Nothing Special   »   [go: up one dir, main page]

Insdag Report PDF

Download as pdf or txt
Download as pdf or txt
You are on page 1of 51

Steel Intensive Innovative Food Grain

Godown
[Entry for National Award Competition (INSDAG) 2019-20]

GROUP NO;
W-12

PARTICIPANT:
JAY PARMAR

GUIDED BY:
Dr. SANDIP A. VASANWALA
Professor SVNIT, SURAT

Applied Mechanics Department


S V National Institute of Technology, Surat – 395 007

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 1


ACKNOWLEDGEMENT

I am pleased to take this opportunity to thank all those who helped us during this project. First and
foremost, we would like to express our deepest gratitude and sincere appreciation to our guide –
Dr. Sandip A. Vasanwala, Professor, Applied Mechanics Department. It is my privilege to thank Ms.
Rudra Mehta PhD student at SVNIT for his keen interest. He made sure to keep in touch with us despite
of their busy schedule to support us throughout the term. Who guided and supported us at every step.
Without their suggestions and encouragements, I could not have completed the project.

We are obliged to Dr. Y D Patil (HOD), Applied Mechanics Department to allow us to participate and
represent our college in such a distinguished competition.

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 2


WRITE UP
It is proposed to build cold storage in Jalpaiguri West Bengal. For this extensive study of importance
of development of cold storage is done which provide information of its component, feature and its
impact on society. For more understanding of structural system and which structural system is to be
proposed, literature review and study of cold storage near Surat city is done which provide key feature
of design concept. Ultimately, we ended up on dividing structure into five different parts (A1-A5).
Also ridge line is established in such way that future expansion will be easy. Keeping in mind the
aesthetic, economic and serviceability aspects. With this the first phase of the project gets complete
over layout of building which involves architectural design coupled with proper structural system.

The second phase of the project involves the structural design of the cold storage. The procedure is
carried out considering general guidelines given by INSDAG. The frames of the structure are analysed
and design iterations are done in STAAD Pro to arrive at an optimum section. The analysis of the
obtained critical sections is checked manually. The various considerations and assumptions in design
are mentioned separately at appropriate locations.

Finally, a bill of materials is prepared for the proposed structure after calculating the total quantity of
materials and considering current market rates.

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 3


Table of Contents
WRITE UP ..................................................................................................................................................................... 3

1 INTRODUCTION ................................................................................................................................................... 5

2 TERMINOLOGY .................................................................................................................................................... 5

3 LITERATURE REVIEW - STUDY .............................................................................................................................. 6

3.1 STEEL FRAME VERSUS RACK SUPPORTED WAREHOUSE STRUCTURES.................................................................... 6

4 GENERAL GUIDELINES BY INSDAG ....................................................................................................................... 7

4.1 FACILITIES ............................................................................................................................................................... 7


4.2 MATERIALS FOR CONSTRUCTION ........................................................................................................................... 7
4.3 STANDARD SHAPE OF THE STRUCTURE .................................................................................................................. 7
4.4 DESIGN LOADS ........................................................................................................................................................ 7
4.5 GUIDELINES ............................................................................................................................................................ 8

5 LOAD CALCULATION ............................................................................................................................................ 8

5.1 LOAD ON STACKING STRUCTURE SYSTEM A1-A4 .................................................................................................... 8


5.2 LOAD ON MAIN STRUCTURE SYSTEM A5 ................................................................................................................ 9

6 LOAD COMBINATION..........................................................................................................................................14

6.1 FOR STRUCTURE A1-4 ........................................................................................................................................... 14


6.2 FOR STRUCTURE A5 .............................................................................................................................................. 14

7 ANALYSIS OF BEAM AND COLUMN .....................................................................................................................16

7.1 ANALYSIS OF BEAM ............................................................................................................................................... 16


7.2 ANALYSIS OF COLUMN .......................................................................................................................................... 17

8 DESIGN OF CONNECTION ....................................................................................................................................19

8.1 DESIGN OF CONNECTION FOR STRUCTURE A1-4 .................................................................................................. 19


8.1.1 DESIGN OF BEAM SPLICE ............................................................................................................................. 19
8.1.2 DESIGN OF COLUMN SPLICE ........................................................................................................................ 21
8.1.3 DESIGN OF BEAM TO BEAM SHEAR CONNECTION ...................................................................................... 23
8.1.4 DESIGN OF BEAM TO COLUMN MOMENT CONNECTION ........................................................................... 25
8.1.5 DESIGN OF BASE PLATE ............................................................................................................................... 27
8.2 DESIGN OF CONNECTION FOR STRUCTURE A5 ..................................................................................................... 28
8.2.1 DESING OF BASE PLATE ............................................................................................................................... 28
8.2.2 CONNECTION OF TUBULAR SECTION OF TRUSS .......................................................................................... 30
8.2.3 BRACKET CONNECTION OF TRUSS TO COLUMN ......................................................................................... 30
8.2.4 CONNECRION OF GIRT TO COLUMN ........................................................................................................... 31

9 CHECK FOR POUNDING .......................................................................................................................................31

10 BILL OF MATERIAL ..............................................................................................................................................32

11 STAAD IN FILES ...................................................................................................................................................33

12 REFERENCE .........................................................................................................................................................51

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 4


1 INTRODUCTION
Cold storage is essential part of Agricultural sector. Construction of cold storage is rapidly increasing
under National Cold-Chain Development program by Ministry of Agriculture.

Cold storage is the one widely practiced method for bulk handling of the perishables between
production and marketing process. It is one of the methods of preserving perishable commodities in
fresh and wholesome state for a longer period by controlling temperature and humidity within the
storage system. Maintaining adequately low temperature is critical, as otherwise it will cause chilling
injury to the produce.

Food storage godown allows food to be eaten for some time (typically weeks to months)
after harvest rather than solely immediately. It is both a traditional domestic skill and, in the form
of food logistics, an important industrial and commercial activity. Food preservation, storage, and
transport, including timely delivery to consumers, are important to food security, especially for the
majority of people throughout the world who rely on others to produce their food. Food is stored by
almost every human society and by many animals. Storing of food has several main purposes:
• Storage of harvested and processed plant and animal food products distribution to consumers.
• Provide farmer to logistic technology that make feasible to reach multitude of consuming area.
• Enabling a better-balanced diet throughout the year.
• Reducing kitchen waste by preserving unused or uneaten food for later use.
• Preserving pantry food, such as spices or dry ingredients like rice and flour, for eventual use in
cooking.
• Preparedness for catastrophes, emergencies and periods of food scarcity or famine.
• Protection from weather.

2 TERMINOLOGY
1. Storage chamber: These chambers are suitable for storing pharmaceutical drugs, blood sample,
fruits and sea foods under controlled temperature.
2. Chiller chamber: These rooms are designed and equipped with integrated Refrigeration
equipment and Electronic system designed for better storage condition control and energy
savings.
3. Ante room chamber: This shall be designed to accommodate staircase, electrical hoist cage and
have wider doors. Provision for fire escape stair & exits to be made as per local norms. The
inter floors in ante room to have doors to each cold room on each floor.
4. Dry shed: These are the location that offers constant low temperatures and low humidity.

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 5


3 LITERATURE REVIEW - STUDY

3.1 STEEL FRAME VERSUS RACK SUPPORTED WAREHOUSE STRUCTURES


by Rodoljub Vujanac, Miroslav Živković, Radovan Slavković, Snežana Vulović

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online)


https://doi.org/10.17559/TV-20140226220936
ABSTRACT
Steel frame buildings based on vertical steel columns and horizontal beams or lattice are the most
common style for industrial and distribution warehouses. Depending on the use, these typical
warehouses are equipped with various types of free standing racks. Construction of self-supporting
pallet racking warehouse, as a special form of pre-fabricated building, consists mainly of the racking
system elements supporting the roof and walls, and also serves to storage materials. All elements are
made of structural thin-walled steel profiles that provide the necessary lightness and low cost of
construction. In this paper two systems of warehouse buildings are presented. Two structural designs
are analysed and compared in terms of their construction process, technical feasibility with storage
capacity, time advantage, economic viability and flexibility of usage.

SUMMARY
• Steel frame as well as rack supported structures can be implemented for a variety of warehouse
applications. With numerous advantages, rack supported warehouse can provide a valuable
alternative to conventional steel frame warehouse.
• Advantages of rack supported structures over conventional portal steel frame:
▪ Space utilization
▪ Ease and speed in construction
▪ Reduce construction cost
▪ Reduction in load i.e wind load
▪ Reduce labour costs
▪ Increase distribution efficiency and control
▪ Decrease energy use
▪ More economical warehousing solutions

CONCULSION
Above study show that independent rack structure system is way much better than convention steel
frame industrial building. Which established key feature of structural system for over building and
hence, leads us to go for separate design of rack structural system i.e dividing entire structure into five
different parts (A1-5).

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 6


4 GENERAL GUIDELINES BY INSDAG
4.1 FACILITIES
Client/Architect has specified the following requirements for the proposed project:
1. Site Location : Jalpaiguri, West Bengal
2. Area of Storage Down : 57.6 m × 19 m / 26.7 m × 24 m (L Shaped area)
See the schematic Plan. (Future extension area
not in Scope of Design Competition)
3. Minimum clearance, FFL to bottom Chord of Truss: 9.5 m
if any / Eves level of Arch roof if any
4. Roof Structure : To be covered with Colour Coated Steel Sheet
5. Maximum height of the building : 13 m
6. No. of Storage levels : 4 levels

4.2 MATERIALS FOR CONSTRUCTION

1. Foundation system : R.C.C. of minimum grade M25


2. Structural members like columns, beams, members and: Structural steel of mild steel (grade E250) or Yst
bracing systems 310/355 or high tensile steel (grade E350 / E 410
3. Roof & Cladding :Standard Colour Coated Steel Sheet (Galvalume)
4. Walls : Puff panel (Refer manufacturer catalogue)
5. Flooring : Grating for storage area/Chequerd plate for
passage

4.3 STANDARD SHAPE OF THE STRUCTURE


While considering the shape and arrangement of the Structure, aesthetics, economy as well as
structural integrity of the entire system has to be considered.

4.4 DESIGN LOADS


• Dead Load:
Dead load will be the weight of the structure itself along with all permanent weight carried by
it.
• Live Load:
a. Live load on Roof - as per IS: 875 Part 2 – 1987 •
b. Live Load on Deck - 750 kg/m for food grains/vegetable/fruits etc. / 400 kg/m
2 2

on passage
• Wind Load:

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 7


Basic wind speed to be considered as per IS: 875 Part 3 – 2015 (Please check against
Jalpaiguri).
• Seismic Load:
Seismic Zone per IS: 1893 Latest version (For Jalpaiguri location).
• Other Loads:
Temperature variation of 15°C will be considered. Please consult relevant specification for
other specific loads and action points.

4.5 GUIDELINES
The following guidelines should be taken into consideration:
1. Items designed in accordance with design scope, should be checked for axial, bending, bearing
stresses etc. as applicable. Equivalent stresses and any other stresses necessitated by the relevant
codes should also be calculated.
2. Deflection calculated should be within stipulations given in relevant IS code.
3. For designing of Base Plates and Foundation Bolts, grade of concrete to be considered as mentioned
above.
4. For foundation design consider Safe Bearing Capacity as 200.0 kN/m2 at 3.0m from GL. No tension
in bearing pressure due to uplift for DL+WL condition is allowable.
5. While selecting the steel sections for use, please refer INSDAG website or any manufacturer’s
website for availability.

5 LOAD CALCULATION
5.1 LOAD ON STACKING STRUCTURE SYSTEM A1-A4
1) Dead load
a Self-weight
b floor system (Grating) 0.2 KN/m^2 (Indiana group see catalogue)
c Railing 1 KN/m (Indiana group see catalogue)
d Staircase 10 KN/m (Indiana group see catalogue)
2) Live load 7.5 KN/m^2
3) Earthquake load
Location : Jalpaiguri, West Bengal
Zone :5
Zone factor : 0.36 (Clause 6.4.2 Table 3 IS 1893-2016)
Importance factor : 1.5 (Clause 7.2.3 Table 8 IS 1893-2016)

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 8


Response reduction factor :4
Rock and soil site factor :2
𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑𝑒 𝑇 = 0.085ℎ0.75 (Clause 7.6.2 IS 1893-2016)

4) Temperature load

15-degree Celsius variation as per guideline given by INSDAG.

