Nothing Special   »   [go: up one dir, main page]

7+670 (1x10x5.8) R1

Download as pdf or txt
Download as pdf or txt
You are on page 1of 55

Design of RCC BOX Structures

DESIGN OF 1 CELL BOX BRIDGE


1 X 10 X 5.8 m
1.0 DESIGN DATA
1.1 GENERAL INFORMATION
This design is for Box Bridge

1.2 DIMENSION DETAILS


No of cells = 1.00 No.s
Skew Angle = 11.00 deg.
Effective Span = 10.70 m
Effective Span (Skew) = 10.90 m
Clear Span = 10.00 m
Clear Span ( Skew) = 10.19 m
Clear Height (at outer edge) = 5.80 m
Clear Height (at median location) = 5.80 m
Width of road at top = 10.50 m
Width of Box = 15.00 m
Width of Box ( skew) = 15.28 m
Wearing coat thickness = 0.065 m
Ht of fill (W.C / P.C.C / pavement layers) over the top slab = 0.000 m
Thickness of top slab = 0.650 m
Thickness of bottom slab = 0.750 m
Thickness of external vertical wall = 0.700 m
Size of haunch = 0.30 m
x 0.30 m
Width of Parapet Wall/ Crash Barrier = 0.45 m
Width of Footpath = 1.30 m
Distance of edge of parapet wall/Crash Barrier from edge of box = 0.50 m
Height of surcharge = 1.20 m
Safe Bearing Capacity of the soil = 120.00 KN/m2
Permissible Settlement = 10 mm = 10mm
Spring Constant (40*2.5*SBC) 12000 KN/m
Where 2.5 is the factor of safety for soil.

STC Pvt. Ltd. 1


Design of RCC BOX Structures

1.3 MATERIAL PROPERTIES


Density of concrete = 25.00 KN/m3
Density of soil = 20.00 KN/m3
Density of Submerged soil = 10.00 KN/m3
Density of wearing coat = 22.00 KN/m3
Angle of internal friction (in degree) = 30.00 deg
Coefficient of earth pressure at rest = 0.500

Coefficient of Active Earth Pressure


sin 2
(   )
Active earth presure Ka = 2
 sin(    ). sin(   i ) 
sin 2
 . sin(    ) 1  
 sin(    ). sin(   i ) 

Backfill Soil Parameter


Φ = 30.00 deg = 0.52 Rad
δ = 20.00 deg = 0.35 Rad
i = 0.00 deg = 0.00 Rad
α = 90.00 deg = 1.57 Rad

Coefficient of horizontal earth pressure Kah for straight = 0.279


face.

Coefficient of active earth pressure = 0.279

1.4 DESIGN PARAMETERS


Grade of Concrete = M 35
Grade of Reinforcement = Fe 500
Clear Cover for earth face structural component = 0.075 m
Clear Cover for inside face/ top slab structural component = 0.040 m
Clear Cover for bottom slab = 0.075 m

STC Pvt. Ltd. 2


Design of RCC BOX Structures

Dimensions Detail of RCC Box

wc =0.065 mm

Traffic Direction

0.65

10.00

0.7 0.7
5.80

300
0 0 15.0
300

0.75

11
11.40

STC Pvt. Ltd. 3


Design of RCC BOX Structures

2.0 LOAD CALCULATIONS FOR THE BOX STRUCTURE

2.1 DEAD LOAD


Self weight of the structure has been calculated directly in STAAD file by the comment "SELFWEIGHT -1".

2.2 SUPER IMPOSED DEAD LOAD


Wearing coat thickness = 0.065 m
2
Intensity of Loading due to surfacing = 1.430 kN/m
Ht of fill (Thickness of W.C / P.C.C / pavement layers)(Considering Avg. Ht. of fill) = 0m
Load (UDL) on top slab = = 1.43 kN/m
Wt of Parapet Wall/Crash Barrier per meter = 10.00 kN/m
Total UDL load due to S.I Dead Load = 11.43 kN/m

2.3 EARTH PRESSURE


Thickness of top slab = 0.650 m
Height of top haunch = 0.300 m
Clear height between top & bottom slab = 5.80 m
Height of bottom haunch = 0.300 m
Thickness of bottom slab = 0.750 m

Earth Pressure at Rest


Height from top Intensity of Earth pressure
2
(m) (KN/m )
0.390 0.390 0.5 x 20 x 0.390 = 3.900
0.325 0.715 0.5 x 20 x 0.715 = 7.150
0.300 1.015 0.5 x 20 x 1.015 = 10.150
5.200 6.215 0.5 x 20 x 6.215 = 62.150
0.300 6.515 0.5 x 20 x 6.515 = 65.150
0.375 6.890 0.5 x 20 x 6.890 = 68.900

Active Earth Pressure


Height from top Intensity of Earth pressure
2
(m) (KN/m )
0.390 0.390 0.279 x 20 x 0.390 = 2.177
0.325 0.715 0.279 x 20 x 0.715 = 3.990
0.300 1.015 0.279 x 20 x 1.015 = 5.664
5.200 6.215 0.279 x 20 x 6.215 = 34.680
0.300 6.515 0.279 x 20 x 6.515 = 36.354
0.375 6.890 0.279 x 20 x 6.890 = 38.447

Submerged Earth Pressure at Rest


Height from top Intensity of Earth pressure
(m) (KN/m2)
0.390 0.390 0.5 x 10 x 0.390 = 5.850
0.325 0.715 0.5 x 10 x 0.715 = 10.725
0.300 1.015 0.5 x 10 x 1.015 = 15.225
5.200 6.215 0.5 x 10 x 6.215 = 93.225
0.300 6.515 0.5 x 10 x 6.515 = 97.725
0.375 6.890 0.5 x 10 x 6.890 = 103.350

Submerged Active Earth Pressure


Height from top Intensity of Earth pressure
(m) (KN/m2)
0.390 0.390 0.279 x 10 x 0.390 = 4.99
0.325 0.715 0.279 x 10 x 0.715 = 9.15
0.300 1.015 0.279 x 10 x 1.015 = 12.98
5.200 6.215 0.279 x 10 x 6.215 = 79.49
0.300 6.515 0.279 x 10 x 6.515 = 83.33
0.375 6.890 0.279 x 10 x 6.890 = 88.12

STC Pvt. Ltd. 4


Design of RCC BOX Structures

2.4 LIVE LOAD SURCHARGE


Equivalent height = 1.20 m
2
Uniform Intensity of loading (Considering coefficient of active earth pressure)= 0.279 x 1.2 x 20 = 6.70 kN/m
2
Uniform Intensity of loading (Considering coefficient of earth pressure at rest)= 0.5 x 1.2 x 20 = 12.00 kN/m

2.5 BRAKING LOAD

Load for one lane 70R 0.2 * 460 = 92 KN


Load for one lane Class A 0.05 * 175 = 8.75 KN
Carriageway Live Load = 100.8 kN
Width of the box = 15.28 m
Braking Load = 1 x 100.75 / 15.28 = 6.59 kN

2.6 CALCULATING BRIDGE TEMPERATURE :


o
Maximum air shade temperature = 40 C
o
Minimum air shade temperature = 4 C
o
Bridge Temperature = 27 C

STC Pvt. Ltd. 5


Design of RCC BOX Structures

3.0 Effective width of tyres and load distribution for different vehicular loadings:

Effective span lo = 10.70 m


Total Width of Box culvert b = 15.00 m

Ht of fill (W.C / P.C.C / pavement layers) at edge = 0.065 m


Thickness of deck slab = 0.650 m

Width of Crash barrier / Kerb = 0.45 m


Dist. of edge of crash barrier/guard stone from edge of box = 0.45 m

Span / Wdith ratio b / lo = 15.00 / 10.70 = 1.40

As per Cl. B3.2 of IRC:112-2011(Page-278), for continous slab


For b / lo = 1.40 ; α = 2.80

3.1 Class 70R vehicle (Maximum Bogie Load) (Refer: Clause 204.1.3, Fig.1, IRC : 6-2014 )
3.1.1 Axle - " l " :

5t 5t 5t 5t 20 t 20 t
450 1480 450

410 40 410 1070 410 40 410


1220
2790

Transverse Longitudinal

Total Load = = 40.00 t


Impact factor = (Refer Cl.208.4 of IRC:6-2014) = 1.250

Minimum clear distance from C/B to the edge of the end wheel = 1.20 m
Distance between the axles in the direction of traffic = 1.22 m
C/C distance between end wheels in transverse direction = 2.38 m
410
Load on one tyre = = 5.00 t
Max. tyre pressure = (Refer Annex A of IRC:6-2014) = 5.273 Kg/cm2
Contact width of tyre = (Refer Annex A of IRC:6-2014) = 360 mm

Contact area = 5000 / 5.273 360 = 948.23 cm2


Breadth = 948.23 / 36 = 26.3 cm

Contact area = 360 x 263 mm

Contact width of tyre in a direction perpendicular to the span = 0.36 m


Wheel dimension perpendicular to span = 0.41 m
Dist. from outer edge of kerb to c.g of wheel = 0.45 + 1.2 + 0.41 / 2 = 1.86 m

Effective width, bef = α a (1 - a / lo) + b1 (Refer Cl. B3.2 of IRC:112-2011)

STC Pvt. Ltd. 6


Design of RCC BOX Structures

a = the distance of c.g of concentrated load from nearer support


= 10.70 / 2 - 1.22 / 2 = 4.740 m
b1 = 0.36 + 2 x 0.07 = 0.49 m
Effective width = 2.8 x 4.74 x (1 - 4.74 / 10.70) + 0.49 = 7.88 m
(Dispersion width crosses the deck slab) > 1.48 m
(Dispersion width of four wheels overlaps in trans direction)

Effective load in transverse direction = 20.00 t

Effective width for design = 8.177 m


(In transverse direction)

3.155 2.380
Edge of
Box 1.75 1.20 0.41 0.04 0.41 1.07 0.41 0.04 0.41

Dispersion along span direction = 0.263 + 2 x (0.07 + 0.65) = 1.693 m


(Refer Cl. B3.3 of IRC:112-2011) > 1.220 m

Dispersion width for design = (IF(1.69>1.22,(1.69 + 1.22),1.69)


(In longitudinal direction) = 2.913 m

Total load = 40.0 t


Dispersion area = 8.177 x 2.913 = 23.82 m2
Load per unit area = 40 / 23.82 = 1.68 t/m2

Load per unit area with I.F = 1.68 x 1.25 = 2.10 t/m2

3.1.2 Axle - " m ": (Refer: Clause 204.1.3, Fig.1, IRC : 6-2014 )

5t 5t 5t 5t 20 t 20 t
795 790 795

410 385 410 380 410 385 410


1220
2790

Transverse Longitudinal

Total Load = = 40.00 t


Impact factor = (Refer Cl.208.4 of IRC:6-2014) = 1.250

Min. clear distance from Crash Barrier to the edge of the end wheel = 1.20 m
Distance between the axles in the direction of traffic = 1.22 m
C/C distance between end wheels in transverse direction 410 = 2.38 m

Load on one tyre = 5.00 t


Max. tyre pressure = (Refer Annex A of IRC:6-2014) = 5.273 Kg/cm2
Contact width of tyre = (Refer Annex A of IRC:6-2014) 360 = 360 mm

STC Pvt. Ltd. 7


Design of RCC BOX Structures

Contact area = 5000 / 5.273 = 948.23 cm2


Breadth = 948.23 / 36 = 26.3 cm

Contact area = 360 x 263 mm

Contact width of tyre in a direction perpendicular to the span = 0.36 m


Wheel dimension perpendicular to span = 0.41 m
Distance from outer edge of kerb to c.g of wheel = 1.855 m

Effective width = α a (1 - a / lo) + b1 (Refer Cl. B3.2 of IRC:112-2011)

a = the distance of c.g of concentrated load from nearer support


= 10.70 / 2 - 1.22 / 2 = 4.740 m
b1 = 0.36 + 2 x 0.07 = 0.490 m

Effective width = 2.8 x 4.74 x (1 - 4.74 / 1.22) + 0.49


(Dispersion width crosses the deck slab) = 7.88 m
(Dispersion width of four wheels overlaps in trans direction) > 0.79 m

Effective load in transverse direction = 20.00 t

Effective width for design = 8.177 m


(In transverse direction)

3.155 2.380
Edge of
Box 1.75 1.20 0.41 0.39 0.41 0.38 0.41 0.39 0.41

Dispersion along span direction = 0.263 + 2 x (0.07 + 0.65) = 1.693 m


(Refer Cl. B3.3 of IRC:112-2011) > 1.220

Dispersion width for design = (IF(1.69>1.22,(1.69 + 1.22),1.69)


(In longitudinal direction) = 2.913 m

Total load = 40.0 t


Dispersion area = 8.177 x 2.913 = 23.820 m2
Load per unit area = 40 / 23.82 = 1.68 t/m2
Load per unit area with I.F = 1.68 x 1.25 = 2.10 t/m2

3.1.3 Axle - " n ": (Refer: Clause 204.1.3, Fig.1, IRC : 6-2014 )

2.5 t 2.5 t 2.5 t 2.5 t 2.5 t 2.5 t 2.5 t 2.5 t 20 t 20 t


280 480 280 480 280 480 280

230 230 230 230 230 230 230 230


50 250 50 250 50 250 50 1220
2790

STC Pvt. Ltd. 8


Design of RCC BOX Structures

Transverse Longitudinal

Total Load = 40.00 t


Impact factor = (Refer Cl.208.4 of IRC:6-2014) = 1.250

Minimum clear distance from Crash Barrier to the edge of the end wheel = 1.20 m
Distance between the axles in the direction of traffic = 1.22 m
c/c distance between end wheels in transverse direction = 2.56 m

Load on one tyre 230 = 2.50 t


Max. tyre pressure = (Refer Annex A of IRC:6-2014) = 5.273 Kg/cm2
Contact width of tyre = (Refer Annex A of IRC:6-2014) = 180 mm

