reflow Profile
Preheat
Preheat Reflow CoolCool
Reflow DownDown

Component Temperature / ºC
225
with all Pb-Free soldering systems and are fully 200
reverse compatible with SnPb soldering systems.
175
A recommended SnPb profile is shown for com-
parison; for Pb-Free soldering, IPC/JEDECJ-STD- 150

020C may be referenced. The upper line in the 125

chart shows the maximum envelope to which 100

products are qualified (typically 3x reflow cycles 75


at 260ºC max). The center line gives the Preheat Reflow Cool Down
50
recommended profile for optimum wettability and
soldering in Pb-Free Systems. 25
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420

Time / secs
Preheat:
The pre-heat stabilizes the part and reduces the temperature Wetting Force at 2nd Sec. (higher is better)
differential prior to reflow. The initial ramp to 125ºC may be 0.40
rapid, but from that point (2-3)ºC/sec is recommended to 0.30

allow ceramic parts to heat uniformly and plastic 0.20

F [mN]
encapsulated parts to stabilize through the glass transition 0.10 SnPb - Sn60Pb40
Sn - Sn60Pb40
0.00
temperature of the body (~ 180ºC). Sn-Sn3.5Ag0.7Cu
-0.10 Sn-Sn2.5Ag1Bi0.5Cu
Sn-Sn0.7Cu
Reflow: -0.20
-0.30
In the reflow phase, the maximum recommended time
-0.40
> 230ºC is 40secs. Time at peak reflow is 10secs max.; 200 210 220 230 240 250 260 270

optimum reflow is achieved at 250ºC, (see wetting balance Temperature of Solder [C]
chart opposite) but products are qualified to 260ºC max.
Please reference individual product datasheets for IMPORTANT NOTE: Typical Pb-Free reflow solders have a
maximum limits more dull and grainy appearance compared to traditional
Cool Down: SnPb. Elevating the reflow temperature will not change this,
Cool down should not be forced and 6ºC/sec is recom- but extending the cool down can help improve the visual
mended. A slow cool down will result in a finer grain appearance of the joint.
structure of the reflow solder in the solder fillet.

WAVE SOLDER PROFILES


For wave solder, there is no change in the recommended Recommended Soldering Profiles
wave profile; all standard Pb-Free (SnCu/SnCuAg) systems
275
operate at the same 260ºC max recommended for SnPb
systems.
Component Temperature / ºC

225
Preheat:
This is more important for wave solder; a higher temperature Wave
preheat will reduce the thermal shock to SMD parts that are 175

immersed (please consult individual product data sheets for Preheat Cool Down
SMD parts that are suited to wave solder). SMD parts should 125
ideally be heated from the bottom-Side prior to wave. Wave
PTH (Pin through hole) parts on the topside should not be
Wave
separately heated. 75
Preheat Cool Down
Wave: Preheat Cool Down
250ºC – 260ºC recommended for optimum solderability. 25
0 50 100 150 200 250 300 350 400
Cool Down: Time / seconds
As with reflow solder, cool down should not be forced and
6ºC/sec is recommended. Any air knives at the end of the
2nd wave should be heated.

75
Surface Mounting Guide
MLC Chip Capacitors
APPLICATION NOTES Wave
300
Storage Preheat
Good solderability is maintained for at least twelve months, Natural
250 Cooling
provided the components are stored in their “as received”
packaging at less than 40°C and 70% RH.
200 T

Solder Temp.
Solderability
Terminations to be well soldered after immersion in a 60/40 150 230°C
to
tin/lead solder bath at 235 ± 5°C for 2 ± 1 seconds. 250°C

100
Leaching
Terminations will resist leaching for at least the immersion
times and conditions shown below. 50

Termination Type Solder Solder Immersion Time 0


Tin/Lead/Silver Temp. °C Seconds
1 to 2 min 3 sec. max
Nickel Barrier 60/40/0 260 ± 5 30 ± 1
(Preheat chips before soldering)
T/maximum 150°C
Recommended Soldering Profiles
Lead-Free Wave Soldering
Reflow The recommended peak temperature for lead-free wave
soldering is 250°C-260°C for 3-5 seconds. The other para-
300
Natural meters of the profile remains the same as above.
Preheat
Cooling
The following should be noted by customers changing from
250
lead based systems to the new lead free pastes.
200
a) The visual standards used for evaluation of solder joints
Solder Temp.

will need to be modified as lead free joints are not as bright


220°C as with tin-lead pastes and the fillet may not be as large.
150 to
250°C b) Resin color may darken slightly due to the increase in
100
temperature required for the new pastes.
c) Lead-free solder pastes do not allow the same self align-
50 ment as lead containing systems. Standard mounting
pads are acceptable, but machine set up may need to be
0
modified.
1min 1min 10 sec. max General
(Minimize soldering time) Surface mounting chip multilayer ceramic capacitors
are designed for soldering to printed circuit boards or other
substrates. The construction of the components is such that
Lead-Free Reflow Profile
they will withstand the time/temperature profiles used in both
300 wave and reflow soldering methods.
Temperature °C

250
200 Handling
150 Chip multilayer ceramic capacitors should be handled with
100
care to avoid damage or contamination from perspiration and
50
skin oils. The use of tweezers or vacuum pick ups
0 is strongly recommended for individual components. Bulk
0 50 100 150 200 250 300 handling should ensure that abrasion and mechanical shock
• Pre-heating: 150°C ±15°C / 60-90s Time (s) are minimized. Taped and reeled components provides the
• Max. Peak Gradient 2.5°C/s ideal medium for direct presentation to the placement
• Peak Temperature: 245°C ±5°C machine. Any mechanical shock should be minimized during
• Time at >230°C: 40s Max.
handling chip multilayer ceramic capacitors.
Preheat
It is important to avoid the possibility of thermal shock during
soldering and carefully controlled preheat is therefore
required. The rate of preheat should not exceed 4°C/second

76
Surface Mounting Guide
MLC Chip Capacitors
and a target figure 2°C/second is recommended. Although POST SOLDER HANDLING
an 80°C to 120°C temperature differential is preferred,
recent developments allow a temperature differential Once SMP components are soldered to the board, any
between the component surface and the soldering temper- bending or flexure of the PCB applies stresses to the sol-
ature of 150°C (Maximum) for capacitors of 1210 size and dered joints of the components. For leaded devices, the
below with a maximum thickness of 1.25mm. The user is stresses are absorbed by the compliancy of the metal leads
cautioned that the risk of thermal shock increases as chip and generally don’t result in problems unless the stress is
size or temper-ature differential increases. large enough to fracture the soldered connection.
Ceramic capacitors are more susceptible to such stress
Soldering because they don’t have compliant leads and are brittle in
Mildly activated rosin fluxes are preferred. The minimum nature. The most frequent failure mode is low DC resistance
amount of solder to give a good joint should be used. or short circuit. The second failure mode is significant loss of
Excessive solder can lead to damage from the stresses capacitance due to severing of contact between sets of the
caused by the difference in coefficients of expansion internal electrodes.
between solder, chip and substrate. AVX terminations are
suitable for all wave and reflow soldering systems. If hand Cracks caused by mechanical flexure are very easily identi-
soldering cannot be avoided, the preferred technique is the fied and generally take one of the following two general
utilization of hot air soldering tools. forms:

Cooling
Natural cooling in air is preferred, as this minimizes stresses
within the soldered joint. When forced air cooling is used,
cooling rate should not exceed 4°C/second. Quenching
is not recommended but if used, maximum temperature
differentials should be observed according to the preheat
conditions above.
Cleaning Type A:
Flux residues may be hygroscopic or acidic and must be Angled crack between bottom of device to top of solder joint.
removed. AVX MLC capacitors are acceptable for use with
all of the solvents described in the specifications MIL-STD-
202 and EIA-RS-198. Alcohol based solvents are acceptable
and properly controlled water cleaning systems are also
acceptable. Many other solvents have been proven successful,
and most solvents that are acceptable to other components
on circuit assemblies are equally acceptable for use with
ceramic capacitors.

Type B:
Fracture from top of device to bottom of device.

Mechanical cracks are often hidden underneath the termina-


tion and are difficult to see externally. However, if one end
termination falls off during the removal process from PCB,
this is one indication that the cause of failure was excessive
mechanical stress due to board warping.

77
Surface Mounting Guide
MLC Chip Capacitors

COMMON CAUSES OF REWORKING OF MLCs


MECHANICAL CRACKING Thermal shock is common in MLCs that are manually
attached or reworked with a soldering iron. AVX strongly
The most common source for mechanical stress is board
recommends that any reworking of MLCs be done with hot
depanelization equipment, such as manual breakapart, v-
air reflow rather than soldering irons. It is practically impossi-
cutters and shear presses. Improperly aligned or dull cutters
ble to cause any thermal shock in ceramic capacitors when
may cause torqueing of the PCB resulting in flex stresses
using hot air reflow.
being transmitted to components near the board edge.
Another common source of flexural stress is contact during However direct contact by the soldering iron tip often caus-
parametric testing when test points are probed. If the PCB is es thermal cracks that may fail at a later date. If rework by
allowed to flex during the test cycle, nearby ceramic capac- soldering iron is absolutely necessary, it is recommended
itors may be broken. that the wattage of the iron be less than 30 watts and the
tip temperature be <300ºC. Rework should be performed
A third common source is board to board connections at
by applying the solder iron tip to the pad and not directly
vertical connectors where cables or other PCBs are con-
contacting any part of the ceramic capacitor.
nected to the PCB. If the board is not supported during the
plug/unplug cycle, it may flex and cause damage to nearby
components.
Special care should also be taken when handling large (>6"
on a side) PCBs since they more easily flex or warp than
smaller boards.

Solder Tip Solder Tip

Preferred Method - No Direct Part Contact Poor Method - Direct Contact with Part

PCB BOARD DESIGN


To avoid many of the handling problems, AVX recommends that MLCs be located at least .2" away from nearest edge of
board. However when this is not possible, AVX recommends that the panel be routed along the cut line, adjacent to where the
MLC is located.

No Stress Relief for MLCs Routed Cut Line Relieves Stress on MLC

78
High Voltage MLC Chips
For 600V to 5000V Applications
High value, low leakage and small size are difficult parameters to obtain
in capacitors for high voltage systems. AVX special high voltage MLC
chip capacitors meet these performance characteristics and are
designed for applications such as snubbers in high frequency power
converters, resonators in SMPS, and high voltage coupling/dc blocking.
These high voltage chip designs exhibit low ESRs at high frequencies.
Larger physical sizes than normally encountered chips are used to make
high voltage MLC chip products. Special precautions must be taken in
applying these chips in surface mount assemblies. The temperature
gradient during heating or cooling cycles should not exceed 4ºC per
second. The preheat temperature must be within 50ºC of the peak tem-
perature reached by the ceramic bodies through the soldering process.
Chip sizes 1210 and larger should be reflow soldered only. Capacitors
may require protective surface coating to prevent external arcing.
For 1825, 2225 and 3640 sizes, AVX offers leaded version in either
NEW 630V RANGE thru-hole or SMT configurations (for details see section on high voltage
leaded MLC chips).
HOW TO ORDER
1808 A A 271 K A 1 1 A
AVX Voltage Temperature Capacitance Code Capacitance Test Level Termination* Packaging Special
Style 600V/630V = C Coefficient (2 significant digits Tolerance A = Standard 1 = Pd/Ag 1 = 7" Reel Code
0805 1000V = A C0G = A + no. of zeros) C0G:J = ±5% T = Plated 3 = 13" Reel A = Standard
1206 1500V = S X7R = C Examples: K = ±10% Ni and Sn 9 = Bulk
1210 2000V = G 10 pF = 100 M = ±20% (RoHS Compliant)
1808 2500V = W 100 pF = 101 X7R:K = ±10%
1812 3000V = H 1,000 pF = 102 M = ±20%
1825 4000V = J 22,000 pF = 223 Z = +80%,
2220 5000V = K 220,000 pF = 224 -20%
2225 1 μF = 105
3640
*** *Note: Terminations with 5% minimum lead (Pb) is available, see pages 81 and 82 for LD style.
Leaded terminations are available, see pages 85 and 86.