5.2 LOAD ON MAIN STRUCTURE SYSTEM A5


1) Dead load
a. Self-weight
b. floor system (Grating) 0.2 KN/m^2 (Indiana group)
c. Roofing sheet (Galvalume sheet) 0.1 KN/m^2 (Strupan Kingspan Jindal)
UDL on purlin = DL of sheet * Spacing
=0.1*1.4 = 0.14 KN/m
d. Cladding on wall (Galvalume sheet) 0.1 KN/m^2 (Isoclad Kingspan Jindal)
UDL on purlin = DL of sheet * Spacing
= 0.1*1.4 = 0.14 KN/m
2) Live load
a. On floor 4 KN/m^2
b. On roof 0.75 KN/m^2 (Table 2, IS 875 P:2)
UDL on purlin = LL of sheet * Spacing
=0.75*1.4 = 1.05 KN/m
On end purlin load = 1.05/2 = 0.525 KN/m
3) Earthquake load
Location : Jalpaiguri, West Bengal
Zone : 5
Zone factor : 0.36 (Clause 6.4.2 Table 3 IS 1893-2016)
Importance factor : 1.5 (Clause 7.2.3 Table 8 IS 1893-2016)
Response reduction factor : 4
Rock and soil site factor : 2
𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑𝑒 𝑇 = 0.085ℎ0.75 (Clause 7.6.2 IS 1893 2016)

4) Wind load (IS 875-P:3)

Vb (Basic wind speed) 47 m/s


K1 (Risk coefficient) 0.9

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 9


K2 (Terrain, Height, Structure size) 1.02
Category 2
K3 (Topography factor) 1
K4 (Important factor for cyclone region) 1.15
Cpi (Permeability less than 5%) +/- 0.2

Design wind speed Vz = k1*k2*k3*k4*Vb 50 m/s

Design pressure Pd = 0.6*Ka*Kd*Kc*Vz^2 1.48 KN/m^2


= 0.6*1*1*1*51^2
External Pressure Coefficient (Cpe) for wall and roof
h: 9.5 m
w: 31.225 m
L: 42.925 m
Roof angle = 5 degree
h/w < 0.5 & l/w < 1.5
Table-1 Wind pressure on wall (Cpe = 0.2) (Table-4, IS 875 P:3)
Wind Cpe for wall Cpnet*Pd
direction (KN/m^2)
A B C D A B C D
Positive X 0.7 -0.2 -0.5 -0.5 0.74 -0.59 -1.03 -1.03
Positive Z -0.5 -0.5 0.7 -0.2 -1.03 -1.03 0.74 -0.59
Negative X -0.2 0.7 -0.5 -0.5 -0.59 0.74 -1.03 -1.03
Negative Z -0.5 -0.5 -0.2 0.7 -1.03 -1.03 -0.59 0.74

Table-1-A Wind pressure on wall (Cpe = -0.2) (Table-4, IS 875 P:3)


Wind direction Cpe for wall Cpnet*Pd
(KN/m^2)
A B C D A B C D
Positive X 0.7 -0.2 -0.5 -0.5 1.33 0.00 -0.44 -0.44
Positive Z -0.5 -0.5 0.7 -0.2 -0.44 -0.44 1.33 0.00
Negative X -0.2 0.7 -0.5 -0.5 0.00 1.33 -0.44 -0.44
Negative Z -0.5 -0.5 -0.2 0.7 -0.44 -0.44 0.00 1.33

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 10


Table-2 Wind pressure on roof (Cpe = 0.2) (Table-5,IS 875 P:3)
Wind direction Cpe for roof Cpnet*Pz (KN/m^2)

E F G H E F G H
Negative Z -0.9 -0.9 -0.4 -0.4 -1.62 -1.62 -0.89 -0.89
Positive X -0.8 -0.4 -0.8 -0.4 -1.48 -0.89 -1.48 -0.89
Positive Z -0.4 -0.4 -0.9 -0.9 -0.89 -0.89 -1.62 -1.62
Negative X -0.4 -0.8 -0.4 -0.8 -0.89 -1.48 -0.89 -1.48

Table-2-A Wind pressure on roof (Cpe = -0.2) (Table-5,IS 875 P:3)


Wind direction Cpe for roof Cpnet*Pz (KN/m^2)

E F G H E F G H
Negative Z -0.9 -0.9 -0.4 -0.4 -1.03 -1.03 -0.30 -0.30
Positive X -0.8 -0.4 -0.8 -0.4 -0.89 -0.30 -0.89 -0.30
Positive Z -0.4 -0.4 -0.9 -0.9 -0.30 -0.30 -1.03 -1.03
Negative X -0.4 -0.8 -0.4 -0.8 -0.30 -0.89 -0.30 -0.89

* Positive sign indicates pressure and negative sign indicates suction.


* Now wind load on wall is taken by column on periphery of cold storage, it is given by
e.g. Wall A, Wind direction positive Z,

Load = Net Pressure X Tributary area of column


= 0.74 X 6.5X0.5 X
= -2.405 KN/m

Likewise load on each column is calculated for all direction. (see excel sheet)

* Now wind load on roof is taken by purlin, it is given by,


e.g. Wind direction positive Z,

Load = Net Pressure X Purlin spacing


= -1.62 X 1.4
= -2.268 KN/m

Likewise load on purlin is calculated for all direction.

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 11


S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 12
S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 13
5)Temperature load

15-degree Celsius variation as per guideline given by INSDAG.

6 LOAD COMBINATION
6.1 FOR STRUCTURE A1-4
1) 1.5DL + 1.5LL
2) 1.5DL + 1.5EQ +VEX
3) 1.5DL + 1.5EQ +VEZ
4) 1.5DL + 1.5EQ -VEX
5) 1.5DL + 1.5EQ -VEZ
6) 0.9DL + 1.5EQ +VEX
7) 0.9DL + 1.5EQ +VEZ
8) 0.9DL + 1.5EQ -VEX
9) 0.9DL + 1.5EQ -VEZ
10) 1.2DL +1.2LL + 1.2EQ +VEX
11) 1.2DL +1.2LL + 1.2EQ +VEZ
12) 1.2DL +1.2LL + 1.2EQ -VEX
13) 1.2DL +1.2LL + 1.2EQ -VEZ
14) DL +LL
15) DL + EQ +VEX
16) DL + EQ +VEZ
17) DL + EQ -VEX
18) DL + EQ -VEZ
19) DL +LL + EQ +VEX
20) DL +LL + EQ +VEZ
21) DL +LL + EQ -VEX
22) DL +LL + EQ -VEZ

6.2 FOR STRUCTURE A5


1) 1.5DL + 1.5LL
2) 1.5DL + 1.5EQ +VEX
3) 1.5DL + 1.5EQ +VEZ
4) 1.5DL + 1.5EQ -VEX
5) 1.5DL + 1.5EQ -VEZ
6) 0.9DL + 1.5EQ +VEX
7) 0.9DL + 1.5EQ +VEZ
8) 0.9DL + 1.5EQ -VEX

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 14


9) 0.9DL + 1.5EQ -VEZ
10) 1.2DL +1.2LL + 1.2EQ +VEX
11) 1.2DL +1.2LL + 1.2EQ +VEZ
12) 1.2DL +1.2LL + 1.2EQ -VEX
13) 1.2DL +1.2LL + 1.2EQ -VEZ
14) 1.5DL + 1.5WL +VEX Cpe +0.2
15) 1.5DL + 1.5WL +VEZ Cpe +0.2
16) 1.5DL + 1.5WL -VEX Cpe +0.2
17) 1.5DL + 1.5WL -VEZ Cpe +0.2
18) 1.5DL + 1.5WL +VEX Cpe -0.2
19) 1.5DL + 1.5WL +VEZ Cpe -0.2
20) 1.5DL + 1.5WL -VEX Cpe -0.2
21) 1.5DL + 1.5WL -VEZ Cpe -0.2
22) 0.9DL + 1.5 WL +VEX Cpe +0.2
23) 0.9DL + 1.5 WL +VEZ Cpe +0.2
24) 0.9DL + 1.5 WL -VEX Cpe +0.2
25) 0.9DL + 1.5 WL -VEZ Cpe +0.2
26) 0.9DL + 1.5 WL +VEX Cpe -0.2
27) 0.9DL + 1.5 WL +VEZ Cpe -0.2
28) 0.9DL + 1.5 WL -VEX Cpe -0.2
29) 0.9DL + 1.5 WL -VEZ Cpe -0.2
30) 1.2DL +1.2LL + 1.2 WL +VEX Cpe +0.2
31) 1.2DL +1.2LL + 1.2 WL +VEZ Cpe +0.2
32) 1.2DL +1.2LL + 1.2 WL -VEX Cpe +0.2
33) 1.2DL +1.2LL + 1.2 WL -VEZ Cpe +0.2
34) 1.2DL +1.2LL + 1.2 WL +VEX Cpe -0.2
35) 1.2DL +1.2LL + 1.2 WL +VEZ Cpe -0.2
36) 1.2DL +1.2LL + 1.2 WL -VEX Cpe -0.2
37) 1.2DL +1.2LL + 1.2 WL -VEZ Cpe -0.2
38) DL +LL
39) DL + EQ +VEX
40) DL + EQ +VEZ
41) DL + EQ -VEX
42) DL + EQ -VEZ
43) DL + WL +VEX Cpe +0.2
44) DL + WL +VEZ Cpe +0.2
45) DL + WL -VEX Cpe +0.2
46) DL + WL -VEZ Cpe +0.2
47) DL + WL +VEX Cpe -0.2
48) DL + WL +VEZ Cpe -0.2
49) DL + WL -VEX Cpe -0.2

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 15


50) DL + WL -VEZ Cpe -0.2
51) DL +LL + EQ +VEX
52) DL +LL + EQ +VEZ
53) DL +LL + EQ -VEX
54) DL +LL + EQ -VEZ
55) DL +LL + WL +VEX Cpe +0.2
56) DL +LL + WL +VEZ Cpe +0.2
57) DL +LL + WL -VEX Cpe +0.2
58) DL +LL + WL -VEZ Cpe +0.2
59) DL +LL + WL +VEX Cpe -0.2
60) DL +LL + WL +VEZ Cpe -0.2
61) DL +LL + WL -VEX Cpe -0.2
62) DL +LL + WL -VEZ Cpe -0.2

7 ANALYSIS OF BEAM AND COLUMN


For analysis of beam and column we are analysing one beam and one column of structure A1 for
sample calculation.
7.1 ANALYSIS OF BEAM
Design of beam (beam 141) for structure A1 is shown below.
Max bending moment = 23.4KNm, Shear force = 22.8 KN

• General details ISHB 225


L=4m
h = 225
bf = 225 mm
tf = 9.1 mm
tw = 8.6 mm
rzz = 95.8 mm
ryy = 48.4 mm
r = 10 mm
Zp = 555180 mm3
Ze = 487000 mm3
A = 5966 mm2

• Design shear strength of section (Clause 8.4 IS 800-2007)


Vd=fy x h x tw/√3 γmo
= 250 x 225 x 8.6 /1.71x 1.1
= 253.9 KN
0.6Vd = 152.34 KN

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 16


Shear force on beam V (22.8) < Vd (152.34)
• Section classification (Table-2 IS 800-2007)
b/tf = (225-8.6) x0.5/9.1 = 11.89 < 15.7,
d/tw = (400 – 2(13 + 14))/9 = 38.08 < 42
hence Section is semi compact
• Moment capacity (Clause 8.2.1.1 IS 800-2007)
Md = x Zp x fy / γmo
= Ze /Zp = 0.87 (semi compact section)
Md = 0.87x555180x250/1.1
= 110.68 KNm > M (23.4) (OK)
• Check for deflection (Table-6 IS 800-2007)
Permissible δ=L/300
= 4000/300 = 13.33mm
Actual deflection = 0.446 mm (OK)
7.2 ANALYSIS OF COLUMN
Design of column (beam 1) for structure A1 is shown below.
Max axial compression = 180 KN, Axial tension = 22.4 KN, Bending moment Mz = 38.1KNm,
Bending moment My= 37.1 KNm, Shear force = 15.8 KN

• General details ISHB 400


L= 6000 mm
h = 400 mm
bf = 250 mm
A = 9866 mm2
tw = 9 mm
tf = 13 mm
r = 14 mm
rzz = 168.7 mm
ryy = 52.6 mm
Zp = 1556330 mm3

• Section classification (Table-2 IS 800-2007)


b/tf = (250-9)x0.5/13 = 9.26 < 9.4,
d/tw = (400 – 2(13 + 14))/9 = 38.08 < 42
hence Section is plastic

• Effective length (Table-11 IS 800-2007)


We have considered both ends of column as fixed ends therefore
KL =0 .65L = 3900 mm

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 17


• Buckling curve classification (Table-10 IS 800-2007)
h/bf = 400/250 = 1.6 > 1.2
tf = 13< 40 mm
hence,
For buckling about z-z axis – use curve a
For buckling about y-y axis – use curve b

• Buckling about z-z axis


Buckling curve = a (Table 9(a) IS 800-2007)
KL/rzz = 3900/168.7 = 23.11
For Fy = 250 N/mm2
fcd = 224.134 N/mm2

• Buckling about y-y axis


Buckling curve = b (Table 9(b) IS 800-2007)
KL/ryy = 3900/52.6 = 74.11
For Fy = 250 N/mm2
fcd = 175.83 N/mm2

• Design compressive strength


Pd = A x fcd = 9866 x 175.83 = 1734.738 KN > 180kN (OK)

• Moment capacity
=1 (Plastic section)
Design bending strength Md =353.7KNm (Clause 8.2.1.2, IS: 800-2007)
Hence, Md > Mz and Md>My (OK)
• Tension capacity
Tdg = Fy x Ag/Ɣmo (Clause 6.2 IS 800-2000)
= 250 x 9866/1.1
= 2242.2 KN > 22.4 KN (OK)
• Check for deflection (Table-6 IS 800-2007)
Permissible δ= h/240
= 2300/240 = 9.58 mm
Actual deflection = 3.09 mm (OK)

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 18


8 DESIGN OF CONNECTION
Here we are providing calculation for typical connection of each type. For design of any type of typical
connection first we will find maximum load, moment, shear force coming on member from envelope
of STAAD models (A1-A5) and then design is done manually.

