Emittance R Emittance R Config. Factor R
Emittance R Emittance R Config. Factor R
Emittance R Emittance R Config. Factor R
1458. What surface area must be provided by the filament of a 100-W evacuated light globe
where T =2 482 oC and Ɛ = 0.38 for the filament? Assume the ambient temperature to be 25.6 oC.
Solution:
Case 2: F12 = 1
ω1 ω2
emittance R config. factor R emittance R
1−ε 1 1 1−ε 2
A1ε 1
A 1 F 12 A1 ε 2
1−ε 1 1 1−ε 2
∴ R t= + +
A 1 ε 1 A1 F 12 A2 ε 2
1−ε 2
Since A2 is large, then the term ≈ 0. Hence,
A2 ε 2
1−ε 1 1
Rt = +
A1 ε 1 A 1( 1)
1−ε 1 + ε 1
¿
A 1 ε1
1
Rt =
A 1 ε1
And so,
σ ( T 14 −T 24 )
q 12=
1
A1 ε 1
q 12=A 1 ε 1 σ ( T 14 −T 24 )
100 W
A1=
W
(
( 0.38 ) 5.67 x 10−8 2
m −K 4 )
[ ( 2 701 )4−( 298.6 )4 ] K 4
( 100 )2 cm2
A1=8.722 x 10−5 m2 x
1 m2
A1=0.872cm 2
Required: q12 = ?
2
Solution:
Case 7: F12 in Fig 19/12
W
R1 = L/D = 3/0.6 = 5
R2 = W/D = 3/0.5 = 5
F12 = 0.68
1−ε 1 1 1−ε 2
∴ R t= + +
A 1 ε 1 A1 F 12 A2 ε 2
1−0.736 1 1−0.736
¿ + +
( 3 m ) ( 0.736 ) ( 3 m ) ( 0.68 ) ( 3 m )2 ( 0.736 )
2 2
Rt =0.243 11/m 2
σ ( T 14 −T 24 )
q 12=
Rt
W
5.67 x 10−8 2
4
[ ( 368 )4−( 311 )4 ] K 4
= m −K
0.243 11/m2
q 12=2095.5 W
1−ε 1 1 1−ε 2
∴ R t= + +
A 1 ε 1 A1 F 12 A2 ε 2
1−0.76 1 1−0.64
¿ + +
π π π
( 0.30 m )2 ( 0.76 ) ( 0.30 m)2 ( 0.51 ) ( 0.30 m )2 ( 0.64 )
4 4 4
Rt =40.164 68/m 2
σ ( T 14 −T 24 )
q 12=
Rt
W
5.67 x 10−8 2 4
[ ( 1 313 )4 −( 325 )4 ] K 4
m −K
¿
40.164 68/m2
q 12=4 180 W
Solution:
Rt =2.549 99/m 2
σ ( T 14 −T 24 )
q 12=
Rt
W
5.67 x 10−8 2 4
[ ( 366 ) 4−( 300 )4 ] K 4
m −K
q 12=
2.549 99/m2
q 12=218.9W
Required:
q12 = ?
Solution:
D =3 m
Rt =11.808 57 /m 2
σ ( T 14 −T 24 )
q 12=
Rt
W
5.67 x 10−8 2 4
[ ( 343 )4 −( 297 )4 ] K 4
m −K
q 12=
11.808 57 /m2
q 12=29W