Nothing Special   »   [go: up one dir, main page]

Math Fomulas

Download as docx, pdf, or txt
Download as docx, pdf, or txt
You are on page 1of 13
At a glance
Powered by AI
The text discusses various mathematical concepts including logarithmic functions, trigonometric identities, complex numbers, and Laplace transforms.

Some important trigonometric identities discussed include sum and difference formulas, half-angle and double-angle formulas, and trigonometric transformations involving integrals of trigonometric functions.

The text discusses rectangular, polar and exponential forms of representing complex numbers and discusses operations like exponentiation and roots of complex numbers.

Logarithmic Functions Sum and Product of Roots

aloga N = N in ax n + bx n−1 + ⋯ + C = 0:

log N = (log e)(ln N) b


Sum = (−1)n
a
colog N = − log N
C
log 0 = −∞ Product =
a

Factorization Patterns
Remainder/Factor Theorem
a8 − b8 = (a4 + b4 )(a2 + b2 )(a + b)(a − b)
f(x)
7 7 6 5 4 2 3 3 2 4 5 6) for ; remainder = f(r)
a + b = (a + b)(a − a b + a b − a b + a b − ab + b x−r
a7 − b7 = (a − b)(a6 + a5 b + a4 b2 + a3 b3 + a2 b4 + ab5 + b6 )
Mean Proportion

Quadratic Equation – General Form a: x = x: b

ax 2 + bx + c = 0 Third Proportion

Quadratic Formula a: b = b: x

−b ± √b 2 − 4ac Fourth Proportion


x=
2a a: b = c: x
Discriminant and Nature of Roots

b2 − 4ac > 0 ; two distinct


Binomial Theorem
2
b − 4ac = 0 ; two equal
r th term = (nCr−1 )(x n−r+1 )(y r−1 )
b2 − 4ac < 0 ; complex unequal
Sum of Exponents
a+b n
(n)(n + 1) ; for (x a + y b )
Sum and Product of Roots 2
b c Sum of Coefficients
− and ; ax 2 + bx + c = 0
a a substitute 1 to variables
Arithmetic, Geometric and Harmonic Mean Relation 2 tan θ
tan 2θ =
1 − tan2 θ
(AM)(HM) = (GM)2
cot 2 θ − 1
Solving the Numbers cot 2θ =
2 cot θ
a or b = AM ± √AM 2 − GM 2 Half Angle Formulas

GCF, LCM and Number Relationship 1


sin2 θ = (1 − cos 2θ)
2
GCF ∙ LCM = x ∙ y
1
cos2 θ = (1 + cos 2θ)
2
Other Trigonometric Functions 1 − cos 2θ
tan2 θ =
1 + cos 2θ
versine θ = 1 − cos θ
1 − cos 2θ sin θ
coversine θ = 1 − sin θ tan θ = =
sin θ 1 + cos 2θ
1 − cos θ
haversine θ =
2
Power Reduction Formulas
exsecant θ = sec θ − 1
1
sin3 θ = (3 sin θ − sin 3θ)
4
Cofunction Relations 1
cos3 θ = (3 cos θ + cos 3θ)
4
sin(90 − θ) = cos θ
tan(90 − θ) = cot θ
Product Formulas
sec(90 − θ) = csc θ
sin(A ± B) = sin A cos B ± cos A sin B
cos(A ± B) = cos A cos B ∓ sin A sin B
Double Angle Formula
tan A ± tan B
sin 2θ = 2 sin θ cos θ tan(A ± B) =
1 ∓ tan A tan B
cos 2θ = cos2 θ − sin2 θ

cos 2θ = 2 cos2 θ − 1

cos 2θ = 1 − 2 sin2 θ
Addition/Subtraction Formulas Hyperbolic Function
1 ex − e−x
sin A cos B = + [sin(A + B) + sin(A − B)] sinh x =
2 2
1 ex + e−x
cos A cos B = + [cos(A + B) + cos(A − B)] cosh x =
2 2
1 ex − e−x
sin A sin B = − [cos(A + B) − cos(A − B)] tanh x =
2 ex + e−x
Factoring Formulas cosh2 x − sinh2 x = 1
A±B A∓B tanh2 x + sech2 x = 1
sin A ± sin B = +2 sin cos
2 2
coth2 x − csch2 x = 1
A+B A−B
cos A + cos B = +2 cos cos cosh x ± sinh x = e±x
2 2
A+B A−B
cos A − cos B = −2 sin sin
2 2
Other Trigonometric Identities*

sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C


Sine and Cosine Law
tan A + tan B + tan C = tan A tan B tan C
a b c
= =
sinA sinB sinC
c 2 = a2 + b2 − 2abcosC Angle Measurement Units and Conversion