Contact area = 2500 / 5.273 = 474.12 cm2


Breadth = 474.12 / 18 180 = 26.3 cm

Contact area = 180 x 263 mm

Contact width of tyre in a direction perpendicular to the span = 0.18 m


Wheel dimension perpendicular to span = 0.23 m
Distance from outer edge of kerb to c.g of wheel = 1.765 m

Effective width = α a (1 - a / lo) + b1 (Refer Cl. B3.2 of IRC:112-2011)

a = the distance of c.g of concentrated load from nearer support


= 10.70 / 2 - 1.22 / 2 = 4.740 m
b1 = 0.18 + 2 x 0.07 = 0.31 m

Effective width = 2.80 x 4.74 x (1 - 4.74 / 1.69) + 0.31 = 7.70 m


(Dispersion width crosses the deck slab) > 0.48 m
(Dispersion width of wheels overlaps in trans direction)

Effective load in trans direction = 20.00 t

Effective width for design = = 8.177 m


(In transverse direction)

3.065 0.280 0.480 0.280 0.480 0.280 0.480 0.280


Edge of
Box 1.75 1.20 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23
0.05 0.25 0.05 0.25 0.05 0.25 0.05 0.23

Dispersion along span direction = 0.263 + 2 x (0.07 + 0.65) = 1.693 m


(Refer Cl. B3.3 of IRC:112-2011) > 1.220

Dispersion width for design = (IF(1.69>1.22,(1.69 + 1.22),1.69)


(In longitudinal direction) = 2.913 m

Total load = 40.0 t


Dispersion area = 8.177 x 2.913 = 23.820 m2
Load per unit area = 40 / 23.82 = 1.68 t/m2

STC Pvt. Ltd. 9


Design of RCC BOX Structures

Load per unit area with I.F = 1.68 x 1.25 = 2.10 t/m2

3.4 Summary of Intensity of Loads:

Loading Intensity of Load (t/m2)


70R - Axle 'l' 2.100
70R - Axle 'm' 2.100
70R - Axle 'n' 2.100

Design LL intensity for analysis = 2.100 t/m2


= 21.00 kN/m2

3.2 Class -A vehicle:

3.2.1 Single Lane Class A (Refer: Clause 204.1.3, Fig.1, IRC : 6-2014 )

5.7 t 5.7 t 11.4 t 11.4 t


1800

500 1300 500


1200
2300

Transverse Longitudinal

Total Load = = 22.80 t


Impact factor = (Refer Cl.208.2 of IRC:6-2014) = 1.269

Minimum clear distance from Crash Barrier to the edge of the end wheel = 0.15 m
Distance between the axles in the direction of traffic = 1.20 m
c/c distance between end wheels in transverse direction = 1.80 m

Contact width of tyre = 500 mm


Contact breadth of tyre = 25 cm

Contact area = 500 x 250 mm

Contact width of tyre in a direction perpendicular to the span = 0.50 m


Wheel dimension perpendicular to span = 0.50 m
Distance from outer edge of kerb to c.g of wheel = 0.85 m

Effective width = α a (1 - a / lo) + b1 (Refer Cl. B3.2 of IRC:112-2011)

a = the distance of c.g of concentrated load from nearer support


= 10.7 / 2 - 1.2 / 2 = 4.750 m
b1 = 0.5 + 2 x 0.065 = 0.63 m

STC Pvt. Ltd. 10


Design of RCC BOX Structures

Effective width = 2.8 x 4.75 x (1 - 4.75 / 10.7) + 0.63 = 8.03 m


(Dispersion width crosses the deck slab) > 1.8 m
(Dispersion width of two wheels overlaps in trans direction)

Effective load in transverse direction = 11.40 t

0.85 1.800
Edge of
Box 0.45 0.15 0.50 1.30 0.50

Effective width for design = 6.663 m


(In transverse direction)

Dispersion along span direction = 0.25 + 2 x (0.065 + 0.65) = 1.68 m


(Refer Cl. B3.3 of IRC:112-2011) > 1.200

Dispersion width for design = IF(1.68>1.2,(1.68 + 1.2),1.68) = 2.880 m


(In longitudinal direction)

Total load = 22.8 t


Dispersion area = 6.663 x 2.88 = 19.19 m2
Load per unit area = 22.8 / 19.19 = 1.19 t/m2

Load per unit area with I.F = 1.19 x 1.26946107784431 = 1.51 t/m2

STC Pvt. Ltd. 11


Design of RCC BOX Structures

3.2.2 Two Lane Class A

5.7 t 5.7 t 5.7 t 5.7 t 22.8 t 22.8 t


1800 1700 1800

500 1300 500 1200 500 1300 500


1200
5300

Transverse Longitudinal

Total Load = = 45.60 t


Impact factor = (Refer Cl.208.2 of IRC:6-2014) = 1.269

Minimum clear distance from Crash Barrier to the edge of the end wheel = 0.15 m
Distance between the axles in the direction of traffic = 1.20 m
c/c distance between end wheels in transverse direction = 5.30 m

Contact width of tyre = 500 mm


Contact breadth of tyre = 25 cm

Contact area = 500 x 250 mm

Contact width of tyre in a direction perpendicular to the span = 0.50 m


Wheel dimension perpendicular to span = 0.50 m
Distance from outer edge of kerb to c.g of wheel = 0.85 m

Effective width = α a (1 - a / lo) + b1 (Refer Cl. B3.2 of IRC:112-2011)

a = the distance of c.g of concentrated load from nearer support


= 10.7 / 2 - 1.2 / 2 = 4.750 m
b1 = 0.5 + 2 x 0.065 = 0.63 m

Effective width = 2.8 x 4.75 x (1 - 4.75 / ) + 0.63 = 8.03 m


(Dispersion width crosses the deck slab) > 1.8 m
(Dispersion width of four wheels overlaps in trans direction)

Effective load in transverse direction = 22.80 t

0.85 1.800 1.700 1.800


Edge of
Box 0.45 0.15 0.50 1.30 0.50 1.20 0.50 1.30 0.50

Effective width for design = 10.163 m


(In transverse direction)

Dispersion along span direction = 0.25 + 2 x (0.065 + 0.65) = 1.68 m


(Refer Cl. B3.3 of IRC:112-2011) > 1.200

STC Pvt. Ltd. 12


Design of RCC BOX Structures

Dispersion width for design = IF(1.68>1.2,(1.68 + 1.2),1.68) = 2.880 m


(In longitudinal direction)

Total load = 45.6 t


Dispersion area = 10.163 x 2.88 = 29.27 m2
Load per unit area = 45.6 / 29.27 = 1.56 t/m2

Load per unit area with I.F = 1.56 x 1.27 = 1.98 t/m2

1 Lane Class A 1.511


2 Lane Class A 1.980

1.1
3.2.3 Three Lane Class A

5.7 t 5.7 t 5.7 t 5.7 t 5.7 t 5.7 t


1800 1700 1800 1700 1800

500 1300 500 1200 500 1300 500 1200 500 1300 500

8800

Transverse
34.2 t 34.2 t

1200
Longitudinal

Total Load = = 68.40 t


Impact factor = (Refer Cl.208.2 of IRC:6-2014) = 1.269

Minimum clear distance from Crash Barrier to the edge of the end wheel = 0.15 m
Distance between the axles in the direction of traffic = 1.20 m
c/c distance between end wheels in transverse direction = 8.80 m

Contact width of tyre = 500 mm


Contact breadth of tyre = 25 cm

Contact area = 500 x 250 mm

STC Pvt. Ltd. 13


Design of RCC BOX Structures

Contact width of tyre in a direction perpendicular to the span = 0.50 m


Wheel dimension perpendicular to span = 0.50 m
Distance from outer edge of kerb to c.g of wheel = 0.85 m

Effective width = α a (1 - a / lo) + b1 (Refer Cl. B3.2 of IRC:112-2011)

a = the distance of c.g of concentrated load from nearer support


= 10.7 / 2 - 1.2 / 2 = 4.750 m
b1 = 0.5 + 2 x 0.065 = 0.63 m

Effective width = 2.8 x 4.75 x (1 - 4.75 / ) + 0.63 = 8.03 m


(Dispersion width crosses the deck slab) > 1.8 m
(Dispersion width of four wheels overlaps in trans direction)

Effective load in transverse direction = 34.20 t

0.85 1.800 1.700 1.800


Edge of
Box 0.45 0.15 0.50 1.30 0.50 1.20 0.50 1.30 0.50

Effective width for design = 13.663 m


(In transverse direction)

Dispersion along span direction = 0.25 + 2 x (0.065 + 0.65) = 1.68 m


(Refer Cl. B3.3 of IRC:112-2011) > 1.200

Dispersion width for design = IF(1.68>1.2,(1.68 + 1.2),1.68) = 2.880 m


(In longitudinal direction)

Total load = 68.4 t


Dispersion area = 13.663 x 2.88 = 39.35 m2
Load per unit area = 68.4 / 39.35 = 1.74 t/m2

Load per unit area with I.F = 1.74 x 1.27 = 2.21 t/m2

STC Pvt. Ltd. 14


Design of RCC BOX Structures

3.3 One lane of 70 R (Bogie) + One Lane Class A

5.0 t 5.0 t 5.0 t 5.0 t 5.7 t 5.7 t


795 790 795 2200 1800

410 385 410 380 410 385 410 1200 500 1300 500

5880

Transverse
31.4 t 31.4 t

1200
Longitudinal

Total Load = = 62.80 t


Impact factor = (Refer Cl.208.2 of IRC:6-2014) = 1.269

Minimum clear distance from Crash Barrier to the edge of the end wheel = 1.20 m
Distance between the axles in the direction of traffic = 1.20 m
c/c distance between end wheels in transverse direction = 6.38 m

Contact width of tyre = 500 mm


Contact breadth of tyre = 25 cm

Contact area = 500 x 250 mm

Contact width of tyre in a direction perpendicular to the span = 0.50 m


Wheel dimension perpendicular to span = 0.50 m
Distance from outer edge of kerb to c.g of wheel = 1.90 m

Effective width = α a (1 - a / lo) + b1 (Refer Cl. B3.2 of IRC:112-2011)

a = the distance of c.g of concentrated load from nearer support


= 10.7 / 2 - 1.2 / 2 = 4.750 m
b1 = 0.5 + 2 x 0.065 = 0.63 m

Effective width = 2.8 x 4.75 x (1 - 4.75 / ) + 0.63 = 8.03 m


(Dispersion width crosses the deck slab) > 0.795 m
(Dispersion width of four wheels overlaps in trans direction)

Effective load in transverse direction = 31.40 t

STC Pvt. Ltd. 15


Design of RCC BOX Structures

1.90 1.800 1.700 1.800


Edge of
Box 0.45 1.20 0.50 1.30 0.50 1.20 0.50 1.30 0.50

Effective width for design = 12.293 m


(In transverse direction)

Dispersion along span direction = 0.25 + 2 x (0.065 + 0.65) = 1.68 m


(Refer Cl. B3.3 of IRC:112-2011) > 1.200

Dispersion width for design = IF(1.68>1.2,(1.68 + 1.2),1.68) = 2.880 m


(In longitudinal direction)

Total load = 62.8 t


Dispersion area = 12.293 x 2.88 = 35.40 m2
Load per unit area = 62.8 / 35.404 = 1.78 t/m2

Load per unit area with I.F = 1.78 x 1.27 = 2.26 t/m2

3.4 70 R Tracked Vehicle

Total Load = = 70.00 t


Impact factor = (Refer Cl.208.2 of IRC:6-2014) = 1.100

Minimum clear distance from Crash Barrier to the edge of the end wheel = 1.20 m
Distance between the axles in the direction of traffic = 4.57 m
c/c distance between end wheels in transverse direction = 2.05 m

Contact width of tyre = 840 mm


Contact breadth of tyre = 457 cm

Contact area = 840 x 4570 mm

Contact width of tyre in a direction perpendicular to the span = 0.84 m


Wheel dimension perpendicular to span = 0.84 m
Distance from outer edge of kerb to c.g of wheel = 2.07 m

Effective width = α a (1 - a / lo) + b1 (Refer Cl. B3.2 of IRC:112-2011)

a = the distance of c.g of concentrated load from nearer support


= 10.7 / 2 - 4.57 / 2 = 3.065 m
b1 = 0.84 + 2 x 0.065 = 0.97 m

Effective width = 2.8 x 3.065 x (1 - 3.065 / 10.7) + 0.97 = 7.09 m


(Dispersion width crosses the deck slab) > 2.05 m
(Dispersion width of four wheels overlaps in trans direction)

Effective load in transverse direction = 70.00 t

STC Pvt. Ltd. 16


Design of RCC BOX Structures

2.07 2.040
Edge of
Box 0.45 1.20 0.84 1.20 0.84

Effective width for design = 7.667 m


(In transverse direction)

Dispersion along span direction = 4.57 + 2 x (0.065 + 0.65) = 6m


(Refer Cl. B3.3 of IRC:112-2011)

Dispersion width for design = IF(6>4.57,(6 + 4.57),6) = 6.000 m


(In longitudinal direction)

Total load = 70.0 t


Dispersion area = 7.667 x 6 = 46.00 m2
Load per unit area = 70 / 46.002 = 1.53 t/m2

Load per unit area with I.F = 1.53 x 1.10 = 1.68 t/m2

3.5 CLASS AA Tracked Vehicle

Total Load = = 70.00 t


Impact factor = (Refer Cl.208.2 of IRC:6-2014) = 1.100

Minimum clear distance from Crash Barrier to the edge of the end wheel = 1.20 m
Distance between the axles in the direction of traffic = 3.60 m
c/c distance between end wheels in transverse direction = 2.05 m

Contact width of tyre = 850 mm


Contact breadth of tyre = 360 cm

Contact area = 850 x 3600 mm

Contact width of tyre in a direction perpendicular to the span = 0.85 m


Wheel dimension perpendicular to span = 0.85 m
Distance from outer edge of kerb to c.g of wheel = 2.08 m

