Formulae Sheet Fundamental Constants: R 0.08314 DM Bar K Mol R 0.08206 DM Atm K Mol R 8.314 J K Mol
Formulae Sheet Fundamental Constants: R 0.08314 DM Bar K Mol R 0.08206 DM Atm K Mol R 8.314 J K Mol
Formulae Sheet Fundamental Constants: R 0.08314 DM Bar K Mol R 0.08206 DM Atm K Mol R 8.314 J K Mol
Fundamental constants
R = 0.08314 dm3 bar K-1 mol-1; R = 0.08206 dm3 atm K-1 mol-1; R = 8.314 J K-1 mol-1
Boltzmann constant kB 1.381 x 10–23 J K–1 Avogadro constant NA 6.022 x 1023 mol–1
Gas Laws
Density of a gas: ρ = M × P/ RT
n1
Partial pressure P1 = x1 . Ptotal Mole fraction x1 =
n total
Pi M g
Barometric distribution law: ln i h
Pi ,0 RT
Molar kinetic energy : 3
E RT
2
Molecular Speed
2 RT 8 RT
Most probable speed u* Mean speed u
M M
3RT
Root mean square speed u rms
M
1 1
rate of effusion rate of diffusion
M M
PA PAN A
rate of effusion (molecules/s)
2mk BT 1/ 2
2MRT 1 / 2
u 1
Molecular collision rate: Zmol 2[X]ud 2 mean free path: Z
mol 2[X ]d 2
i
Equation of State
2
nRT n RT a
van der Waals equation of state P a P 2
V nb V Vm b Vm
a 8a
Critical constants Vc 3b Pc Tc
27 b 2 27Rb
Reduced variables P Vm T
Pr Vr Tr
Pc Vc Tc
0 Vm PVm
Boyle temperature pVm RTB (1 ...) Compression factor Z
Vm Vmo RT
pVm RTB
Work
Vf
Reversible isothermal expansion dV V
w nRT nRT ln f
Vi
V Vi
Heat capacities
U
Heat capacity at constant volume Cv qv = CvΔT
T V
C p C v nR C p, m C v ,m R
Tf Tf
U(Tf , Vf ) U(Ti , Vi ) U C v dT n C v , m dT
Ti Ti
ii
Debye extrapolation: Cp = aT3
Enthalpy
Enthalpy H = U + PV ΔH = qp = CpΔT
T2
Temperature dependence of reaction enthalpy r H o (T2 ) r H o (T1 ) C
o
r p dT
T1
where r C op vC
products
o
p,m vC
reac tan ts
o
p,m
1
Adiabatic changes Tf Vf
Pi Vi Pf Vf where C p,m /C v, m
Ti Vi
Calorimetry q = c x mass x DT
Internal pressure U
T
V T
1 V
T
Expansion coefficient 1 V Isothermal compressibility V P T
V T P
2 TV
C P C V
kT
mT = -CPm
dH C p dP C p dT
dU T dV C V dT
Entropy
dq rev
S = k ln W dS
T
iii
Second law of thermodynamics Suniverse = Ssystem + Ssurroundings > 0
Pf T
For a change PiTi → PfTf, ΔS nR ln nC P,m ln f
Pi Ti
iv
Efficiency
Tcold q
Maximum performance factor for refrigerator =
Thot Tcold w
Helmholtz energy A = U – TS
Gibbs energy
G = H – TS
r G v f G o v f G o
products reac tan ts
Pf P
nRT f
dP P
For ideal gases, G dP nRT nRT ln f
Pi
P Pi
P Pi
G
Chemical potential i
ni T , P , n j ( j i )
r G r G o RT ln Q Δr G o RT ln K Po
v
K p K c (RT )
K2 Δr H o 1 1
van’t Hoff equation ln
K1 R T2 T1
Rate laws
1 1 [ B ] /[ B ]o
First order : [ A]t [ A]o e
kt
Second order: kt ln ([ B] o [ A]o )kt
[ A] [ A]o [ A] /[ A]o
Half-life
ln 2 0.693 1 [ A]o
First-order: t1/ 2 Second-order: t1 / 2 Zero-order: t1/ 2
k k k[ A]o 2k
Arrhenius equation: Ea RT
k Ae
Enzyme kinetics: k 2 [ E ]o 1 1 K 1
v M
1 K M /[ S ] v vmax Vmax [S ]
dP ΔS m ΔH m Tf
Clapeyron equation: P ln
dT ΔVm Vm Ti
Clausius-Clapeyron equation:
Pf H vap 1 1
ln
Pi R T f Ti
Colligative properties:
vi