Tangent Law 1 rev = 1 cycle = 360° = 2π rad = 400 grad = 6400 mils

A−B
a − b tan 2
= Slope
a + b tan A + B
2
y2 − y1 A
Mollweide’s Equation* m= = tan θ = − ∗ partial derivative
x2 − x1 B
c
c sin 2 Angle Between Lines
=
a±b a∓b tan θ2 − tan θ1 m2 − m1
cos 2
m = tan θ = =
1 + tan θ2 tan θ1 1 + m2 m1
Line to Point Distance General Equation for Conics
Ax + By + C Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0
d= ; Ax + By + C = 0 form
√A2 + B2
B 2 − 4AC < 0 ; ellipse
for (+)A ; +d = point at right ; −d = point at left
B 2 − 4AC = 0 ; parabola
for (+)B ; +d = point above ; −d = point below
B 2 − 4AC > 0 ; hyperbola
Parallel Lines Distance
∗ partial derivative for center (vertex for parabola)
C2 − C1
d= ; Ax + By + C = 0 form Polar Equation of Conics
√A2 + B 2
ed
for (+)A ; +d = line2 at right ; −d = line2 at left r= ; directrix x = ±d
1 ± cos θ
for (+)B ; +d = line2 above ; −d = line2 below
ed
r= ; directrix y = ±d
Normal Form of Linear Equation 1 ± sin θ

x cos θ + y sin θ ∓ p = 0 ecircle = 0 , eellipse < 1

A B C eparabola = 1 , ehyperbola > 1


cos θ = ; sin θ = ; p =
k k k
Angle of Rotation
k= √A2 + B2
B
tan 2θ =
Translation of Axes A−C
x = x′ + h
y = y′ + k Circle Standard Equation

where: (h, k) = new origin (x − h)2 + (y − k)2 = r 2

Rotation of Axes Radical Axis

x = x ′ cos θ − y ′ sin θ (D1 − D2 )x + (E1 − E2 )y + (F1 − F2 ) = 0

y = x ′ sin θ + y ′ cos θ Parabola Standard Equation

Incenter of Triangles (x − h)2 = ±4a(y − k) ; opens up/down

a(xa , ya ) + b(xb , yb ) + c(xc , yc ) (y − k)2 = ±4a(x − h) ; opens right/left


(xi , yi ) =
a+b+c
LR = 4a ; e = 1
where: a = side length opposite (xa , ya ) and so on …
Ellipse Standard Equation 2b2 c a
LR = e= d=
a a e
(x − h)2 (y − k)2
+ = 1 ; horizontally flattened Asymptote: y − k = ±m(x − h)
a2 b2
(y − k)2 (x − h)2 b a
+ = 1 ; vertically flattened mhorizontal = ± ; mvertical = ±
a2 b2 a b
Properties of Ellipse

2a = major/transverse axis Triangle

2b = minor/conjugate axis 1
A = ab sin θ ; ∠θequilateral = 60°
2
2b2 a
LR = d= a2 = b2 + c 2 Equilateral Triangle
a e
c c 3(a4 + b4 + c 4 + x 4 ) = 2(a2 + b2 + c 2 + x 2 )
e= e′ =
a b
Heron’s Formula
a−b a−b
f= f′ = a+b+c
a b A = √s(s − a)(s − b)(s − c) ; where s =
2
Length of Median
Hyperbola Standard Equation
1
(x − h) 2
(y − k) 2 mCc = √2a2 + 2b 2 − c 2
2
2
− =1
a b2
Triangle Inscribed to a Circle
opens left & right (horizontal: opposite directions to parabola)
abc
2 2 A=
(y − k) (x − h) 4r
2
− =1
a b2 Triangle Circumscribing a Circle
opens up & down (vertical: opposite directions to parabola)
a+b+c
A = rs ; s =
Properties of Hyperbola 2
2a = transverse axis (major) Triangle Escribed to a Circle

a = distance from center to a vertex A = r(s − a)

