Nothing Special   »   [go: up one dir, main page]

Toe Wall - 4m PDF

Download as pdf or txt
Download as pdf or txt
You are on page 1of 13

DESIGN OF RETAINING WALL

For Height of 4.000m

BASIC DATA
Formation Level = 4.000 m
Founding Level = 0.000 m 1.45
Front Ground Level = 2.000 m 0.2 4.000
Highest Flood Level = 2.000 m
0.00
WALL DIMENSIONS
Width of Footing = 4.50 m
Width of Toe = 1.40 m
Width of Heel = 2.50 m
Width of Stem at top = 0.20 m
Width of Stem at bottom = 0.60 m
Height of straight portion of
= 0.00 m
stem 4.00
Depth of Toe at junction = 0.60 m
Depth of Heel at junction = 0.60 m
Min. Heel/Toe depth = 0.30 m

SOIL PARAMETERS 2.000


Unit weight of Soil = 2.00 t/m3
Submerged weight of soil = 1.00 t/m3
f = 30 deg. 1.40 2.50
Inclination of backfill "b" = 26.57 deg. 0.60
d = 20 deg.
a = 90.0 deg. 0.3 0.60 0.60
0.000
For Stem 4.50
Ka (horz.) = 0.493
Ka (Vert.) = 0.179

For Stability
Ka (horz.) = 0.493
Ka (Vert.) = 0.179

Foundation on Soil = Fissured Rock


Coefficient of interface friction
= 0.700
'm' = tan f
Live load Surcharge = 0.000 m
2
Net safe Bearing Capacity = 25 t/m
2
Gross safe Bearing Capacity = 29 t/m
Vertical Component of EP to
= Y
be considered

MATERIAL PROPERTIES RESULTS


Grade of Concrete = M30 Normal Case
2
Grade of Steel = Fe500 smax = 11.6 t/m OK
3 2
Density of concrete = 2.500 t/m smin = 5.5 t/m OK
Elastic Modulus of concrete = 3.10E+06 t/m2 F.O.S = 1.56 OK
Elastic Modulus of steel = 2.00E+07 t/m3 F.O.R = 3.32 OK
Yield strength of concrete = 435 Mpa
Modular ratio = 6.45
fctm = 2.50 Mpa
Permissible stress in conc. = 13.40 Mpa
Permissible stress in steel = 300 Mpa
Permissible crack width = 0.3
Cover in stem on outer face = 50 mm
Cover in stem on earth face = 75 mm
Cover in footing = 75 mm
Minimum % of steel = 0.13 As,min=0.26fctm/fyk *bd but not less than 0.13%
STABILITY CHECK

9A

13 Kah1 = 0.493 7
14

8
9

Kah2 = 0.493 5
15
16

17
6
12

11 3 2 4 10
1

VERTICAL DEAD LOADS

Load No. Factor Depth Width Density Load CG @Toe Moment


Remarks
(m) (m) (t/m3) (t) (m) (t-m)
1 1.0 0.30 4.50 2.50 3.38 2.25 7.59
2 1.0 0.30 0.60 2.50 0.45 1.70 0.77
3 0.5 0.30 1.40 2.50 0.53 0.93 0.49
4 0.5 0.30 2.50 2.50 0.94 2.83 2.66
5 1.0 3.40 0.20 2.50 1.70 1.50 2.55
6 0.5 3.40 0.40 2.50 1.70 1.73 2.95
7 0.0 0.00 0.00 2.00 0.00 1.60 0.00
8 0.0 3.40 0.00 2.00 0.00 1.60 0.00
9 1.0 3.40 2.50 2.00 17.00 3.25 55.25
9A 0.5 1.45 2.50 2.00 3.63 3.27 11.84
10 0.5 0.30 2.50 2.00 0.75 3.67 2.75
11 0.5 0.30 1.40 2.00 0.42 0.47 0.20
12 1.0 1.40 1.40 2.00 3.92 0.70 2.74
13 1.0 0.10 0.30 2.50 0.08 1.50 0.11
Total 34.48 t 89.90 t-m