Here we are providing calculation for typical connection of each of type for structure A1-4 and for
structure A5 separately.

8.1 DESIGN OF CONNECTION FOR STRUCTURE A1-4


8.1.1 DESIGN OF BEAM SPLICE
Beam splice is provided in direction of major axis of column at distance of 1m to column and in
direction of minor axis beam is directly welded to column.
Max shear force = 60KN from A1, Max bending moment = 20KNm from A1
Connection for beam (213) of structure A1
• General details ISMB 300
h = 300
Fy = 60 kN
Mz = 20 KNm
Bf = 140 mm
tf = 12.4 mm
tw = 7.5 mm
For Fe410 plate fu = 410 N/mm2, fy = 250 N/mm2
Assume flange splice carries all the moment and web splice carries only shear

Step-1: Flange splice

Mz = 20 kNm
Force in flange = Mz/(h-tf)
= 69.5 kN
Use M12 grade 8.8 HSFG bolt d = 12 mm, do =14 mm, fub = 800 N/mm2

• Slip resistance (Clause 10.4.3 IS 800-2007)


Vdsf = Vnsf/Ymf
= (µf x ne x kh x Fo)/Ymf
= 18.96 KN
Ymf =1.25
µf = 0.48 (IS 800 2007 table 20)
ne = 1, for single shear,
kh = 1, bolts in clearance hole

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 19


Fo = fo x Anb = 0.7 x fub x 88.21

• Bearing resistance (Clause 10.3.4 IS 800-2007)


Vdpb = (2.5 x kb x d x t x Fu)/Ym1
= 44.28 kN

Hence bolt value = 18.96 kN


No. of bolts = 69.5/18.96 = 3.6, say 6
Provide 3 rows of bolt on each side of joint
Minimum pitch = 2.5 x d = 30,
Edge distance = 1.7 x do = 23.8, say 25 mm

• Net area of flange


Area = (140 – 2 x 14) x 12.4 = 1426 mm2

Flange capacity
Capacity = Anet x Fy/Ymo = 324 kN > 69.5 KN (force in flange) hence safe

Width of flange plate


Width = width of flange beam = 140 mm

Permissible strength in flange beam


= Fy/Ymo = 227.27 N/mm2

Area of flange plate required


= force in flange/permissible stress
= 305.8 mm2
= width of flange plate x t

Thickness of plate required is t = 2.18 mm,


provide thickness =5 mm
length of flange plate = 4 x 25 + 4 x 30 = 220 mm

Provide Flange plate of 220 x 140 x 5 mm on flanges.

Step-2: Web splicing

• Slip resistance
The bolts will be in double shear
Therefore, strength of bolt in shear = 2 x 18.96 = 37.92 KN

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 20


• Bearing strength
Assume 7 mm thick web plates
= (2.5 x Kb x d x Fy x t)/Ym1
= (2.5 x 0.5 x 12 x 410 x 7)/1.25
= 28.7 KN
Hence, bolt value = 28.7 KN

Try 3 bolts of 12 mm diameter at pitch 50 mm and edge distance 30 mm on each web.

• Vertical force on each bolt due to direct load


= Fy/3 = 60/3 = 20 KN

• Horizontal force due to moment


= (M x y)/Σ r2 = ((60 x 30) x 50)/ (2 x 502) = 18 kN
Resultant force
= 26.9 kN < bolt value (28.7 kN) OK

Width = 2 x 30 + 50 = 110 mm
Length = 2 x 50 + 2 x 30 = 160 mm

Provide web plate of 160 x 110 x 7 mm on both side.

8.1.2 DESIGN OF COLUMN SPLICE

Splice of column is provided at end of column i.e at 6m from plinth level.


Max axial load = 225 kN from structure A1, bending moment = 55 KNm from structure A4, shear
force = 40 KN from structure A4
Connection for column ISHB 400 of structure A1

• General details ISHB 400


L= 6000 mm
h = 400 mm
bf = 250 mm
A = 9866 mm2
tw = 9 mm
tf = 13 mm
r = 14 mm
rzz = 168.7 mm
ryy = 52.6 mm

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 21


Zp = 1556330 mm3
For Fe410 plate fu = 410 N/mm2, fy = 250 N/mm2
For 4.6 grade bolts Fub = 400 N/mm2
Assuming 50% of load is transfer directly and 50% load is taken by splice & fastening

Direct load on splice plate= 0.5 x 225=112.5 KN


Assuming 6 mm thick splice plate.
So load on plate due to moment = 55x 1000/ 400+6 = 135.46 Kn
Total design load of splice = 112.5 + 135.46 = 247.96 KN

• Area required for splice plate


A= 247.96/250 = 991.84 mm2

Step1 : Flange plate

Width of flange plate = width of flange of column = 250 mm


Thickness of plate = 991.84/250
= 3.9 mm
Provide 6 mm thick plate.

Length of plate depends on number of bolts. Use M20 bolts

• Strength of bolts in single shear = Anb x Fub/ √3 γmb (Clause 10.3.3 IS 800-2007)
= 245 x 400/ 1.71 x 1.25
= 45.26 KN

• Strength of bolts in bearing = 2.5 x kb x d x t x fu/ γmb (Clause 10.3.4 IS 800-2007)


= 2.5 x 0.5 x 20 x 6 x 410 / 1.25
= 49.2 KN
Hence bolt value = 45.26 KN
No. of bolts req. = 247.96 / 45.26
= 5.47
Provide 6 bolts on each splice plate 2 bolts in raw.
Pitch p = 2.5 x 22 = 60 mm
Edge dist. = 1.5 x 22 = 35 mm
Length L = 2(2 x 60 + 2 x 35)
= 380 mm
Provide 380 mm x 250 mm x 6 mm flange plate.

Step2 : Web plate

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 22


Assuming bolts in double shear.
• Shear capacity = 2 x 45.26 = 90.52 KN (Clause 10.3.3 IS 800-2007)

• Bearing strength = 2.5 x 0.5 x 20 x 9 x 410 / 1.25 (Clause 10.3.4 IS 800-2007)


= 73.8 KN
Bolt value = 73.8 KN
Number of bolts = shear force / 73.8
= 40 / 73.8
= 0.54
Provide 2 bolts on each side.
Pitch p = 2.5 x 22 = 60 mm
Edge dist. = 1.5 x 22 = 35 mm
Length L = 4x 35
= 140 mm
Width = 60 + 2x35
= 130 mm
• Shear strength of plate = Fy x h x t / √3 γmo (Clause 8.4.1 IS 800-2007)
40 = 250 x 130 x 2ts / 1.71 x 1.1
ts = 1.2 mm
Provide 140 mm x 130 mm x 6 mm web plate.

8.1.3 DESIGN OF BEAM TO BEAM SHEAR CONNECTION

Max shear force V = 60 KN from structure A3


Connection between ISMB 300 (BEAM 400) to ISHB 200 (BEAM 402) of structure A1
• General details ISMB 300
h=300 mm
bf = 140 mm
tf = 12.4 mm
tw = 7.5 mm

• General details ISHB 200


h=200 mm
bf=200 mm
tf =9 mm
tw =6 mm

Use M16 HSFG 8.8 grade bolts

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 23


Step 1: Connection of angle to web of ISHB 200

• Shear capacity of bolt = 33.7 KN (Clause 10.3.3 IS 800-2007)

• Bearing capacity on web of beam = 2.5 x 0.5 x 16x6x 410/1.25 (Clause 10.3.4 IS 800-2007)
= 39.36 KN
Hence bolt value = 39.36 KN
Use ISA 60 x 60 x 6 as cleat angle
Try three M16 bolts with pitch of 50 mm, eccentricity e = 30 mm

Horizontal shear force on bolt due to moment = V x e x r / ∑ r2


= 60 x 30 x 50 / 2 x 502
= 18 KN
Vertical shear force per bolt = 60/3 =20 KN
Resultant force = 26.9 KN < 39.36 KN
Hence connection is safe.

Step 2: Connection of angle to web of ISMB 300


• Shear capacity of bolt = 33.7 KN (Clause 10.3.3 IS 800-2007)
• Baring resistance on web of beam = 2.5 x0.5x16x7.5x410/1.25 (Clause 10.3.4 IS 800-2007)
= 49.2 KN
Hence bolt value = 33.7 KN
Try three bolts of M16 with pitch of 50mm, two bolts on each side
Horizontal shear force on bolt due to moment = V x e x r / ∑ r2
= (60/2) x 33 x 50 / 2 x 502
= 9.9 KN
Vertical shear force per bolt = 60/3 =20 KN
Resultant force = 22.3 KN < 33.7 KN
Hence connection is safe.

Step 3: Check for cleat angle

Bending moment = (60/2) x 33 = 990 Nm


Moment capacity = 1.2 x fy x Z / Ymo (Clause 8.2.1.2 IS 800-2007)
= 1.2 x 250 x (6 x 1602/6) / 1.1
= 6981.8 > 990 Nm (OK)

Step 4: Shear capacity of angle and beam

Shear strength of angle = fy x Av / √3 x 1.1 (Clause 8.4.1 IS 800-2007)


= 250 x 160 x 6 / √3 x 1.1

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 24


= 125.9 KN > 60/2 KN
Local Shear strength of beam = 250 x 200 x 6 / √3 x 1.1
= 157 KN > 60 KN (OK)

8.1.4 DESIGN OF BEAM TO COLUMN MOMENT CONNECTION

Major axis connection is done in factory and minor axis connection is done on site.
1) BEAM-COLUMN MAJOR AXIS WELDED MOMENT CONNECTION
Max bending moment = 60 KNm and max shear force = 60 KN from structure A4

Connection between column ISHB 400 (BEAM 8) to ISHB 300 (BEAM 144) of structure A1

• General details ISHB 400


h = 400 mm
b = 250 mm
tf = 13 mm
tw = 9 mm

• General details ISMB 300


h = 300 mm
b =140 mm
tf = 12.4 mm
tw = 7.5 mm

• Area of fillet weld


Assuming unit size of weld
A = 2 x 140 + 2 x 275 = 830 mm2
Moment of inertia about z-z axis of weld
Izz = (2x140x(150/2)2) + (2x2753)/12) = 5.04 x 106mm4
Section modulus at extreme fibre of weld Z = Izz/(h/2) = 67.21 x 103 mm3

• Stress calculations
a) Due to direct loading (q)
q = P/A = 60 x 1000 / 830 = 72.28 N/mm
b) Bending stress due to bending moment (f)
f = M/Z = 60 x 106 / 67.21 x 1000 = 892.7 N/mm
Resultant stress = (q2 + f2)1/2 = 895.64 N/mm

• Strength of weld (Clause 10.5.7.1 IS 800-2007)

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 25


Strength of weld = 0.7fu x S/√3 x 1.5
Strength of weld = resultant stress
0.7 x 540 x S/√3 x 1.5 = 895.64
S = 6.1 mm
provide 7 mm fillet weld

2) BEAM-COLUMN MINOR AXIS WELDED MOMENT CONNECTION


Max bending moment = 86KNm and max shear force = 80 KN from structure A3

Connection between column ISHB 400 (BEAM 8) to ISHB 300 (BEAM 144) of structure A1

• General details ISHB 400


h = 400 mm
b = 250 mm
tf = 13 mm
tw = 9 mm

• General details ISMB 300


h = 300 mm
b =140 mm
tf = 12.4 mm
tw = 7.5 mm

• Area of fillet weld


Assuming unit size of weld
A = 2 x 140 + 2 x 275 = 830 mm2
Moment of inertia about z-z axis of weld
Izz = (2x140x(150/2)2) + (2x2753)/12) = 5.04 x 106mm4
Section modulus at extreme fibre of weld Z = Izz/(h/2) = 67.21 x 103 mm3

• Stress calculations
a) Due to direct loading (q)
q = P/A = 80 x 1000 / 830 = 96.38 N/mm
b) Bending stress due to bending moment (f)
f = M/Z = 86 x 106 / 67.21 x 1000 = 1279.57 N/mm
Resultant stress = (q2 + f2)1/2 = 1283.19 N/mm

• Strength of weld (Clause 10.5.7.1 IS 800-2007)


Strength of weld = 0.7fu x S/√3 x 1.5

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 26


Strength of weld = resultant stress
0.7 x 540 x S/√3 x 1.5 = 1283.19
S = 8.8mm
provide 9 mm fillet weld

8.1.5 DESIGN OF BASE PLATE


Max axial force = 650 KN from A1

• General details ISHB 400 (BEAM 1)


Factored load Pu = 650 kN,
Fck = 25 N/mm2
h=400 mm
bf=250 mm
tf =13 mm
tw =9 mm

• Area of Base Plate


Fu = 410 N/mm2, Fy = 250 N/mm2
Pu=650 kN (factored)
Bearing strength of concrete = 0.6 Fck = 15 N/mm2
Area of base plate = q / strength of concrete
= 43333.3mm2
b=400 mm, d=250 mm
Provide 75 mm projection around them
Length of base plate (calculated) =75 + 400 + 75 = 550 mm
Breadth of base plate (calculated) =75 + 250 + 75 = 400 mm
Size of base plate provided = 550 mm x 400 mm (220000 mm2)

• Thickness of Base Plate (Clause 7.4.3.1 IS 800-2007)


a = larger projection = 75 mm
b = smaller projection = 75 mm
w = Uniform pressure on base plate
= Pu/area
= 2.95 N/mm2

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 27


= 11.3 mm

Hence, provide ts =15 mm > tf = 13 mm (OK)

Base plate = 550 mm x 400 mm x 15 mm

Also, provide 4-M20 and 300 mm long anchor bolts to connect the base plate to the
foundation.