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.
Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.
*** AVX offers nonstandard chip sizes. Contact factory for details.

t
DIMENSIONS millimeters (inches)
SIZE 0805 1206 1210* 1808* 1812* 1825* 2220* 2225* 3640*
(L) Length 2.01 ± 0.20 3.20 ± 0.20 3.20 ± 0.20 4.57 ± 0.25 4.50 ± 0.30 4.50 ± 0.30 5.70 ± 0.40 5.72 ± 0.25 9.14 ± 0.25
(0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.224 ± 0.016) (0.225 ± 0.010) (0.360 ± 0.010)
(W) Width 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20 2.03 ± 0.25 3.20 ± 0.20 6.40 ± 0.30 5.00 ± 0.40 6.35 ± 0.25 10.2 ± 0.25
(0.049 ±0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.197 ± 0.016) (0.250 ± 0.010) (0.400 ± 0.010)
(T) Thickness 1.30 1.52 1.70 2.03 2.54 2.54 3.30 2.54 2.54
Max. (0.051) (0.060) (0.067) (0.080) (0.100) (0.100) (0.130) (0.100) (0.100)
(t) terminal min. 0.50 ± 0.25 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.76 (0.030)
max. (0.020 ± 0.010) 0.75 (0.030) 0.75 (0.030) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.52 (0.060)
*Reflow Soldering Only

79
High Voltage MLC Chips
For 600V to 5000V Applications
C0G Dielectric
Performance Characteristics
Capacitance Range 10 pF to 0.047 μF
(25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
Capacitance Tolerances ±5%, ±10%, ±20%
Dissipation Factor 0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
Operating Temperature Range -55°C to +125°C
Temperature Characteristic 0 ±30 ppm/°C (0 VDC)
Voltage Ratings 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC) 100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC) 10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE C0G CAPACITANCE VALUES


VOLTAGE 0805 1206 1210 1808 1812 1825 2220 2225 3640
min. 10pF 10 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF 1000 pF 1000 pF
600/630
max. 330pF 1200 pF 2700 pF 3300 pF 5600 pF 0.012 μF 0.012 μF 0.018 μF 0.047 μF
min. 10pF 10 pF 10 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF 1000 pF
1000
max. 180pF 560 pF 1500 pF 2200 pF 3300 pF 8200 pF 0.010 μF 0.010 μF 0.022 μF
min. — 10 pF 10 pF 10 pF 10 pF 100 pF 100 pF 100 pF 100 pF
1500
max. — 270 pF 680 pF 820 pF 1800 pF 4700 pF 4700 pF 5600 pF 0.010 μF
min. — 10 pF 10 pF 10 pF 10 pF 100 pF 100 pF 100 pF 100 pF
2000
max. — 120 pF 270 pF 330 pF 1000 pF 1800 pF 2200 pF 2700 pF 6800 pF
min. — — — 10 pF 10 pF 10 pF 100 pF 100 pF 100 pF
2500
max. — — — 180 pF 470 pF 1200 pF 1500 pF 1800 pF 3900 pF
min. — — — 10 pF 10 pF 10 pF 10 pF 10 pF 100 pF
3000
max. — — — 120 pF 330 pF 820 pF 1000 pF 1200 pF 2700 pF
min. — — — 10 pF 10 pF 10 pF 10 pF 10 pF 100 pF
4000
max. — — — 47 pF 150 pF 330 pF 470 pF 560 pF 1200 pF
min. — — — — — — 10 pF 10 pF 10 pF
5000
max. — — — — — — 220 pF 270 pF 820 pF

X7R Dielectric
Performance Characteristics
Capacitance Range 10 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances ±10%; ±20%; +80%, -20%
Dissipation Factor 2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range -55°C to +125°C
Temperature Characteristic ±15% (0 VDC)
Voltage Ratings 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC) 100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC) 10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES


VOLTAGE 0805 1206 1210 1808 1812 1825 2220 2225 3640
min. 100pF 1000 pF 1000 pF 1000 pF 1000 pF 0.010 μF 0.010 μF 0.010 μF 0.010 μF
600/630
max. 6800pF 0.022 μF 0.056 μF 0.068 μF 0.120 μF 0.270 μF 0.270 μF 0.330 μF 0.560 μF
min. 100pF 100 pF 1000 pF 1000 pF 1000 pF 1000 pF 1000 pF 1000 pF 0.010 μF
1000
max. 1500pF 6800 pF 0.015 μF 0.018 μF 0.039 μF 0.100 μF 0.120 μF 0.150 μF 0.220 μF
min. — 100 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF 1000 pF 1000 pF
1500
max. — 2700 pF 5600 pF 6800 pF 0.015 μF 0.056 μF 0.056 μF 0.068 μF 0.100 μF
min. — 10 pF 100 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF 1000 pF
2000
max. — 1500 pF 3300 pF 3300 pF 8200 pF 0.022 μF 0.027 μF 0.033 μF 0.027 μF
min. — — — 10 pF 10 pF 100 pF 100 pF 100 pF 1000 pF
2500 max. — — — 2200 pF 5600 pF 0.015 μF 0.018 μF 0.022 μF 0.022 μF
min. — — — 10 pF 10 pF 100 pF 100 pF 100 pF 1000 pF
3000
max. — — — 1800 pF 3900 pF 0.010 μF 0.012 μF 0.015 μF 0.018 μF
min. — — — — — — — — 100 pF
4000
max. — — — — — — — — 6800 pF
min. — — — — — — — — 100 pF
5000
max. — — — — — — — — 3300 pF

80
High Voltage MLC Chips
Tin/Lead Termination “B”
For 600V to 5000V Applications
AVX Corporation will support those customers for commercial and mili-
tary Multilayer Ceramic Capacitors with a termination consisting of 5%
minimum lead. This termination is indicated by the use of a “B” in the
12th position of the AVX Catalog Part Number. This fulfills AVX’s
commitment to providing a full range of products to our customers. AVX
has provided in the following pages, a full range of values that we are
offering in this “B” termination.
Larger physical sizes than normally encountered chips are used to make
high voltage MLC chip product. Special precautions must be taken in
applying these chips in surface mount assemblies. The temperature
gradient during heating or cooling cycles should not exceed 4ºC per
second. The preheat temperature must be within 50ºC of the peak tem-
perature reached by the ceramic bodies through the soldering process.
Chip sizes 1210 and larger should be reflow soldered only. Capacitors
may require protective surface coating to prevent external arcing.
For 1825, 2225 and 3640 sizes, AVX offers leaded version in either
NEW 630V RANGE thru-hole or SMT configurations (for details see section on high voltage
leaded MLC chips).

HOW TO ORDER
LD08 A A 271 K A B 1 A
AVX Voltage Temperature Capacitance Code Capacitance Test Termination Packaging Special Code
Style 600V/630V = C Coefficient (2 significant digits Tolerance Level B = 5% Min Pb 1 = 7" Reel A = Standard
LD05 - 0805 1000V = A C0G = A + no. of zeros) C0G: J = ±5% A = Standard 3 = 13" Reel
LD06 - 1206 1500V = S X7R = C Examples: K = ±10% 9 = Bulk
LD10 - 1210 2000V = G 10 pF = 100 M = ±20%
LD08 - 1808 2500V = W 100 pF = 101 X7R: K = ±10%
LD12 - 1812 3000V = H 1,000 pF = 102 M = ±20%
LD13 - 1825 4000V = J 22,000 pF = 223 Z = +80%, -20%
LD20 - 2220 5000V = K 220,000 pF = 224
LD14 - 2225 1 μF = 105
LD40 - 3640
***

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.
Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.
*** AVX offers nonstandard chip sizes. Contact factory for details.

t
DIMENSIONS millimeters (inches)
SIZE LD05 (0805) LD06 (1206) LD10* (1210) LD08* (1808) LD12* (1812) LD13* (1825) LD20* (2220) LD14* (2225) LD40* (3640)
(L) Length 2.01 ± 0.20 3.20 ± 0.20 3.20 ± 0.20 4.57 ± 0.25 4.50 ± 0.30 4.50 ± 0.30 5.70 ± 0.40 5.72 ± 0.25 9.14 ± 0.25
(0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.224 ± 0.016) (0.225 ± 0.010) (0.360 ± 0.010)
(W) Width 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20 2.03 ± 0.25 3.20 ± 0.20 6.40 ± 0.30 5.00 ± 0.40 6.35 ± 0.25 10.2 ± 0.25
(0.049 ±0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.197 ± 0.016) (0.250 ± 0.010) (0.400 ± 0.010)
(T) Thickness 1.30 1.52 1.70 2.03 2.54 2.54 3.30 2.54 2.54
Max. (0.051) (0.060) (0.067) (0.080) (0.100) (0.100) (0.130) (0.100) (0.100)
(t) terminal min. 0.50 ± 0.25 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.76 (0.030)
max. (0.020 ± 0.010) 0.75 (0.030) 0.75 (0.030) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.52 (0.060)
* Reflow soldering only.

81
High Voltage MLC Chips
Tin/Lead Termination “B”
For 600V to 5000V Applications
C0G Dielectric
Performance Characteristics
Capacitance Range 10 pF to 0.047 μF
(25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
Capacitance Tolerances ±5%, ±10%, ±20%
Dissipation Factor 0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
Operating Temperature Range -55°C to +125°C
Temperature Characteristic 0 ±30 ppm/°C (0 VDC)
Voltage Ratings 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC) 100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC) 10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE C0G CAPACITANCE VALUES


VOLTAGE LD05 (0805) LD06 (1206) LD10 (1210) LD08 (1808) LD12 (1812) LD13 (1825) LD20 (2220) LD14 (2225) LD40 (3640)
600/630 min.
10pF 10 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF 1000 pF 1000 pF
max. 330pF 1200 pF 2700 pF 3300 pF 5600 pF 0.012 μF 0.012 μF 0.018 μF 0.047 μF
min.
1000 max. 10pF 10 pF 10 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF 1000 pF
180pF 560 pF 1500 pF 2200 pF 3300 pF 8200 pF 0.010 μF 0.010 μF 0.022 μF
min.
1500 max. — 10 pF 10 pF 10 pF 10 pF 100 pF 100 pF 100 pF 100 pF
— 270 pF 680 pF 820 pF 1800 pF 4700 pF 4700 pF 5600 pF 0.010 μF
min.
2000 max. — 10 pF 10 pF 10 pF 10 pF 100 pF 100 pF 100 pF 100 pF
— 120 pF 270 pF 330 pF 1000 pF 1800 pF 2200 pF 2700 pF 6800 pF
min.
2500 max. — — — 10 pF 10 pF 10 pF 100 pF 100 pF 100 pF
— — — 180 pF 470 pF 1200 pF 1500 pF 1800 pF 3900 pF
min.
3000 max. — — — 10 pF 10 pF 10 pF 10 pF 10 pF 100 pF
— — — 120 pF 330 pF 820 pF 1000 pF 1200 pF 2700 pF