2b = conjugate axis (minor) a = side tangent to circle

d2 − d1 = 2a c 2 = a2 + b2
Parallelograms Centroid – Medians
1 Incenter – Angle Bisector
A = bh = ab sin θ = d1 d2 sin α
2
Circumcenter – Perpendicular Bisector
θ = angle at sides (90° for rectangle)
Orthocenter – Altitudes
α = angle at diagonals (90° for rhombus)
Euler Line – Line containing the center points

Trapezoid
Elliptic Cone
na2 + mb 2 x2 y2 z2
x=√ + + =0
m+n a2 b 2 c 2
x = a "median" not in the middle Ellipsoid

x2 y2 z2
+ + =1
a2 b 2 c 2
Non-cyclic Quadrilateral
Hyperboloid (1 sheet)
√(s − a)(s − b)(s − c)(s − d)
A= x2 y2 z2
abcd cos 2 θ + − = 1 → one term has different sign to 1
a2 b 2 c 2
A+C B+D
θ= = Hyperboloid (2 sheets)
2 2
Cyclic Quadrilateral (Inscribable into a Circle) x2 y2 z2
− − + = 1 → two terms have different sign to 1
a2 b 2 c 2
√(s − a)(s − b)(s − c)(s − d)
A=
1 abcd cos2 θ
A + C = B + D = 180° ; θ = 90° Circle

d1 d2 = ac + bd → Ptolemy’s Theorem θ θ
A = πr 2 × = 2πrh ×
360° 360°
√(ab + cd)(ac + bd)(ad + bc)
r= Pappus theorem: A = 2πrh
4A
h = distance of instantaneous centroid to center
Circumscribing Quadrilateral

A = rs = √abcd
Spherical Triangle/Polygon & Pyramid
h

x y E
Apolygon = πr 2 ×
180°
4 E
h2 = ab Vpyramid = πr 3 ×
3 720°
E = ∑θ − (n − 2)180°
Parabolic Segment & Spandrel Spherical Cone
2 1 2
Asegment = bh ; Aspandrel = bh V = πr 2 h
3 3 3
Pentagram & Hexagram Spherical Lune
A = 1.1226r 2 ; A = r 2 √3 θ
A = 4πr 2 ×
360°
Spherical Wedge
Prismatoid
4 θ
h V = πr 3 ×
V = (A1 + A2 + 4Am ) 3 360°
6
Frustrum of Pyramid
Paraboloid, Ellipsoid, Hyperboloid
h
V = (A1 + A2 + √A1 A2 ) 2 3
3 Vparaboloid = 2π × rh × r ; Pappus ′ theorem
s 3 8
LA = (P1 + P2 ) ; s = slant height
2 4
Vellipsoid = πabc
3
h
Spherical Zone/Segment Vhyperboloid = (πR2 + πR2 + 4πr 2 ) ; Prismatoid
6
h Conoid
Vzone = (3πRh − πh2 )
6
πr 2 h
h V=
Vsegment = (3A1 + 3A2 + πh2 ) 2
6
LA = Azone = 2πRh
Polyhedron f v e Face SA Volume Radius
√2 3 √6 3
Tetrahedron 4 4 6 √3s 2 12
s 12
s
s Trigonometric and *Hyperbolic Function Derivatives
Hexahedron 6 8 12 6s 2 s3 2
√2 3 √6 d du
Octahedron 8 6 12 2√3s 2 s s sin u = cos u
3 6 dx dx
Dodecahedron 12 20 30 20.64s2 7.66s3 1.11s d du du
cos u = − sin u ; ∗ + sinh u
Icosahedron 20 12 30 8.66s 2
2.18s 3 0.76s dx dx dx
d du
tan u = sec 2 u
dx dx
Leibniz’s Notation
d du
cot u = − csc 2 u
dy d2 y dn y dx dx
, 2 ,…, n
dx dx dx d du du
sec u = sec u tan u ; ∗ − sech u tanh u
Euler’s Notation dx dx dx