• Weld connection of column to Base plate


Consider 6 mm fillet weld
Total length available for welding along the periphery of ISHB 400
= 2(250 + (250 – 9) + 400)
= 1782 mm
Deduction of end returns at the rate of 6 mm each,
There are 12 ends for ISBH Deduction = 12x2(6) = 144 mm

Effective length = 1782-144 = 1638 mm


Capacity of weld per mm length = Through thickness x fwd
= 0.7 * 6 * 189
= 0.793 kN/mm
Required length of weld = 650 / 0.793
= 819.67mm < 1638 mm (Available length)
6 mm weld is adequate.

8.2 DESIGN OF CONNECTION FOR STRUCTURE A5


8.2.1 DESING OF BASE PLATE
Base plate for exterior column.
Max axial force = 530 KN (beam 9) from A5

• General details ISHB 450 (BEAM 9)


Factored load Pu = 530 kN,
Fck = 25 N/mm2
h=450 mm
bf=250 mm
tf =13.7 mm
tw =9.8 mm

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 28


• Area of Base Plate
Fu = 410 N/mm2, Fy = 250 N/mm2
Pu= 530 kN (factored)
Bearing strength of concrete = 0.6 Fck = 15 N/mm2
Area of base plate = q / strength of concrete
= 35333.3mm2
b=450 mm, d=250 mm
Provide 75 mm projection around them
Length of base plate (calculated) =75 + 450 + 75 = 600 mm
Breadth of base plate (calculated) =75 + 250 + 75 = 400 mm
Size of base plate provided = 600 mm x 400 mm (240000 mm2)

• Thickness of Base Plate (Clause 7.4.3.1 IS 800-2007)


a = larger projection = 75 mm
b = smaller projection = 75 mm
w = Uniform pressure on base plate
= Pu/area
= 2.2 N/mm2

= 9.76 mm

Hence, provide ts =15 mm > tf = 13 mm (OK)

Base plate = 600 mm x 400 mm x 15 mm

Also, provide 4-M20 and 300 mm long anchor bolts to connect the base plate to the
foundation.

• Weld connection of column to Base plate


Consider 6 mm fillet weld
Total length available for welding along the periphery of ISHB 450
= 2(250 + (250 – 9) + 450)
= 1882 mm
Deduction of end returns at the rate of 6 mm each,
There are 12 ends for ISBH Deduction = 12x2(6) = 144 mm
Effective length = 1882-144 = 1738 mm
Capacity of weld per mm length = Through thickness x fwd
= 0.7 * 6 * 189

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 29


= 0.793 kN/mm
Required length of weld = 530 / 0.793
= 668.34 mm < 1738 mm (Available length)
6 mm weld is adequate.

Base plate for interior column.


Max axial force = 391 KN (beam 23) from A5
Column ISHB 450 (beam 23), here load is 391 KN < 530 KN so provide base plate same as in exterior
column i.e 600 mm x 400 mm x 15 mm

8.2.2 CONNECTION OF TUBULAR SECTION OF TRUSS


Connection between beam – 307, 308, 336, 2754 of tubular section 91.5 x 91.5 x 5.4 and 100 x 100
x 6 considering the maximum factored axial compression force of 113KN (beam 2754)
For Fe 410 grade steel fu = 410 N/mm2
For field weld Ɣmw = 1.5
Minimum size of weld required = 3 mm (for gusset plate upto 10 mm thick)
Maximum size of weld = 5mm (thickness of tubular sections 5.4mm)
Provide 5mm weld.

• Length of weld required


Strength of weld = 0.7fu x S x L/√3 x 1.5
Strength of weld = resultant stress
0.7 x 410 x 5 x L/√3 x 1.5 = 113000
L = 204.5mm

• Length of weld on each side of member


We are connecting 3 members by providing equal length of weld on both side therefore length
of weld required on each side
= Lw/6
= 204.5/6
= 34mm (Provide 40mm weld)

8.2.3 BRACKET CONNECTION OF TRUSS TO COLUMN


Connection between beam –2907 of tubular section 91.5 x 91.5 x 5.4 and ISHB 450 considering the
maximum factored axial compression force of 450KN (beam 105)
For Fe 410 grade steel fu = 410 N/mm2
For field weld Ɣmw = 1.5
Minimum size of weld required = 3 mm (Bracket plate is 10 mm thick)
Maximum size of weld = 5mm (thickness of tubular sections 5.4mm)
Provide 5mm weld.

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 30


• Length of weld required
Strength of weld = 0.7fu x S x L/√3 x 1.5
Strength of weld = resultant stress
0.7 x 410 x 5 x L/√3 x 1.5 = 450000
L = 814.7mm
Provide bracket of 450mm depth and weld of 425 on both side.

8.2.4 CONNECRION OF GIRT TO COLUMN


Max shear force = 0.847 KN (beam 1397)

• GENERAL DETAILS OF GIRT 100 X 100 X 4 SHS


Shear force = 0.847 KN
b = 100 mm
d = 100 mm
t = 4 mm
Fy = 250 N/mm2
Use ISA 100 X 100 X 6 for connection of girt to column.
Max size of weld = 6 mm
Min size of weld = 3 mm
Provide fillet weld of 3mm size.

• Strength of weld
Strength of weld Fwd = 0.7fu x S /√3 x 1.5
= 0.7 x 410 x 3 / √3 x 1.5
= 331.4 N/mm
• Length of weld required L = 0.847 x 1000/ 331.4
= 2.5 mm
Provide 10 mm length of weld to connect angle to column and M12 bolt to connect girt to
angle.

9 FOUNDATION, PLINTH BEAM AND GROUNG BEAM DESIGN


Design of foundation, plinth beam and ground beam is done in RCDC.

10 CHECK FOR POUNDING


We have provided minimum spacing of 750mm between structure A1-A5.

STRUCTURE MAX DISPLCEMENT IN X MAX DISPLACEMENT IN Z


DIRECTION (MM) DIRECTION (MM)

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 31


A1 10.6 22.8
A2 17.7 36.9
A3 19.8 28.7
A4 23 36
A5 610 33

Above displacement are taken form STAAD file.


Here we can see the sum of any displacement of structure A1-A4 with combination to A5 is not
exceeding 750mm hence there is no problem of pounding. Hence OK.

11 BILL OF MATERIAL
Quantity of steel
Structure A1 = 65340 Kg
Structure A2 = 12172 Kg
Structure A3 = 15992 Kg
Structure A4 = 12217 Kg
Structure A5 = 147446 Kg
TOTAL = 253166 Kg (253.16 Tonnes)
Here, I have written summery of quantity for structure A1-A5 for detail calculation see excel sheet.
Adding 10 % Connection
TOTAL = 278482.6 Kg

Quantity of Roof sheet (Kingspan JINDAL)


Area = ((19.53+8.83) x 31.225) + (14.7 x 26.97)
= 1282.4 m2
Quantity of Wall cladding (Kingspan JINDAL)
Area = 2 x 9.5(42.845 + 31.225)
= 1407 m2
Quantity of Partition wall (Kingspan JINDAL)
Area = (19.3 + 26.8 + 8.8 + 13.05 + 13.05 +13.92 + 11.24) x 9.5
= 1008.5 m2
Quantity of Grating (Indiana group)
Structure A1 = 412 x 3 = 1236 m2
Structure A2 = 66 x 3 = 192 m2
Structure A3 = 91 x 3 = 273 m2
Structure A4 = 63 x 3 = 189 m2
Structure A5 = 146 x 3 = 438 m2 (for chiller chamber)
TOTAL = 2328 m2

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 32


12 STAAD IN FILES
1. INPUT FILE OF A1

STAAD SPACE
START JOB INFORMATION
ENGINEER DATE 28-Aug-19
END JOB INFORMATION
INPUT WIDTH 79
UNIT METER KN
JOINT COORDINATES
1 0 0 0; 2 4 0 0; 3 8 0 0; 4 12 0 0; 5 16 0 0; 6 20 0 0; 8 0 0 4.3; 9 4 0 4.3;
10 8 0 4.3; 11 12 0 4.3; 12 16 0 4.3; 13 20 0 4.3; 15 0 0 8.6; 16 4 0 8.6;
17 8 0 8.6; 18 12 0 8.6; 19 16 0 8.6; 20 20 0 8.6; 22 0 0 12.9; 23 4 0 12.9;
24 8 0 12.9; 25 12 0 12.9; 26 16 0 12.9; 27 20 0 12.9; 29 0 0 17.2;
30 4 0 17.2; 31 8 0 17.2; 32 12 0 17.2; 33 16 0 17.2; 34 20 0 17.2; 36 0 2.3 0;
37 4 2.3 0; 38 8 2.3 0; 39 12 2.3 0; 40 16 2.3 0; 41 20 2.3 0; 43 0 2.3 4.3;
44 4 2.3 4.3; 45 8 2.3 4.3; 46 12 2.3 4.3; 47 16 2.3 4.3; 48 20 2.3 4.3;
50 0 2.3 8.6; 51 4 2.3 8.6; 52 8 2.3 8.6; 53 12 2.3 8.6; 54 16 2.3 8.6;
55 20 2.3 8.6; 57 0 2.3 12.9; 58 4 2.3 12.9; 59 8 2.3 12.9; 60 12 2.3 12.9;
61 16 2.3 12.9; 62 20 2.3 12.9; 64 0 2.3 17.2; 65 4 2.3 17.2; 66 8 2.3 17.2;
67 12 2.3 17.2; 68 16 2.3 17.2; 69 20 2.3 17.2; 71 0 4.6 0; 72 4 4.6 0;
73 8 4.6 0; 74 12 4.6 0; 75 16 4.6 0; 76 20 4.6 0; 78 0 4.6 4.3; 79 4 4.6 4.3;
80 8 4.6 4.3; 81 12 4.6 4.3; 82 16 4.6 4.3; 83 20 4.6 4.3; 85 0 4.6 8.6;
86 4 4.6 8.6; 87 8 4.6 8.6; 88 12 4.6 8.6; 89 16 4.6 8.6; 90 20 4.6 8.6;
92 0 4.6 12.9; 93 4 4.6 12.9; 94 8 4.6 12.9; 95 12 4.6 12.9; 96 16 4.6 12.9;
97 20 4.6 12.9; 99 0 4.6 17.2; 100 4 4.6 17.2; 101 8 4.6 17.2; 102 12 4.6 17.2;
103 16 4.6 17.2; 104 20 4.6 17.2; 106 0 6.9 0; 107 4 6.9 0; 108 8 6.9 0;
109 12 6.9 0; 110 16 6.9 0; 111 20 6.9 0; 113 0 6.9 4.3; 114 4 6.9 4.3;
115 8 6.9 4.3; 116 12 6.9 4.3; 117 16 6.9 4.3; 118 20 6.9 4.3; 120 0 6.9 8.6;
121 4 6.9 8.6; 122 8 6.9 8.6; 123 12 6.9 8.6; 124 16 6.9 8.6; 125 20 6.9 8.6;
127 0 6.9 12.9; 128 4 6.9 12.9; 129 8 6.9 12.9; 130 12 6.9 12.9;
131 16 6.9 12.9; 132 20 6.9 12.9; 134 0 6.9 17.2; 135 4 6.9 17.2;
136 8 6.9 17.2; 137 12 6.9 17.2; 138 16 6.9 17.2; 139 20 6.9 17.2; 141 0 8.4 0;
142 4 8.4 0; 143 8 8.4 0; 144 12 8.4 0; 145 16 8.4 0; 146 20 8.4 0;
148 0 8.4 4.3; 155 0 8.4 8.6; 162 0 8.4 12.9; 169 0 8.4 17.2; 170 4 8.4 17.2;
171 8 8.4 17.2; 172 12 8.4 17.2; 173 16 8.4 17.2; 174 20 8.4 17.2;
189 20 0 15.7; 190 20 2.3 15.7; 191 20 4.6 15.7; 192 20 6.9 15.7;
194 22.765 2.3 15.7; 195 22.765 4.6 15.7; 196 22.765 6.9 15.7;
197 22.765 6.9 17.2; 198 22.765 4.6 17.2; 199 22.765 2.3 17.2; 205 0 2.3 2.15;
206 4 2.3 2.15; 207 8 2.3 2.15; 208 12 2.3 2.15; 209 16 2.3 2.15;
210 20 2.3 2.15; 212 0 4.6 2.15; 213 4 4.6 2.15; 214 8 4.6 2.15;
215 12 4.6 2.15; 216 16 4.6 2.15; 217 20 4.6 2.15; 219 0 6.9 2.15;
220 4 6.9 2.15; 221 8 6.9 2.15; 222 12 6.9 2.15; 223 16 6.9 2.15;
224 20 6.9 2.15; 226 0 2.3 6.45; 227 4 2.3 6.45; 228 8 2.3 6.45;
229 12 2.3 6.45; 230 16 2.3 6.45; 231 20 2.3 6.45; 232 0 4.6 6.45;