X7R Dielectric
Performance Characteristics
Capacitance Range 10 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances ±10%; ±20%; +80%, -20%
Dissipation Factor 2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range -55°C to +125°C
Temperature Characteristic ±15% (0 VDC)
Voltage Ratings 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC) 100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC) 10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES


VOLTAGE 0805 1206 1210 1808 1812 1825 2220 2225 3640
min. 100pF 1000 pF 1000 pF 1000 pF 1000 pF 0.010 μF 0.010 μF 0.010 μF 0.010 μF
600/630
max. 6800pF 0.022 μF 0.056 μF 0.068 μF 0.120 μF 0.270 μF 0.270 μF 0.330 μF 0.560 μF
min. 100pF 100 pF 1000 pF 1000 pF 1000 pF 1000 pF 1000 pF 1000 pF 0.010 μF
1000
max. 1500pF 6800 pF 0.015 μF 0.018 μF 0.039 μF 0.100 μF 0.120 μF 0.150 μF 0.220 μF
min. — 100 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF 1000 pF 1000 pF
1500
max. — 2700 pF 5600 pF 6800 pF 0.015 μF 0.056 μF 0.056 μF 0.068 μF 0.100 μF
min. — 10 pF 100 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF 1000 pF
2000 max. — 1500 pF 3300 pF 3300 pF 8200 pF 0.022 μF 0.027 μF 0.033 μF 0.027 μF
min. — — — 10 pF 10 pF 100 pF 100 pF 100 pF 1000 pF
2500
max. — — — 2200 pF 5600 pF 0.015 μF 0.018 μF 0.022 μF 0.022 μF
min. — — — 10 pF 10 pF 100 pF 100 pF 100 pF 1000 pF
3000
max. — — — 1800 pF 3900 pF 0.010 μF 0.012 μF 0.015 μF 0.018 μF
min. — — — — — — — — 100 pF
4000
max. — — — — — — — — 6800 pF
min. — — — — — — — — 100 pF
5000
max. — — — — — — — — 3300 pF

82
High Voltage MLC Chips FLEXITERM®
For 600V to 3000V Applications
High value, low leakage and small size are difficult parameters to obtain
in capacitors for high voltage systems. AVX special high voltage MLC
chips capacitors meet these performance characteristics and are
designed for applications such as snubbers in high frequency power
converters, resonators in SMPS, and high voltage coupling/DC blocking.
These high voltage chip designs exhibit low ESRs at high frequencies.
To make high voltage chips, larger physical sizes than are normally
encountered are necessary. These larger sizes require that special pre-
cautions be taken in applying these chips in surface mount assemblies.
In response to this, and to follow from the success of the FLEXITERM®
range of low voltage parts, AVX is delighted to offer a FLEXITERM® high
voltage range of capacitors, FLEXITERM®.
The FLEXITERM® layer is designed to enhance the mechanical flexure
and temperature cycling performance of a standard ceramic capacitor,
giving customers a solution where board flexure or temperature cycle
damage are concerns.

HOW TO ORDER
1808 A C 272 K A Z 1 A
AVX Voltage Temperature Capacitance Code Capacitance Test Level Termination* Packaging Special
Style 600V/630V = C Coefficient (2 significant digits Tolerance Z = FLEXITERM® 1 = 7" Reel Code
0805 1000V = A C0G = A + no. of zeros) C0G: J = ±5% 100% Tin 3 = 13" Reel A = Standard
1206 1500V = S X7R = C Examples: K = ±10% (RoHS Compliant) 9 = Bulk
1210 2000V = G 10 pF = 100 M = ±20%
1808 2500V = W 100 pF = 101 X7R: K = ±10%
1812 3000V = H 1,000 pF = 102 M = ±20%
1825 22,000 pF = 223 Z = +80%,
2220 220,000 pF = 224 -20%
2225 1 μF = 105
***

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.
Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.
*** AVX offers nonstandard chip sizes. Contact factory for details.

DIMENSIONS millimeters (inches)


SIZE 0805 1206 1210* 1808* 1812* 1825* 2220* 2225*
(L) Length 2.01 ± 0.20 3.20 ± 0.20 3.20 ± 0.20 4.57 ± 0.25 4.50 ± 0.30 4.50 ± 0.30 5.7 ± 0.40 5.72 ± 0.25
(0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.224 ± 0.016) (0.225 ± 0.010)
(W) Width 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20 2.03 ± 0.25 3.20 ± 0.20 6.40 ± 0.30 5.0 ± 0.40 6.35 ± 0.25
(0.049 ± 0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.197 ± 0.016) (0.250 ± 0.010)
(T) Thickness 1.30 1.52 1.70 2.03 2.54 2.54 3.30 2.54
Max. (0.051) (0.060) (0.067) (0.080) (0.100) (0.100) (0.130) (0.100)
(t) terminal min. 0.50 ± 0.25 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010)
max. (0.020 ± 0.010) 0.75 (0.030) 0.75 (0.030) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040)
*Reflow Soldering Only

83
High Voltage MLC Chips FLEXITERM®
For 600V to 5000V Applications
C0G Dielectric
Performance Characteristics
Capacitance Range 10 pF to 0.018 μF
(25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
Capacitance Tolerances ±5%, ±10%, ±20%
Dissipation Factor 0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
Operating Temperature Range -55°C to +125°C
Temperature Characteristic 0 ±30 ppm/°C (0 VDC)
Voltage Ratings 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC) 100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC) 10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE C0G CAPACITANCE VALUES


VOLTAGE 0805 1206 1210 1808 1812 1825 2220 2225
min.
600/630 max. 10pF 10 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF 1000 pF
330pF 1200 pF 2700 pF 3300 pF 5600 pF 0.012 μF 0.012 μF 0.018 μF
min.
1000 max. 10pF 10 pF 10 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF
180pF 560 pF 1500 pF 2200 pF 3300 pF 8200 pF 0.010 μF 0.010 μF
min.
1500 max. — 10 pF 10 pF 10 pF 10 pF 100 pF 100 pF 100 pF
— 270 pF 680 pF 820 pF 1800 pF 4700 pF 4700 pF 5600 pF
min. — 10 pF 10 pF 10 pF 10 pF 100 pF 100 pF 100 pF
2000 max.
— 120 pF 270 pF 330 pF 1000 pF 1800 pF 2200 pF 2700 pF
min.
2500 max. — — — 10 pF 10 pF 10 pF 100 pF 100 pF
— — — 180 pF 470 pF 1200 pF 1500 pF 1800 pF
min.
3000 max. — — — 10 pF 10 pF 10 pF 10 pF 10 pF
— — — 120 pF 330 pF 820 pF 1000 pF 1200 pF
min.
4000 max. — — — 10 pF 10 pF 10 pF 10 pF 10 pF
— — — 47 pF 150 pF 330 pF 470 pF 560 pF
min.
5000 max. — — — — — — 10 pF 10 pF
— — — — — — 220 pF 270 pF

X7R Dielectric
Performance Characteristics
Capacitance Range 10 pF to 0.33 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances ±10%; ±20%; +80%, -20%
Dissipation Factor 2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range -55°C to +125°C
Temperature Characteristic ±15% (0 VDC)
Voltage Ratings 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC) 100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC) 10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES


VOLTAGE 0805 1206 1210 1808 1812 1825 2220 2225
min. 100pF 1000 pF 1000 pF 1000 pF 1000 pF 0.010 μF 0.010 μF 0.010 μF
600/630
max. 6800pF 0.022 μF 0.056 μF 0.068 μF 0.120 μF 0.270 μF 0.270 μF 0.330 μF
min. 100pF 100 pF 1000 pF 1000 pF 1000 pF 1000 pF 1000 pF 1000 pF
1000
max. 1500pF 6800 pF 0.015 μF 0.018 μF 0.039 μF 0.100 μF 0.120 μF 0.150 μF
min. — 100 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF 1000 pF
1500
max. — 2700 pF 5600 pF 6800 pF 0.015 μF 0.056 μF 0.056 μF 0.068 μF
min. — 10 pF 100 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF
2000
max. — 1500 pF 3300 pF 2300 pF 8200 pF 0.022 μF 0.027 μF 0.033 μF
min. — — — 10 pF 10 pF 100 pF 100 pF 100 pF
2500
max. — — — 2200 pF 5600 pF 0.015 μF 0.018 μF 0.022 μF
min. — — — 10 pF 10 pF 100 pF 100 pF 100 pF
3000
max. — — — 1800 pF 2200 pF 0.010 pF 0.012 μF 0.015 μF

84
High Voltage MLC Leaded Chips
For 600V to 5000V Applications
HOW TO ORDER
1825 A A 271 K A V 00N
AVX Voltage Temperature Capacitance Code Capacitance Test Level Finish Lead Style
Style 600V/630V = C Coefficient (2 significant digits Tolerance A = Standard V = Uncoated 00N = Straight Lead
1825 1000V = A C0G = A + no. of zeros) C0G:J = ±5% W = Epoxy Coated 00J = Leads Formed In
2225 1500V = S X7R = C Examples: K = ±10% 00L = Leads Formed Out
3640 2000V = G 10 pF = 100 M = ±20%
2500V = W 100 pF = 101 X7R:K = ±10%
3000V = H 1,000 pF = 102 M = ±20%
4000V = J 22,000 pF = 223 Z = +80%,
5000V = K 220,000 pF = 224 -20%

Note: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations.
Capacitors may require protective surface coating to prevent external arcing.

1.397 (0.055)
B A D E
±0.254 (0.010)
“N” STYLE
6.35 LEADS
(0.250) MIN.
0.254 (0.010) TYP.
0.508 (0.020) TYP. C
2.54 (0.100) TYP.
2.54 (0.100) MAX.
0.635 (0.025) MIN.

0.254 (0.010) RAD. (TYP.)


1.397 (0.055)
B A D E
±0.254 (0.010)
“J” STYLE
0.254 (0.010) TYP.
LEADS
1.905 (0.075)
0.508 (0.020) TYP. 1.778 (0.070) ±0.635 (0.025)
2.54 (0.100) TYP. ±0.254 (0.010) C TYP.
2.54 (0.100) MAX.
0.635 (0.025) MIN.

1.397 (0.055) 0.254 (0.010) RAD. (TYP.)


B A D E
±0.254 (0.010)
“L” STYLE
0.254 (0.010) TYP.
LEADS
1.905 (0.075)
0.508 (0.020) TYP. 1.778 (0.070) ±0.635 (0.025)
2.54 (0.100) TYP. ±0.254 (0.010) C TYP.
2.54 (0.100) MAX.
0.635 (0.025) MIN.