VERTICAL COMPONENT OF EARTH PRESSURE &LLS

1 5.45 1 2 0.00 4.50 0.00


0.5 5.45 1 2 5.33 4.50 23.97
Total 5.33 t 23.97 t-m

EARTH PRESSURE & LIVE LOAD SURCHARGE

Load No. Factor Depth Width Density Load CG @Toe Moment


(m) (m) (t/m3) (t) (m) (t-m)
15 1.0 5.45 1.00 2.00 0.00 2.73 0.00
17 0.5 5.45 1.00 2.00 14.64 2.29 33.52

Total 14.64 t 33.52 t-m


NORMAL CASE

Factor of safety against overturning = 113.87 = 3.40 OK


33.52

Factor of safety against sliding = 0.7 x 39.80 = 1.90 OK


14.64
CG from Toe = ( 89.90+23.97-33.52 ) = 2.02 m
39.80

Eccentricity = ( 2.25 - 2.02) = 0.23 m

Base Pressure Distribution

Pmax/min = W/b x (1+-6e/B)

Pressure at toe end = (34.48+5.33/4.5x(1+6x0.23/4.5) ) = 11.56 t/m2 OK


Pressure at junction of toe and stem = 9.87 t/m2
Pressure at junction of heel and stem = 9.15 t/m2
Pressure at heel end = (34.48+5.33/4.5x(1-6x0.23/4.5) ) = 6.13 t/m2 OK
STABILITY CHECK

9A

13 Kah1 = 0.493 7
14

8
9

Kah2 = 0.493 5
15
16

17
12 6

11 3 2 4 10
1

VERTICAL DEAD LOADS

Load No. Factor Depth Width Density Load CG @Toe Moment


(m) (m) (t/m3) (t) (m) (t-m)
1 1.0 0.30 4.50 2.50 3.38 2.25 7.59
2 1.0 0.30 0.60 2.50 0.45 1.70 0.77
3 0.5 0.30 1.40 2.50 0.53 0.93 0.49
4 0.5 0.30 2.50 2.50 0.94 2.83 2.66
5 1.0 3.40 0.20 2.50 1.70 1.50 2.55
6 0.5 3.40 0.40 2.50 1.70 1.73 2.95
7 0.0 0.00 0.00 2.00 0.00 1.60 0.00
8 0.0 3.40 0.00 2.00 0.00 1.60 0.00
9 1.0 3.40 2.50 2.00 17.00 3.25 55.25
9A 0.5 1.45 2.50 2.00 3.63 3.27 11.84
10 0.5 0.30 2.50 2.00 0.75 3.67 2.75
11 0.5 0.30 1.40 2.00 0.42 0.47 0.20
12 1.0 1.40 1.40 2.00 3.92 0.70 2.74
13 1.0 0.10 0.30 2.50 0.08 1.50 0.11
Water 1.0 0.00 1.40 1.00 0.00 0.70 0.00
Buoyancy -1.0 2.00 4.50 1.00 -9.00 2.25 -20.25
Total 25.48 t 69.65 t-m

VERTICAL COMPONENT OF EARTH PRESSURE

Factor Depth Width Density Pressure Load CG @Toe Moment


(m) (m) (t/m3) (t/m2) (t) (m) (t-m)
1 3.45 1 2 0.00 0.00 4.50 0.00 LLS
1 2.00 1 2 0.00 0.00 4.50 0.00 LLS
0.5 3.45 1 2 1.24 2.13 4.50 9.61 EP
1 2.00 1 1 0.36 2.48 4.50 11.14 EP
0.5 2.00 1 0.36 0.36 4.50 1.61 EP
Total 4.97 t 22.36 t-m

EARTH PRESSURE & LIVE LOAD SURCHARGE

Factor Depth Width Density Pressure Load CG @Toe Moment


(m) (m) (t/m3) (t/m2) (t) (m) (t-m)
1 3.45 1.00 2.00 0.00 0.00 3.73 0.00 LLS
1 2.00 1.00 2.00 0.00 0.00 1.00 0.00 LLS
0.5 3.45 1.00 2.00 3.40 5.87 3.45 20.24 EP
1.0 2.00 1.00 1.00 0.99 6.80 1.00 6.80 EP
0.5 2.00 - - 0.99 0.99 0.67 0.66 EP
Total 13.657 t 27.70 t-m
NORMAL CASE