Effective width = α a (1 - a / lo) + b1 (Refer Cl. B3.2 of IRC:112-2011)

a = the distance of c.g of concentrated load from nearer support


= 10.7 / 2 - 3.6 / 2 = 3.550 m
b1 = 0.85 + 2 x 0.065 = 0.98 m

Effective width = 2.8 x 3.55 x (1 - 3.55 / ) + 0.98 = 7.62 m


(Dispersion width crosses the deck slab) > 2.05 m
(Dispersion width of four wheels overlaps in trans direction)

Effective load in transverse direction = 70.00 t

STC Pvt. Ltd. 17


Design of RCC BOX Structures

1.63 2.050
Box
0 0.00 1.20 0.85 1.20 0.85

Effective width for design = 7.937 m


(In transverse direction)

Dispersion along span direction = 3.6 + 2 x (0.065 + 0.65) = 5.03 m


(Refer Cl. B3.3 of IRC:112-2011)

Dispersion width for design = IF(5.03>3.6,(5.03 + 3.6),5.03) = 5.030 m


(In longitudinal direction)

Total load = 70.0 t


Dispersion area = 7.937 x 5.03 = 39.92 m2
Load per unit area = 70 / 39.924 = 1.76 t/m2

Load per unit area with I.F = 1.76 x 1.10 = 1.94 t/m2

3.6 Special Vehicle

2.25 t 2.25 t 2.25 t 2.25 t 2.25 t 2.25 t 2.25 t 2.25 t


244 506 244 806 244 506 244

450 300 450 600 450 300 450

2700

900 900

1800

Transverse

18.0 t 18.0 t

1500
Longitudinal

STC Pvt. Ltd. 18


Design of RCC BOX Structures

Total Load = = 36.00 t


Impact factor = (Refer Cl.208.2 of IRC:6-2014) = 1.000

Minimum clear distance from Crash Barrier to the edge of the end wheel = 0.30 m
Distance between the axles in the direction of traffic = 1.50 m
c/c distance between end wheels in transverse direction = 1.80 m

Contact width of tyre = 1200 mm


Contact breadth of tyre = 27.4 cm

Contact area = 1200 x 274 mm

Contact width of tyre in a direction perpendicular to the span = 1.20 m


Wheel dimension perpendicular to span = 1.20 m
Distance from outer edge of kerb to c.g of wheel = 1.35 m

Effective width = α a (1 - a / lo) + b1 (Refer Cl. B3.2 of IRC:112-2011)

a = the distance of c.g of concentrated load from nearer support


= 10.7 / 2 - 1.5 / 2 = 4.600 m
b1 = 1.2 + 2 x 0.065 = 1.33 m

Effective width = 2.8 x 4.6 x (1 - 4.6 / ) + 1.33 = 8.67 m


(Dispersion width crosses the deck slab) > 1.80 m
(Dispersion width of four wheels overlaps in trans direction)

Effective load in transverse direction = 18.00 t

Effective width for design = 7.487 m


(In transverse direction)

Dispersion along span direction = 0.274 + 2 x (0.065 + 0.65) = 1.704 m


(Refer Cl. B3.3 of IRC:112-2011) > 1.500

Dispersion width for design = IF(1.704>1.5,(1.704 + 1.5),1.704) = 3.204 m


(In longitudinal direction)

Total load = 36.0 t


Dispersion area = 7.487 x 3.204 = 23.99 m2
Load per unit area = 36 / 23.989 = 1.51 t/m2

Load per unit area with I.F = 1.51 x 1.00 = 1.51 t/m2

3.5 Special Vehicle

Loading Intensity of load (t/m2)


70R- Axle 'l' 2.10
70R- Axle 'm' 2.10
70R- Axle 'n' 2.10
1 Lane Class A 1.51
70R-Track 1.68
CLASS-AA Track 1.94
Special Vehicle 1.51

Design LL intensity for Analysis = 2.10 t/m2


= 21.00 KN/m2

STC Pvt. Ltd. 19


Design of RCC BOX Structures

Temperature Rise

.1 The top slab is designed for the effects of the distribution of the temperature across the deck depth as given in the sketch below.

Depth of Top Slab = 0.65 m


2
Grade of concrete = 35.00 N/mm
2
Modulus of elasticity = 3.20E+07 KN/m
Coefficient of thermal expansion = 0.000012

17.8 s1

F1
0.15m
4 h/2 s2 x1

0.65m 0.20m F2
N A x2

h/2 x3

0.15m
F3
2.1 s3

.2 Member h h1 h2 h3 T1 T2 T3
o o o
Unit m m m m C C C
Top Slab 0.65 0.15 0.195 0.15 17.8 4 2.1

.3 Member s1 s2 s3 F1 F2 F3 F
Units kN/m2 kN/m2 kN/m2 kN kN kN kN
Top Slab 6835 1536 806 628 150 60 838

.4
CG of
CG of top CG of mid
CG of Section CG of Section bottom
Member block from block from x1 x2 x3 M
from top from bottom block from
top top
bottom
Units m m m m m m m m kNm
Top Slab 0.33 0.33 0.06 0.22 0.05 0.27 0.11 0.28 166.74

STC Pvt. Ltd. 20


Design of RCC BOX Structures

Temperature Fall

.1 The top slab is designed for the effects of the distribution of the temperature across the deck depth as given in the sketch below.

Depth of Top Slab = 0.65m


2
Grade of concrete = 35.00 N/mm
2
Modulus of elasticity = 32,000,000 KN/m
Coefficient of thermal expansion = 0.000012

10.6 s1

F1
0.13
h/2
x1
0.7 s2
0.65m N A N F2 A
0.1625 x2

h/2 x3
0.1625 x4
0.8 s3 F3
0.13
F4
6.6 s4

.2 Member h h1 h2 h3 h4 T1 T2 T3 T4
units m m m m m C C C C

Top Slab 0.65m 0.13 0.1625 0.1625 0.13 10.6 0.7 0.8 6.6

.3 Member s1 s2 s3 s4 F1 F2 F3 F4 F
Unit kN/m2 kN/m2 kN/m2 kN/m2 kN kN kN kN kN

Top Slab 4070.40 268.80 307.20 2534.40 282.05 21.84 24.96 184.70 513.55

CG of CG of
CG of
CG of CG of top bottom bottom
Section CG of top mid
Member Section block mid block block x1 x2 x3 x4 M
from block from top
from top from top from from
bottom
bottom bottom
.4
Units m m m m m m m m m m kNm

Top Slab 0.33 0.33 0.05 0.18 0.18 0.05 0.28 0.14 0.14 0.28 27.09

STC Pvt. Ltd. 21


Design of RCC BOX Structures

Calculation of Vertical Subgrade Reaction:

The structure as shown is idealised in STAAD. The vertical soil resistance at bottom has been applied in the form of
springs. The value of spring constants has been calculated based on the permissible settlement and bearing capacity.
The bottom slab of structure is idealised as shown in following figure. The equivalent spring is applied at each node
according to subgrade reaction.

10.90

6.500

1 2 3 4 5 6 7 8 9 10

Input Data Coordinate calculation for Bottom Slab


Thickness of top slab 650 mm Node x y z
Thickness of bottom slab 750 mm 1 0.000 0.000 0.000
Thickness of vert wall (SKEW) 700 mm 2 0.350 0.000 0.000
Haunch 300 mm 3 0.650 0.000 0.000
Clear span(SKEW) 10187 mm 4 2.570 0.000 0.000
Clear Height 5800 mm 5 4.490 0.000 0.000
SBC 12.0 t/m2 6 6.410 0.000 0.000
Permissible settlement 10.00 mm 7 8.330 0.000 0.000
8 10.250 0.000 0.000
9 10.550 0.000 0.000
Support No K Value 10 10.900 0.000 0.000
1 & 10 2100.00
2&9 3900.00
3&8 13320.32
4 to 7 23040.64

STC Pvt. Ltd. 22


Creep Coefficent

fck = 35 Mpa
fcm = 45 Mpa
t = 25550 days
to = 90 days
Φ (t, to) = Φo βc ( t , to )
Φo = ΦRH β(fcm) β(to)

ΦRH = Factor to allow for the effect of relative humidity on the notional creep coefficient
= 1+ 1 - RH/100 for fcm ≤ 45 Mpa
0.1 ( ho )1/3
=
1+ 1 - RH/100 for fcm > 45 Mpa
α1 * α2
0.1 ( ho )1/3

RH = Relative humidity of the ambient environment in percent = 80 %


α = coefficient to consider the influence of the concrete strength
α1 = [ 43.75 / fcm ]0.7 α2 = [ 43.75 / fcm ]0.2 α3 = [ 43.75 / fcm ]0.5

β(fcm) = factor to allow for the effect of concrete strength on the notional creep coefficient = 18.78 / √fcm
β(to) = factor to allow for the effect of concrete age at loading on the notional
creep coefficient = 1/ ( 0.1+ to 0.2)
Φo = ΦRH x β(fcm) x β(to)
βc( t , to)= coefficient to describe the development of creep with time after loading
= [ (t - to) / (βH + t - to) ]0.3
βH = coefficient depending on the relative humidity(RH in percent) and the notional member size(ho in mm)
Min 1.5 [ 1+ (0.012 RH)18 ] ho +250 for fcm ≤ 45 Mpa
1500
=
Min 1.5 [ 1+ (0.012 RH)18 + ho +250 α3
for fcm > 45 Mpa
1500* α3

Summary of Creep Coefficent


Element ho (mm) α1 α2 β(fcm) ΦRH β(to) Φo α3 βH βc( t , to) Φ (t, to)
Top Slab 611.01 0.980 0.994 2.800 1.236 0.391 1.352 0.986 1500 0.983 1.329
Side Wall 624.62 0.980 0.994 2.800 1.234 0.391 1.350 0.986 1500 0.983 1.327
Bottom Slab 698.57 0.980 0.994 2.800 1.225 0.391 1.340 0.986 1500 0.983 1.318
Design of RCC BOX Structures

Summary of Bending Moment and Shear Force from STAAD File


Distance from
Bending Moment (kN/m) Shear Force (kN)
Member Case Section centreline of
side wall (m) ULS SLS (Rare) SLS (QP) ULS
Mid Span 5.444 500.000 355.000 290.000 13.000
Curtailment 3.406 320.000 300.000 230.000 75.000
Sagging
Face of Haunch 0.650 30.000 30.000 30.000 195.000
Top Slab

deffective 0.950 30.000 30.000 30.000 175.000


Face of Support 0.350 550.000 370.000 245.000 210.000
Face of Haunch 0.650 450.000 295.000 190.000 195.000
Hogging
Curtailment 3.406 55.000 55.000 55.000 92.000
deffective 0.950 380.000 210.000 170.000 180.000

Mid Span 3.250 205.0 205.0 205.0 55.0


Curtailment 2.115 150.0 140.0 160.0 110.0
Sagging
Face of Haunch 0.675 60.0 50.0 50.0 200.0
Side Wall

deffective 1.027 90.0 60.0 60.0 160.0


Face of Support 0.375 630.0 410.0 275.0 385.0
Face of Haunch 0.675 560.0 380.0 260.0 340.0
Hogging
Curtailment 2.115 470.0 330.0 170.0 190.0
deffective 1.027 520.0 400.0 210.0 255.0

Mid Span 5.444 680.000 470.000 380.000 36.000


Curtailment 3.406 590.000 405.000 330.000 100.000
Sagging
Face of Haunch 0.650 80.000 75.000 70.000 320.000
Bottom Slab

deffective 1.050 150.000 90.000 70.000 280.000


Face of Support 0.350 610.000 425.000 335.000 370.000
Face of Haunch 0.650 465.000 325.000 250.000 335.000
Hogging
Curtailment 3.406 85.000 85.000 82.000 180.000
deffective 1.050 370.000 190.000 190.000 260.000

STC Pvt. Ltd. 24


Design of RCC BOX Structures

DESIGN OF TOP SLAB


MIDSPAN - SAGGING
Depth of member (D) = 650.00 mm
Width of the member (b) = 1000.00 mm

MATERIAL PROPERTIES :
Grade of concrete, fck = 35 MPa
Mean value of concrete compressive strength, fcm = 45 MPa
Grade of Reinforcement = 500 MPa
fywd 0.8 fyk = 400 MPa
Clear cover of top slab = 40 mm
Modulus of Elasticity steel Es = 200000 MPa
For short Term loading Ecm = 32308 MPa
For long Term loading Ecm' = 13875 MPa
fctm = 2.80 MPa
fcteff = Max of 2.9 Mpa or fctm = 2.90 MPa
fcd = 15.75 MPa
Cross sectional Area, Ac = 6.622 m2
Perimeter in contact with atmosphere u = 21.67 m
Notational size ho = 611.01 mm
Age of concrete at the time of loading = 90 days
t∞ considered = 25550 days
Creep factor Φ= 1.3286
εuk = 0.00450
εud = 0.00405
εcu2 = 0.0035
xumax/d = 0.4636

PERMISSIBLE STRESSES
1) Permissble concrete compressive stresses
Load Combination Permissble Stress
SLS Rare 0.48 fck = 16.8 MPa
SLS QP 0.36 fck = 12.6 MPa

2) Permissble Tensile stress in steel (Rare) 0.6 fy = 300 MPa


0.8 fy = 400 MPa
3) Permissible crack width wk
SLS QP Load combination = 0.3 mm

Maximum Reinforcement
[ Tension Reinf. ] ≤ 0.025AC At section other than Laps
* Tension + Compression + ≤ 0.04AC At any section
Where AC = Gross Cross section Area of Concrete

Minimum Reinforcement :
Ast min = Max [ 0.26 fctm / fyk bt d , 0.0013 bt d ] (Refer IRC:112 clause 16.5.1.1)
bt = Mean width of Tension zone.