Dy , D2 y , … , Dn y d du
csc u = − csc u cot u
dx dx
Lagrange’s Notation
Trigonometric Function Integrals
′ (x) ′′ (x) n (x)
f ,f ,… ,f
∫ tan u du = − ln|cos u| + C
Jacobi’s Notation

∂ ∂2 ∂n ∫ cot u du = ln|sin u| + C
, 2 ,… , n
∂x ∂x ∂x

∫ sec u du = ln|sec u + tan u| + C


Logarithmic Function Derivatives
d u du ∫ csc u du = − ln|csc u + cot u| + C
a = au ln a
dx dx
d 1 du ∫ sec u tan u du = sec u + C
log a u =
dx u ln a dx
∫ csc u cot u du = − csc u + C
Exponential Function Integrals
au
∫ au du = +C ∫ sec 2 u du = tan u + C
ln a
1
∫ log a u du = (u ln u − u) + C ∫ csc 2 u du = − cot u + C
ln a
d ±1 du
arccosh u =
dx √u2 − 1 dx
Inverse Trigonometric Function Derivatives
d 1 du
d sin ±1 du arctanh u =
arc u= dx 1 − u2 dx
dx cos √1 − u2 dx
d ±1 du
d tan ±1 du arccoth u =
arc u= dx 1 − u2 dx
dx cot 1 + u2 dx
d ±1 du
d sec ±1 du arcsech u =
arc u= dx u√1 − u2 dx
dx csc u√u − 1 dx
2
d −1 du
Inverse Trigonometric Integrals arccosh u =
dx u√1 + u2 dx
du u d du
∫ = arcsin + C g du = sech u
√a2 − u2 a dx dx
du 1 u g du = gudermanion of u = arctan(sinh u)
∫ = arctan + C
a2 +u 2 a a
du 1 u
∫ = arcsec + C Variable with Variable Exponents
u√u2 − a2 a a
du y = uv ; ln y = v ln u
∫ = ln |u + √u2 ± a2 | + C
√u2 ± a2 dy⁄
dx = ln u dv + v du
du 1 a+u u v dx u dx
∫ = ln + C , u 2 < a2
a2 − u2 2a a − u
u a2 u
∫ √a2 − u2 du = √a2 − u2 + arcsin + C Curvature & Radius of Curvature
2 2 a
y ′′
u a2 k= 3 ; R = k −1
∫ √u2 ± a2 du = √u2 ± a2 ± ln |u + √u2 ± a2 | + C [1 + (y ′ )2 ]2
2 2
Center of Curvature (h, k)

Inverse Hyperbolic Function Derivatives y ′ [1 + (y ′ )2 ]


h=x+
y′′
d 1 du
arcsinh u =
dx √u + 1 dx
2 1 + (y ′ )2
k=y+
y ′′
if m and n is even, else × 1

Errors and Relative Errors


dR dA dV Partial Fractions
dR, dA, dV ; , ,
R A V
1 A B
= +
(x + 1)(x − 1) x + 1 x − 1
1 A B
2
= +
(x − 1) x − 1 (x − 1)2
Trigonometric Transformation (sin and cos)
1 A B(2x + 3) + C
m n m n = + 2
∫ sin u cos u du , ∫ sin u du , ∫ cos u du x(x 2 + 3x + 4) x x + 3x + 4
1 A B(2x) + C D(2x) + E
If at least m or n is odd = + 2 + 2
x(x 2 + 4)2 x x +4 (x + 4)2
sin2 x = 1 − cos 2 x or cos2 x = 1 − sin2 x
If both are even
Algebraic Substitution
1
sin2 x = (1 − cos 2x) xdx
2 ex: ∫ → Let: u = x + 1
(x + 1)8
1
cos2 x = (1 + cos 2x) Trigonometric Substitution
2
1
sin x cos x = 2 sin 2x 1. a2 − x 2 → Let: x = a sin θ

2. a2 + x 2 → Let: x = a tan θ

3. x 2 − a2 → Let: x = a sec θ
Trigonometric Transformation (tan and sec)

