Formula Sheets
Formula Sheets
Formula Sheets
IDENTITIES
RECIPROCAL RELATIONS
1 1 1 1
sinA= cotA= cosA = secA=
cscA tanA secA cosA
1 1
tanA= cscA=
cotA sinA
EVEN-ODD IDENTITIES
sin (−ϴ )=−sinϴcos (−ϴ ) =cosϴtan (−ϴ ) =−tanϴ
cot (−ϴ )=−cotϴsec (−ϴ ) =secϴcsc (−ϴ )=−cscϴ
COFUNCTION IDENTITIES
sin ( ϴ )=cos ( 90−ϴ ) cosϴ=sin ( 90−ϴ )tanϴ=cot ( 90−ϴ)
cotϴ=tan (90−ϴ)secϴ=csc (90−ϴ)cscϴ=sec (90−ϴ)
PYTHAGOREAN RELATIONS
sin 2 A+ co s 2 A=11+co t 2 A=csc ² A1+tan 2 A=sec ² A
tanA +tanB
cos ( A+ B ) =cosAcosB−sinAsinB tan ( A+ B ) =
1−tanAtanB
DIFFERENCE OF ANGLES
FORMULAS
sin ( A−B )=sinAcosB −cosAsinB
tanA−tanB
cos ( A−B )=cosAcosB +sinAsinB tan ( A−B )=
1+tanAtanB
2 tanA
tan2 A=
1−tan ² A
POWERS OF
FUNCTIONS
1 1
sin 2 A= (1−cos 2 A )co s2 A= ( 1+cos 2 A )
2 2
1−cos 2 A
ta n2 A=
1+ cos 2 A
FUNCTIONS OF HALF ANGLES
A 1−cosA A 1+ cosA
sin
2
=±
√
2
cos =±
2 √2
A 1−cosA sinA
tan = =
2 sinA 1+cosA
SUM OF TWO ANGLES
1 1
sinA +sinB =2sin ( A+ B ) cos ( A−B)
2 2
1 1
cosA +cosB=2 cos ( A+ B ) cos ( A−B)
2 2
sin ( A+ B)
tanA +tanB=
cosAcosB
DIFFERENCE OF TWO
FUNCTIONS
1 1
sinA−sinB=2 cos ( A + B ) sin ( A−B)
2 2
1 1
cosA −cosB=2 sin ( A+ B ) sin ( A−B)
2 2
sin (A−B)
tanA−tanB=
cosAcosB
PRODUCT OF TWO
FUNCTIONS
2 sinAsinB=cos ( A−B )−cos ( A+ B )
2 sinAcosB=sin ( A+ B )+ sin ( A−B )
−b ± √ b2−4 ac of roots ; x1 + x 2=
−b
Roots ; x=
2a
∑ a
c
Product of roots ; x1 ( x 2 )=
a
BINOMIAL THEOREM
Form : ( x + y ) n
where: m=r-1
ARITHMETIC PROGRESSION
n
d=a2−¿a =a −a ¿a n=a1 +(n−1)d a n=a x + ( n−x ) d Sn= (a 1+ an )
1 3 2
2
GEOMETRIC PROGRESSION
n−1
a 2 a5 a ( r n−1)
a n=a1 r r= = =… s= 1 when r >1
a1 a 4 r−1
a 1( 1−r n )
s= when r <1
1−r
INFINITE GEOMETRIC
PROGRESSION
For a geometric progression where 0 < r < 1 and n = ∞
a 1
∑ of I .G . P .= 1−r
HARMONIC PROGRESSION
Spherical Pyramid:
1 π R3 E
V = A B H=
3 540°
ANALYTIC
GEOMETRY
DISTANCE BETWEEN
TWO POINTS
2
√
d= ( x 2−x 1 ) +¿ ¿
y 2−¿ y
m= 1
¿
x 2−x 1
ANGLE BETWEEN TWO
LINES
m2−m1
tanθ=
1+ m 2 m 1
m −m1
θ=tan −1( 2 )
1+m2 m1
DISTANCE BETWEEN A
POINT AND A LINE
A x 1+ B y 1 +C
d=
± √ A 2+ B 2
DISTANCE BETWEEN
TWO PARALLEL LINES
C 1−C2
d=
± √ A 2+ B 2
LINE
General Equation: A x 2+ bx+ c=0
Point-Slope Form: y− y1 =m(x−x 1)
Point-Intercept Form: y=mx+b
y
Two-Point Form: y− y1 = x −x ( x −x1 )¿
¿
2 1
x y
Intercept Form: + =1
a b
CONIC SECTION
General Equation:
A x 2+ Bxy +C y 2 + Dx+ Ey + F=0
B2−4 AC Conic Section Eccentricity
<0 Ellipse < 1.0
=0 Parabola = 1.0
>0 Hyperbola > 1.0
CIRCLE
General Equation:
x 2+ y 2+ Dx + Ey+ F=0
*If D & E = 0, center is at the origin (0,0)
*If either D or E, or both D & E ≠ 0, the center is at (h,k)
Standard Equation:
C(0,0)
x 2+ y 2=r 2
C(h,k)
( x−h)2 +( y−k )2=r 2
General Equation:
PARABOLA
-is the locus of a point which moves so that is it always equidistant to a fixed point
called focus and a fixed straight line called directrix.
h=
−D D 2−4 AF a=
−E
k=
2A 4 AE 4A
ELLIPSE
- is a locus of a point which moves so that the sum of its distance to the fixed points (foci) is
constant and is equal to the length of the major axis (2a).
General Equation:
Ax2 +Cy 2+ Dx+ Ey+ F=0
Standard Equation: Ellipse with center at (h, k)
Elements:
2b² a
LR= d=
a e
HYPERBOLA
- Hyperbola can be defined as the locus of point that moves such that the difference of its
distances from two fixed points called the foci is constant. The constant difference is the
length of the transverse axis, 2a.
General Equation:
Ax ²−Cy ²+ Dx+ Ey+ F=0
Standard Equation:
(x−h) ² ( y −k )² ( y−k )² ( x−h)²
− =1 − =1
a² b² b² a²
Elements:
Location of foci, c:
c 2=a2+ b2
Eq’n of asymptote:
y−k=± m(x−h)
Same as ellipse:
Length of LR, directrix,
and eccentricity.
ORDINARY EXACT
(Banker’s year) (Actual number of
days in year)
NSCP COEFFICENTS
- Hyperbola can be defined as the locus of point that moves such that the difference of its
distances from two fixed points called the foci is constant