DIMENSIONS millimeters (inches)


No. of Leads
Style A (max.) B (max.) C ±.635 (±0.025) D ±.635 (±0.025) E (max.) per side
1825 For “N” Style Leads, “B” 5.08 (0.200) 6.35 (0.250) 6.86 (0.270) 3
Dimension = 4.19 (0.165)
2225 2.54 (0.100) For “J” & “L” Leads, “B” 6.35 (0.250) 6.35 (0.250) 7.62 (0.300) 3
3640 Dimension = 4.58 (0.180) 10.2 (0.400) 10.2 (0.400) 11.2 (0.440) 4
Note: For W (Epoxy Coated) part add 0.127 (0.005) to max. and nominal dimensions A, B, D, & E

85
High Voltage MLC Leaded Chips
For 600V to 5000V Applications
C0G Dielectric
Performance Characteristics
Capacitance Range 10 pF to 0.047 μF
(25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
Capacitance Tolerances ±5%, ±10%, ±20%
Dissipation Factor 0.15% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
Operating Temperature Range -55°C to +125°C
Temperature Characteristic 0 ±30 ppm/°C (0 VDC)
Voltage Ratings 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC) 100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC) 10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE C0G CAPACITANCE VALUES


VOLTAGE 1825 2225 3640
min. 1000 pF 1000 pF 1000 pF
600/630 max.
0.012 μF 0.018 μF 0.047 μF
min.
1000 max. 100 pF 1000 pF 1000 pF
8200 pF 0.010 μF 0.022 μF
min.
1500 max. 100 pF 100 pF 100 pF
4700 pF 5600 pF 0.010 μF
min.
2000 max. 100 pF 100 pF 100 pF
1800 pF 2700 pF 6800 pF
min. 10 pF 100 pF 100 pF
2500 max.
1200 pF 1800 pF 3900 pF
min.
3000 max. 10 pF 10 pF 100 pF
8200 pF 1200 pF 2700 pF
min.
4000 max. 10 pF 10 pF 100 pF
330 pF 560 pF 1200 pF
min.
5000 max. — 10 pF 10 pF
— 270 pF 820 pF

X7R Dielectric
Performance Characteristics
Capacitance Range 100 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances ±10%; ±20%; +80%, -20%
Dissipation Factor 2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range -55°C to +125°C
Temperature Characteristic ±15% (0 VDC)
Voltage Ratings 600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC) 100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC) 10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES


VOLTAGE 1825 2225 3640
min. 0.010 μF 0.010 μF 0.010 μF
600/630
max. 0.270 μF 0.330 μF 0.560 μF
min. 1000 pF 1000 pF 0.010 μF
1000 max. 0.100 μF 0.150 μF 0.220 μF
min. 1000 pF 1000 pF 1000 pF
1500
max. 0.056 μF 0.068 μF 0.100 μF
min. 100 pF 1000 pF 1000 pF
2000
max. 0.022 μF 0.033 μF 0.027 μF
min. 100 pF 100 pF 1000 pF
2500
max. 0.015 μF 0.022 μF 0.022 μF
min. 100 pF 100 pF 1000 pF
3000 max. 0.010 μF 0.015 μF 0.018 μF
min. — — 100 pF
4000
max. — — 6800 pF
min. — — 100 pF
5000 max. — — 3300 pF

86
Hi-Q® High RF Power
MLC Surface Mount Capacitors
For 600V to 7200V Applications
PRODUCT OFFERING
Hi-Q®, high RF power, surface mount MLC capacitors from AVX
Corporation are characterized with ultra-low ESR and dissipation factor
at high frequencies. They are designed to handle high power and
high voltage levels for applications in RF power amplifiers, inductive
heating, high magnetic field environments (MRI coils), medical and
industrial electronics.

HOW TO ORDER
HQCC A A 271 J A T 1 A
AVX Voltage Temperature Capacitance Code Capacitance Test Level Termination* Packaging Special
Style 600V/630V = C Coefficient (2 significant digits Tolerance A = Standard 1 = Pd/Ag 1 = 7" Reel Code
HQCC 1000V = A C0G = A + no. of zeros) C = ±0.25pF (<13pF) T = Plated 3 = 13" Reel A = Standard
HQCE 1500V = S Examples: D = ±0.50pF (<25pF) Ni and Sn 9 = Bulk
2000V = G 4.7 pF = 4R7 F = ±1% (⭓25pF) (RoHS Compliant)
2500V = W 10 pF = 100 G = ±2% (⭓13pF) J = 5% Min Pb
3000V = H 100 pF = 101 J = ±5%
4000V = J 1,000 pF = 102 K = ±10%
5000V = K M = ±20%
7200V = M

Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

DIMENSIONS millimeters (inches) L


STYLE HQCC HQCE W
(L) Length 5.84 ± 0.51 9.4 ± 0.51
(0.230 ± 0.020) (0.370 ± 0.020)
(W) Width 6.35 ± 0.51 9.9 ± 0.51 T
(0.250 ± 0.020) (0.390 ± 0.020)
(T) Thickness 3.3 max. 3.3 max.
Max. (0.130 max.) (0.130 max.)
(t) terminal 0.64 ± 0.38 0.64 ± 0.38 t
(0.025 ± 0.015) (0.025 ± 0.015)

DIELECTRIC PERFORMANCE CHARACTERISTICS


Capacitance Range 3.3pF to 6,800pF
(25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1MHz)
Capacitance Tolerances ±0.25pF, ±0.50pF, ±1%, ±2%, ±5%, ±10%, ±20%
Dissipation Factor 25°C 0.1% Max (+25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1MHz)
Operating Temperature Range -55°C to +125°C
Temperature Characteristic C0G: 0 ± 30 ppm/°C (-55°C to +125°C)
Voltage Ratings 600, 630, 1000, 1500, 2000, 2500, 3000, 4000, 5000, 7200VDC
Insulation Resistance 100K MΩ min. @ +25°C and 500VDC
10K MΩ min. @ +125°C and 500VDC
Dielectric Strength Minimum 120% of rated WVDC

HIGH VOLTAGE CAPACITANCE VALUES (pF)


600/630 1000 1500 2000 2500 3000 4000 5000 7200
Style WDC WVDC WVDC WVDC WVDC WVDC WVDC WVDC WVDC
min./max. min./max. min./max. min./max. min./max. min./max. min./max. min./max. min./max.
HQCC 2,200 - 2,700 1,500 - 1,800 820 - 1,200 470 - 680 330 - 390 3.3 - 270 3.3 - 6.8
HQCE 3.3 - 6,800 3.3 - 4,700 3.3 - 2,700 3.3 - 1,800 3.3 - 1,000 3.3 - 680 3.3 - 390 3.3 - 180 3.3 - 100

87
Hi-Q® High RF Power
Ribbon Leaded MLC Capacitors
Hi-Q®, High RF Power, Ribbon Leaded MLC Capacitors from AVX
Corporation are characterized with ultra-low ESR and dissipation factor
at high frequencies. The HQL-style parts are constructed using non-
magnetic materials. They are designed to handle high power and high
voltage levels for applications in RF power amplifiers, inductive heating,
high magnetic field environments (MRI coils), medical and industrial
electronics.

HOW TO ORDER
HQLC A A 271 J A A

AVX Voltage Temperature Capacitance Code Capacitance Test Lead Style


Style 600V/630 = C Coefficient (2 significant digits Tolerance Level A = Axial Ribbon
HQLC 1000V = A C0G = A + no. of zeros) C = ±0.25pF (<13pF) A = Standard M = Microstrip
HQLE 1500V = S Examples: D = ±0.50pF (<25pF)
2000V = G 4.7 pF = 4R7 F = ±1% (⭓25pF)
2500V = W 10 pF = 100 G = ±2% (⭓13pF)
3000V = H 100 pF = 101 J = ±5%
4000V = J 1,000 pF = 102 K = ±10%
5000V = K M = ±20%
7200V = M

Capacitance Range (pF)


600/630 1000 1500 2000 2500 3000 4000 5000 7200
Style
WVDC WVDC WVDC WVDC WVDC WVDC WVDC WVDC WVDC
min./max. min./max. min./max. min./max. min./max. min./max. min./max. min./max. min./max.
HQLC 2200 - 2700 1500 - 1800 820 - 1200 470 - 680 330 - 390 3.3 - 270 3.3 - 6.8
HQLE 3.3 - 6800 3.3 - 4700 3.3 - 2700 3.3 - 1800 3.3 - 1000 3.3 - 680 3.3 - 390 3.3 - 180 3.3 - 100

DIELECTRIC PERFORMANCE CHARACTERISTICS


Capacitance Range 3.3pF to 6,800pF
(25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000pF use 1MHz)
Capacitance Tolerances ±0.25pF, ±0.50pF, ±1%, ±2%, ±5%, ±10%, ±20%
Dissipation Factor 0.1% Max (+25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000pF use 1MHz)
Operating Temperature Range -55°C to +125°C
Temperature Characteristics C0G: 0 ± 30 ppm/°C (-55°C to +125°C)
Voltage Ratings 600, 630, 1000, 1500, 2000, 2500, 3000, 4000, 5000, 7200VDC
Insulation Resistance 100K MΩ min. @ +25°C and 500VDC
10K MΩ min. @ +125°C and 500VDC
Dielectric Strength Minimum 120% of rated WVDC

88
Hi-Q® High RF Power
Ribbon Leaded MLC Capacitors
Microstrip Leads (Lead Style “M”)

DIMENSIONS millimeters (inches)


Unit L LL W WL H HL TL
Size ±0.51 (0.020) Min. ±0.64 (0.025) ±0.38 (0.015) ±0.64 (0.025) ±0.38 (0.015) Ref.
HQLC 5.72 (0.225) 12.7 (0.500) 6.35 (0.250) 6.10 (0.240) 3.68 (0.145) 0.64 (0.025) 0.10 (0.004)
HQLE 9.40 (0.370) 19.1 (0.750) 10.2 (0.400) 8.89 (0.350) 3.68 (0.145) 0.64 (0.025) 0.25 (0.010)
Note: Side to side lead alignment shall be within ±0.25 (0.010)

Axial Ribbon Leads (Lead Style “A”)

±0.51 (0.020)

DIMENSIONS millimeters (inches)


Unit L LL W WL H TL
Size ±0.51 (0.020) Min. ±0.64 (0.025) ±0.38 (0.015) ±0.64 (0.025) Ref.
HQLC 5.72 (0.225) 12.7 (0.500) 6.35 (0.250) 6.10 (0.240) 3.18 (0.125) 0.10 (0.004)
HQLE 9.40 (0.370) 19.1 (0.750) 10.2 (0.400) 8.89 (0.350) 3.18 (0.125) 0.25 (0.010)
Note: Side to side lead alignment shall be within ±0.25 (0.010)

89
Hi-Q® High RF Power
MLC Capacitors
PERFORMANCE CHARACTERISTICS

Typical Series Resonant Frequency vs. Capacitance Typical ESR vs. Capacitance
HQCC and HQLC HQCC and HQLC
10000 1.000
13.56 MHz
64 MHz
250 MHz
500 MHz
Frequency (MHz)

1000
0.100

ESR (Ω)
100
0010

10
1 10 100 1000 10000 0.001
Capacitance (pF) 1 10 100 1000 10000
Capacitance (pF)

Typical Quality Factor vs. Capacitance Maximum RMS Current vs. Capacitance
HQCC and HQLC HQCC and HQLC
1.00E+05 100.0
13.56 MHz
64 MHz
250 MHz
1.00E+04
Maximum RMS Current (A)

500 MHz
Quality Factor (-)

10.0
1.00E+03

1.00E+02
1.0

13.56 MHz
1.00E+01
64 MHz
250 MHz
500 MHz

1.00E+00 0.1
1 10 100 1000 10000 1 10 100 1000 10000
Capacitance (pF) Capacitance (pF)

90
Hi-Q® High RF Power
MLC Capacitors
PERFORMANCE CHARACTERISTICS

Typical Series Resonant Frequency vs. Capacitance Typical ESR vs. Capacitance
HQCE and HQLE HQCE and HQLE
10000 1.000

13.56 MHz
64 MHz
250 MHz
500 MHz
Frequency (MHz)

1000
0.100

ESR (Ω)
100
0.010

10
1 10 100 1000 10000 0.001
Capacitance (pF) 1 10 100 1000 10000
Capacitance (pF)

Typical Quality Factor vs. Capacitance Maximum RMS Current vs. Capacitance
HQCE and HQLE HQCE and HQLE
1.00E+05 100.0

13.56 MHz
64 MHz
1.00E+04 250 MHz
Maximum RMS Current (A)

500 MHz
Quality Factor (-)

10.0
1.00E+03

1.00E+02
1.0

13.56 MHz
1.00E+01 64 MHz
250 MHz
500 MHz

1.00E+00 0.1
1 10 100 1000 10000 1 10 100 1000 10000
Capacitance (pF) Capacitance (pF)

91
Tip & Ring
Multilayer Ceramic Chip Capacitors
AVX “Tip & Ring” or “ring detector” Multilayer Ceramic Chip
Capacitors are designed as a standard telecom filter
to block -48 Volts DC telephone line voltage and pass
subscriber’s AC signal pulse (16 to 25Hz, 70 to 90Vrms).
The typical ringing signal is seen on figure on page 93. The
ringer capacitors replace large leaded film capacitors and
are ideal for telecom/modem applications. Using AVX “Tip &
Ring” capacitors not only saves valuable real estate on the
board and reduces the weight of overall product, but also
features standard surface mounting capabilities, so critical to
new and compact designs.
The AVX “Tip & Ring” capacitors are offered in standard
EIA sizes and standard values. They offer excellent high
frequency performance, low ESR and improved temperature
performance over film capacitors.