STC Pvt. Ltd. 25


Design of RCC BOX Structures

A) ULS CAPACITY CHECK (Top Slab Sagging)

Section Mid Span Curtailment point deffective Face of Haunch

Distance from centreline of side wall m 5.444 3.406 0.650 0.950


MED (Sagging) kNm 500.000 320.000 30.000 30.000
Width (b) mm 1000.000 1000.000 1000.000 1000.000
Overall depth D mm 650.000 650.000 650.000 650.000
d mm 600.000 600.000 600.000 600.000
Diameter mm 20 16 20 16 20 16 20 16
Area of steel
Spacing mm 200 200 200 200 200 200 200 200
provided 2
Ast, Provided mm 2576.106 2576.106 2576.106 2576.106
Reinforcement (%) 0.429 0.429 0.429 0.429
xmax mm 278.146 278.146 278.146 278.146
xu = 0.87 fyk Ast / 0.362 fck b mm 88.446 88.446 88.446 88.446
Check UR, OK UR, OK UR, OK UR, OK
Ast,cal =M/ 0.87 fyk (d'-0.416 xu) mm2 2040.859 1306.150 122.452 122.452
Ast Max mm2 264866.341 264866.341 264866.341 264866.341
Check Ast Calc. < Ast Provided < Ast Max OK OK OK OK
Ast min mm2 900.000 900.000 900.000 900.000
Check Ast,provided > Ast min OK OK OK OK
∆Fd kN 6.500 37.500 87.500 97.500
z = d- 0.416 xu m 563.207 563.207 563.207 563.207
MED/z +∆Fd kN 894.274 605.675 140.766 150.766
MRd =0.87 fyk Ast (d-0.416 xu) kNm 631.133 631.133 631.133 631.133
MRD/z kNm/m 1120.606 1120.606 1120.606 1120.606
Check MRD/z > MED/z + ∆Fd OK OK OK OK

Distribution steel at bottom of top slab: (Refer IRC:112 clause 16.6.1.1)


Distribution Reinforcement : At Least 20% of the main Reinforcement = 515.22 mm2
Provide 12 @ 125 mm c/c = 904.78 mm2 OK

STC Pvt. Ltd. 26


Design of RCC BOX Structures

B) SLS STRESS CHECK


Rare Load combination. Quasi Permanent Load Combination
Ec,eq = Ecm*(MQP+MST) m = Es / Ecm'
MST + (1+ Φ)* MQP
MST = MRARE -MQP
m = Es / Ec,eq
Flexural tensile Strength:
where,

fctm,fl = mean Flexural tensile strength of solid beam


h = total depth of member in mm
Formula used for calculation of stress
dc (depth of neutral axis) = .-m x As + √ ( m2 x AS2 + 2 x m x As x b x d )
b
INA (Transformed) = b x dc3/3 + m x As x (d - dc)2

Compressive stress in concrete σc = MRARE x dc / INA


Tensile stress in steel σs = m x MRARE x (d - dc ) / INA

Stress Check for SLS Load Combinations


SLS (Rare Combination)
Curtailment
Section Mid Span deffective Face of Haunch
point
Distance from centreline of side wall
m 5.444 3.406 0.650 0.950
MED (Sagging) kNm 355.000 300.000 30.000 30.000
Width (b) mm 1000.000 1000.000 1000.000 1000.000
d mm 600.000 600.000 600.000 600.000
Ast, Provided mm2 2576.106 2576.106 2576.106 2576.106
Checking Section: Cracked or Uncracked
I mm4 1.800E+10 1.800E+10 1.800E+10 1.800E+10
Y = d/2 mm 325.000 325.000 325.000 325.000
σ (Stress) Mpa 6.410 5.417 0.542 0.542
fctm,fl Mpa 2.800 2.800 2.800 2.800
Cracked/Uncracked Cracked Cracked Uncracked Uncracked
Finding Stresses considering Cracked Section
Modular ratio 12.909 12.496 14.415 14.415
N.A. depth (dc) mm 169.258 166.969 177.201 177.201
INA mm4 7.786E+09 7.588E+09 8.493E+09 8.493E+09
Compressive stress Mpa 7.717 6.601 0.626 0.626
Max Compressive Stress Mpa 16.800 16.800 16.800 16.800
Check OK OK OK OK
Tensile stress Mpa 253.513 213.936 21.529 21.529
Maximum Tensile Stress Mpa 300.000 300.000 300.000 300.000
Check OK OK OK OK

STC Pvt. Ltd. 27


Design of RCC BOX Structures

SLS (Quasi Permanent Combination)


Curtailment
Section Mid Span deffective Face of Haunch
point
Distance from centreline of side wall
m 5.444 3.406 0.650 0.950
MED (Sagging) kNm 290.000 230.000 30.000 30.000
Width (b) mm 1000.000 1000.000 1000.000 1000.000
d mm 600.000 600.000 600.000 600.000
Ast, Provided mm2 2576.106 2576.106 2576.106 2576.106
Checking Section: Cracked or Uncracked
I mm4 1.800E+10 1.800E+10 1.800E+10 1.800E+10
Y = d/2 mm 325.000 325.000 325.000 325.000
σ (Stress) Mpa 5.236 4.153 0.542 0.542
fctm,fl Mpa 2.800 2.800 2.800 2.800
Cracked/Uncracked Cracked Cracked Uncracked Uncracked
Finding Stresses considering Cracked Section
Modular ratio 14.415 14.415 14.415 14.415
N.A. depth (dc) mm 177.201 177.201 177.201 177.201
INA mm4 8.493E+09 8.493E+09 8.493E+09 8.493E+09
Compressive stress Mpa 6.051 4.799 0.626 0.626
Max Compressive Stress Mpa 12.600 12.600 12.600 12.600
Check OK OK OK OK
Tensile stress Mpa 208.109 165.052 21.529 21.529
Maximum Tensile Stress Mpa 400.000 400.000 400.000 400.000
Check OK OK OK OK

C) SLS CRACK WIDTH CHECK (QUASI PERMANENT LOAD COMBINATION)


1) CHECK Ast,min for crack control
Curtailment
Section Mid Span deffective Face of Haunch
point
Distance from centreline of side wall
m 5.444 3.406 0.650 0.950

b mm 1000.000 1000.000 1000.000 1000.000


h mm 650.000 650.000 650.000 650.000
d mm 600.000 600.000 600.000 600.000
Act =bh/2 2
mm 325000 325000 325000 325000
σs = fyk Mpa 500.000 500.000 500.000 500.000
k 1.000 1.000 1.000 1.000
kc 0.400 0.400 0.400 0.400
As,min =kc k fct,eff Act /σs 2
mm 754 754 754 754
As,provided 2
mm 2576.11 2576.11 2576.11 2576.11
Check OK OK OK OK

h 0.00 0.30 0.80 3.00


k 1.00 1.00 0.65 0.65

STC Pvt. Ltd. 28


Design of RCC BOX Structures

2) CHECK FOR MAXIMUM SPACING b/w bars.


Curtailment
Section Mid Span deffective Face of Haunch
point
Distance from centreline of side wall
m 5.444 3.406 0.650 0.950
Bar diameter mm 20 20 20 20
Cover mm 40 40 40 40
Provided mm 200 200 200 200
Spacing b/w
bars Calculated mm 250 250 250 250
Check OK OK OK OK

3) CHECK FOR CRACK WIDTH ( IRC 112 / clause 10.3.2 (2) )


Curtailment
Section Mid Span deffective Face of Haunch
point
Distance from centreline of side wall
m 5.444 3.406 0.650 0.950
hc,eff = Min [2.5 (h - d), (h - x)/3 ,
mm 123.95 123.95 123.95 123.95
h/2]
Aceff = hc,eff x b mm2 123951.43 123951.43 123951.43 123951.43
As provided mm2 2576.11 2576.11 2576.11 2576.11
ρpeff = As/Ac,eff 0.0208 0.0208 0.0208 0.0208
Srmax =3.4c + 0.17 Φ /ρPeff mm 299.59 299.59 299.59 299.59
σsc Mpa 208.11 165.05 21.53 21.53
x = neutral axis depth mm 177.20 177.20 177.20 177.20
kt 0.500 0.500 0.500 0.500
αe = Es/Ecm' 14.41 14.41 14.41 14.41
esm - ecm =Max * * σsc - kt fct,eff ( 1+ αe ρP,eff ) /
0.00062 0.00050 0.00006 0.00006
ρP,eff ] /Es , 0.6 σsc/Es ]
wk mm 0.1870 0.1483 0.0193 0.0193
Check OK OK OK OK

D) CHECK FOR SHEAR : ( IRC 112 / clause 10.3.2 (2) )


Check of Shear Reinforcement Requirement
Load combination ULS
Curtailment
Section Mid Span deffective Face of Haunch
point
VED kN 13.00 75.00 175.00 195.00
β 1.0000 1.0000 0.5417 0.7917
βVED kN 13.00 75.00 94.79 154.38
d mm 600.00 600.00 600.00 600.00
bw mm 1000.00 1000.00 1000.00 1000.00
k= Min [ 1 + √200/d , 2 + 1.577 1.577 1.577 1.577
Asl 2 2576.106 2576.106 2576.106 2576.106
mm
ρ1 = Min * Asl/bw d , 0.02 + 0.004 0.004 0.004 0.004
3/2
νmin = 0.031 k fck1/2 0.363 0.363 0.363 0.363
σcp Mpa 0 0 0 0
VRdc =Max * ( 0.12 k (80 ρ1 fck )0.33
+ 0.15 σcp ) bw d , (νmin +0.15σcp ) kN 258.019 258.019 258.019 280.329
bw d ]
No Shear reinf. No Shear reinf. No Shear reinf. No Shear reinf.
Check
Required Required Required Required

STC Pvt. Ltd. 29


Design of RCC BOX Structures

DESIGN OF TOP SLAB


SUPPORT - HOGGING
Depth of member (D) = 650.00 mm
Width of the member (b) = 1000.00 mm

MATERIAL PROPERTIES :
Grade of concrete, fck = 35 MPa
Mean value of concrete compressive strength, fcm = 45 MPa
Grade of Reinforcement = 500 MPa
fywd 0.8 fyk = 400 MPa
Clear cover of top slab = 40 mm
Modulus of Elasticity steel Es = 200000 MPa
For short Term loading Ecm = 32308 MPa
For long Term loading Ecm' = 13875 MPa
fctm = 2.80 MPa
fcteff = Max of 2.9 Mpa or fctm = 2.90 MPa
fcd = 15.75 MPa
Cross sectional Area, Ac = 6.622 m2
Perimeter in contact with atmosphere u = 21.67 m
Notational size ho = 611.01 mm
Age of concrete at the time of loading = 90 days
t∞ considered = 25550 days
Creep factor Φ= 1.3286
εuk = 0.00450
εud = 0.00405
εcu2 = 0.0035
xumax/d = 0.4636

PERMISSIBLE STRESSES
1) Permissble concrete compressive stresses
Load Combination Permissble Stress
SLS Rare 0.48 fck = 16.8 MPa
SLS QP 0.36 fck = 12.6 MPa

2) Permissble Tensile stress in steel (Rare) 0.6 fy = 300 MPa


(QP) 0.8 fy = 400 MPa
3) Permissible crack width wk
SLS QP Load combination = 0.3 mm

Maximum Reinforcement
[ Tension Reinf. ] ≤ 0.025AC At section other than Laps
* Tension + Compression + ≤ 0.04AC At any section
Where AC = Gross Cross section Area of Concrete

Minimum Reinforcement :
Ast min = Max [ 0.26 fctm / fyk bt d , 0.0013 bt d ] (Refer IRC:112 clause 16.5.1.1)
bt = Mean width of Tension zone.

STC Pvt. Ltd. 30


Design of RCC BOX Structures

A) ULS CAPACITY CHECK (Top Slab Hogging)

Section Face of Support Face of Haunch Curtailment point deffective

Distance from centreline of side wall m 0.350 0.650 3.406 0.950


MED (Hogging) kNm 550.000 450.000 55.000 380.000
Width (b) mm 1000.000 1000.000 1000.000 1000.000
Overall depth D mm 650.000 650.000 650.000 650.000
d mm 600.000 600.000 600.000 600.000
Diameter mm 20 16 20 16 20 0 20 16
Area of steel
Spacing mm 200 200 200 200 200 200 200 200
provided 2
Ast, Provided mm 2576.106 2576.106 1570.796 2576.106
Reinforcement (%) 0.429 0.429 0.429 0.429
xmax mm 278.146 278.146 278.146 278.146
xu = 0.87 fyk Ast / 0.362 fck b mm 88.446 88.446 53.930 88.446
Check UR, OK UR, OK UR, OK UR, OK
Ast,cal =M/ 0.87 fyk (d'-0.416 xu) mm2 2244.945 1836.773 218.914 1551.053
Ast Max mm2 264866.341 264866.341 264866.341 264866.341
Check Ast Calc. < Ast Provided < Ast Max OK OK OK OK
Ast min mm2 900.000 900.000 900.000 900.000
Check Ast,provided > Ast min OK OK OK OK
∆Fd kN 105.000 97.500 46.000 90.000
z = d- 0.416 xu m 563.207 563.207 577.565 563.207
MED/z +∆Fd kN 1081.551 896.496 141.227 764.708
MRd =0.87 fyk Ast (d-0.416 xu) kNm 631.133 631.133 394.648 631.133
MRD/z kNm/m 1120.606 1120.606 683.296 1120.606
Check MRD/z > MED/z + ∆Fd OK OK OK OK

Distribution steel at top of top slab: (Refer IRC:112 clause 16.6.1.1)


Distribution Reinforcement : At Least 20% of the main Reinforcement = 515.22 mm2
Provide 12 @ 125 mm c/c = 904.7787 mm2 OK