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 33


233 4 4.6 6.45; 234 8 4.6 6.45; 235 12 4.6 6.45; 236 16 4.6 6.45;
237 20 4.6 6.45; 238 0 6.9 6.45; 239 4 6.9 6.45; 240 8 6.9 6.45;
241 12 6.9 6.45; 242 16 6.9 6.45; 243 20 6.9 6.45; 244 0 2.3 10.75;
245 4 2.3 10.75; 246 8 2.3 10.75; 247 12 2.3 10.75; 248 16 2.3 10.75;
249 20 2.3 10.75; 250 0 4.6 10.75; 251 4 4.6 10.75; 252 8 4.6 10.75;
253 12 4.6 10.75; 254 16 4.6 10.75; 255 20 4.6 10.75; 256 0 6.9 10.75;
257 4 6.9 10.75; 258 8 6.9 10.75; 259 12 6.9 10.75; 260 16 6.9 10.75;
261 20 6.9 10.75; 262 0 2.3 15.05; 263 4 2.3 15.05; 264 8 2.3 15.05;
265 12 2.3 15.05; 266 16 2.3 15.05; 267 20 2.3 15.05; 268 0 4.6 15.05;
269 4 4.6 15.05; 270 8 4.6 15.05; 271 12 4.6 15.05; 272 16 4.6 15.05;
273 20 4.6 15.05; 274 0 6.9 15.05; 275 4 6.9 15.05; 276 8 6.9 15.05;
277 12 6.9 15.05; 278 16 6.9 15.05; 279 20 6.9 15.05; 280 23.965 0 0;
281 23.965 2.3 0; 282 23.965 4.6 0; 283 23.965 6.9 0; 284 23.965 0 4.3;
285 23.965 2.3 4.3; 286 23.965 4.6 4.3; 287 23.965 6.9 4.3; 288 23.965 0 8.6;
289 23.965 2.3 8.6; 290 23.965 4.6 8.6; 291 23.965 6.9 8.6; 292 23.965 0 12.9;
293 23.965 2.3 12.9; 294 23.965 4.6 12.9; 295 23.965 6.9 12.9;
296 23.965 0 17.2; 297 23.965 2.3 17.2; 298 23.965 4.6 17.2;
299 23.965 6.9 17.2; 300 23.965 6.9 2.15; 301 23.965 4.6 2.15;
302 23.965 2.3 2.15; 303 23.965 6.9 6.45; 304 23.965 4.6 6.45;
305 23.965 2.3 6.45; 306 23.965 6.9 15.7; 307 23.965 4.6 15.7;
308 23.965 2.3 15.7; 309 22.765 0 8.6; 310 23.965 0 11.9; 311 22.765 0 11.9;
312 22.765 2.3 8.6; 313 23.965 2.3 11.9; 314 22.765 2.3 11.9;
315 22.765 4.6 8.6; 316 23.965 4.6 11.9; 317 22.765 4.6 11.9;
318 22.765 6.9 8.6; 319 23.965 6.9 11.9; 320 22.765 6.9 11.9; 321 23.965 8.4 0;
322 23.965 8.4 4.3; 323 23.965 8.4 8.6; 324 23.965 8.4 17.2;
325 22.765 8.4 8.6; 326 23.965 8.4 11.9; 327 22.765 8.4 11.9;
328 23.965 8.4 12.9; 329 22.765 2.3 12.9; 331 22.765 4.6 12.9;
333 22.765 6.9 12.9; 335 22.765 6.9 10.75; 336 22.765 4.6 10.75;
337 22.765 2.3 10.75;
MEMBER INCIDENCES
1 1 36; 2 2 37; 3 3 38; 4 4 39; 5 5 40; 6 6 41; 8 8 43; 9 9 44; 10 10 45;
11 11 46; 12 12 47; 13 13 48; 15 15 50; 16 16 51; 17 17 52; 18 18 53; 19 19 54;
20 20 55; 22 22 57; 23 23 58; 24 24 59; 25 25 60; 26 26 61; 27 27 62; 29 29 64;
30 30 65; 31 31 66; 32 32 67; 33 33 68; 34 34 69; 36 36 71; 37 37 72; 38 38 73;
39 39 74; 40 40 75; 41 41 76; 43 43 78; 44 44 79; 45 45 80; 46 46 81; 47 47 82;
48 48 83; 50 50 85; 51 51 86; 52 52 87; 53 53 88; 54 54 89; 55 55 90; 57 57 92;
58 58 93; 59 59 94; 60 60 95; 61 61 96; 62 62 97; 64 64 99; 65 65 100;
66 66 101; 67 67 102; 68 68 103; 69 69 104; 71 71 106; 72 72 107; 73 73 108;
74 74 109; 75 75 110; 76 76 111; 78 78 113; 79 79 114; 80 80 115; 81 81 116;
82 82 117; 83 83 118; 85 85 120; 86 86 121; 87 87 122; 88 88 123; 89 89 124;
90 90 125; 92 92 127; 93 93 128; 94 94 129; 95 95 130; 96 96 131; 97 97 132;
99 99 134; 100 100 135; 101 101 136; 102 102 137; 103 103 138; 104 104 139;
106 106 141; 107 107 142; 108 108 143; 109 109 144; 110 110 145; 111 111 146;
113 113 148; 120 120 155; 127 127 162; 134 134 169; 135 135 170; 136 136 171;
137 137 172; 138 138 173; 139 139 174; 141 36 37; 142 36 205; 143 37 206;
144 43 44; 145 43 226; 146 44 227; 147 50 51; 148 50 244; 149 51 245;
150 57 58; 151 57 262; 152 58 263; 153 64 65; 154 37 38; 155 38 39; 156 39 40;

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 34


157 40 41; 159 38 207; 160 39 208; 161 40 209; 162 41 210; 164 44 45;
165 45 46; 166 46 47; 167 47 48; 169 45 228; 170 46 229; 171 47 230;
172 48 231; 174 51 52; 175 52 53; 176 53 54; 177 54 55; 179 52 246; 180 53 247;
181 54 248; 182 55 249; 184 58 59; 185 59 60; 186 60 61; 187 61 62; 189 59 264;
190 60 265; 191 61 266; 192 62 267; 194 65 66; 195 66 67; 196 67 68; 197 68 69;
198 69 199; 199 71 72; 200 71 212; 201 72 213; 202 78 79; 203 78 232;
204 79 233; 205 85 86; 206 85 250; 207 86 251; 208 92 93; 209 92 268;
210 93 269; 211 99 100; 212 72 73; 213 73 74; 214 74 75; 215 75 76; 217 73 214;
218 74 215; 219 75 216; 220 76 217; 222 79 80; 223 80 81; 224 81 82; 225 82 83;
227 80 234; 228 81 235; 229 82 236; 230 83 237; 232 86 87; 233 87 88;
234 88 89; 235 89 90; 237 87 252; 238 88 253; 239 89 254; 240 90 255;
242 93 94; 243 94 95; 244 95 96; 245 96 97; 247 94 270; 248 95 271; 249 96 272;
250 97 273; 252 100 101; 253 101 102; 254 102 103; 255 103 104; 256 104 198;
257 106 107; 258 106 219; 259 107 220; 260 113 114; 261 113 238; 262 114 239;
263 120 121; 264 120 256; 265 121 257; 266 127 128; 267 127 274; 268 128 275;
269 134 135; 270 107 108; 271 108 109; 272 109 110; 273 110 111; 275 108 221;
276 109 222; 277 110 223; 278 111 224; 280 114 115; 281 115 116; 282 116 117;
283 117 118; 285 115 240; 286 116 241; 287 117 242; 288 118 243; 290 121 122;
291 122 123; 292 123 124; 293 124 125; 295 122 258; 296 123 259; 297 124 260;
298 125 261; 300 128 129; 301 129 130; 302 130 131; 303 131 132; 305 129 276;
306 130 277; 307 131 278; 308 132 279; 310 135 136; 311 136 137; 312 137 138;
313 138 139; 314 139 197; 315 141 142; 316 142 143; 317 143 144; 318 144 145;
319 145 146; 325 141 148; 326 148 155; 327 155 162; 328 162 169; 329 169 170;
330 170 171; 331 171 172; 332 172 173; 333 173 174; 358 190 69; 359 189 190;
360 191 104; 361 190 191; 362 192 139; 363 191 192; 367 190 194; 368 191 195;
369 192 196; 371 196 197; 373 195 198; 375 194 199; 387 205 43; 388 206 44;
389 205 206; 390 207 45; 391 206 207; 392 208 46; 393 207 208; 394 209 47;
395 208 209; 396 210 48; 397 209 210; 400 212 78; 401 213 79; 402 212 213;
403 214 80; 404 213 214; 405 215 81; 406 214 215; 407 216 82; 408 215 216;
409 217 83; 410 216 217; 413 219 113; 414 220 114; 415 219 220; 416 221 115;
417 220 221; 418 222 116; 419 221 222; 420 223 117; 421 222 223; 422 224 118;
423 223 224; 426 226 50; 427 227 51; 428 226 227; 429 228 52; 430 227 228;
431 229 53; 432 228 229; 433 230 54; 434 229 230; 435 231 55; 436 230 231;
437 232 85; 438 233 86; 439 232 233; 440 234 87; 441 233 234; 442 235 88;
443 234 235; 444 236 89; 445 235 236; 446 237 90; 447 236 237; 448 238 120;
449 239 121; 450 238 239; 451 240 122; 452 239 240; 453 241 123; 454 240 241;
455 242 124; 456 241 242; 457 243 125; 458 242 243; 459 244 57; 460 245 58;
461 244 245; 462 246 59; 463 245 246; 464 247 60; 465 246 247; 466 248 61;
467 247 248; 468 249 62; 469 248 249; 470 250 92; 471 251 93; 472 250 251;
473 252 94; 474 251 252; 475 253 95; 476 252 253; 477 254 96; 478 253 254;
479 255 97; 480 254 255; 481 256 127; 482 257 128; 483 256 257; 484 258 129;
485 257 258; 486 259 130; 487 258 259; 488 260 131; 489 259 260; 490 261 132;
491 260 261; 492 262 64; 493 263 65; 494 262 263; 495 264 66; 496 263 264;
497 265 67; 498 264 265; 499 266 68; 500 265 266; 501 267 190; 502 266 267;
503 268 99; 504 269 100; 505 268 269; 506 270 101; 507 269 270; 508 271 102;
509 270 271; 510 272 103; 511 271 272; 512 273 191; 513 272 273; 514 274 134;
515 275 135; 516 274 275; 517 276 136; 518 275 276; 519 277 137; 520 276 277;