HOW TO ORDER
1812 P C 104 K A T 1 A
AVX Voltage Temp Capacitance Capacitance Test Termination Packaging Special
Style 250 VDC Coefficient Code Tolerance Level T = Plated 1 = 7" Reel Code
0805 Telco X7R (2 significant K = ±10% A = Standard Ni and Sn 3 = 13" Reel A = Standard
1206 Rating digits + no. M = ±20% (RoHS Compliant) 9 = Bulk
1210 of zeros) Z = FLEXITERM®
1808 Examples: 100% Tin
1812 1,000 pF = 102 (RoHS Compliant)
1825 22,000 pF = 223
2220 220,000 pF = 224
2225 1 μF = 105

Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

DIMENSIONS millimeters (inches)


Style 0805 1206 1210* 1808* 1812* 1825* 2220* 2225*
(L) Length 2.01 ± 0.20 3.20 ± 0.20 3.2 ± 0.20 4.57 ± 0.25 4.50 ± 0.30 4.50 ± 0.30 5.60 ± 0.30 5.60 ± 0.25
(0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.220 ± 0.012) (0.220 ± 0.010)
(W)Width 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20 2.03 ± 0.25 3.2 ± 0.20 6.34 ± 0.30 5.10 ± 0.40 6.35 ± 0.25
(0.049 ± 0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.200 ± 0.016) (0.250 ± 0.010)
(T) Thickness 1.30 max. 1.50 max. 1.78 max. 1.78 max. 2.00 max. 2.00max. 2.00 max. 2.00 max.
(0.051 max.) (0.059 max.) (0.070 max.) (0.070 max.) (0.080 max.) (0.080 max.) (0.080 max.) (0.080 max.)
(t) terminal 0.50 ± 0.25 0.50 ± 0.25 0.50 ± 0.25 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38
(0.020 ± 0.010) (0.020 ± 0.010) (0.020 ± 0.010) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015)
*Reflow Soldering Only

92
Tip & Ring
Multilayer Ceramic Chip Capacitors
CAPACITANCE RANGE (μF)
Size 0805 1206 1210 1808 1812 1825 2220 2225
min. 0.0010 0.0010 0.0010 0.010 0.10 0.33 0.47 0.47
max. 0.027 0.082 0.22 0.27 0.47 1.0 1.0 1.2

“TIP & RING” GRAPH


250V

Tip & Ring

0
-48V

-250V
-400ms 200ms/div 1.6s

PERFORMANCE CHARACTERISTICS
Capacitance Range 1000 pF to 1.2 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances ±10%, ±20%
Dissipation Factor 2.5% max. (25°C, 1.0 ±0.2 Vrms at 1kHz)
Operating Temperature Range -55°C to +125°C
Temperature Characteristic X7R ±15% (0 VDC)
Voltage Rating 250 VDC Telco rating
Insulation Resistance 1000 megohm-microfarad min.
Dielectric Strength Minimum 200% rated voltage for 5 seconds at 50 mA max. current

93
Tip & Ring Tin/Lead Termination “B”
Multilayer Ceramic Chip Capacitors
AVX Corporation will support customers for commercial and military Multilayer
Ceramic Capacitors with a termination consisting of 5% minimum lead. This
termination is indicated by the use of a “B” in the 12th position of the AVX
Catalog Part Number. This fulfills AVX’s commitment to providing a full range of
products to our customers. AVX has provided in the following pages, a full range
of values that we are offering in this “B” termination.
AVX “Tip & Ring” or “ring detector” Multilayer Ceramic Chip Capacitors are
designed as a standard telecom filter to block -48 Volts DC telephone line volt-
age and pass subscriber’s AC signal pulse (16 to 25Hz, 70 to 90 VRMS). The
typical ringing signal is seen on figure on page 95. The ringer capacitors replace
large leaded film capacitors and are ideal for telecom/modem applications.
Using AVX “Tip and Ring” capacitors not only saves valuable real estate on the
board and reduces the weight of the overall product, but also features standard
surface mounting capabilities, so critical to new and compact designs.
The AVX “Tip & Ring” capacitors are offered in standard EIA sizes and
standard values. They offer excellent high frequency performance, low ESR
and improved temperature performance over film capacitors.

HOW TO ORDER
LD12 P C 104 K A B 1 A
AVX Voltage Temperature Capacitance Code Capacitance Test Termination Packaging Special Code
Style 250 VDC Coefficient (2 significant digits Tolerance Level B = 5% Min Pb 1 = 7" Reel A = Standard
LD05 - 0805 Telco X7R + no. of zeros) K = ±10% A = Standard X = FLEXITERM® 3 = 13" Reel
LD06 - 1206 Rating Examples: M = ±20% 5% min. Pb 9 = Bulk
LD10 - 1210 1,000 pF = 102
LD08 - 1808 22,000 pF = 223
LD12 - 1812 220,000 pF = 224
LD13 - 1825 1 μF = 105
LD20 - 2220
LD14 - 2225

Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

DIMENSIONS millimeters (inches)


STYLE (SIZE) LD05 (0805) LD06 (1206) LD10* (1210) LD08* (1808) LD12* (1812) LD13* (1825) LD20* (2220) LD14* (2225)
(L) Length 2.01 ± 0.20 3.20 ± 0.20 3.2 ± 0.20 4.57 ± 0.25 4.50 ± 0.30 4.50 ± 0.30 5.60 ± 0.30 5.60 ± 0.25
(0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.220 ± 0.012) (0.220 ± 0.010)
(W)Width 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20 2.03 ± 0.25 3.2 ± 0.20 6.34 ± 0.30 5.10 ± 0.40 6.35 ± 0.25
(0.049 ± 0.008) (0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.200 ± 0.016) (0.250 ± 0.010)
(T) Thickness 1.30 max. 1.50 max. 1.78 max. 1.78 max. 2.00 max. 2.00max. 2.00 max. 2.00 max.
(0.051 max.) (0.059 max.) (0.070 max.) (0.070 max.) (0.080 max.) (0.080 max.) (0.080 max.) (0.080 max.)
(t) terminal 0.50 ± 0.25 0.50 ± 0.25 0.50 ± 0.25 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38 0.63 ± 0.38
(0.020 ± 0.010) (0.020 ± 0.010) (0.020 ± 0.010) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015) (0.025 ± 0.015)
*Reflow Soldering Only

94
Tip & Ring Tin/Lead Termination “B”
Multilayer Ceramic Chip Capacitors
CAPACITANCE RANGE (μF)
STYLE (SIZE) LD05 (0805) LD06 (1206) LD10 (1210) LD08 (1808) LD12 (1812) LD13 (1825) LD20 (2220) LD14 (2225)
min. 0.0010 0.0010 0.0010 0.010 0.10 0.33 0.47 0.47
max. 0.027 0.082 0.22 0.27 0.47 1.0 1.0 1.2

“TIP & RING” GRAPH


250V

Tip & Ring

0
-48V

-250V
-400ms 200ms/div 1.6s

PERFORMANCE CHARACTERISTICS
Capacitance Range 1000 pF to 1.2 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances ±10%, ±20%
Dissipation Factor 2.5% max. (25°C, 1.0 ±0.2 Vrms at 1kHz)
Operating Temperature Range -55°C to +125°C
Temperature Characteristic X7R ±15% (0 VDC)
Voltage Rating 250 VDC Telco rating
Insulation Resistance 1000 megohm-microfarad min.
Dielectric Strength Minimum 200% rated voltage for 5 seconds at 50 mA max. current

95
MLC Chips
Packaging of Chip Components
AUTOMATIC INSERTION PACKAGING

TAPE & REEL QUANTITIES


All tape and reel specifications are in compliance with EIA481 or IEC-286-3.
Tape Size 8mm 12mm 24mm
Component Pitch P1 4.00 4.00 8.00 8.00 16.00
1812 (LD12)
0805 (LD05)
1825 (LD13) HQCC 3640 (LD40)
1206 (LD06) 1808 (LD08)
2220 (LD20) HQCE
1210 (LD10)
2225 (LD14)
Qty. per Reel/7" Reel 2000 2000 1000 500 N/A
Qty. per Reel/13" Reel 10,000 4000 4000 2000 1000
Note: Lower quantity per reel may be used at the discretion of AVX.

REEL DIMENSIONS

DIMENSIONS millimeters (inches)

Tape A B* C D* N W1 W2 W3
Size Max. Min. Min. Min. Max.
+1.5 7.9 Min.
330 1.5 13.0±0.20 20.2 50 8.4-0.0 14.4 (0.311)
8mm
(12.992) (0.059) (0.512±0.008) (0.795) (1.969) (0.331 +.059) (0.567) 10.9 Max.
-0.0 (0.429)
+2.0 11.9 Min.
12.4 -0.0 18.4 (0.469)
12mm 330 1.5 13.0±0.20 20.2 50
(12.992) (0.059) (0.512±0.008) (0.795) (1.969) (0.488 +.079) (0.724) 15.4 Max.
-0.0 (0.606)
Metric dimensions will govern.
English measurements rounded and for reference only.13.0
+0.5 +2.0 23.9 Min.
360 1.5 -0.2 20.2 60 24.4 -0.0 30.4 (0.941)
24mm
(14.173) (0.059) (0.512 +.020) (0.795) (2.362) (0.961 +.079) (1.197) 27.4 Max.
-.008 -0.0 (1.079)

96
MLC Chips
Packaging of Chip Components
10 PITCHES CUMULATIVE
P0 TOLERANCE ON TAPE
±0.2mm (±0.008)
T2 EMBOSSMENT
D0 P2
T
DEFORMATION
BETWEEN E1
Chip Orientation
EMBOSSMENTS
A0
F W
TOP COVER E2
B1 TAPE B0
K0

T1 P1 D1 FOR COMPONENTS
S1 CENTER LINES
OF CAVITY MAX. CAVITY 2.00 mm x 1.20 mm AND
SIZE - SEE NOTE 1 LARGER (0.079 x 0.047)
B1 IS FOR TAPE READER REFERENCE ONLY
INCLUDING DRAFT CONCENTRIC AROUND B0 User Direction of Feed

8mm, 12mm & 24mm Embossed Tape


Metric Dimensions Will Govern
CONSTANT DIMENSIONS millimeters (inches)
Tape Size D0 E1 P0 S1 Min. T Max. T1
+0.10
8mm 1.50 -0.0 1.75 ± 0.10 4.0 ± 0.10 0.60 0.60 0.10
+0.004
12mm (0.059 -0.0 ) (0.069 ± 0.004) (0.157 ± 0.004) (0.024) (0.024) (0.004)
24mm Max.