Factor of safety against overturning = 92.00 = 3.32 OK


27.70

Factor of safety against sliding = 0.7 x 30.45 = 1.56 OK


13.66
CG from Toe = ( 69.65+22.36-27.70 ) = 2.11 m
30.45

Eccentricity = ( 2.25 - 2.11) = 0.14 m

Base Pressure Distribution

Pmax/min = W/b x (1+-6e/B)

Pressure at toe end = (25.48+4.97/4.5x(1+6x0.14/4.5) ) = 8.03 t/m2 OK


Pressure at junction of toe and stem = 7.24 t/m2
Pressure at junction of heel and stem = 6.91 t/m2
Pressure at heel end = (25.48+4.97/4.5x(1-6x0.14/4.5) ) = 5.50 t/m2 OK
DESIGN FOR SLS
Quasi Permanent Combination for Crack width Check-QPC

Load factor of Dead Load = 1.00


Load factor of Earth Pressure = 1.00
Load factor of Live load surcharge = 0.00

Rare Combination for Stress Check-RC

Load factor of Dead Load = 1.00


Load factor of Earth Pressure = 1.00
Load factor of Live load surcharge = 0.80

Design of Stem Wall

Stem wall will be checked at two following location


1) Section where straight portion end
2) Section at bottom of stem wall i.e. at top of footing
As weep holes will be provided in stem, retaining wall design is goverened by Dry case only.

Section-1

Bending moment due to Dead load = 0.00 t-m


Bending moment due to Earth Pressure = 0.04 t-m
Bending moment due to Live load surcharge = 0.00 t-m

Section-2

Bending moment due to Dead load = 0.00 t-m


Bending moment due to Earth Pressure = 8.14 t-m
Bending moment due to Live load surcharge = 0.00 t-m

Design Moment (t-m)

Ast Provided
Section Combination Design Moment
Dia Spacing Dia Spacing
QPC 0.04
1 12 220 0 220
RC 0.04
QPC 8.14
2 12 220 12 220
RC 8.14

Stress Check -RC

Design Depth* Effective Neutral Lever Stress


Design Modular Stress
Section Bending Cover of Depth axis arm in
width ratio in steel
Mark as Moment section Provided depth factor concr.
t-m mm m m m ae m j Mpa Mpa
1 0.0 75 0.529 0.448 1.000 6.45 0.051 0.962 2.0 0.04 OK
2 8.1 75 0.600 0.519 1.000 6.45 0.077 0.951 160.4 4.31 OK

Check for Crack Width-QPC (as per clause 12.3.4 of IRC 112-2011)

Crack width Wk = Sr,max (esm-ecm)


Maximum crack spacing = Sr,max = 3.4c+(0.425k 1k2f)/rp,eff if(s <5(c+f/2))
= 1.3(h-x) if(s >5(c+f/2))
(esm-ecm) = (ssc-(kt*fct,eff/rp,eff*(1+ae*rp,eff)))/Es
>=0.6ssc/Es
rp,eff = As/Ac,eff
Ac,eff = hceff*b
hceff = Lesser of 2.5(h-d)
(h-x)/3
h/2
Coefficient related to bonded properties of reinforcement "k1" = 0.80 for deformed bars
Coefficient related to distribution of strain "k2" = 0.500 for bending
Constant related to duration of load "kt" = 0.500
Design Ast Crack
Stress in
Section Bending Spacing s/(c+f/2 hceff Provide Sr,max (esm-ecm) width Check
rp,eff steel
Mark as Moment ) d Wk
t-m mm mm cm2 mm Mpa mm
1 0.0 220 2.93 159 5.1 0.003 887 2.0 6.1E-06 0.005 OK
2 8.1 110 1.47 174 10.3 0.006 601 160.4 4.8E-04 0.289 OK

Distribution Reinforcement

As per clause 16.6.1 of IRC:112, 20% of main steel shall be provided as secondary reinforcement

2
Area of main steel = 10.3 cm /m
2
Area of distribution steel required = 2.1 cm /m
2
Area of distribution steel provided = 2.6 cm /m OK
10 dia @ 300 mmc/c

