Trigo 2
Trigo 2
Trigo 2
Definition
y=sin-1x is equivalent to x=siny
y=cos-1x is equivalent to x=cosy
Tangent and Cotangent Identities
sinθ cosθ y=tan-1x is equivalent to x=tany
tanθ = cotθ =
cosθ sinθ
Domain and Range Law of Tangents
Function Domain Range 1
π π a-b tan 2 (α-β)
Y=sin-1x -1≤ x ≤1 - ≤y≤ =
2 2 a+b tan 1 (α+β)
Y=cos-1x -1≤ x ≤1 0≤ y ≤π 2
Y=tan-1x -∞≤ x π π 1
- ≤y≤ b-c tan 2 (β-γ)
≤∞ 2 2 =
b+c tan 1 (β+γ)
2
Inverse Properties 1
cos(cos-1(x)) = x cos-1(cos(θ)) = θ a-c tan 2 (α-γ)
=
sin(sin-1(x)) = x sin-1(sin(θ)) = θ a+c tan 1 (α+γ)
Law of Sines 2
tan(tan-1(x)) =x tan-1(tan(θ)) = θ sinα sinβ sinγ
= =
a b c Mollweide’s Formula
Alternate Notation 1
sin-1x = arcsinx a+b cos 2 (α-β)
Law of Cosines =
cos-1x = arccosx a2=b2+c2-2bccosα c 1
sin γ
tan-1x = arctanx 2
b2=a2+c2-2accosβ
c2=a2+b2-2abcos𝛾
For any ordered pair on the unit circle ( x y, ) : cosθ= x and sinθ = y