∫ tann u du ; ∫ sec n u du

Use: tan2 x = sec 2 x − 1 or sec 2 x = tan2 x + 1

Wallis Formula
π
2 1 9∙7∙5∙3∙1 π
∫ cos10 ax sin4 ax dx = × ×
0 3 (10 + 4) ∙ 12 ∙ 10 ∙ 8 ∙ 6 ∙ 4 ∙ 2 2
Area Under the Curve

𝐴 = ∫(𝑦𝑢𝑝𝑝𝑒𝑟 − 𝑦𝑙𝑜𝑤𝑒𝑟 )𝑑𝑥

𝐴 = ∫(𝑥𝑟𝑖𝑔ℎ𝑡 − 𝑥𝑙𝑒𝑓𝑡 )𝑑𝑦

X-center Equation

𝑑𝑥 → 𝑥𝑐 = 𝑥
𝑥𝑟𝑖𝑔ℎ𝑡 + 𝑥𝑙𝑒𝑓𝑡
𝑑𝑦 → 𝑥𝑐 =
2
Y-center Equation
𝑦𝑢𝑝𝑝𝑒𝑟 + 𝑦𝑙𝑜𝑤𝑒𝑟
𝑑𝑥 → 𝑦𝑐 =
2
𝑑𝑦 → 𝑦𝑐 = 𝑦
Area Revolved at x=h

2𝜋 ∫ 𝐴(𝑥𝑐 − ℎ)

Area Revolved at y=k

2𝜋 ∫ 𝐴(𝑦𝑐 − 𝑘)

Centroid

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 𝐴 = ∫ 𝐴𝑥𝑐

𝑦𝑐𝑒𝑛𝑡𝑒𝑟 𝐴 = ∫ 𝐴𝑦𝑐

Moment of Inertia

𝐼𝑥 = ∫ 𝐴𝑥 2 𝑑𝑥

𝐼𝑦 = ∫ 𝐴𝑦 2 𝑑𝑦
arcsinh x = ln [x ± √1 − x 2 ]
Complex Numbers: Rectangular, Polar, Exponential Form
arccosh x = ln [x ± √x 2 − 1]
j53.13° j0.9273
3 + j4 = 5∠53.13° = 5e = 5e
1 1+x
Exponent of Complex Number arctanh x = ln [ ]
2 1−x
(z∠θ)n = z n ∠nθ

Roots of Complex Number Euler’s Notation


1 1 θ + 360k 1 ejθ − e−jθ
(z∠θ)n = z n ∠ ; k is 0 → (n − 1) sin θ = sinh jθ =
n j j2

ejθ + e−jθ
cos θ = cosh jθ =
Logarithmic Functions of Complex Number 2

log(zejθ ) = log z + jθr log e 1 1 ejθ − e−jθ


tan θ = tanh jθ = ( jθ )
j j e + e−jθ
ln(zejθ ) = ln z + jθr

π j π −π
Trigonometric Functions of Complex Numbers jj = e− 2 , jj = e 2
2
sin jx = j sinh x ↔ sinh jx = j sin x
cos jx = cosh x ↔ cosh jx = cos x Division of Matrices

tan jx = j tanh x ↔ tanh jx = j tan x [A] adj [B T ]


= [A] × [B]−1 = [A] ×
[B] |B|
ex: sin(x + jy) = sin x r cosh y + j cos x r sinh y

Laplace Transforms
Inverse Trigonometric/Hyperbolic Functions of Complex Numbers
f(t) → F(s)
arcsin x = −j ln [jx ± √1 − x 2 ]
C
C →
arccos x = −j ln [x ± √x 2 − 1] s
1
1 1 + jx eat →
arctan x = − j ln [ ] s−a
2 1 − jx
n!
tn →
s n+1
a
sin at →
s2 + a2
s
cos at →
s + a2
2

a
sinh at →
s 2 − a2
s
cosh at →
s − a2
2

First Shift Theorem

ℒ {eat f(t)} = F(s − a)


Second Shift Theorem
dn
ℒ {t n f(t)} = (−1)n {F(s)} = (−1)n F n (s)
ds n
Third Shift Theorem

f(t)
ℒ { } = ∫ F(0)ds
t 0=s

Poles and Zeroes


s+2
ex: F(s) =
(s + 5)(s − 1)
poles = −5, 1
zeroes = −2

You might also like