Reinforcement in compression face

2
Area of steel required = 3.6 cm /m
2
Area of steel provided = 5.1 cm /m OK
12 dia @ 220 mmc/c

Design of Footing

Footing will be checked both for HFL as well as LWL case

LWL Case QPC RC


Vertical #Moment Factored Factored Factored Factored
Load LF LF
Load @ Toe Load Moment Load Moment
Dead Load 34.48 89.90 1.0 34.5 89.9 1.0 34.5 89.9
Earth Pressure 5.33 -9.55 1.0 5.3 -9.5 1.0 5.3 -9.5
Live load surcharge 0.00 0.00 0.0 0.0 0.0 0.8 0.0 0.0
Total 39.8 80.4 39.8 80.4
# Restoring-Overturning Moment
QPC RC
CG from Toe = 2.019 2.019 m
Eccentricity = 0.231 0.231 m

Base Pressure Distribution

Pmax/min = W/b x (1+-6e/B)


deff of toe = 0.519 m
deff of heel = 0.517 m QPC RC
Pressure at toe end = = 11.57 11.57 t/m2
Pressure at deff. from junction on toe slab = 10.50 10.51 t/m2
Pressure at junction of toe and stem = 9.87 9.88 t/m2
Pressure at junction of heel and stem = 9.15 9.15 t/m2
Pressure at deff. from junction on heel slab = 8.52 8.52 t/m2
Pressure at heel end = 6.12 6.12 t/m2

HFL Case QPC RC


Vertical Moment@ Factored Factored Factored Factored
Load LF LF
Load Toe Load Moment Load Moment
Dead Load 25.48 69.65 1.0 25.5 69.6 1.0 25.5 69.6
Earth Pressure 4.97 -5.34 1.0 5.0 -5.3 1.0 5.0 -5.3
Live load surcharge 0.00 0.00 0.0 0.0 0.0 0.8 0.0 0.0
Total 30.4 64.3 30.4 64.3

QPC RC
CG from Toe = 2.112 2.112 m
Eccentricity = 0.138 0.138 m
Base Pressure Distribution

Pmax/min = W/b x (1+-6e/B)


deff of toe = 0.519 m
deff of heel = 0.517 m QPC RC
Pressure at toe end = = 8.01 8.01 t/m2
Pressure at deff. from junction on toe slab = 7.52 7.52 t/m2
Pressure at junction of toe and stem = 7.24 7.24 t/m2
Pressure at junction of heel and stem = 6.90 6.90 t/m2
Pressure at deff. from junction on heel slab = 6.62 6.62 t/m2
Pressure at heel end = 5.52 5.52 t/m2

QPC RC
LWL HFL LWL HFL
Case Case Case Case
Net Pressure at toe end 7.42 6.31 7.42 6.31 t/m2
Net Pressure at deff.from junction on toe slab 6.26 6.64 6.26 6.64 t/m2
Net Pressure at junction of toe and stem 5.57 6.84 5.58 6.84 t/m2
Net Pressure at junction of heel and stem 0.85 0.60 0.85 0.60 t/m2
Net Pressure at deff.from junction on heel slab -0.35 -0.25 -0.35 -0.25 t/m2
Net Pressure at heel end -4.93 -3.53 -4.93 -3.53 t/m2

Stress Check -RC

Ast Provided
Section
Dia Spacing Dia Spacing
Toe 12 220 10 220
Heel 16 220 16 220

Design of Toe

Design Depth* Effective Neutral Lever Stress


Design Modular Stress
Bending Cover of Depth axis arm in
Case width ratio in steel
Moment section Provided depth factor concr.
t-m mm m m m ae m j Mpa Mpa
LWL 6.7 75 0.600 0.519 1.000 6.45 0.071 0.954 154.6 3.80 OK
HFL 6.4 75 0.600 0.519 1.000 6.45 0.071 0.954 147.3 3.62 OK

Design of Heel

Design Depth* Effective Neutral Lever Stress


Design Modular Stress
Bending Cover of Depth axis arm in
Case width ratio in steel
Moment section Provided depth factor concr.
t-m mm m m m ae m j Mpa Mpa
LWL 22.7 75 0.600 0.517 1.000 6.45 0.099 0.936 256.8 9.46 OK
HFL 19.1 75 0.600 0.517 1.000 6.45 0.099 0.936 216.4 7.97 OK