B) SLS STRESS CHECK


Rare Load combination. Quasi Permanent Load Combination
Ec,eq = Ecm*(MQP+MST) m = Es / Ecm'
MST + (1+ Φ)* MQP
MST = MRARE -MQP
m = Es / Ec,eq
Flexural tensile Strength:
where,

fctm,fl = mean Flexural tensile strength of solid beam


h = total depth of member in mm

STC Pvt. Ltd. 31


Design of RCC BOX Structures

Formula used for calculation of stress


dc (depth of neutral axis) = .-m x As + √ ( m2 x AS2 + 2 x m x As x b x d )
b
INA (Transformed) = bx dc3/3 + m x As x (d - dc)2

Compressive stress in concrete σc = MRARE x dc / INA


Tensile stress in steel σs = m x MRARE x (d - dc ) / INA

Stress Check for SLS Load Combinations


SLS (Rare Combination)
Section Face of Support Face of Haunch Curtailment point deffective

Distance from centreline of side wall


m 0.350 0.650 3.406 0.950
MED (Hogging) kNm 370.000 295.000 55.000 210.000
Width (b) mm 1000.000 1000.000 1000.000 1000.000
d mm 600.000 600.000 600.000 600.000
Ast, Provided mm2 2576.106 2576.106 1570.796 2576.106
Checking Section: Cracked or Uncracked
I mm4 1.800E+10 1.800E+10 1.800E+10 1.800E+10
Y = d/2 mm 325.000 325.000 325.000 325.000
σ (Stress) Mpa 6.681 5.326 0.993 3.792
fctm,fl Mpa 2.800 2.800 2.800 2.800
Cracked/Uncracked Cracked Cracked Uncracked Cracked
Finding Stresses considering Cracked Section
Modular ratio 11.636 11.487 14.415 12.848
N.A. depth (dc) mm 162.039 161.161 143.742 168.925
INA mm4 7.168E+09 7.094E+09 5.704E+09 7.757E+09
Compressive stress Mpa 8.364 6.702 1.386 4.573
Max Compressive Stress Mpa 16.800 16.800 16.800 16.800
Check OK OK OK OK
Tensile stress Mpa 263.061 209.625 63.421 149.935
Maximum Tensile Stress Mpa 300.000 300.000 300.000 300.000
Check OK OK OK OK

SLS (Quasi Permanent Combination)


Section Face of Support Face of Haunch Curtailment point deffective

Distance from centreline of side wall


m 0.350 0.650 3.406 0.950
MED (Hogging) kNm 245.000 190.000 55.000 170.000
Width (b) mm 1000.000 1000.000 1000.000 1000.000
d mm 600.000 600.000 600.000 600.000
Ast, Provided mm2 2576.106 2576.106 1570.796 2576.106
Checking Section: Cracked or Uncracked
I mm4 1.800E+10 1.800E+10 1.800E+10 1.800E+10
Y = d/2 mm 325.000 325.000 325.000 325.000
σ (Stress) Mpa 4.424 3.431 0.993 3.069
fctm,fl Mpa 2.800 2.800 2.800 2.800
Cracked/Uncracked Cracked Cracked Uncracked Cracked

STC Pvt. Ltd. 32


Design of RCC BOX Structures

Finding Stresses considering Cracked Section


Modular ratio 14.415 14.415 14.415 14.415
N.A. depth (dc) mm 177.201 177.201 143.742 177.201
INA mm4 8.493E+09 8.493E+09 5.704E+09 8.493E+09
Compressive stress Mpa 5.112 3.964 1.386 3.547
Max Compressive Stress Mpa 12.600 12.600 12.600 12.600
Check OK OK OK OK
Tensile stress Mpa 175.816 136.347 63.421 121.995
Maximum Tensile Stress Mpa 400.000 400.000 400.000 400.000
Check OK OK OK OK

C) SLS CRACK WIDTH CHECK (QUASI PERMANENT LOAD COMBINATION)


1) CHECK Ast,min for crack control
Section Face of Support Face of Haunch Curtailment point deffective

Distance from centreline of side wall


m 0.350 0.650 3.406 0.950

b mm 1000.000 1000.000 1000.000 1000.000


h mm 650.000 650.000 650.000 650.000
d mm 600.000 600.000 600.000 600.000
Act =bh/2 mm2 325000 325000 325000 325000
σs = fyk Mpa 500.000 500.000 500.000 500.000
k 1.000 1.000 1.000 1.000
kc 0.400 0.400 0.400 0.400
As,min =kc k fct,eff Act /σs 2
mm 754 754 754 754
As,provided mm2 2576.11 2576.11 1570.80 2576.11
Check OK OK OK OK

h 0.00 0.30 0.80 3.00


k 1.00 1.00 0.65 0.65

2) CHECK FOR MAXIMUM SPACING b/w bars.


Section Face of Support Face of Haunch Curtailment point deffective

Distance from centreline of side wall


m 0.350 0.650 3.406 0.950
Bar diameter mm 20 20 20 20
Cover mm 40 40 40 40
Provided mm 200 200 200 200
Spacing b/w
bars Calculated mm 250 250 250 250
Check OK OK OK OK

STC Pvt. Ltd. 33


Design of RCC BOX Structures

3) CHECK FOR CRACK WIDTH ( IRC 112 / clause 10.3.2 (2) )


Section Face of Support Face of Haunch Curtailment point deffective

Distance from centreline of side wall


m 0.350 0.650 3.406 0.950
hc,eff = Min [2.5 (h - d), (h - x)/3 ,
mm 123.95 123.95 123.95 123.95
h/2]
Aceff = hc,eff x b mm2 123951.43 123951.43 123951.43 123951.43
As provided mm2 2576.11 2576.11 1570.80 2576.11
ρpeff = As/Ac,eff 0.0208 0.0208 0.0127 0.0208
Srmax =3.4c + 0.17 Φ /ρPeff mm 299.59 299.59 404.29 299.59
σsc Mpa 175.82 136.35 63.42 121.99
x = neutral axis depth mm 177.20 177.20 143.74 177.20
kt 0.500 0.500 0.500 0.500
αe = Es/Ecm' 14.41 14.41 14.41 14.41
esm - ecm =Max * * σsc - kt fct,eff ( 1+ αe ρP,eff ) /
0.00053 0.00041 0.00019 0.00037
ρP,eff ] /Es , 0.6 σsc/Es ]
wk mm 0.1580 0.1225 0.0769 0.1096
Check OK OK OK OK

D) CHECK FOR SHEAR : ( IRC 112 / clause 10.3.2 (2) )


Check of Shear Reinforcement Requirement
Load combination ULS
Section Face of Support Face of Haunch Curtailment point deffective

VED kN 210.00 195.00 92.00 180.00


β 0.5000 0.5417 1.0000 0.7917
βVED kN 105.00 105.63 92.00 142.50
d mm 600.00 600.00 600.00 600.00
bw mm 1000.00 1000.00 1000.00 1000.00
k= Min [ 1 + √200/d , 2 + 1.577 1.577 1.577 1.577
Asl 2 2576.106 2576.106 1570.796 2576.106
mm
ρ1 = Min * Asl/bw d , 0.02 + 0.004 0.004 0.003 0.004
3/2
νmin = 0.031 k fck1/2 0.363 0.363 0.363 0.363
σcp Mpa 0 0 0 0

VRdc =Max * ( 0.12 k (80 ρ1 fck )0.33


+ 0.15 σcp ) bw d , (νmin +0.15σcp ) kN 258.019 258.019 219.156 280.329
bw d ]
No Shear reinf. No Shear reinf. No Shear reinf. No Shear reinf.
Check
Required Required Required Required

STC Pvt. Ltd. 34


Design of RCC BOX Structures

DESIGN OF SIDE WALL


MIDSPAN - SAGGING
Depth of member (D) = 700.00 mm
Width of the member (b) = 1000.00 mm

MATERIAL PROPERTIES :
Grade of concrete, fck = 35 MPa
Mean value of concrete compressive strength, fcm = 45 MPa
Grade of Reinforcement = 500 MPa
fywd 0.8 fyk = 400 MPa
Clear cover of top slab = 40 mm
Modulus of Elasticity steel Es = 200000 MPa
For short Term loading Ecm = 32308 MPa
For long Term loading Ecm' = 13886 MPa
fctm = 2.80 MPa
fcteff = Max of 2.9 Mpa or fctm = 2.90 MPa
fcd = 15.75 MPa
Cross sectional Area, Ac = 4.060 m2
Perimeter in contact with atmosphere u = 13.00 m
Notational size ho = 624.62 mm
Age of concrete at the time of loading = 90 days
t∞ considered = 25550 days
Creep factor Φ= 1.3267
εuk = 0.00450
εud = 0.00405
εcu2 = 0.0035
xumax/d = 0.4636

PERMISSIBLE STRESSES
1) Permissble concrete compressive stresses
Load Combination Permissble Stress
SLS Rare 0.48 fck = 16.8 MPa
SLS QP 0.36 fck = 12.6 MPa

2) Permissble Tensile stress in steel (Rare) 0.6 fy = 300 MPa


(QP) 0.8 fy = 400 MPa
3) Permissible crack width wk
SLS QP Load combination = 0.3 mm

Maximum Reinforcement
[ Tension Reinf. ] ≤ 0.025AC At section other than Laps
* Tension + Compression + ≤ 0.04AC At any section
Where AC = Gross Cross section Area of Concrete

Minimum Reinforcement :
Ast min = Max [ 0.26 fctm / fyk bt d , 0.0013 bt d ] (Refer IRC:112 clause 16.5.1.1)
bt = Mean width of Tension zone.

STC Pvt. Ltd. 35


Design of RCC BOX Structures

A) ULS CAPACITY CHECK (Side Wall Sagging)

Section Mid Span Curtailment point deffective Face of Haunch

Distance from centreline of side wall m 3.250 2.115 0.675 1.027


MED (Sagging) kNm 205.000 150.000 60.000 90.000
Width (b) mm 1000.000 1000.000 1000.000 1000.000
Overall depth D mm 700.000 700.000 700.000 700.000
d mm 652.000 652.000 652.000 652.000
Diameter mm 16 0 16 0 16 0 16 0
Area of steel
Spacing mm 150 200 150 200 150 200 150 200
provided 2
Ast, Provided mm 1340.413 1340.413 1340.413 1340.413
Reinforcement (%) 0.206 0.206 0.206 0.206
xmax mm 302.252 302.252 302.252 302.252
xu = 0.87 fyk Ast / 0.362 fck b mm 46.020 46.020 46.020 46.020
Check UR, OK UR, OK UR, OK UR, OK
Ast,cal =M/ 0.87 fyk (d'-0.416 xu) mm2 744.663 544.876 217.950 326.925
Ast Max mm2 162400.000 162400.000 162400.000 162400.000
Check Ast Calc. < Ast Provided < Ast Max OK OK OK OK
Ast min mm2 978.000 978.000 978.000 978.000
Check Ast,provided > Ast min OK OK OK OK
∆Fd kN 27.500 55.000 100.000 80.000
z = d- 0.416 xu m 632.855 632.855 632.855 632.855
MED/z +∆Fd kN 351.429 292.021 194.808 222.213
MRd =0.87 fyk Ast (d-0.416 xu) kNm 369.005 369.005 369.005 369.005
MRD/z kNm/m 583.080 583.080 583.080 583.080
Check MRD/z > MED/z + ∆Fd OK OK OK OK

Distribution steel at innerside of side wall: (Refer IRC:112 clause 16.6.1.1)


Distribution Reinforcement : At Least 20% of the main Reinforcement = 268.08 mm2
Provide 12 @ 125 mm c/c = 904.78 mm2 OK

B) SLS STRESS CHECK


Rare Load combination. Quasi Permanent Load Combination
Ec,eq = Ecm*(MQP+MST) m = Es / Ecm'
MST + (1+ Φ)* MQP
MST = MRARE -MQP
m = Es / Ec,eq
Flexural tensile Strength:
where,

fctm,fl = mean Flexural tensile strength of solid beam


h = total depth of member in mm

STC Pvt. Ltd. 36


Design of RCC BOX Structures

Formula used for calculation of stress


dc (depth of neutral axis) = .-m x As + √ ( m2 x AS2 + 2 x m x As x b x d )
b
INA (Transformed) = bx dc3/3 + m x As x (d - dc)2

Compressive stress in concrete σc = MRARE x dc / INA


Tensile stress in steel σs = m x MRARE x (d - dc ) / INA

Stress Check for SLS Load Combinations


SLS (Rare Combination)
Curtailment
Section Mid Span deffective Face of Haunch
point
Distance from centreline of side wall
m 3.250 2.115 0.675 1.027
MED (Sagging) kNm 205.000 140.000 50.000 60.000
Width (b) mm 1000.000 1000.000 1000.000 1000.000
d mm 652.000 652.000 652.000 652.000
Ast, Provided mm2 1340.413 1340.413 1340.413 1340.413
Checking Section: Cracked or Uncracked
I mm4 2.310E+10 2.310E+10 2.310E+10 2.310E+10
Y = d/2 mm 350.000 350.000 350.000 350.000
σ (Stress) Mpa 3.106 2.121 0.758 0.909
fctm,fl Mpa 2.800 2.800 2.800 2.800
Cracked/Uncracked Cracked Uncracked Uncracked Uncracked
Finding Stresses considering Cracked Section
Modular ratio 14.403 15.577 14.403 14.403
N.A. depth (dc) mm 140.532 145.440 140.532 140.532
INA mm4 5.976E+09 6.383E+09 5.976E+09 5.976E+09
Compressive stress Mpa 4.821 3.190 1.176 1.411
Max Compressive Stress Mpa 16.800 16.800 16.800 16.800
Check OK OK OK OK
Tensile stress Mpa 252.725 173.060 61.640 73.968
Maximum Tensile Stress Mpa 300.000 300.000 300.000 300.000
Check OK OK OK OK

SLS (Quasi Permanent Combination)


Curtailment
Section Mid Span deffective Face of Haunch
point
Distance from centreline of side wall
m 3.250 2.115 0.675 1.027
MED (Sagging) kNm 205.000 160.000 50.000 60.000
Width (b) mm 1000.000 1000.000 1000.000 1000.000
d mm 652.000 652.000 652.000 652.000
Ast, Provided mm2 1340.413 1340.413 1340.413 1340.413
Checking Section: Cracked or Uncracked
I mm4 2.310E+10 2.310E+10 2.310E+10 2.310E+10
Y = d/2 mm 350.000 350.000 350.000 350.000
σ (Stress) Mpa 3.106 2.425 0.758 0.909
fctm,fl Mpa 2.800 2.800 2.800 2.800
Cracked/Uncracked Cracked Uncracked Uncracked Uncracked

STC Pvt. Ltd. 37


Design of RCC BOX Structures

Finding Stresses considering Cracked Section


Modular ratio 14.403 14.403 14.403 14.403
N.A. depth (dc) mm 140.532 140.532 140.532 140.532
INA mm4 5.976E+09 5.976E+09 5.976E+09 5.976E+09
Compressive stress Mpa 4.821 3.763 1.176 1.411
Max Compressive Stress Mpa 12.600 12.600 12.600 12.600
Check OK OK OK OK
Tensile stress Mpa 252.725 197.249 61.640 73.968
Maximum Tensile Stress Mpa 400.000 400.000 400.000 400.000
Check OK OK OK OK

C) SLS CRACK WIDTH CHECK (QUASI PERMANENT LOAD COMBINATION)


1) CHECK Ast,min for crack control
Curtailment
Section Mid Span deffective Face of Haunch
point
Distance from centreline of side wall
m 3.250 2.115 0.675 1.027

b mm 1000.000 1000.000 1000.000 1000.000


h mm 700.000 700.000 700.000 700.000
d mm 652.000 652.000 652.000 652.000
Act =bh/2 2
mm 350000 350000 350000 350000
σs = fyk Mpa 500.000 500.000 500.000 500.000
k 1.000 1.000 1.000 1.000
kc 0.400 0.400 0.400 0.400
As,min =kc k fct,eff Act /σs 2
mm 812 812 812 812
As,provided 2
mm 1340.41 1340.41 1340.41 1340.41
Check OK OK OK OK

h 0.00 0.30 0.80 3.00


k 1.00 1.00 0.65 0.65

2) CHECK FOR MAXIMUM SPACING b/w bars.