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 35


521 278 138; 522 277 278; 523 279 192; 524 278 279; 525 280 281; 526 281 282;
527 282 283; 529 281 302; 530 282 301; 531 283 300; 532 284 285; 533 285 286;
534 286 287; 536 285 305; 537 286 304; 538 287 303; 539 288 289; 540 289 290;
541 290 291; 546 292 293; 547 293 294; 548 294 295; 550 293 308; 551 294 307;
552 295 306; 553 296 297; 554 297 298; 555 298 299; 556 111 283; 557 76 282;
558 41 281; 559 300 287; 560 224 300; 561 301 286; 562 217 301; 563 302 285;
564 210 302; 565 118 287; 566 83 286; 567 48 285; 568 303 291; 569 243 303;
570 304 290; 571 237 304; 572 305 289; 573 231 305; 574 125 318; 575 90 315;
576 55 312; 577 132 333; 578 97 331; 579 62 329; 580 199 297; 581 198 298;
582 197 299; 583 306 299; 584 196 306; 585 307 298; 586 195 307; 587 308 297;
588 194 308; 591 312 289; 592 309 312; 593 310 313; 594 311 314; 595 312 337;
596 314 313; 597 315 290; 598 312 315; 599 313 316; 600 314 317; 601 315 336;
602 317 316; 603 318 291; 604 315 318; 605 316 319; 606 317 320; 607 318 335;
608 320 319; 609 313 293; 610 316 294; 611 319 295; 612 283 321; 613 287 322;
614 291 323; 615 299 324; 616 318 325; 617 319 326; 618 320 327; 619 146 321;
620 321 322; 621 322 323; 622 323 325; 623 325 327; 624 327 326; 625 326 328;
626 174 324; 627 328 324; 628 295 328; 629 329 293; 631 329 194; 632 331 294;
634 331 195; 635 333 295; 637 333 196; 638 335 320; 639 261 335; 640 336 317;
641 255 336; 642 337 314; 643 249 337;
DEFINE MATERIAL START
ISOTROPIC STEEL
E 2.05e+008
POISSON 0.3
DENSITY 76.8195
ALPHA 1.2e-005
DAMP 0.03
TYPE STEEL
STRENGTH FY 253200 FU 407800 RY 1.5 RT 1.2
END DEFINE MATERIAL
MEMBER PROPERTY TATASTRUCTURA
315 TO 319 325 TO 333 619 TO 627 TABLE ST 76.1X3.2CHS
MEMBER PROPERTY INDIAN
389 391 393 395 397 402 404 406 408 410 415 417 419 421 423 428 430 432 434 -
436 439 441 443 445 447 450 452 454 456 458 461 463 465 467 469 472 474 476 -
478 480 483 485 487 489 491 494 496 498 500 502 505 507 509 511 513 516 518 -
520 522 524 560 562 564 569 571 573 639 641 643 TABLE ST ISHB200
141 TO 157 159 TO 162 164 TO 167 169 TO 172 174 TO 177 179 TO 182 184 TO 187 -
189 TO 192 194 TO 215 217 TO 220 222 TO 225 227 TO 230 232 TO 235 -
237 TO 240 242 TO 245 247 TO 250 252 TO 273 275 TO 278 280 TO 283 -
285 TO 288 290 TO 293 295 TO 298 300 TO 303 305 TO 308 310 TO 314 358 360 -
362 387 388 390 392 394 396 400 401 403 405 407 409 413 414 416 418 420 422 -
426 427 429 431 433 435 437 438 440 442 444 446 448 449 451 453 455 457 459 -
460 462 464 466 468 470 471 473 475 477 479 481 482 484 486 488 490 492 493 -
495 497 499 501 503 504 506 508 510 512 514 515 517 519 521 523 529 TO 531 -
536 TO 538 550 TO 552 556 TO 559 561 563 565 TO 568 570 572 574 TO 583 585 -
587 591 595 TO 597 601 TO 603 607 TO 611 629 632 635 638 640 -
642 TABLE ST ISMB300

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 36


367 TO 369 371 373 375 584 586 588 631 634 637 TABLE ST ISWB225
1 TO 6 8 TO 13 15 TO 20 22 TO 27 29 TO 34 36 TO 41 43 TO 48 50 TO 55 -
57 TO 62 64 TO 69 71 TO 76 78 TO 83 85 TO 90 92 TO 97 99 TO 104 106 TO 111 -
113 120 127 134 TO 139 359 361 363 525 TO 527 532 TO 534 539 TO 541 -
546 TO 548 553 TO 555 592 TO 594 598 TO 600 604 TO 606 612 TO 618 -
628 TABLE ST ISHB400
CONSTANTS
MATERIAL STEEL ALL
SUPPORTS
1 TO 6 8 TO 13 15 TO 20 22 TO 27 29 TO 34 189 280 284 288 292 296 309 TO 310 -
311 FIXED
MEMBER RELEASE
367 TO 369 389 391 393 395 397 402 404 406 408 410 415 417 419 421 423 428 -
430 432 434 436 439 441 443 445 447 450 452 454 456 458 461 463 465 467 469 -
472 474 476 478 480 483 485 487 489 491 494 496 498 500 502 505 507 509 511 -
513 516 518 520 522 524 560 562 564 569 571 573 584 586 588 631 634 637 639 -
641 643 START MZ
367 TO 369 371 373 375 389 391 393 395 397 402 404 406 408 410 415 417 419 -
421 423 428 430 432 434 436 439 441 443 445 447 450 452 454 456 458 461 463 -
465 467 469 472 474 476 478 480 483 485 487 489 491 494 496 498 500 502 505 -
507 509 511 513 516 518 520 522 524 560 562 564 569 571 573 584 586 588 639 -
641 643 END MZ
DEFINE REFERENCE LOADS
LOAD R1 LOADTYPE Dead TITLE DL
SELFWEIGHT Y -1.05
FLOOR LOAD
YRANGE 0 7 FLOAD -0.2 XRANGE 0 24 ZRANGE 0 18 GY
MEMBER LOAD
358 360 362 371 373 375 UNI GY -10
141 142 145 148 151 153 TO 157 194 TO 200 203 206 209 211 TO 215 252 TO 258 -
261 264 267 269 TO 273 310 TO 314 387 400 413 426 437 448 459 470 481 492 -
503 514 529 TO 531 536 TO 538 550 TO 552 556 TO 559 561 563 568 570 572 580 -
581 TO 583 585 587 591 595 TO 597 601 TO 603 607 TO 611 638 640 -
642 UNI GY -1
LOAD R2 LOADTYPE Live REDUCIBLE TITLE LL
FLOOR LOAD
YRANGE 0 7 FLOAD -7.5 XRANGE 0 24 ZRANGE 0 18 GY
END DEFINE REFERENCE LOADS
DEFINE 1893 ACCIDENTAL LOAD PART4
ZONE 0.36 RF 4 I 1.5 SS 2 ST 2 DM 0.05 PX 0.362 PZ 0.362
REFERENCE LOAD Y
R1 1.0 R2 0.25
LOAD 3 LOADTYPE Seismic TITLE EQ +VE X
1893 LOAD X 1
LOAD 4 LOADTYPE Seismic TITLE EQ -VE X
1893 LOAD X -1
LOAD 5 LOADTYPE Seismic TITLE EQ +VE Z

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 37


1893 LOAD Z 1
LOAD 6 LOADTYPE Seismic TITLE EQ -VE Z
1893 LOAD Z -1
LOAD 1 LOADTYPE Dead TITLE DL
REFERENCE LOAD
R1 1.0
LOAD 2 LOADTYPE Live TITLE LL
REFERENCE LOAD
R2 1.0
LOAD 7 LOADTYPE Temperature TITLE Temp
TEMPERATURE LOAD
1 TO 6 8 TO 13 15 TO 20 22 TO 27 29 TO 34 36 TO 41 43 TO 48 50 TO 55 -
57 TO 62 64 TO 69 71 TO 76 78 TO 83 85 TO 90 92 TO 97 99 TO 104 106 TO 111 -
113 120 127 134 TO 139 141 TO 157 159 TO 162 164 TO 167 169 TO 172 -
174 TO 177 179 TO 182 184 TO 187 189 TO 192 194 TO 215 217 TO 220 -
222 TO 225 227 TO 230 232 TO 235 237 TO 240 242 TO 245 247 TO 250 -
252 TO 273 275 TO 278 280 TO 283 285 TO 288 290 TO 293 295 TO 298 -
300 TO 303 305 TO 308 310 TO 319 325 TO 333 358 TO 363 367 TO 369 371 373 -
375 387 TO 397 400 TO 410 413 TO 423 426 TO 527 529 TO 534 536 TO 541 546 -
547 TO 548 550 TO 588 591 TO 629 631 632 634 635 637 TO 643 TEMP 0 15
LOAD COMB 101 1.5DL + 1.5LL
1 1.5 2 1.5
LOAD COMB 102 1.5DL + 1.5EQ +VE X
1 1.5 3 1.5
LOAD COMB 103 1.5DL + 1.5EQ -VE X
1 1.5 4 1.5
LOAD COMB 104 1.5DL + 1.5EQ +VE Z
1 1.5 5 1.5
LOAD COMB 105 1.5DL + 1.5EQ -VE Z
1 1.5 6 1.5
LOAD COMB 106 0.9DL + 1.5EQ +VE X
1 0.9 3 1.5
LOAD COMB 107 0.9DL + 1.5EQ -VE X
1 0.9 4 1.5
LOAD COMB 108 0.9DL + 1.5EQ +VE Z
1 0.9 5 1.5
LOAD COMB 109 0.9DL + 1.5EQ -VE Z
1 0.9 6 1.5
LOAD COMB 110 1.2DL + 1.2LL + 1.2EQ +VEX
1 1.2 2 1.2 3 1.2
LOAD COMB 111 1.2DL + 1.2LL + 1.2EQ -VEX
1 1.2 2 1.2 4 1.2
LOAD COMB 112 1.2DL + 1.2LL + 1.2EQ +VEZ
1 1.2 2 1.2 5 1.2
LOAD COMB 113 1.2DL + 1.2LL + 1.2EQ -VEZ
1 1.2 2 1.2 6 1.2
LOAD COMB 201 DL + LL

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 38


1 1.0 2 1.0
LOAD COMB 202 DL + EQ +VE X
1 1.0 3 1.0
LOAD COMB 203 DL + EQ -VE X
1 1.0 4 1.0
LOAD COMB 204 DL + EQ +VE Z
1 1.0 5 1.0
LOAD COMB 205 DL + EQ -VE Z
1 1.0 6 1.0
LOAD COMB 206 DL + LL + EQ +VEX
1 1.0 2 1.0 3 1.0
LOAD COMB 207 DL + LL + EQ -VEX
1 1.0 2 1.0 4 1.0
LOAD COMB 208 DL + LL + EQ +VEZ
1 1.0 2 1.0 5 1.0
LOAD COMB 209 DL + LL + EQ -VEZ
1 1.0 2 1.0 6 1.0
PERFORM ANALYSIS
PARAMETER 1
CODE IS800 LSD
FYLD 250000 ALL
TRACK 2 ALL
CHECK CODE ALL
PARAMETER 2
CODE IS800 LSD
STEEL TAKE OFF ALL
CHECK CODE ALL
FINISH

2. INPUTFILE OF A2

STAAD SPACE
START JOB INFORMATION
ENGINEER DATE 29-Aug-19
END JOB INFORMATION
INPUT WIDTH 79
UNIT METER KN
JOINT COORDINATES
1 0 0 0; 2 4 0 0; 3 8 0 0; 4 10.91 0 0; 5 0 0 2.8; 6 4 0 2.8; 7 8 0 2.8;
8 10.91 0 2.8; 9 0 0 6.1; 11 8 0 6.1; 12 10.91 0 6.1; 13 2.19 0 6.1;
14 5.49 0 6.1; 15 2.19 0 4.9; 16 5.49 0 4.9; 17 0 2.3 0; 18 4 2.3 0;
19 8 2.3 0; 20 10.91 2.3 0; 21 0 2.3 2.8; 22 4 2.3 2.8; 23 8 2.3 2.8;
24 10.91 2.3 2.8; 25 0 2.3 6.1; 26 8 2.3 6.1; 27 10.91 2.3 6.1;
28 2.19 2.3 6.1; 29 5.49 2.3 6.1; 30 2.19 2.3 4.9; 31 5.49 2.3 4.9; 32 0 4.6 0;
33 4 4.6 0; 34 8 4.6 0; 35 10.91 4.6 0; 36 0 4.6 2.8; 37 4 4.6 2.8;
38 8 4.6 2.8; 39 10.91 4.6 2.8; 40 0 4.6 6.1; 41 8 4.6 6.1; 42 10.91 4.6 6.1;