Check for Crack Width-QPC (as per clause 12.3.4 of IRC 112-2011)

Design of Toe

Design Ast Crack


Stress in
Bending Spacing s/(c+f/2 hceff Provide Sr,max (esm-ecm) width Check
Case rp,eff steel
Moment ) d Wk
t-m mm mm cm2 mm Mpa mm
LWL 6.7 110 1.36 176 8.7 0.005 255 154.5 4.6E-04 0.118 OK
HFL 6.4 110 1.36 176 8.7 0.005 255 147.3 4.4E-04 0.113 OK

Design of Heel

Design Ast Crack


Stress in
Bending Spacing s/(c+f/2 hceff Provide Sr,max (esm-ecm) width Check
Case rp,eff steel
Moment ) d Wk
t-m mm mm cm2 mm Mpa mm
LWL 20.0 110 1.33 167 18.3 0.011 255 226.6 6.8E-04 0.173 OK
HFL 19.1 110 1.33 167 18.3 0.011 255 216.4 6.5E-04 0.166 OK
Distribution Reinforcement

As per clause 16.6.1 of IRC:112, 20% of main steel shall be provided as secondary reinforcement
Heel
2
Area of main steel = 18.3 cm /m
2
Area of distribution steel required = 3.7 cm /m
2
Area of distribution steel provided = 3.9 cm /m OK
10 dia @ 200 mmc/c
TOE
2
Area of main steel = 8.7 cm /m
2
Area of distribution steel required = 1.7 cm /m
2
Area of distribution steel provided = 3.9 cm /m OK
10 dia @ 200 mmc/c
DESIGN FOR SLS
Load Combination for ULS
ULS-1 ULS-2 ULS-3 ULS-4
Load factor of Dead Load 1.35 1.35 1.00 1.00
Load factor of Earth Pressure 1.50 1.00 1.50 1.00
Load factor of Live load surcharge 1.20 1.20 1.20 1.20

Design of Stem Wall

Stem wall will be checked at two following location


1) Section where straight portion end
2) Section at bottom of stem wall i.e. at top of footing
As weep holes will be provided in stem, retaining wall design is goverened by Dry case only.

Section-1

Bending moment due to Dead load = 0.00 t-m


Bending moment due to Earth Pressure = 0.00 t-m
Bending moment due to Live load surcharge = 0.00 t-m

Section-2

Bending moment due to Dead load = 0.00 t-m


Bending moment due to Earth Pressure = 8.14 t-m
Bending moment due to Live load surcharge = 0.00 t-m

Design Moment (t-m)

Ast Provided
Section Combination Design Moment
Dia Spacing Dia Spacing
ULS-1 0.00
ULS-2 0.00
1 12 220 0 220
ULS-3 0.00
ULS-4 0.00
ULS-1 12.21
ULS-2 8.14
2 12 220 12 220
ULS-3 12.21
ULS-4 8.14

Check for Section Capacity

Ultimate Compressive strain in concrete εcu3 = 0.0035


Strain in steel =fyk/Es εs = 0.0042
Depth factor for compression block λ = 0.800
Strength factor for compression block η = 1.000
Ultimate capacity of Concrete Mu = {ηkλ(1-kλ/2)fcd}*b*d2
Neutral axis depth factor k = εcu3/(εcu3 + εs)
Actual Neutral Axis depth x = fyd*Ast/(ληfcdb)
Ultimate capacity of steel Mu = fyd*Ast*(d-lx/2)

Actual
Neutral
Design Depth Effective Neutral Mu
Design axis Mu Mu
Section Bending of* Depth Axis of
width depth Concrete steel Check
Mark as Moment section Provided depth section
factor
"x"
t-m m m m k m t-m t-m t-m
1 0.00 0.529 0.448 1.000 0.456 0.021 78.8 9.6 9.65 OK
2 12.2 0.600 0.519 1.000 0.456 0.042 105.6 22.0 22.03 OK
Check for Shear As per Clause 10.3.2 of IRC 112:2011