Curtailment
Section Mid Span deffective Face of Haunch
point
Distance from centreline of side wall
m 3.250 2.115 0.675 1.027
Bar diameter mm 16 16 16 16
Cover mm 40 40 40 40
Provided mm 150 150 150 150
Spacing b/w
bars Calculated mm 240 240 240 240
Check OK OK OK OK

STC Pvt. Ltd. 38


Design of RCC BOX Structures

3) CHECK FOR CRACK WIDTH ( IRC 112 / clause 10.3.2 (2) )


Curtailment
Section Mid Span deffective Face of Haunch
point
Distance from centreline of side wall
m 3.250 2.115 0.675 1.027
hc,eff = Min [2.5 (h - d), (h - x)/3 ,
mm 120.00 120.00 120.00 120.00
h/2]
Aceff = hc,eff x b mm2 120000.00 120000.00 120000.00 120000.00
As provided mm2 1340.41 1340.41 1340.41 1340.41
ρpeff = As/Ac,eff 0.0112 0.0112 0.0112 0.0112
Srmax =3.4c + 0.17 Φ /ρPeff mm 379.51 379.51 379.51 379.51
σsc Mpa 252.72 197.25 61.64 73.97
x = neutral axis depth mm 140.53 140.53 140.53 140.53
kt 0.500 0.500 0.500 0.500
αe = Es/Ecm' 14.40 14.40 14.40 14.40
esm - ecm =Max * * σsc - kt fct,eff ( 1+ αe ρP,eff ) /
0.00076 0.00059 0.00018 0.00022
ρP,eff ] /Es , 0.6 σsc/Es ]
wk mm 0.2877 0.2246 0.0702 0.0842
Check OK OK OK OK

D) CHECK FOR SHEAR : ( IRC 112 / clause 10.3.2 (2) )


Check of Shear Reinforcement Requirement
Load combination ULS
Curtailment
Section Mid Span deffective Face of Haunch
point
VED kN 55.00 110.00 200.00 160.00
β 1.000 1.000 0.518 0.788
βVED kN 55.00 110.00 103.53 126.01
d mm 652.00 652.00 652.00 652.00
bw mm 1000.00 1000.00 1000.00 1000.00
k= Min [ 1 + √200/d , 2 + 1.554 1.554 1.554 1.554
Asl 2 1340.413 1340.413 1340.413 1340.413
mm
ρ1 = Min * Asl/bw d , 0.02 + 0.002 0.002 0.002 0.002
3/2
νmin = 0.031 k fck1/2 0.355 0.355 0.355 0.355
σcp Mpa 0 0 0 0
VRdc =Max * ( 0.12 k (80 ρ1 fck )0.33
+ 0.15 σcp ) bw d , (νmin +0.15σcp ) kN 231.610 231.610 231.610 235.345
bw d ]
No Shear reinf. No Shear reinf. No Shear reinf. No Shear reinf.
Check
Required Required Required Required

STC Pvt. Ltd. 39


Design of RCC BOX Structures

DESIGN OF SIDE WALL


SUPPORT - HOGGING
Depth of member (D) = 700.00 mm
Width of the member (b) = 1000.00 mm

MATERIAL PROPERTIES :
Grade of concrete, fck = 35 MPa
Mean value of concrete compressive strength, fcm = 45 MPa
Grade of Reinforcement = 500 MPa
fywd 0.8 fyk = 400 MPa
Clear cover of top slab = 75 mm
Modulus of Elasticity steel Es = 200000 MPa
For short Term loading Ecm = 32308 MPa
For long Term loading Ecm' = 13886 MPa
fctm = 2.80 MPa
fcteff = Max of 2.9 Mpa or fctm = 2.90 MPa
fcd = 15.75 MPa
Cross sectional Area, Ac = 4.060 m2
Perimeter in contact with atmosphere u = 13.00 m
Notational size ho = 624.62 mm
Age of concrete at the time of loading = 90 days
t∞ considered = 25550 days
Creep factor Φ= 1.3267
εuk = 0.00450
εud = 0.00405
εcu2 = 0.0035
xumax/d = 0.4636

PERMISSIBLE STRESSES
1) Permissble concrete compressive stresses
Load Combination Permissble Stress
SLS Rare 0.48 fck = 16.8 MPa
SLS QP 0.36 fck = 12.6 MPa

2) Permissble Tensile stress in steel (Rare) 0.6 fy = 300 MPa


(QP) 0.8 fy = 400 MPa
3) Permissible crack width wk
SLS QP Load combination = 0.3 mm

Maximum Reinforcement
[ Tension Reinf. ] ≤ 0.025AC At section other than Laps
* Tension + Compression + ≤ 0.04AC At any section
Where AC = Gross Cross section Area of Concrete

Minimum Reinforcement :
Ast min = Max [ 0.26 fctm / fyk bt d , 0.0013 bt d ] (Refer IRC:112 clause 16.5.1.1)
bt = Mean width of Tension zone.

STC Pvt. Ltd. 40


Design of RCC BOX Structures

A) ULS CAPACITY CHECK (Side Wall Hogging)

Section Face of Support Face of Haunch Curtailment point deffective

Distance from centreline of side wall m 0.375 0.675 2.115 1.027


MED (Hogging) kNm 630.000 560.000 470.000 520.000
Width (b) mm 1000.000 1000.000 1000.000 1000.000
Overall depth D mm 700.000 700.000 700.000 700.000
d mm 612.500 612.500 612.500 612.500
Diameter mm 25 16 25 16 25 20 25 16
Area of steel
Spacing mm 200 200 200 200 200 200 200 200
provided 2
Ast, Provided mm 3459.679 3459.679 4025.166 3459.679
Reinforcement (%) 0.565 0.565 0.565 0.565
xmax mm 283.940 283.940 283.940 283.940
xu = 0.87 fyk Ast / 0.362 fck b mm 118.781 118.781 138.196 118.781
Check UR, OK UR, OK UR, OK UR, OK
Ast,cal =M/ 0.87 fyk (d'-0.416 xu) mm2 2572.029 2286.248 1946.738 2122.944
Ast Max mm2 162400.000 162400.000 162400.000 162400.000
Check Ast Calc. < Ast Provided < Ast Max OK OK OK OK
Ast min mm2 918.750 918.750 918.750 918.750
Check Ast,provided > Ast min OK OK OK OK
∆Fd kN 192.500 170.000 95.000 127.500
z = d- 0.416 xu m 563.087 563.087 555.010 563.087
MED/z +∆Fd kN 1311.333 1164.518 941.831 1050.981
MRd =0.87 fyk Ast (d-0.416 xu) kNm 847.424 847.424 971.794 847.424
MRD/z kNm/m 1504.960 1504.960 1750.947 1504.960
Check MRD/z > MED/z + ∆Fd OK OK OK OK

Distribution steel at outer side of side wall: (Refer IRC:112 clause 16.6.1.1)
Distribution Reinforcement : At Least 20% of the main Reinforcement = 805.03 mm2
Provide 12 @ 125 mm c/c = 904.779 mm2 OK

B) SLS STRESS CHECK


Rare Load combination. Quasi Permanent Load Combination
Ec,eq = Ecm*(MQP+MST) m = Es / Ecm'
MST + (1+ Φ)* MQP
MST = MRARE -MQP
m = Es / Ec,eq
Flexural tensile Strength:
where,

fctm,fl = mean Flexural tensile strength of solid beam


h = total depth of member in mm

STC Pvt. Ltd. 41


Design of RCC BOX Structures

Formula used for calculation of stress


dc (depth of neutral axis) = .-m x As + √ ( m2 x AS2 + 2 x m x As x b x d )
b
INA (Transformed) = bx dc3/3 + m x As x (d - dc)2

Compressive stress in concrete σc = MRARE x dc / INA


Tensile stress in steel σs = m x MRARE x (d - dc ) / INA

Stress Check for SLS Load Combinations


SLS (Rare Combination)
Section Face of Support Face of Haunch Curtailment point deffective

Distance from centreline of side wall


m 0.375 0.675 2.115 1.027
MED (Hogging) kNm 410.000 380.000 330.000 400.000
Width (b) mm 1000.000 1000.000 1000.000 1000.000
d mm 612.500 612.500 612.500 612.500
Ast, Provided mm2 3459.679 3459.679 4025.166 3459.679
Checking Section: Cracked or Uncracked
I mm4 1.915E+10 1.915E+10 1.915E+10 1.915E+10
Y = d/2 mm 350.000 350.000 350.000 350.000
σ (Stress) Mpa 7.494 6.946 6.032 7.311
fctm,fl Mpa 2.800 2.800 2.800 2.800
Cracked/Uncracked Cracked Cracked Cracked Cracked
Finding Stresses considering Cracked Section
Modular ratio 11.699 11.810 10.421 10.502
N.A. depth (dc) mm 185.843 186.563 188.585 177.744
INA mm4 9.507E+09 9.577E+09 9.774E+09 8.739E+09
Compressive stress Mpa 8.014 7.403 6.367 8.135
Max Compressive Stress Mpa 16.800 16.800 16.800 16.800
Check OK OK OK OK
Tensile stress Mpa 215.253 199.590 149.160 208.978
Maximum Tensile Stress Mpa 300.000 300.000 300.000 300.000
Check OK OK OK OK

SLS (Quasi Permanent Combination)


Section Face of Support Face of Haunch Curtailment point deffective

Distance from centreline of side wall


m 0.375 0.675 2.115 1.027
MED (Hogging) kNm 275.000 260.000 170.000 210.000
Width (b) mm 1000.000 1000.000 1000.000 1000.000
d mm 612.500 612.500 612.500 612.500
Ast, Provided mm2 3459.679 3459.679 4025.166 3459.679
Checking Section: Cracked or Uncracked
I mm4 1.915E+10 1.915E+10 1.915E+10 1.915E+10
Y = d/2 mm 350.000 350.000 350.000 350.000
σ (Stress) Mpa 5.026 4.752 3.107 3.838
fctm,fl Mpa 2.800 2.800 2.800 2.800
Cracked/Uncracked Cracked Cracked Cracked Cracked

STC Pvt. Ltd. 42


Design of RCC BOX Structures

Finding Stresses considering Cracked Section


Modular ratio 14.403 14.403 14.403 14.403
N.A. depth (dc) mm 202.212 202.212 214.753 202.212
INA mm4 1.114E+10 1.114E+10 1.247E+10 1.114E+10
Compressive stress Mpa 4.990 4.718 2.927 3.810
Max Compressive Stress Mpa 12.600 12.600 12.600 12.600
Check OK OK OK OK
Tensile stress Mpa 145.822 137.868 78.079 111.355
Maximum Tensile Stress Mpa 400.000 400.000 400.000 400.000
Check OK OK OK OK

C) SLS CRACK WIDTH CHECK (QUASI PERMANENT LOAD COMBINATION)


1) CHECK Ast,min for crack control
Section Face of Support Face of Haunch Curtailment point deffective

Distance from centreline of side wall


m 0.375 0.675 2.115 1.027

b mm 1000.000 1000.000 1000.000 1000.000


h mm 700.000 700.000 700.000 700.000
d mm 612.500 612.500 612.500 612.500
Act =bh/2 2
mm 350000 350000 350000 350000
σs = fyk Mpa 500.000 500.000 500.000 500.000
k 1.000 1.000 1.000 1.000
kc 0.400 0.400 0.400 0.400
As,min =kc k fct,eff Act /σs 2
mm 812 812 812 812
As,provided 2
mm 3459.68 3459.68 4025.17 3459.68
Check OK OK OK OK

h 0.00 0.30 0.80 3.00


k 1.00 1.00 0.65 0.65

2) CHECK FOR MAXIMUM SPACING b/w bars.