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 39


43 2.19 4.6 6.1; 44 5.49 4.6 6.1; 45 2.19 4.6 4.9; 46 5.49 4.6 4.9; 47 0 6.9 0;
48 4 6.9 0; 49 8 6.9 0; 50 10.91 6.9 0; 51 0 6.9 2.8; 52 4 6.9 2.8;
53 8 6.9 2.8; 54 10.91 6.9 2.8; 55 0 6.9 6.1; 56 8 6.9 6.1; 57 10.91 6.9 6.1;
58 2.19 6.9 6.1; 59 5.49 6.9 6.1; 60 2.19 6.9 4.9; 61 5.49 6.9 4.9;
62 9.71 0 2.8; 63 9.71 2.3 2.8; 64 9.71 4.6 2.8; 65 9.71 6.9 2.8; 67 0 2.3 4.9;
68 8 2.3 4.9; 69 2.19 2.3 2.8; 70 5.49 2.3 2.8; 71 4 2.3 4.9; 72 0 2.3 1.4;
73 4 2.3 1.4; 74 8 2.3 1.4; 77 8 2.3 4.45; 78 10.91 2.3 1.4; 79 9.71 2.3 6.1;
80 9.71 2.3 4.45; 81 0 4.6 4.9; 82 8 4.6 4.9; 83 2.19 4.6 2.8; 84 5.49 4.6 2.8;
85 4 4.6 4.9; 86 0 4.6 1.4; 87 4 4.6 1.4; 88 8 4.6 1.4; 89 8 4.6 4.45;
90 10.91 4.6 1.4; 91 9.71 4.6 6.1; 92 9.71 4.6 4.45; 93 0 6.9 4.9;
94 8 6.9 4.9; 95 2.19 6.9 2.8; 96 5.49 6.9 2.8; 97 4 6.9 4.9; 98 0 6.9 1.4;
99 4 6.9 1.4; 100 8 6.9 1.4; 101 8 6.9 4.45; 102 10.91 6.9 1.4;
103 9.71 6.9 6.1; 104 9.71 6.9 4.45; 105 0 8.4 0; 106 4 8.4 0; 107 8 8.4 0;
108 10.91 8.4 0; 109 0 8.4 2.8; 110 10.91 8.4 2.8; 111 0 8.4 6.1;
112 8 8.4 6.1; 113 10.91 8.4 6.1; 114 2.19 8.4 6.1; 115 5.49 8.4 6.1;
116 2.19 8.4 4.9; 117 5.49 8.4 4.9; 118 9.71 2.3 5.25; 119 10.91 2.3 5.25;
120 9.71 4.6 5.25; 121 10.91 4.6 5.25; 122 9.71 6.9 5.25; 123 10.91 6.9 5.25;
MEMBER INCIDENCES
21 1 17; 22 2 18; 23 3 19; 24 4 20; 25 5 21; 26 6 22; 27 7 23; 28 8 24;
29 9 25; 30 11 26; 31 12 27; 32 13 28; 33 14 29; 34 15 30; 35 16 31; 36 17 18;
37 18 19; 38 19 20; 39 21 69; 40 22 70; 41 23 63; 42 25 28; 43 29 26; 44 26 79;
45 30 71; 46 17 72; 47 21 67; 48 18 73; 49 19 74; 50 23 77; 51 20 78;
52 24 119; 53 30 28; 54 31 29; 55 17 32; 56 18 33; 57 19 34; 58 20 35;
59 21 36; 60 22 37; 61 23 38; 62 24 39; 63 25 40; 64 26 41; 65 27 42; 66 28 43;
67 29 44; 68 30 45; 69 31 46; 70 32 33; 71 33 34; 72 34 35; 73 36 83; 74 37 84;
75 38 64; 76 40 43; 77 44 41; 78 41 91; 79 45 85; 80 32 86; 81 36 81; 82 33 87;
83 34 88; 84 38 89; 85 35 90; 86 39 121; 87 45 43; 88 46 44; 89 32 47;
90 33 48; 91 34 49; 92 35 50; 93 36 51; 94 37 52; 95 38 53; 96 39 54; 97 40 55;
98 41 56; 99 42 57; 100 43 58; 101 44 59; 102 45 60; 103 46 61; 104 47 48;
105 48 49; 106 49 50; 107 51 95; 108 52 96; 109 53 65; 110 55 58; 111 59 56;
112 56 103; 113 60 97; 114 47 98; 115 51 93; 116 48 99; 117 49 100; 118 53 101;
119 50 102; 120 54 123; 121 60 58; 122 61 59; 123 63 24; 124 62 63; 125 64 39;
126 63 64; 127 65 54; 128 64 65; 131 67 25; 133 68 26; 134 31 68; 135 69 22;
137 70 23; 139 71 31; 140 22 71; 142 69 30; 143 70 31; 144 67 30; 145 72 21;
146 73 22; 147 72 73; 148 74 23; 149 73 74; 153 77 68; 154 78 24; 155 74 78;
156 79 27; 157 63 80; 158 80 118; 159 77 80; 160 81 40; 161 82 41; 162 83 37;
163 84 38; 164 85 46; 165 86 36; 166 87 37; 167 88 38; 168 89 82; 169 90 39;
170 91 42; 171 46 82; 172 37 85; 173 83 45; 174 84 46; 175 81 45; 176 86 87;
177 87 88; 178 88 90; 179 64 92; 180 92 120; 181 89 92; 182 93 55; 183 94 56;
184 95 52; 185 96 53; 186 97 61; 187 98 51; 188 99 52; 189 100 53; 190 101 94;
191 102 54; 192 103 57; 193 61 94; 194 52 97; 195 95 60; 196 96 61; 197 93 60;
198 98 99; 199 99 100; 200 100 102; 201 65 104; 202 104 122; 203 101 104;
204 47 105; 205 48 106; 206 49 107; 207 50 108; 208 51 109; 209 54 110;
210 55 111; 211 56 112; 212 57 113; 213 58 114; 214 59 115; 215 60 116;
216 61 117; 217 105 106; 218 106 107; 219 107 108; 220 111 114; 221 115 112;
222 110 113; 223 105 109; 224 109 111; 225 116 114; 226 116 117; 227 117 115;
228 112 113; 229 108 110; 230 118 79; 231 119 27; 232 118 119; 233 120 91;

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 40


234 121 42; 235 120 121; 236 122 103; 237 123 57; 238 122 123;
DEFINE MATERIAL START
ISOTROPIC STEEL
E 2.05e+008
POISSON 0.3
DENSITY 76.8195
ALPHA 1.2e-005
DAMP 0.03
TYPE STEEL
STRENGTH FY 253200 FU 407800 RY 1.5 RT 1.2
END DEFINE MATERIAL
MEMBER PROPERTY TATASTRUCTURA
217 TO 229 TABLE ST 76.1X3.2CHS
MEMBER PROPERTY INDIAN
21 TO 35 55 TO 69 89 TO 103 124 126 128 204 TO 216 TABLE ST ISHB225
36 TO 54 70 TO 88 104 TO 123 125 127 131 133 135 137 139 145 146 148 153 154 -
156 160 TO 170 182 TO 192 231 234 237 TABLE ST ISHB150
134 140 142 TO 144 147 149 155 157 TO 159 171 TO 181 193 TO 203 230 232 233 -
235 236 238 TABLE ST ISHB150
CONSTANTS
MATERIAL STEEL ALL
SUPPORTS
1 TO 9 11 TO 16 62 FIXED
MEMBER RELEASE
134 140 142 TO 144 147 149 155 157 TO 159 171 TO 181 193 TO 203 230 233 -
236 START MZ
134 140 142 TO 144 147 149 155 157 158 171 TO 180 193 TO 202 230 232 233 235 -
236 238 END MZ
DEFINE REFERENCE LOADS
LOAD R1 LOADTYPE Dead TITLE DL
SELFWEIGHT Y -1.05
FLOOR LOAD
YRANGE 0 7 FLOAD -0.2 XRANGE 0 24 ZRANGE 0 18 GY
MEMBER LOAD
123 125 127 232 235 238 UNI GY -10
36 TO 38 42 TO 47 51 TO 54 70 TO 72 76 TO 81 85 TO 88 104 TO 106 110 TO 115 -
119 TO 122 131 139 145 154 156 160 164 165 169 170 182 186 187 191 192 231 -
234 237 UNI GY -1
LOAD R2 LOADTYPE Live REDUCIBLE TITLE LL
FLOOR LOAD
YRANGE 0 7 FLOAD -7.5 XRANGE 0 24 ZRANGE 0 18 GY
END DEFINE REFERENCE LOADS
DEFINE 1893 ACCIDENTAL LOAD PART4
ZONE 0.36 RF 4 I 1.5 SS 2 ST 2 DM 0.05 PX 0.362 PZ 0.362
REFERENCE LOAD Y
R1 1.0 R2 0.25
LOAD 3 LOADTYPE Seismic TITLE EQ +VE X

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 41


1893 LOAD X 1
LOAD 4 LOADTYPE Seismic TITLE EQ -VE X
1893 LOAD X -1
LOAD 5 LOADTYPE Seismic TITLE EQ +VE Z
1893 LOAD Z 1
LOAD 6 LOADTYPE Seismic TITLE EQ -VE Z
1893 LOAD Z -1
LOAD 1 LOADTYPE Dead TITLE DL
REFERENCE LOAD
R1 1.0
LOAD 2 LOADTYPE Live TITLE LL
REFERENCE LOAD
R2 1.0
LOAD 7 LOADTYPE Temperature TITLE Temp
TEMPERATURE LOAD
21 TO 128 131 133 TO 135 137 139 140 142 TO 149 153 TO 238 TEMP 0 15
LOAD COMB 101 1.5DL + 1.5LL
1 1.5 2 1.5
LOAD COMB 102 1.5DL + 1.5EQ +VE X
1 1.5 3 1.5
LOAD COMB 103 1.5DL + 1.5EQ -VE X
1 1.5 4 1.5
LOAD COMB 104 1.5DL + 1.5EQ +VE Z
1 1.5 5 1.5
LOAD COMB 105 1.5DL + 1.5EQ -VE Z
1 1.5 6 1.5
LOAD COMB 106 0.9DL + 1.5EQ +VE X
1 0.9 3 1.5
LOAD COMB 107 0.9DL + 1.5EQ -VE X
1 0.9 4 1.5
LOAD COMB 108 0.9DL + 1.5EQ +VE Z
1 0.9 5 1.5
LOAD COMB 109 0.9DL + 1.5EQ -VE Z
1 0.9 6 1.5
LOAD COMB 110 1.2DL + 1.2LL + 1.2EQ +VEX
1 1.2 2 1.2 3 1.2
LOAD COMB 111 1.2DL + 1.2LL + 1.2EQ -VEX
1 1.2 2 1.2 4 1.2
LOAD COMB 112 1.2DL + 1.2LL + 1.2EQ +VEZ
1 1.2 2 1.2 5 1.2
LOAD COMB 113 1.2DL + 1.2LL + 1.2EQ -VEZ
1 1.2 2 1.2 6 1.2
LOAD COMB 201 DL + LL
1 1.0 2 1.0
LOAD COMB 202 DL + EQ +VE X
1 1.0 3 1.0
LOAD COMB 203 DL + EQ -VE X

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 42


1 1.0 4 1.0
LOAD COMB 204 DL + EQ +VE Z
1 1.0 5 1.0
LOAD COMB 205 DL + EQ -VE Z
1 1.0 6 1.0
LOAD COMB 206 DL + LL + EQ +VEX
1 1.0 2 1.0 3 1.0
LOAD COMB 207 DL + LL + EQ -VEX
1 1.0 2 1.0 4 1.0
LOAD COMB 208 DL + LL + EQ +VEZ
1 1.0 2 1.0 5 1.0
LOAD COMB 209 DL + LL + EQ -VEZ
1 1.0 2 1.0 6 1.0
PERFORM ANALYSIS
PARAMETER 1
CODE IS800 LSD
FYLD 250000 ALL
TRACK 2 ALL
CHECK CODE ALL
PARAMETER 2
CODE IS800 LSD
STEEL TAKE OFF ALL
CHECK CODE ALL
FINISH
3. INPUTFILE OF A3

STAAD SPACE
START JOB INFORMATION
ENGINEER DATE 29-Aug-19
END JOB INFORMATION
INPUT WIDTH 79
UNIT METER KN
JOINT COORDINATES
1 0 0 0; 2 2.19 0 0; 3 5.49 0 0; 4 8 0 0; 5 10.91 0 0; 6 0 0 3.3; 7 8 0 3.3;
8 10.91 0 3.3; 9 4 0 3.3; 10 0 0 8.345; 11 8 0 8.345; 12 10.91 0 8.345;
13 4 0 8.345; 14 9.41 0 3.3; 15 2.19 0 1.2; 16 5.49 0 1.2; 20 0 2.3 0;
21 2.19 2.3 0; 22 5.49 2.3 0; 23 8 2.3 0; 24 10.91 2.3 0; 25 0 2.3 3.3;
26 8 2.3 3.3; 27 10.91 2.3 3.3; 28 4 2.3 3.3; 29 0 2.3 8.345; 30 8 2.3 8.345;
31 10.91 2.3 8.345; 32 4 2.3 8.345; 33 9.41 2.3 3.3; 34 2.19 2.3 1.2;
35 5.49 2.3 1.2; 36 8 2.3 1.2; 37 0 2.3 1.2; 38 4 2.3 1.2; 39 0 4.6 0;
40 2.19 4.6 0; 41 5.49 4.6 0; 42 8 4.6 0; 43 10.91 4.6 0; 44 0 4.6 3.3;
45 8 4.6 3.3; 46 10.91 4.6 3.3; 47 4 4.6 3.3; 48 0 4.6 8.345; 49 8 4.6 8.345;
50 10.91 4.6 8.345; 51 4 4.6 8.345; 52 9.41 4.6 3.3; 53 2.19 4.6 1.2;
54 5.49 4.6 1.2; 55 8 4.6 1.2; 56 0 4.6 1.2; 57 4 4.6 1.2; 58 0 6.9 0;
59 2.19 6.9 0; 60 5.49 6.9 0; 61 8 6.9 0; 62 10.91 6.9 0; 63 0 6.9 3.3;
64 8 6.9 3.3; 65 10.91 6.9 3.3; 66 4 6.9 3.3; 67 0 6.9 8.345; 68 8 6.9 8.345;