Design Shear Resisitance VRd,c = (0.12K(80r1.fck)0.33+0.15scp)bw.d


subject to minimum of = (vmin+0.15scp)bw.d
K = 1+(200/d)0.5 < 2
r1 = Asl/bw.d < 0.02
vmin = 0.031K3/2fck1/2
Design shear force VEd (at section d) = 18.61 t (factored)
Moment corrosponding to shear = 12.21 t (factored)
Shear due to Moment Mtand/d (Cl. A4.6.1 of IRC112) = -2.77 t
Net Design shear = 15.84 t
d = 0.52 m
bw = 1.00 m
K = 1.621
vmin = 0.350
Factored axial load = 0.000 t Not considered
scp = 0.000
r1 = 0.0020
VRd,c = 18.54 t OK

Design of Footing

Footing will be checked both for HFL as well as LWL case


LWL Case ULS-1 ULS-2
Vertical #Moment Factored Factored Factored Factored
Load LF LF
Load @ Toe Load Moment Load Moment
Dead Load 34.48 89.90 1.35 46.5 121.4 1.35 46.5 121.4
Earth Pressure 5.33 -9.55 1.50 8.0 -14.3 1.00 5.3 -9.5
Live load surcharge 0.00 0.00 1.20 0.0 0.0 1.20 0.0 0.0
Total 54.5 107.0 51.9 111.8

ULS-3 ULS-4
Load Vertical #Moment LF Factored Factored LF Factored Factored
Dead Load 34.48 89.90 1.00 34.5 89.9 1.00 34.5 89.9
Earth Pressure 5.33 -9.55 1.50 8.0 -14.3 1.00 5.3 -9.5
Live load surcharge 0.00 0.00 1.20 0.0 0.0 1.20 0.0 0.0
Total 42.5 75.6 39.8 80.4
# Restoring-Overturning Moment

ULS-1 ULS-2 ULS-3 ULS-4


CG from Toe 1.963 2.156 1.780 2.019 m
Eccentricity 0.287 0.094 0.470 0.231 m

Base Pressure Distribution

Pmax/min = W/b x (1+-6e/B)


deff of toe = 0.519 m
deff of heel = 0.517 m ULS-1 ULS-2 ULS-3 ULS-4
Pressure at toe end = = 16.76 12.98 15.36 11.57 t/m2
Pressure at deff. from junction on toe slab = 14.94 12.41 13.04 10.51 t/m2
Pressure at junction of toe and stem = 13.87 12.08 11.67 9.88 t/m2
Pressure at junction of heel and stem = 12.63 11.69 10.10 9.15 t/m2
Pressure at deff. from junction on heel slab = 11.57 11.35 8.74 8.52 t/m2
Pressure at heel end = 7.48 10.08 3.52 6.12 t/m2

HFL Case ULS-1 ULS-2


Vertical Moment@ Factored Factored Factored Factored
Load LF LF
Load Toe Load Moment Load Moment
Dead Load 25.48 69.65 1.35 34.4 94.0 1.35 34.4 94.0
Earth Pressure 4.97 -5.34 1.50 7.5 -8.0 1.00 5.0 -5.3
Live load surcharge 0.00 0.00 1.20 0.0 0.0 1.20 0.0 0.0
Total 41.8 86.0 39.4 88.7

ULS-3 ULS-4
Load Vertical Moment@ LF Factored Factored LF Factored Factored
Dead Load 25.48 69.65 1.00 25.5 69.6 1.00 25.5 69.6
Earth Pressure 4.97 -5.34 1.50 7.5 -8.0 1.00 5.0 -5.3
Live load surcharge 0.00 0.00 1.20 0.0 0.0 1.20 0.0 0.0
Total 32.9 61.6 30.4 64.3

ULS-1 ULS-2 ULS-3 ULS-4


CG from Toe 2.055 2.253 1.872 2.112 m
Eccentricity 0.195 0.000 0.378 0.138 m
Base Pressure Distribution (Unit:t/m2)

Pmax/min = W/b x (1+-6e/B)


deff of toe = 0.519 m
deff of heel = 0.517 m ULS-1 ULS-2 ULS-3 ULS-4
Pressure at toe end = 11.72 8.75 11.01 8.01 t/m2
Pressure at deff. from junction on toe slab 10.77 8.75 9.56 7.52 t/m2
Pressure at junction of toe and stem 10.21 8.75 8.71 7.24 t/m2
Pressure at junction of heel and stem 9.57 8.75 7.73 6.90 t/m2
Pressure at deff. from junction on heel slab 9.01 8.75 6.88 6.62 t/m2
Pressure at heel end 6.88 8.75 3.63 5.52 t/m2