Section Face of Support Face of Haunch Curtailment point deffective

Distance from centreline of side wall


m 0.375 0.675 2.115 1.027
Bar diameter mm 25 25 25 25
Cover mm 75 75 75 75
Provided mm 200 200 200 200
Spacing b/w
bars Calculated mm 437.5 437.5 437.5 437.5
Check OK OK OK OK

STC Pvt. Ltd. 43


Design of RCC BOX Structures

3) CHECK FOR CRACK WIDTH ( IRC 112 / clause 10.3.2 (2) )


Section Face of Support Face of Haunch Curtailment point deffective

Distance from centreline of side wall


m 0.375 0.675 2.115 1.027
hc,eff = Min [2.5 (h - d), (h - x)/3 ,
mm 138.69 138.69 138.69 138.69
h/2]
Aceff = hc,eff x b mm2 138686.53 138686.53 138686.53 138686.53
As provided mm2 3459.68 3459.68 4025.17 3459.68
ρpeff = As/Ac,eff 0.0249 0.0249 0.0290 0.0249
Srmax =3.4c + 0.17 Φ /ρPeff mm 425.37 425.37 401.43 425.37
σsc Mpa 145.82 137.87 78.08 111.36
x = neutral axis depth mm 202.21 202.21 214.75 202.21
kt 0.500 0.500 0.500 0.500
αe = Es/Ecm' 14.40 14.40 14.40 14.40
esm - ecm =Max * * σsc - kt fct,eff ( 1+ αe ρP,eff ) /
0.00044 0.00041 0.00023 0.00033
ρP,eff ] /Es , 0.6 σsc/Es ]
wk mm 0.1861 0.1759 0.0940 0.1421
Check OK OK OK OK

D) CHECK FOR SHEAR : ( IRC 112 / clause 10.3.2 (2) )


Check of Shear Reinforcement Requirement
Load combination ULS
Section Face of Support Face of Haunch Curtailment point deffective

VED kN 385.00 340.00 190.00 255.00


β 0.5000 0.5510 1.0000 0.8384
βVED kN 192.50 187.35 190.00 213.78
d mm 612.50 612.50 612.50 612.50
bw mm 1000.00 1000.00 1000.00 1000.00
k= Min [ 1 + √200/d , 2 + 1.571 1.571 1.571 1.571
Asl 2 3459.679 3459.679 4025.166 3459.679
mm
ρ1 = Min * Asl/bw d , 0.02 + 0.006 0.006 0.007 0.006
3/2
νmin = 0.031 k fck1/2 0.361 0.361 0.361 0.361
σcp Mpa 0 0 0 0
VRdc =Max * ( 0.12 k (80 ρ1 fck )0.33
+ 0.15 σcp ) bw d , (νmin +0.15σcp ) kN 287.264 287.264 301.980 312.103
bw d ]
No Shear reinf. No Shear reinf. No Shear reinf. No Shear reinf.
Check
Required Required Required Required

STC Pvt. Ltd. 44


Design of RCC BOX Structures

DESIGN OF BOTTOM SLAB


MIDSPAN - SAGGING
Depth of member (D) = 750.00 mm
Width of the member (b) = 1000.00 mm

MATERIAL PROPERTIES :
Grade of concrete, fck = 35 MPa
Mean value of concrete compressive strength, fcm = 45 MPa
Grade of Reinforcement = 500 MPa
fywd 0.8 fyk = 400 MPa
Clear cover of top slab = 40 mm
Modulus of Elasticity steel Es = 200000 MPa
For short Term loading Ecm = 32308 MPa
For long Term loading Ecm' = 13941 MPa
fctm = 2.80 MPa
fcteff = Max of 2.9 Mpa or fctm = 2.90 MPa
fcd = 15.75 MPa
Cross sectional Area, Ac = 7.640 m2
Perimeter in contact with atmosphere u = 21.87 m
Notational size ho = 698.57 mm
Age of concrete at the time of loading = 90 days
t∞ considered = 25550 days
Creep factor Φ= 1.3175
εuk = 0.00450
εud = 0.00405
εcu2 = 0.0035
xumax/d = 0.4636

PERMISSIBLE STRESSES
1) Permissble concrete compressive stresses
Load Combination Permissble Stress
SLS Rare 0.48 fck = 16.8 MPa
SLS QP 0.36 fck = 12.6 MPa

2) Permissble Tensile stress in steel (Rare) 0.6 fy = 300 MPa


(QP) 0.8 fy = 400 MPa
3) Permissible crack width wk
SLS QP Load combination = 0.3 mm

Maximum Reinforcement
[ Tension Reinf. ] ≤ 0.025AC At section other than Laps
* Tension + Compression + ≤ 0.04AC At any section
Where AC = Gross Cross section Area of Concrete

Minimum Reinforcement :
Ast min = Max [ 0.26 fctm / fyk bt d , 0.0013 bt d ] (Refer IRC:112 clause 16.5.1.1)
bt = Mean width of Tension zone.

STC Pvt. Ltd. 45


Design of RCC BOX Structures

A) ULS CAPACITY CHECK (Bottom Slab Sagging)

Section Mid Span Curtailment point deffective Face of Haunch

Distance from centreline of side wall m 5.444 3.406 0.650 1.050


MED (Sagging) kNm 680.000 590.000 80.000 150.000
Width (b) mm 1000.000 1000.000 1000.000 1000.000
Overall depth D mm 750.000 750.000 750.000 750.000
d mm 700.000 700.000 700.000 700.000
Diameter mm 20 16 20 16 20 16 20 16
Area of steel
Spacing mm 200 200 200 200 200 200 200 200
provided 2
Ast, Provided mm 2576.106 2576.106 2576.106 2576.106
Reinforcement (%) 0.368 0.368 0.368 0.368
xmax mm 324.503 324.503 324.503 324.503
xu = 0.87 fyk Ast / 0.362 fck b mm 88.446 88.446 88.446 88.446
Check UR, OK UR, OK UR, OK UR, OK
Ast,cal =M/ 0.87 fyk (d'-0.416 xu) mm2 2357.061 2045.097 277.301 519.940
Ast Max mm2 305615.008 305615.008 305615.008 305615.008
Ast Calc. < Ast Provided < Ast Max OK OK OK OK
Ast min mm2 1050.000 1050.000 1050.000 1050.000
Check Ast,provided > Ast min OK OK OK OK
∆Fd kN 18.000 50.000 160.000 140.000
z = d- 0.416 xu m 663.207 663.207 663.207 663.207
MED/z +∆Fd kN 1043.321 939.617 280.626 366.174
MRd =0.87 fyk Ast (d-0.416 xu) kNm 743.193 743.193 743.193 743.193
MRD/z kNm/m 1120.606 1120.606 1120.606 1120.606
Check MRD/z > MED/z + ∆Fd OK OK OK OK

Distribution steel at top of bottom slab: (Refer IRC:112 clause 16.6.1.1)


Distribution Reinforcement : At Least 20% of the main Reinforcement = 515.22 mm2
Provide 12 @ 125 mm c/c = 904.78 mm2 OK

B) SLS STRESS CHECK


Rare Load combination. Quasi Permanent Load Combination
Ec,eq = Ecm*(MQP+MST) m = Es / Ecm'
MST + (1+ Φ)* MQP
MST = MRARE -MQP
m = Es / Ec,eq
Flexural tensile Strength:
where,

fctm,fl = mean Flexural tensile strength of solid beam


h = total depth of member in mm
Formula used for calculation of stress

STC Pvt. Ltd. 46


Design of RCC BOX Structures

dc (depth of neutral axis) = .-m x As + √ ( m2 x AS2 + 2 x m x As x b x d )


b
INA (Transformed) = b x dc3/3 + m x As x (d - dc)2

Compressive stress in concrete σc = MRARE x dc / INA


Tensile stress in steel σs = m x MRARE x (d - dc ) / INA

Stress Check for SLS Load Combinations


SLS (Rare Combination)
Curtailment
Section Mid Span deffective Face of Haunch
point
Distance from centreline of side wall
m 5.444 3.406 0.650 1.050
MED (Sagging) kNm 470.000 405.000 75.000 90.000
Width (b) mm 1000.000 1000.000 1000.000 1000.000
d mm 700.000 700.000 700.000 700.000
Ast, Provided mm2 2576.106 2576.106 2576.106 2576.106
Checking Section: Cracked or Uncracked
I mm4 2.858E+10 2.858E+10 2.858E+10 2.858E+10
Y = d/2 mm 375.000 375.000 375.000 375.000
σ (Stress) Mpa 6.166 5.313 0.984 1.181
fctm,fl Mpa 2.800 2.800 2.800 2.800
Cracked/Uncracked Cracked Cracked Uncracked Uncracked
Finding Stresses considering Cracked Section
Modular ratio 12.784 12.836 13.803 12.534
N.A. depth (dc) mm 184.304 184.618 190.372 182.761
INA mm4 1.085E+10 1.088E+10 1.153E+10 1.067E+10
Compressive stress Mpa 7.987 6.872 1.238 1.541
Max Compressive Stress Mpa 16.800 16.800 16.800 16.800
Check OK OK OK OK
Tensile stress Mpa 285.712 246.239 45.737 54.667
Maximum Tensile Stress Mpa 300.000 300.000 300.000 300.000
Check OK OK OK OK

SLS (Quasi Permanent Combination)


Curtailment
Section Mid Span deffective Face of Haunch
point
Distance from centreline of side wall
m 5.444 3.406 0.650 1.050
MED (Sagging) kNm 380.000 330.000 70.000 70.000
Width (b) mm 1000.000 1000.000 1000.000 1000.000
d mm 700.000 700.000 700.000 700.000
Ast, Provided mm2 2576.106 2576.106 2576.106 2576.106
Checking Section: Cracked or Uncracked
I mm4 2.858E+10 2.858E+10 2.858E+10 2.858E+10
Y = d/2 mm 375.000 375.000 375.000 375.000
σ (Stress) Mpa 4.985 4.329 0.918 0.918
fctm,fl Mpa 2.800 2.800 2.800 2.800
Cracked/Uncracked Cracked Cracked Uncracked Uncracked

STC Pvt. Ltd. 47


Design of RCC BOX Structures

Finding Stresses considering Cracked Section


Modular ratio 14.346 14.346 14.346 14.346
N.A. depth (dc) mm 193.490 193.490 193.490 193.490
INA mm4 1.190E+10 1.190E+10 1.190E+10 1.190E+10
Compressive stress Mpa 6.181 5.367 1.139 1.139
Max Compressive Stress Mpa 12.600 12.600 12.600 12.600
Check OK OK OK OK
Tensile stress Mpa 232.114 201.573 42.758 42.758
Maximum Tensile Stress Mpa 400.000 400.000 400.000 400.000
Check OK OK OK OK

C) SLS CRACK WIDTH CHECK (QUASI PERMANENT LOAD COMBINATION)


1) CHECK Ast,min for crack control
Curtailment
Section Mid Span deffective Face of Haunch
point
Distance from centreline of side wall
m 5.444 3.406 0.650 1.050

b mm 1000.000 1000.000 1000.000 1000.000


h mm 750.000 750.000 750.000 750.000
d mm 700.000 700.000 700.000 700.000
Act =bh/2 2
mm 375000 375000 375000 375000
σs = fyk Mpa 500.000 500.000 500.000 500.000
k 1.000 1.000 1.000 1.000
kc 0.400 0.400 0.400 0.400
As,min =kc k fct,eff Act /σs 2
mm 870 870 870 870
As,provided 2
mm 2576.11 2576.11 2576.11 2576.11
Check OK OK OK OK

h 0.00 0.30 0.80 3.00


k 1.00 1.00 0.65 0.65

2) CHECK FOR MAXIMUM SPACING b/w bars.


Curtailment
Section Mid Span deffective Face of Haunch
point
Distance from centreline of side wall
m 5.444 3.406 0.650 1.050
Bar diameter mm 20 20 20 20
Cover mm 40 40 40 40
Provided mm 200 200 200 200
Spacing b/w
bars Calculated mm 250 250 250 250
Check OK OK OK OK

STC Pvt. Ltd. 48


Design of RCC BOX Structures

3) CHECK FOR CRACK WIDTH ( IRC 112 / clause 10.3.2 (2) )


Curtailment
Section Mid Span deffective Face of Haunch
point
Distance from centreline of side wall
m 5.444 3.406 0.650 1.050
hc,eff = Min [2.5 (h - d), (h - x)/3 ,
mm 125.00 125.00 125.00 125.00
h/2]
Aceff = hc,eff x b mm2 125000.00 125000.00 125000.00 125000.00
As provided mm2 2576.11 2576.11 2576.11 2576.11
ρpeff = As/Ac,eff 0.0206 0.0206 0.0206 0.0206
Srmax =3.4c + 0.17 Φ /ρPeff mm 300.98 300.98 300.98 300.98
σsc Mpa 232.11 201.57 42.76 42.76
x = neutral axis depth mm 193.49 193.49 193.49 193.49
kt 0.500 0.500 0.500 0.500
αe = Es/Ecm' 14.35 14.35 14.35 14.35
esm - ecm =Max * * σsc - kt fct,eff ( 1+ αe ρP,eff ) /
0.00070 0.00060 0.00013 0.00013
ρP,eff ] /Es , 0.6 σsc/Es ]
wk mm 0.2121 0.1820 0.0386 0.0386
Check OK OK OK OK

D) CHECK FOR SHEAR : ( IRC 112 / clause 10.3.2 (2) )


Check of Shear Reinforcement Requirement
Load combination ULS
Curtailment
Section Mid Span deffective Face of Haunch
point
VED kN 36.00 100.00 320.00 280.00
β 1.000 1.000 0.500 0.750
βVED kN 36.00 100.00 160.00 210.00
d mm 700.00 700.00 700.00 700.00
bw mm 1000.00 1000.00 1000.00 1000.00
k= Min [ 1 + √200/d , 2 + 1.535 1.535 1.535 1.535
Asl 2 2576.106 2576.106 2576.106 2576.106
mm
ρ1 = Min * Asl/bw d , 0.02 + 0.004 0.004 0.004 0.004
3/2
νmin = 0.031 k fck1/2 0.349 0.349 0.349 0.349
σcp Mpa 0 0 0 0
VRdc =Max * ( 0.12 k (80 ρ1 fck )0.33
+ 0.15 σcp ) bw d , (νmin +0.15σcp ) kN 278.324 278.324 278.324 302.390
bw d ]
No Shear reinf. No Shear reinf. No Shear reinf. No Shear reinf.
Check
Required Required Required Required