VARIABLE DIMENSIONS millimeters (inches)

Tape Size B1 D1 E2 F P1 P2 R T2 W A0 B0 K0
Max. Min. Min. Min. Max. Max.
See Note 2

4.35 1.00 6.25 3.50 ± 0.05 4.00 ± 0.10 2.00 ± 0.05 25.0 2.50 8.30
8mm (0.171) (0.039) (0.246) (0.138 ± 0.002) (0.157 ± 0.004) (0.079 ± 0.002) (0.984) (0.098) (0.327) See Note 1

8.20 1.50 10.25 5.50 ± 0.05 4.00 ± 0.10 2.00 ± 0.05 30.0 6.50 12.3
12mm (0.323) (0.059) (0.404) (0.217 ± 0.002) (0.157 ± 0.004) (0.079 ± 0.002) (1.181) (0.256) (0.484) See Note 1

12mm
8.20 1.50 10.25 5.50 ± 0.05 8.00 ± 0.10 2.00 ± 0.05 30.0 6.50 12.3 See Note 1
Double
(0.323) (0.059) (0.404) (0.217 ± 0.002) (0.315 ± 0.004) (0.079 ± 0.002) (1.181) (0.256) (0.484)
Pitch

20.10 1.50 22.25 11.5 ± 0.10 16.00 ± 0.10 2.00 ± 0.10 30.0 12.00 24.3
24mm (0.791) (0.059) (0.876) (0.453 ± 0.004) (0.630 ± 0.004) (0.079 ± 0.004) (1.181) (0.472) (0.957) See Note 1

NOTES: 2. Tape with or without components shall pass around radius “R” without damage.
1. The cavity defined by A0, B0, and K0 shall be configured to provide the following: 3. Bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes.
Surround the component with sufficient clearance such that: Refer to EIA-556.
a) the component does not protrude beyond the sealing plane of the cover tape.
b) the component can be removed from the cavity in a vertical direction without mechanical 4. B1 dimension is a reference dimension for tape feeder clearance only.
restriction, after the cover tape has been removed.
c) rotation of the component is limited to 20º maximum (see Sketches D & E).
d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch F).

Top View, Sketch "F"


Component Lateral Movements
0.50mm (0.020)
Maximum

0.50mm (0.020)
Maximum
Side or Front Sectional View Top View
Sketch “D” Sketch “E”

97
Single-In-Line Packages (SIP)
Capacitor Arrays
SIP-style, MLC ceramic capacitor arrays are Single-In-Line,
conformally coated packages. These capacitor networks
incorporate multiple capacitors into a single substrate and,
therefore, offer excellent TC tracking. The utilization of
SIP capacitor arrays minimizes board real estate and
reduces component count in the assembly. Various circuit
configurations and capacitance/voltage values are available.

Dimensions in millimeters (inches)

Length (Max.)
Length = [# of Leads x 2.54 (0.100)] 3.429
+ 1.27 (0.050) (0.135)
i.e., 10 Lead SIP = 26.67 (1.050) Max.

7.62 (0.300)
Max.

3.81 0.254
(0.150) Min. (0.010)
Typ.
0.508 (0.020) Typ.
1.524 (0.060) Typ.
2.54 (0.100) Typ.

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

CIRCUIT CONFIGURATION "A" CIRCUIT CONFIGURATION "B" CIRCUIT CONFIGURATION "C"


ONE END LEAD GROUND ADJACENT LEAD PAIR CAPS BOTH END LEADS GROUND

98
Single-In-Line Packages (SIP)
Capacitor Arrays
HOW TO ORDER
SP A 1 1 A 561 K A A

AVX Style Circuit Lead Voltage Temperature Capacitance Capacitance Test Number of
See Page 98 Style Coefficient Code Tolerance Level Leads
(A, B, C) 50V = 5 C0G = A (2 significant C0G: K = ±10% A = Standard 2=2
100V = 1 X7R = C digits + no. M = ±20% 3=3
Z5U = E of zero) X7R: K = ±10% 4=4
10 pF = 100 M = ±20% 5=5
100 pF = 101 Z = +80%,-20% 6=6
1,000 pF = 102 Z5U: M = ±20% 7=7
22,000 pF = 223 Z = +80%,-20% 8=8
220,000 pF = 224 P = GMV 9=9
1 μF = 105 (+100,-0%) A = 10
10 μF = 106 B = 11
100 μF = 107 C = 12
D = 13
E = 14

*For dimensions, voltages, or capacitance values not specified, please contact factory.

Maximum Capacitance*
50V 100V
C0G 2200 pF 1500 pF
X7R 0.10 μF 0.033 μF
Z5U 0.39 μF 0.10 μF

AVX IS QUALIFIED TO THE FOLLOWING DSCC DRAWINGS


SPECIFICATION # DESCRIPTION CIRCUIT LEADS CAPACITANCE RANGE
87112 BX-100 VDC A 8 1000 pF - 0.1 μF
87116 C0G-100 VDC A 8 10 pF - 820 pF
87119 BX-100 VDC C 10 1000 pF - 0.1 μF
87120 C0G-100 VDC C 10 10 pF - 1000 pF
87122 BX-100 VDC B 8 1000 pF - 0.1 μF
88019 BX-100 VDC A 10 1000 pF - 0.1 μF
89086 C0G-100 VDC B 8 10 pF - 820 pF

99
Discoidal MLC
Feed-Through Capacitors and Filters
DC Style (US Preferred Sizes) / XB Style (European Preferred Sizes)
XF Style (Feed-Through Discoidal)
APPLICATION INFORMATION ON DISCOIDAL
LOWEST CAPACITANCE IMPEDANCES TO GROUND
A discoidal MLC capacitor has very low impedance associated with its ground path
since the signal is presented with a multi-directional path. These electrode paths,
which can be as many as 100, allow for low ESR and ESL which are the major ele-
ments in impedance at high frequencies.
The assembled discoidal element or feed-thru allows signal to be fed in through a
chassis or bulkhead, conditioned as it passes through the discoidal, and isolated by
the chassis and discoidal from the original signal. An example of this application
would be in an AFT circuit where the AC noise signal would be required to be
stripped from the DC control signal. Other applications include single line EMI/RFI
OD*
suppression, L-C filter construction, and coaxial shield bypass filtering.
ID The shape of the discoidal lends itself to filter construction. The short length allows
compact construction where L-C construction is desired.
The size freedom associated with this element allows almost any inside/
T Max. outside diameter combination. By allowing the inside diameter to equal
the center insulator diameter of a coaxial signal line and special termination tech-
niques, this device will allow bypass filtering of a floating shield to ground.
These surfaces are metallized
.127 (0.005). minimum wide except
Discoidal capacitors are available in three temperature coefficients (C0G, X7R, Z5U)
for DC61, DC26 and DC63 and a variety of sizes, the most standard of which appear in this catalog.
where metallized surfaces
INSERTION LOSS
are .127 (0.005) maximum.
0

*Tol. = +-.254 (0.010) or 3%, whichever is greater


-10
SINGLE CHIP
-20
AVX’s DC Series 50V, 100V, 200V, C0G -30
and X7R parts are capable of meeting

(dB)
-40
DISCOIDAL
the requirements of MIL-PRF-31033. -50

-60

-70

-80

ELECTRICAL SPECIFICATIONS 0 100 200 300 400 500

f (MHz)
600 700 800 900 1000

Temperature Coefficient Insulation Resistance 125°C (MIL-STD-202 Method 302)


C0G: A Temperature Coefficient - 0 ±30 ppm/°C, -55° +125°C C0G and X7R: 10K MΩ or 100 MΩ-μF, whichever is less.
X7R: C Temperature Coefficient - ±15%, -55° to +125°C Z5U: 1K MΩ or 100 MΩ-μF, whichever is less.
Z5U: E Temperature Coefficient - +22, -56%, +10° to +85°C Dielectric Withstanding Voltage 25°C (Flash Test)*
Capacitance Test (MIL-STD-202 Method 305) C0G and X7R: 250% rated voltage for 5 seconds with 50 mA max
C0G: 25°C, 1.0±0.2 Vrms at 1KHz, for ≤100 pF use 1 MHz charging current. 500V rated units will be tested at 750 VDC
X7R: 25°C, 1.0±0.2 Vrms at 1KHz Z5U: 200% rated voltage for 5 seconds with 50 mA max charging current.
Z5U: 25°C, 0.5 Vrms max at 1KHz Life Test (1000 hrs)
Dissipation Factor 25°C C0G and X7R: 200% rated voltage at +125°C (500 Volt units
@ 600 VDC)
C0G: 0.15% Max @ 25°C, 1.0±0.2 Vrms at 1KHz, for ≤100 pF use 1 MHz
Z5U: 150% rated voltage at +85°C
X7R: 2.5% Max @ 25°C, 1.0±0.2 Vrms at 1KHz Moisture Resistance (MIL-STD-202 Method 106)
Z5U: 3.0% Max @ 25°C, 0.5 Vrms max at 1KHz C0G, X7R, Z5U: Ten cycles with no voltage applied.
Insulation Resistance 25°C (MIL-STD-202 Method 302) Thermal Shock (MIL-STD-202 Method 107, Condition A)
C0G and X7R: 100K MΩ or 1000 MΩ-μF, whichever is less. Immersion Cycling (MIL-STD-202 Method 104, Condition B)
Z5U: 10K MΩ or 1000 MΩ-μF, whichever is less.

HOW TO ORDER
DC61 5 A 561 K A 5 1 06
AVX Voltage Temperature Capacitance Code Capacitance Test Termination Inside Maximum
Style 50V = 5 Coefficient (2 significant digits Tolerance Level 5 = Silver Diameter Thickness
See Pages 100V = 1 C0G = A + no. of zeros) C0G: J = ±5% A = Standard (AVX Standard) See Pages 06 = 1.52 (0.060)
101-102 200V = 2 X7R = C Examples: K = ±10% 102-104 10 = 2.54 (0.100)
500V = 7 Z5U = E 10 pF = 100 M = ±20%
100 pF = 101 X7R: K = ±10%
1,000 pF = 102 M = ±20%
22,000 pF = 223 Z5U: M = ±20%
220,000 pF = 224 Z = +80 -20%
1 μF = 105 P = GMV
For dimensions, voltages or values not specified, please consult factory.