ULS-1 ULS-2 ULS-3 ULS-4


LWL HFL LWL HFL LWL HFL LWL HFL
Case Case Case Case Case Case Case Case
Net Pressure at toe end 12.61 10.02 8.83 7.05 11.21 9.31 7.42 6.31
Net Pressure at deff.from jn. on toe slab 10.70 9.89 8.17 7.87 8.79 8.68 6.26 6.64
Net Pressure at junction of toe and stem 9.57 9.81 7.78 8.35 7.37 8.31 5.58 6.84
Net Pressure at junction of heel and stem 4.33 3.27 3.39 2.45 1.80 1.43 0.85 1.43
Net Pressure at deff.from j. on heel slab 2.69 2.14 2.49 1.88 -0.13 0.01 -0.35 0.40
Net Pressure at heel end -3.57 -2.17 -0.97 -0.30 -7.53 -5.42 -4.93 -3.53

Bending Moment for Toe Bending Moment for Heel


Case
ULS-1 ULS-2 ULS-3 ULS-4 ULS-1 ULS-2 ULS-3 ULS-4
LWL 11.36 8.31 9.73 6.67 22.90 14.82 33.80 22.71
HFL 9.75 7.33 8.80 6.36 19.75 14.34 28.44 18.28

Shear Force at deff. for Toe Shear Force at face for Heel
Case
ULS-1 ULS-2 ULS-3 ULS-4 ULS-1 ULS-2 ULS-3 ULS-4
LWL 10.26 7.49 8.81 6.03 8.75 7.72 13.68 9.38
HFL 8.77 6.57 7.93 5.70 8.54 7.10 11.41 7.05

Bending Moment at deff. for Toe Bending Moment at face for Heel
Case
ULS-1 ULS-2 ULS-3 ULS-4 ULS-1 ULS-2 ULS-3 ULS-4
LWL 4.50 3.29 3.85 2.64 22.90 14.82 33.80 22.71
HFL 3.86 2.90 3.48 2.52 19.75 14.34 28.44 18.28

Ast Provided
Section
Dia Spacing Dia Spacing
Toe 12 220 10 220
Heel 16 220 16 220

Check for Section Capacity

Actual
Neutral
Design Depth Effective Neutral Mu
Design axis Mu Mu
Bending of* Depth Axis of
Design of width depth Concrete steel Check
Moment section Provided depth section
factor
"x"
t-m m m m k m t-m t-m t-m
Toe 11.36 0.600 0.519 1.000 0.456 0.035 105.6 18.8 18.76 OK
Heel 33.80 0.600 0.517 1.000 0.456 0.074 104.8 38.0 37.99 OK
Check for Shear As per Clause 10.3.2 of IRC 112:2011

Design Shear Resisitance VRd,c = (0.12K(80r1.fck)0.33+0.15scp)bw.d


subject to minimum of = (vmin+0.15scp)bw.d
K = 1+(200/d)0.5 < 2
r1 = Asl/bw.d < 0.02
vmin = 0.031K3/2fck1/2

Toe
Design shear force at deff. VEd = 10.26 t (factored)
Moment corrosponding to shear = 4.50 t (factored)
Shear due to Moment Mtand = -1.86 t
Net Design shear = 8.41 t
d = 0.52 m
bw = 1.00 m
K = 1.621
vmin = 0.350
Factored axial load = 0.000 t Not considered
scp = 0.000
r1 = 0.0017
VRd,c = 18.54 t OK

Heel
Design shear force at face of stem VEd = 13.68 t (factored)
Moment corrosponding to shear = 33.80 t (factored)
Shear due to Moment Mtand = -7.84 t
Net Design shear = 5.83 t
d = 0.52 m
bw = 1.00 m
K = 1.621
vmin = 0.350
Factored axial load = 0.000 t Not considered
scp = 0.000
r1 = 0.0035
VRd,c = 20.81 t OK

You might also like