STC Pvt. Ltd. 49


Design of RCC BOX Structures

DESIGN OF BOTTOM SLAB


SUPPORT - HOGGING
Depth of member (D) = 750.00 mm
Width of the member (b) = 1000.00 mm

MATERIAL PROPERTIES :
Grade of concrete, fck = 35 MPa
Mean value of concrete compressive strength, fcm = 45 MPa
Grade of Reinforcement = 500 MPa
fywd 0.8 fyk = 400 MPa
Clear cover of top slab = 40 mm
Modulus of Elasticity steel Es = 200000 MPa
For short Term loading Ecm = 32308 MPa
For long Term loading Ecm' = 13941 MPa
fctm = 2.80 MPa
fcteff = Max of 2.9 Mpa or fctm = 2.90 MPa
fcd = 15.75 MPa
Cross sectional Area, Ac = 7.640 m2
Perimeter in contact with atmosphere u = 21.87 m
Notational size ho = 698.57 mm
Age of concrete at the time of loading = 90 days
t∞ considered = 25550 days
Creep factor Φ= 1.3175
εuk = 0.00450
εud = 0.00405
εcu2 = 0.0035
xumax/d = 0.4636

PERMISSIBLE STRESSES
1) Permissble concrete compressive stresses
Load Combination Permissble Stress
SLS Rare 0.48 fck = 16.8 MPa
SLS QP 0.36 fck = 12.6 MPa

2) Permissble Tensile stress in steel (Rare) 0.6 fy = 300 MPa


(QP) 0.8 fy = 400 MPa
3) Permissible crack width wk
SLS QP Load combination = 0.3 mm

Maximum Reinforcement
[ Tension Reinf. ] ≤ 0.025AC At section other than Laps
* Tension + Compression + ≤ 0.04AC At any section
Where AC = Gross Cross section Area of Concrete

Minimum Reinforcement :
Ast min = Max [ 0.26 fctm / fyk bt d , 0.0013 bt d ] (Refer IRC:112 clause 16.5.1.1)
bt = Mean width of Tension zone.

STC Pvt. Ltd. 50


Design of RCC BOX Structures

A) ULS CAPACITY CHECK (Top Slab Hogging)

Section Face of Support Face of Haunch Curtailment point deffective

Distance from centreline of side wall m 0.350 0.650 3.406 1.050


MED (Hogging) kNm 610.000 465.000 85.000 370.000
Width (b) mm 1000.000 1000.000 1000.000 1000.000
Overall depth D mm 750.000 750.000 750.000 750.000
d mm 700.000 700.000 700.000 700.000
Diameter mm 20 16 20 16 20 16 20 16
Area of steel
Spacing mm 200 200 200 200 200 200 200 200
provided 2
Ast, Provided mm 2576.106 2576.106 2576.106 2576.106
Reinforcement (%) 0.368 0.368 0.368 0.368
xmax mm 324.503 324.503 324.503 324.503
xu = 0.87 fyk Ast / 0.362 fck b mm 88.446 88.446 88.446 88.446
Check UR, OK UR, OK UR, OK UR, OK
Ast,cal =M/ 0.87 fyk (d'-0.416 xu) mm2 2114.422 1611.814 294.633 1282.518
Ast Max mm2 305615.008 305615.008 305615.008 305615.008
Check Ast Calc. < Ast Provided < Ast Max OK OK OK OK
Ast min mm2 1050.000 1050.000 1050.000 1050.000
Check Ast,provided > Ast min OK OK OK OK
∆Fd kN 185.000 167.500 90.000 130.000
z = d- 0.416 xu m 663.207 663.207 663.207 663.207
MED/z +∆Fd kN 1104.774 868.639 218.165 687.896
MRd =0.87 fyk Ast (d-0.416 xu) kNm 743.193 743.193 743.193 743.193
MRD/z kNm/m 1120.606 1120.606 1120.606 1120.606
Check MRD/z > MED/z + ∆Fd OK OK OK OK

Distribution steel at bottom of bottom slab: (Refer IRC:112 clause 16.6.1.1)


Distribution Reinforcement : At Least 20% of the main Reinforcement = 515.22 mm2
Provide 12 @ 125 mm c/c = 904.7787 mm2 OK

B) SLS STRESS CHECK


Rare Load combination. Quasi Permanent Load Combination
Ec,eq = Ecm*(MQP+MST) m = Es / Ecm'
MST + (1+ Φ)* MQP
MST = MRARE -MQP
m = Es / Ec,eq
Flexural tensile Strength:
where,

fctm,fl = mean Flexural tensile strength of solid beam


h = total depth of member in mm

STC Pvt. Ltd. 51


Design of RCC BOX Structures

Formula used for calculation of stress


dc (depth of neutral axis) = .-m x As + √ ( m2 x AS2 + 2 x m x As x b x d )
b
INA (Transformed) = bx dc3/3 + m x As x (d - dc)2

Compressive stress in concrete σc = MRARE x dc / INA


Tensile stress in steel σs = m x MRARE x (d - dc ) / INA

Stress Check for SLS Load Combinations


SLS (Rare Combination)
Section Face of Support Face of Haunch Curtailment point deffective

Distance from centreline of side wall


m 0.350 0.650 3.406 1.050
MED (Hogging) kNm 425.000 325.000 85.000 190.000
Width (b) mm 1000.000 1000.000 1000.000 1000.000
d mm 700.000 700.000 700.000 700.000
Ast, Provided mm2 2576.106 2576.106 2576.106 2576.106
Checking Section: Cracked or Uncracked
I mm4 2.858E+10 2.858E+10 2.858E+10 2.858E+10
Y = d/2 mm 375.000 375.000 375.000 375.000
σ (Stress) Mpa 5.576 4.264 1.115 2.493
fctm,fl Mpa 2.800 2.800 2.800 2.800
Cracked/Uncracked Cracked Cracked Uncracked Uncracked
Finding Stresses considering Cracked Section
Modular ratio 12.619 12.464 14.058 14.346
N.A. depth (dc) mm 183.288 182.329 191.849 193.490
INA mm4 1.073E+10 1.063E+10 1.171E+10 1.190E+10
Compressive stress Mpa 7.259 5.577 1.393 3.090
Max Compressive Stress Mpa 16.800 16.800 16.800 16.800
Check OK OK OK OK
Tensile stress Mpa 258.220 197.363 51.876 116.057
Maximum Tensile Stress Mpa 300.000 300.000 300.000 300.000
Check OK OK OK OK

SLS (Quasi Permanent Combination)


Section Face of Support Face of Haunch Curtailment point deffective

Distance from centreline of side wall


m 0.350 0.650 3.406 1.050
MED (Hogging) kNm 335.000 250.000 82.000 190.000
Width (b) mm 1000.000 1000.000 1000.000 1000.000
d mm 700.000 700.000 700.000 700.000
Ast, Provided mm2 2576.106 2576.106 2576.106 2576.106
Checking Section: Cracked or Uncracked
I mm4 2.858E+10 2.858E+10 2.858E+10 2.858E+10
Y = d/2 mm 375.000 375.000 375.000 375.000
σ (Stress) Mpa 4.395 3.280 1.076 2.493
fctm,fl Mpa 2.800 2.800 2.800 2.800
Cracked/Uncracked Cracked Cracked Uncracked Uncracked

STC Pvt. Ltd. 52


Design of RCC BOX Structures

Finding Stresses considering Cracked Section


Modular ratio 14.346 14.346 14.346 14.346
N.A. depth (dc) mm 193.490 193.490 193.490 193.490
INA mm4 1.190E+10 1.190E+10 1.190E+10 1.190E+10
Compressive stress Mpa 5.449 4.066 1.334 3.090
Max Compressive Stress Mpa 12.600 12.600 12.600 12.600
Check OK OK OK OK
Tensile stress Mpa 204.627 152.707 50.088 116.057
Maximum Tensile Stress Mpa 400.000 400.000 400.000 400.000
Check OK OK OK OK

C) SLS CRACK WIDTH CHECK (QUASI PERMANENT LOAD COMBINATION)


1) CHECK Ast,min for crack control
Section Face of Support Face of Haunch Curtailment point deffective

Distance from centreline of side wall


m 0.350 0.650 3.406 1.050

b mm 1000.000 1000.000 1000.000 1000.000


h mm 750.000 750.000 750.000 750.000
d mm 700.000 700.000 700.000 700.000
Act =bh/2 2
mm 375000 375000 375000 375000
σs = fyk Mpa 500.000 500.000 500.000 500.000
k 1.000 1.000 1.000 1.000
kc 0.400 0.400 0.400 0.400
As,min =kc k fct,eff Act /σs 2
mm 870 870 870 870
As,provided 2
mm 2576.11 2576.11 2576.11 2576.11
Check OK OK OK OK

h 0.00 0.30 0.80 3.00


k 1.00 1.00 0.65 0.65

2) CHECK FOR MAXIMUM SPACING b/w bars.


Section Face of Support Face of Haunch Curtailment point deffective

Distance from centreline of side wall


m 0.350 0.650 3.406 1.050
Bar diameter mm 20 20 20 20
Cover mm 40 40 40 40
Provided mm 200 200 200 200
Spacing b/w
bars Calculated mm 250 250 250 250
Check OK OK OK OK

STC Pvt. Ltd. 53


Design of RCC BOX Structures

3) CHECK FOR CRACK WIDTH ( IRC 112 / clause 10.3.2 (2) )


Section Face of Support Face of Haunch Curtailment point deffective

Distance from centreline of side wall


m 0.350 0.650 3.406 1.050
hc,eff = Min [2.5 (h - d), (h - x)/3 ,
mm 125.00 125.00 125.00 125.00
h/2]
Aceff = hc,eff x b mm2 125000.00 125000.00 125000.00 125000.00
As provided mm2 2576.11 2576.11 2576.11 2576.11
ρpeff = As/Ac,eff 0.0206 0.0206 0.0206 0.0206
Srmax =3.4c + 0.17 Φ /ρPeff mm 300.98 300.98 300.98 300.98
σsc Mpa 204.63 152.71 50.09 116.06
x = neutral axis depth mm 193.49 193.49 193.49 193.49
kt 0.500 0.500 0.500 0.500
αe = Es/Ecm' 14.35 14.35 14.35 14.35
esm - ecm =Max * * σsc - kt fct,eff ( 1+ αe ρP,eff ) /
0.00061 0.00046 0.00015 0.00035
ρP,eff ] /Es , 0.6 σsc/Es ]
wk mm 0.1848 0.1379 0.0452 0.1048
Check OK OK OK OK

D) CHECK FOR SHEAR : ( IRC 112 / clause 10.3.2 (2) )


Check of Shear Reinforcement Requirement
Load combination ULS
Section Face of Support Face of Haunch Curtailment point deffective

VED kN 370.00 335.00 180.00 260.00


β 0.5000 0.5000 1.0000 0.7500
βVED kN 185.00 167.50 180.00 195.00
d mm 700.00 700.00 700.00 700.00
bw mm 1000.00 1000.00 1000.00 1000.00
k= Min [ 1 + √200/d , 2 + 1.535 1.535 1.535 1.535
Asl 2 2576.106 2576.106 2576.106 2576.106
mm
ρ1 = Min * Asl/bw d , 0.02 + 0.004 0.004 0.004 0.004
3/2
νmin = 0.031 k fck1/2 0.349 0.349 0.349 0.349
σcp Mpa 0 0 0 0
VRdc =Max * ( 0.12 k (80 ρ1 fck )0.33
+ 0.15 σcp ) bw d , (νmin +0.15σcp ) kN 278.324 278.324 278.324 302.390
bw d ]
No Shear reinf. No Shear reinf. No Shear reinf. No Shear reinf.
Check
Required Required Required Required

STC Pvt. Ltd. 54


Design of RCC BOX Structures

Calculation of Base Pressure

Load Factor for Base Pressure


IRC 6:2014 Table 3.4 Column 2

Permanent Loads (Dead Load, SIDL except Surfacing = 1


Surfacing = 1
Live Load(Leading Load) = 1

Overall Span of Box = 11.613 m


Box Barrel Length Considered = 15.281 m
Unit Weight of Concrete = 25.000 kN/m3

1) Self Weight of Box:


Box cross sectional area = 24.379 m2
Total Box Weight = 9313.128 kN
Factored Total Weight of Box = 9313.128 kN

2) SIDL (Wearing Coat,Crash Barrier, Footpath etc)


Earth Fill/Wearing Coat = 1.430 kN/m2
Crash Barrier = 10.000 kN/m
Width of Crash Barrier = 0.450 m
Total Weight of Wearing Coat over box = 253.769 kN
Total Weight of Crash barrier = 232.267 kN
Total SIDL = 486.037 kN
Factored SIDL Load = 486.037 kN

3) Live Load
(70R Bogie Load) = 400.000 kN
Factored Live Load = 400.000 kN
Maximum Eccentricity of LL from c/l of carriageway = 0.405 m
Eccentric Moment in Transverse Direction = 162 kNm
Inertia of base about Longitudinal axis = 3453.115 m4
Area of Base = 177.46101 m2

Maximum Base Pressure due to Live Load = 400.000 + 162 x 7.6403752


177.461013 3453.115
= 2.61 kN/m2
= 3.27 kN/m2 (Increased by 25%)

Maximum Base Pressure due to DL = 9313.128 = 52.480 kN/m2


177.461013

Maximum Base Pressure due to SIDL = 486.037 = 2.739 kN/m2


177.461013

Total Base Pressure = 58.48 kN/m2 < 120.00 kN/m2


SAFE

STC Pvt. Ltd. 55

You might also like