100
Discoidal MLC
Feed-Through Capacitors and Filters
DC Style
SIZE AND CAPACITANCE SPECIFICATIONS Dimensions: millimeters (inches)
EIA
Characteristic C0G
AVX Style DC61 DC26 DC63 DC04 DC65 DC66 DC67 DC69 DC32 DC70 DC02 DC71 DC05 DC73 DC72
Outside 2.54 3.43 3.81 4.83 5.33 5.97 6.73 8.13 8.51 8.89 9.40 9.78 12.70 15.24 16.26
Diameter (OD)* (0.100) (0.135) (0.150) (0.190) (0.210) (0.235) (0.265) (0.320) (0.335) (0.350) (0.370) (0.385) (0.500) (0.600) (0.640)
Thickness 1.52 1.52 1.52 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54
Maximum (T) (0.060) (0.060) (0.060) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100)
Inside 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7
Diameter No. (ID) 1,2 1,2,3 1,2,3,4 1,2,3 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
Voltage

cap. in pF 10
12
15
18
22
27
33
39
47
56
68
82
100
120
150
180
220
270
330
390
470
560
680
820
1000
1200
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
10,000
12,000
15,000
18,000
22,000
27,000
33,000
39,000
47,000
56,000
68,000
82,000
100,000
120,000
150,000
180,000
220,000
270,000
330,000
390,000
470,000
560,000
680,000

*Outside Diameter: Inside Diameter:


Tolerance is ±0.254 (0.010) or 3% +.127 +.005 +.127 +.005 5 = 1.27±.127 (0.050±.005)
whichever is greater 1 = .635 -.051 (.025 -.002) 3 = .914 -.051 (.036 -.002) 6 = 1.52±.127 (0.060±.005)
+.127 +.005 +.127 +.005 7 = 1.73±.127 (0.068±.005)
2 = .762 -.051 (.030 -.002) 4 = 1.07 -.051 (.042 -.002)

101
Discoidal MLC
Feed-Through Capacitors and Filters
DC Style
SIZE AND CAPACITANCE SPECIFICATIONS Dimensions: millimeters (inches)
EIA
Characteristic X7R
AVX Style DC61 DC26 DC63 DC04 DC65 DC66 DC67 DC69 DC32 DC70 DC02 DC71 DC05 DC73 DC72
Outside 2.54 3.43 3.81 4.83 5.33 5.97 6.73 8.13 8.51 8.89 9.40 9.78 12.70 15.24 16.26
Diameter (OD)* (0.100) (0.135) (0.150) (0.190) (0.210) (0.235) (0.265) (0.320) (0.335) (0.350) (0.370) (0.385) (0.500) (0.600) (0.640)
Thickness 1.52 1.52 1.52 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54
Maximum (T) (0.060) (0.060) (0.060) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100)
Inside 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7
Diameter No. (ID) 1,2 1,2,3 1,2,3,4 1,2,3 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
500
200
100
50
Voltage

cap. in pF 56
68
82
100
120
150
180
220
270
330
390
470
560
680
820
1000
1200
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
10,000
12,000
15,000
18,000
22,000
27,000
33,000
39,000
47,000
56,000
68,000
82,000
100,000
120,000
150,000
180,000
220,000
270,000
330,000
390,000
470,000
560,000
680,000
820,000
1.0 μF
1.2 μF
1.5 μF
1.8 μF
2.2 μF
2.7 μF
3.3 μF
3.9 μF
6.8 μF

Inside Diameter:
*Outside Diameter: +.127 +.005 +.127 +.005 5 = 1.27±.127 (0.050±.005)
Tolerance is ±0.254 (0.010) or 3% 1 = .635 -.051 (.025 -.002) 3 = .914 -.051 (.036 -.002) 6 = 1.52±.127 (0.060±.005)
whichever is greater
+.127 +.005 +.127 +.005 7 = 1.73±.127 (0.068±.005)
2 = .762 -.051 (.030 -.002) 4 = 1.07 -.051 (.042 -.002)

102
Discoidal MLC
Feed-Through Capacitors and Filters
DC Style

SIZE AND CAPACITANCE SPECIFICATIONS Dimensions: millimeters (inches)


EIA
Characteristic Z5U
AVX Style DC61 DC26 DC63 DC04 DC65 DC66 DC67 DC69 DC32 DC70 DC02 DC71 DC05 DC73 DC72
Outside 2.54 3.43 3.81 4.83 5.33 5.97 6.73 8.13 8.51 8.89 9.40 9.78 12.70 15.24 16.26
Diameter (OD)* (0.100) (0.135) (0.150) (0.190) (0.210) (0.235) (0.265) (0.320) (0.335) (0.350) (0.370) (0.385) (0.500) (0.600) (0.640)
Thickness 1.52 1.52 1.52 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54
Maximum (T) (0.060) (0.060) (0.060) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100) (0.100)
Inside 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7
Diameter No. (ID) 1,2 1,2,3 1,2,3,4 1,2,3 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
200
100
50
Voltage

cap. in pF 1800
2200
2700
3300
3900
4700
5600
6800
8200
10,000
12,000
15,000
18,000
22,000
27,000
33,000
39,000
47,000
56,000
68,000
82,000
100,000
120,000
150,000
180,000
220,000
270,000
330,000
390,000
470,000
560,000
680,000
820,000
1.0 μF
1.2 μF
1.5 μF
1.8 μF
2.2 μF
2.7 μF
3.3 μF
3.9 μF
4.7 μF
5.6 μF
6.8 μF
8.2 μF
10.0 μF
12.0 μF
15.0 μF

Inside Diameter:
*Outside Diameter: +.127 +.005 +.127 +.005 5 = 1.27±.127 (0.050±.005)
Tolerance is ±0.254 (0.010) or 3% 1 = .635 -.051 (.025 -.002) 3 = .914 -.051 (.036 -.002) 6 = 1.52±.127 (0.060±.005)
whichever is greater
+.127 +.005 +.127 +.005 7 = 1.73±.127 (0.068±.005)
2 = .762 -.051 (.030 -.002) 4 = 1.07 -.051 (.042 -.002)

103
Discoidal MLC
Feed-Through Capacitors and Filters
Discoidal XB / Feed-through XF – C0G
HOW TO ORDER
XB 06 Z G 0104 K --

AVX Style Size Class Voltage Capacitance Tolerance Packaging


XB 03 C = NP0 D = 63 EIA code J = 5% -- : bulk
XF 04 Z = X7R E = 100 on 3 or 4 K = 10%
06 F = 160 digits M = 20%
07 G = 250
08 I = 400
09 J = 500 (optional)
10
14
15

REFERENCES
Type Terminations Reference Mechanical Characteristics
bm
Silver
XB..C•....• --
palladium
OD

CECC 30600
ID Tinned
XB..C•....• MB
silver palladium MIL 11015 D
e bm

Ø Conformance

Silver to
XF..C•....• --
OD
palladium
CK12

TYPE
e Tinned
20 20 XF..C•....• MB
(0.787) (0.787)
silver palladium
min. min.

DIMENSIONS millimeters (inches)


OD ID bm Ø e
Size XB/XF XB/XF...MB XB XB...MB min (XF) min max
03 3.8 ± 0.3 4.1 ± 0.4 0.7 ± 0.15 > 0.4 0.1 0.5 1 See
(0.150 ± 0.012) (0.161 ± 0.016) (0.028 ± 0.006) (> 0.016) (0.004) (0.020) table
04 3.8 ± 0.3 — 1.2 ± 0.15 — 0.1 — 1 on
(0.150 ± 0.012) (0.047 ± 0.006) (0.004) page
08 7.9 ± 0.3 8.2 ± 0.4 0.8 ± 0.15 > 0.5 0.2 0.6 1 105
(0.311 ± 0.012) (0.323 ± 0.016) (0.031 ± 0.006) (> 0.020) (0.008) (0.024)
ELECTRICAL CHARACTERISTICS
Dielectric Class C0G
Temperature Coefficient 0 ± 30 ppm/°C
Climatic Category -55 / 125 / 56
Operating Temperature -55 +125°C
Rated Voltage (UR) 50 to 400V
Test Voltage (Ue) 2.5 UR
Tangent of Loss Angle
C < 50 pF tg δ < 1.5 ( 150
CR
+ 7 )10-4

C ≥ 50 pF tg δ < 15(10-4)
Insulation Resistance Ri ≥ 100 GΩ

104
Discoidal MLC
Feed-Through Capacitors and Filters
Discoidal XB / Feed-through XF – C0G
RATED VOLTAGE – RATED CAPACITANCES

Size
03 04 08
Capacitance Rated Voltage - UR (V)/Ur code
50/63

50/63

160
CR

D D F
10 pF
15 pF
22 pF
33 pF
47 pF
68 pF
100 pF
150 pF
220 pF
330 pF
470 pF
680 pF
1000 pF
1500 pF
2200 pF
3300 pF
4700 pF
6800 pF
10 nF
15 nF
22 nF
33 nF
47 nF
68 nF
100 nF
Thickness emax 1.4 (0.055) 1.4 (0.055) 1.8 (0.071)
mm (inches)

• other values, please contact us


• for tinned types, add 0.5 (0.020) to emax

105
Discoidal MLC
Feed-Through Capacitors and Filters
Discoidal XB / Feed-through XF – X7R
REFERENCES
Type Terminations Reference Mechanical Characteristics
bm
Silver
XB..Z•....• --
palladium
OD

ID
Tinned CECC 30700
silver palladium XB..Z•....• MB
e bm MIL 11015 D

Ø Conformance

Silver to
XF..Z•....• --
OD palladium CK12, CK13, CK14
TYPES
e
Tinned
20 20 silver palladium XF..Z•....• MB
(0.787) (0.787)
min. min.

DIMENSIONS millimeters (inches)


OD ID bm Ø e
Size XB/XF XB/XF...MB XB XB...MB min (XF) min max
3.8 ± 0.3 4.1 ± 0.4 0.7 ± 0.15 > 0.4 0.1 0.5 1.0
03 (0.150 ± 0.012) (0.161 ± 0.016) (0.028 ± 0.006) (> 0.016) (0.004) (0.020) (0.039)
3.8 ± 0.3 1.2 ± 0.15 — 0.1 — 1.0
04 —
(0.150 ± 0.012) (0.047 ± 0.006) (0.004) (0.039)
6.4 ± 0.3 6.7 ± 0.4 1.7 ± 0.15 > 0.5 0.2 0.6 1.0 See
06
(0.252 ± 0.012) (0.264 ± 0.016) (0.067 ± 0.006) (> 0.020) (0.008) (0.024) (0.039)
7.3 ± 0.3 7.6 ± 0.4 1.7 ± 0.15 > 0.5 0.2 0.6 1.0 table
07 (0.287 ± 0.012) (0.299 ± 0.016) (0.067 ± 0.006) (> 0.020) (0.008) (0.024) (0.039) on
7.9 ± 0.3 8.2 ± 0.4 0.8 ± 0.15 > 0.5 0.2 0.6 1.0 page
08
(0.311 ± 0.012) (0.323 ± 0.016) (0.031 ± 0.006) (> 0.020) (0.008) (0.024) (0.039)
8.4 ± 0.4 8.7 ± 0.5 1.6 ± 0.3 > 0.5 0.2 0.6 1.0 107
09
(0.331 ± 0.016) (0.343 ± 0.020) (0.063 ± 0.012) (> 0.020) (0.008) (0.024) (0.039)
9.6 ± 0.4 9.9 ± 0.5 1.2 ± 0.15 > 0.9 0.2 1.0 1.0
10 (0.378 ± 0.016) (0.390 ± 0.020) (0.047 ± 0.006) (> 0.035) (0.008) (0.039) (0.039)
14.0 ± 0.5 14.3 ± 0.6 1.7 ± 0.3 > 0.9 0.2 1.0 1.0
14 (0.551 ± 0.020) (0.563 ± 0.024) (0.067 ± 0.012) (> 0.035) (0.008) (0.039) (0.039)
15 15.0 ± 0.5 15.3 ± 0.6 2.3 ± 0.3 > 0.9 0.2 1.0 1.0
(0.591 ± 0.020) (0.602 ± 0.024) (0.091 ± 0.012) (> 0.035) (0.008) (0.039) (0.039)

ELECTRICAL CHARACTERISTICS
Dielectric Class X7R
Temperature Coefficient ΔC/C ≤ ± 15% (-55 +125°C)
Climatic Category -55 / 125 / 56
Operating Temperature -55 +125°C
Rated Voltage (UR) 50 to 400V
Test Voltage (Ue) 2.5 UR
Tangent of Loss Angle tg δ ≤ 250(10-4)
Insulation Resistance
C ≤ 10 nF Ri ≥ 100 GΩ
C > 10 nF Ri xC ≥ 1000s

106
Discoidal MLC
Feed-Through Capacitors and Filters
Discoidal XB / Feed-through XF – X7R
RATED VOLTAGE – RATED CAPACITANCES

Size
03-04 06 07 08-09 10 14-15
Capacitance UR- (V)/Code UR
50/63

50/63

50/63

50/63

50/63

50/63
100
160
250

100
160
250
400

100
160
250
400

100
160
250
400

100
160
250
400
CR

D D E F G D E F G I D E F G I D E F G I D E F G I
100 pF
150 pF
220 pF
330 pF
470 pF
680 pF
1000 pF
1500 pF
2200 pF
3300 pF
4700 pF
6800 pF
10 nF
15 nF
22 nF
33 nF
47 nF
68 nF
100 nF
150 nF
220 nF
330 nF
470 nF
680 nF
1 μF
1.5 μF
2.2 μF
3.3 μF
4.7 μF
1.4 2 2 2 2 3 3 3 3 3 1.8 3 1.8 3 3 3 3 3 3 3 3.5 3.5 3.5 3.5 3.5
emax mm (inches) (0.055) (0.079) (0.079) (0.079) (0.079) (0.118) (0.118) (0.118) (0.118) (0.118) (0.071) (0.118) (0.071) (0.118) (0.118) (0.118) (0.118) (0.118) (0.118) (0.118) (0.138) (0.138) (0.138) (0.138) (0.138)

• other values, please contact us


• for tinned types, add 0.5 (0.020) to emax

107
Filtered Arrays
XD... Type

FEATURES
• To be used beneath a connector
• Provide an EMI filtered signal line between electronic modules
• Effective insertion loss from 1MHz up to ~ 1GHz
• Surface mount compatible

HOW TO ORDER
XD 06 Z F 0153 K --

AVX Style Size Class Voltage Capacitance Tolerance Packaging


XD 03 C = NP0 F = 200 EIA code NP0 F = ±1% SUFFIX
06 Z = X7R J = 500 on 3 or 4 G = ±2% Burn-in 100% 168H = T5
07 digits J = ±5% Burn-in 100% 48H = T3
K = ±10% No burn-in = --
X7R J = ±5%
K = ±10%
M = ±20%

STYLE & DIMENSIONS millimeters (inches)


L Thickness
TYPES L P D d bm maxi
P maxi
D
XD07 7.00 ± 0.15 2.54 1.70 ± 0.15 1.00 ± 0.10 0.3 2mm
(4 capacitors) (0.275 ± 0.006) (0.100) (0.067 ± 0.006) (0.039 ± 0.0039)
P L XD06 6.00 ± 0.15 2.54 1.70 ± 0.15 1.00 ± 0.10 0.3
d 2mm
(4 capacitors) (0.236± 0.006) (0.100) (0.067 ± 0.006) (0.039 ± 0.0039)
XD03 6.00 x 3.00 ± 0.15 2.54 1.70 ± 0.15 1.0 ± 0.10 0.3 1.5mm
bm tm (2 capacitors) (0.236 x 0.118 ± 0.006) (0.100) (0.067 ± 0.006) (0.039 ± 0.0039)
Terminations: Silver – Palladium – Platinum, on 4 or only 2 sides of the array

CAPACITANCE vs VOLTAGE TABLE


Cap. Range X7R NP0
(each cap.) 200VDC 500VDC 200VDC 500VDC
XD07... 33nF → 120nF 4.7nF → 18nF 470pF → 1500pF 220pF → 620pF
XD06... 15nF → 68nF 2.2nF → 10nF 220pF → 750pF 120pF → 330pF
XD03... 8.2nF → 39nF 1nF → 4.7nF 180pF → 390pF 82pF → 180pF

ELECTRICAL CHARACTERISTICS
Dielectric Class X7R NP0
Temperature Coefficient ΔC/C ≤ ± 15% (-55 +125°C) 0 ± 30ppm/°C
Climatic Category 55 / 125 / 56 55 / 125 / 56
Rated Voltage (UR) 200 VDC 500VDC 200VDC 500VDC
Test Voltage (Ue) 2 x UR 1.5 x UR 2 x UR 1.5 x UR
Tangent of Loss Angle - DF tg δ ≤ 250(10-4) tg δ ≤ 15(10-4)
Insulation Resistance C ≤ 10nF = Ri ≥ 100 GΩ Ri ≥ 100 GΩ
C > 10nF = Ri x C ≥ 1000s

108
Baseline Management
A Dedicated Facility / BS9100 Requirements
Baseline Products — markings or lead placement from the Baseline Program Management
A Selection of Options standard catalog part. Baseline Program Management has
As a matter of course, AVX maintains a Stretching the Limits been AVX’s forte over the years. This is
level of quality control that is sufficient Advanced Products are developed to both a product and a service function
to guarantee whatever reliability specifi- meet the extraordinary needs of specific designed to provide the customer the
cations are needed. However, AVX applications. Requirements may include: full capabilities of AVX in meeting their
goes further. There are over 65 quality low ESR, low ESL, voltages up to 10’s program requirements. AVX has had
control and inspection operations that of thousands, advanced decoupling Baseline and Program Management in
are available as options to a customer. designs for frequencies up to 10’s of the following major systems:
Any number may be requested and megahertz, temperatures up to 200°C, —AT&T Undersea Cable
written into a baseline process. The extremely high current discharge, ability —Minuteman
abbreviated list that follows indicates to perform in high radiation or toxic —Peacekeeper
the breadth and thoroughness of avail- atmospheres, or minimizing piezoelectric —STC Undersea Cable
able Q.C. services at AVX: effect in high vibration environments. —CIT Undersea Cable
Ultrasonic Scanning In addition, solving customer packaging —Raytheon-Hawk Missile
Destructive Physical Analysis (DPA) problems, aside from addressing circuit —Trident
X-Ray problems, is available. Special lead —Small Missile Program
Bondability Testing frames for high current or special —Northrop - Peacekeeper
Sorting and Matching to mounting requirements are examples. —Sparrow Program
Specification Limits Multiple ceramic chip package designs —Space Station
Temperature and Immersion per customer requirements are also —European Space Agency (ESA)
Cycling available. —Commercial Satellite Program
Load/Humidity Life Testing —Arianne 4 & 5
Advanced Products always begin with
Dye Penetration Evaluation —EuroFighter (Typhoon)
a joint development program involving
100% Ceramic Sheet Inspection —EH101 (Merlin)
AVX and the customer. In undersea
Voltage Conditioning AVX technical personnel stand ready to
cable components, for example,
Termination Pull Testing answer any questions and provide any
capacitance and impedance ratings
Pre-encapsulation Inspection information required on your programs
had to be maintained within 1% over
Within the “specials” area, AVX accom- the multi-year life of the system. In this from the most exotic Hi-Rel part to the
modates a broad variety of customer case, Advanced Products not only simplest variation on a standard. Put the
needs. The AVX facilities are capable of met the parametric requirements of the experience, technology and facilities of
developing and producing the most customer, but accelerated life testing of the leading company in multilayer
reliable and advanced MLCs available 3,500 units indicated an average life ceramics to work for you. No other
anywhere in the world today. Yet it is expectancy of over 100,000 years. source offers the unique combination of
equally adept at making volume “custom” capability and commitment to advanced
components that may differ only in application specific components.

PROCUREMENT OF COMPONENTS OF
BS9100 (CH/CV RANGE 50-500V) PACKAGING
The manufacturing facilities have IS09001 approval. Customers Unless otherwise stated in the appropriate data sheet parts
requiring BS9100 approved components are requested to are supplied in a waffle pack.
follow these steps:
1. The customer shall submit a specification for the required
components to AVX for approval. Once agreed a Customer
Detail Specification (CDS) number will be allocated by AVX
to this specification. This number with its current revision
must be quoted at the time of order placement.
2. If the customer has no specification, then AVX will supply a
copy of the standard CDS for the customer’s approval and
signature. As in 1 above, when agreed this CDS number
must be quoted at order entry. In the event of agreement
not being reached the component cannot be supplied to
BS9100.
For assistance contact: EMAP Specification Engineering
Dept. AVX Ltd. Coleraine, Northern Ireland
Telephone ++44 (0)28703 44188, Fax ++44 (0)28703 55527

109
Advanced Application
Specific Products
Examples of Special Packaging and Custom
Lead Configurations from Advanced Products

Custom Lead
Configurations. . .
optimum 3D packaging, high current
applications and high reliability stress
relief mounting.

Custom
Packaging. . .
eliminate reliability concerns with multiple
component assembly.

Many other innovations are available from Advanced Products. Let them apply these ideas
to your application specific programs.
AMERICAS EUROPE ASIA-PACIFIC ASIA-KED
(KYOCERA Electronic Devices)
AVX Myrtle Beach, SC AVX Limited, England AVX/Kyocera (S) Pte Ltd., KED Hong Kong Ltd.
Tel: 843-448-9411 Tel: +44-1252-770000 Singapore Tel: +852-2305-1080/1223
Tel: +65-6286-7555
AVX Northwest, WA AVX S.A.S., France KED Hong Kong Ltd.
Tel: 360-699-8746 Tel: +33-1-69-18-46-00 AVX/Kyocera, Asia, Ltd., Shenzen
Hong Kong Tel: +86-755-3398-9600
AVX Midwest, IN AVX GmbH, Germany Tel: +852-2363-3303
Tel: 317-861-9184 Tel: +49-8131-9004-0 KED Company Ltd.
AVX/Kyocera Yuhan Hoesa, Shanghai
AVX Mid/Pacific, CA AVX SRL, Italy South Korea Tel: +86-21-3255-1833
Tel: 408-988-4900 Tel: +39-02-614-571 Tel: +82-2785-6504
KED Hong Kong Ltd.
AVX Northeast, MA AVX Czech Republic AVX/Kyocera HK Ltd., Beijing
Tel: 617-479-0345 Tel: +420-57-57-57-521 Taiwan Tel: +86-10-5869-4655
Tel: +886-2-2656-0258
AVX Southwest, CA AVX/ELCO UK KED Taiwan Ltd.
Tel: 949-859-9509 Tel: +44-1638-675000 AVX/Kyocera (M) Sdn Bhd,
Tel: +886-2-2950-0268
Malaysia
AVX Canada ELCO Europe GmbH Tel: +60-4228-1190 KED Korea Yuhan Hoesa,
Tel: 905-238-3151 Tel: +49-2741-299-0 South Korea
AVX/Kyocera International
Trading Co. Ltd., Tel: +82-2-783-3604/6126
AVX South America AVX S.A., Spain Shanghai
Tel: +55-11-4688-1960 Tel: +34-91-63-97-197 KED (S) Pte Ltd.
Tel: +86-21-6215-5588
Singapore
AVX Benelux AVX/Kyocera Asia Ltd., Tel: +65-6509-0328
Tel: +31-187-489-337 Shenzen
Tel: +86-755-3336-0615 Kyocera Corporation
Japan
AVX/Kyocera International Tel: +81-75-604-3449
Trading Co. Ltd.,
Beijing
Tel: +86-10-6588-3528

AVX/Kyocera India
Liaison Office
Tel: +91-80-6450-0715

Contact:

A KYOCERA GROUP COMPANY

http://www.avx.com S-AP0M510-C

You might also like