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 43


69 10.91 6.9 8.345; 70 4 6.9 8.345; 71 9.41 6.9 3.3; 72 2.19 6.9 1.2;
73 5.49 6.9 1.2; 74 8 6.9 1.2; 75 0 6.9 1.2; 76 4 6.9 1.2; 77 0 8.4 0;
78 2.19 8.4 0; 79 5.49 8.4 0; 80 8 8.4 0; 81 10.91 8.4 0; 82 0 8.4 3.3;
83 10.91 8.4 3.3; 84 0 8.4 8.345; 85 8 8.4 8.345; 86 10.91 8.4 8.345;
87 4 8.4 8.345; 88 2.19 8.4 1.2; 89 5.49 8.4 1.2; 90 0 8.4 1.2; 91 4 8.4 1.2;
92 2.19 2.3 3.3; 93 2.19 4.6 3.3; 94 2.19 6.9 3.3; 95 5.49 2.3 3.3;
96 5.49 4.6 3.3; 97 5.49 6.9 3.3; 98 0 2.3 5.8225; 99 4 2.3 5.8225;
100 8 2.3 5.8225; 101 10.91 2.3 5.8225; 102 0 4.6 5.8225; 103 4 4.6 5.8225;
104 8 4.6 5.8225; 105 10.91 4.6 5.8225; 106 0 6.9 5.8225; 107 4 6.9 5.8225;
108 8 6.9 5.8225; 109 10.91 6.9 5.8225; 110 9.41 6.9 0; 111 9.41 4.6 0;
112 9.41 2.3 0; 113 9.41 2.3 0.85; 114 10.91 2.3 0.85; 115 9.41 4.6 0.85;
116 10.91 4.6 0.85; 117 9.41 6.9 0.85; 118 10.91 6.9 0.85;
MEMBER INCIDENCES
29 1 20; 30 2 21; 31 3 22; 32 4 23; 33 5 24; 34 6 25; 35 7 26; 36 8 27;
37 9 28; 38 10 29; 39 11 30; 40 12 31; 41 13 32; 42 14 33; 43 15 34; 44 16 35;
48 20 21; 49 22 23; 50 23 112; 51 25 92; 52 28 95; 53 26 33; 54 33 27;
55 29 32; 56 32 30; 57 30 31; 58 20 37; 59 25 98; 60 23 36; 61 26 100;
62 24 114; 63 27 101; 64 28 99; 65 21 34; 66 34 38; 67 22 35; 68 36 26;
69 35 36; 70 37 25; 71 38 35; 72 37 34; 73 38 28; 74 20 39; 75 21 40; 76 22 41;
77 23 42; 78 24 43; 79 25 44; 80 26 45; 81 27 46; 82 28 47; 83 29 48; 84 30 49;
85 31 50; 86 32 51; 87 33 52; 88 34 53; 89 35 54; 93 39 40; 94 41 42;
95 42 111; 96 44 93; 97 47 96; 98 45 52; 99 52 46; 100 48 51; 101 51 49;
102 49 50; 103 39 56; 104 44 102; 105 42 55; 106 45 104; 107 43 116;
108 46 105; 109 47 103; 110 40 53; 111 53 57; 112 41 54; 113 55 45; 114 54 55;
115 56 44; 116 57 54; 117 56 53; 118 57 47; 119 39 58; 120 40 59; 121 41 60;
122 42 61; 123 43 62; 124 44 63; 125 45 64; 126 46 65; 127 47 66; 128 48 67;
129 49 68; 130 50 69; 131 51 70; 132 52 71; 133 53 72; 134 54 73; 138 58 59;
139 60 61; 140 61 110; 141 63 94; 142 66 97; 143 64 71; 144 71 65; 145 67 70;
146 70 68; 147 68 69; 148 58 75; 149 63 106; 150 61 74; 151 64 108; 152 62 118;
153 65 109; 154 66 107; 155 59 72; 156 72 76; 157 60 73; 158 74 64; 159 73 74;
160 75 63; 161 76 73; 162 75 72; 163 76 66; 164 58 77; 165 59 78; 166 60 79;
167 61 80; 168 62 81; 169 63 82; 170 65 83; 171 67 84; 172 68 85; 173 69 86;
174 70 87; 175 72 88; 176 73 89; 179 77 78; 180 78 88; 181 88 91; 182 91 89;
183 89 79; 184 79 80; 185 80 81; 186 81 83; 187 83 86; 188 77 90; 189 90 82;
190 82 84; 191 84 87; 192 87 85; 193 85 86; 194 92 28; 195 34 92; 196 93 47;
197 53 93; 198 94 66; 199 72 94; 200 95 26; 201 35 95; 202 96 45; 203 54 96;
204 97 64; 205 73 97; 206 98 29; 207 99 32; 208 100 30; 209 101 31; 210 98 99;
211 99 100; 212 100 101; 213 102 48; 214 103 51; 215 104 49; 216 105 50;
217 102 103; 218 103 104; 219 104 105; 220 106 67; 221 107 70; 222 108 68;
223 109 69; 224 106 107; 225 107 108; 226 108 109; 227 110 62; 228 71 117;
229 111 43; 230 52 115; 231 112 24; 232 33 113; 233 113 112; 234 114 27;
235 113 114; 236 115 111; 237 116 46; 238 115 116; 239 117 110; 240 118 65;
241 117 118;
DEFINE MATERIAL START
ISOTROPIC STEEL
E 2.05e+008
POISSON 0.3

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 44


DENSITY 76.8195
ALPHA 1.2e-005
DAMP 0.03
TYPE STEEL
STRENGTH FY 253200 FU 407800 RY 1.5 RT 1.2
END DEFINE MATERIAL
MEMBER PROPERTY TATASTRUCTURA
179 TO 193 TABLE ST 88.9X3.2CHS
MEMBER PROPERTY INDIAN
48 49 51 TO 58 60 65 TO 68 70 71 93 94 96 TO 103 105 110 TO 113 115 116 138 -
139 141 TO 148 150 155 TO 158 160 161 194 196 198 200 202 -
204 TABLE ST ISHB150
69 72 73 114 117 118 159 162 163 195 197 199 201 203 205 212 219 -
226 TABLE ST ISHB150
29 TO 32 42 TO 44 74 TO 77 87 TO 89 119 TO 122 132 TO 134 164 TO 167 175 -
176 TABLE ST ISHB225
33 34 36 38 40 78 79 81 83 85 123 124 126 128 130 168 TO 171 -
173 TABLE ST ISHB300
35 37 39 41 80 82 84 86 125 127 129 131 172 174 TABLE ST ISHB400
61 64 106 109 151 154 207 208 214 215 221 222 TABLE ST ISHB250
50 59 62 63 95 104 107 108 140 149 152 153 206 209 TO 211 213 216 TO 218 220 -
223 TO 225 227 TO 241 TABLE ST ISHB200
CONSTANTS
MATERIAL STEEL ALL
SUPPORTS
1 TO 16 FIXED
MEMBER RELEASE
69 72 73 114 117 118 159 162 163 195 197 199 201 203 205 210 TO 212 -
217 TO 219 224 TO 226 228 230 232 233 236 239 START MZ
69 72 73 114 117 118 159 162 163 195 197 199 201 203 205 210 TO 212 -
217 TO 219 224 TO 226 228 230 232 233 235 236 238 239 241 END MZ
DEFINE REFERENCE LOADS
LOAD R1 LOADTYPE Dead TITLE DL
SELFWEIGHT Y -1.05
FLOOR LOAD
YRANGE 0 7 FLOAD -0.2 XRANGE 0 24 ZRANGE 0 18 GY
MEMBER LOAD
54 99 144 235 238 241 UNI GY -10
48 TO 50 55 TO 59 62 63 65 TO 67 70 71 93 TO 95 100 TO 104 107 108 -
110 TO 112 115 116 138 TO 140 145 TO 149 152 153 155 TO 157 160 161 206 209 -
213 216 220 223 227 229 231 234 237 240 UNI GY -1
LOAD R2 LOADTYPE Live REDUCIBLE TITLE LL
FLOOR LOAD
YRANGE 0 7 FLOAD -7.5 XRANGE 0 24 ZRANGE 0 18 GY
END DEFINE REFERENCE LOADS
DEFINE 1893 ACCIDENTAL LOAD PART4
ZONE 0.36 RF 4 I 1.5 SS 2 ST 2 DM 0.05 PX 0.362 PZ 0.362

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 45


REFERENCE LOAD Y
R1 1.0 R2 0.25
LOAD 3 LOADTYPE Seismic TITLE EQ +VE X
1893 LOAD X 1
LOAD 4 LOADTYPE Seismic TITLE EQ -VE X
1893 LOAD X -1
LOAD 5 LOADTYPE Seismic TITLE EQ +VE Z
1893 LOAD Z 1
LOAD 6 LOADTYPE Seismic TITLE EQ -VE Z
1893 LOAD Z -1
LOAD 1 LOADTYPE Dead TITLE DL
REFERENCE LOAD
R1 1.0
LOAD 2 LOADTYPE Live TITLE LL
REFERENCE LOAD
R2 1.0
LOAD 7 LOADTYPE Temperature TITLE Temp
TEMPERATURE LOAD
29 TO 44 48 TO 89 93 TO 134 138 TO 176 179 TO 241 TEMP 0 15
LOAD COMB 101 1.5DL + 1.5LL
1 1.5 2 1.5
LOAD COMB 102 1.5DL + 1.5EQ +VE X
1 1.5 3 1.5
LOAD COMB 103 1.5DL + 1.5EQ -VE X
1 1.5 4 1.5
LOAD COMB 104 1.5DL + 1.5EQ +VE Z
1 1.5 5 1.5
LOAD COMB 105 1.5DL + 1.5EQ -VE Z
1 1.5 6 1.5
LOAD COMB 106 0.9DL + 1.5EQ +VE X
1 0.9 3 1.5
LOAD COMB 107 0.9DL + 1.5EQ -VE X
1 0.9 4 1.5
LOAD COMB 108 0.9DL + 1.5EQ +VE Z
1 0.9 5 1.5
LOAD COMB 109 0.9DL + 1.5EQ -VE Z
1 0.9 6 1.5
LOAD COMB 110 1.2DL + 1.2LL + 1.2EQ +VEX
1 1.2 2 1.2 3 1.2
LOAD COMB 111 1.2DL + 1.2LL + 1.2EQ -VEX
1 1.2 2 1.2 4 1.2
LOAD COMB 112 1.2DL + 1.2LL + 1.2EQ +VEZ
1 1.2 2 1.2 5 1.2
LOAD COMB 113 1.2DL + 1.2LL + 1.2EQ -VEZ
1 1.2 2 1.2 6 1.2
LOAD COMB 201 DL + LL
1 1.0 2 1.0

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 46


LOAD COMB 202 DL + EQ +VE X
1 1.0 3 1.0
LOAD COMB 203 DL + EQ -VE X
1 1.0 4 1.0
LOAD COMB 204 DL + EQ +VE Z
1 1.0 5 1.0
LOAD COMB 205 DL + EQ -VE Z
1 1.0 6 1.0
LOAD COMB 206 DL + LL + EQ +VEX
1 1.0 2 1.0 3 1.0
LOAD COMB 207 DL + LL + EQ -VEX
1 1.0 2 1.0 4 1.0
LOAD COMB 208 DL + LL + EQ +VEZ
1 1.0 2 1.0 5 1.0
LOAD COMB 209 DL + LL + EQ -VEZ
1 1.0 2 1.0 6 1.0
PERFORM ANALYSIS
PARAMETER 1
CODE IS800 LSD
FYLD 250000 ALL
TRACK 2 ALL
CHECK CODE ALL
PARAMETER 2
CODE IS800 LSD
STEEL TAKE OFF ALL
CHECK CODE ALL
FINISH

4. INPUTFILE OF A4

STAAD SPACE
START JOB INFORMATION
ENGINEER DATE 29-Aug-19
END JOB INFORMATION
INPUT WIDTH 79
UNIT METER KN
JOINT COORDINATES
1 0 0 0; 2 2.6 0 0; 3 5.075 0 0; 4 8.469 0 0; 5 11.863 0 0; 6 0 0 2.25;
7 2.6 0 2.25; 8 0 0 4.215; 9 5.075 0 4.215; 10 8.469 0 4.215;
11 11.863 0 4.215; 12 0 0 6.815; 13 5.075 0 6.815; 14 0 2.3 0; 15 2.6 2.3 0;
16 5.075 2.3 0; 17 8.469 2.3 0; 18 11.863 2.3 0; 19 0 2.3 2.25;
20 2.6 2.3 2.25; 21 0 2.3 4.215; 22 5.075 2.3 4.215; 23 8.469 2.3 4.215;
24 11.863 2.3 4.215; 25 0 2.3 6.815; 26 5.075 2.3 6.815; 27 0 4.6 0;
28 2.6 4.6 0; 29 5.075 4.6 0; 30 8.469 4.6 0; 31 11.863 4.6 0; 32 0 4.6 2.25;
33 2.6 4.6 2.25; 34 0 4.6 4.215; 35 5.075 4.6 4.215; 36 8.469 4.6 4.215;
37 11.863 4.6 4.215; 38 0 4.6 6.815; 39 5.075 4.6 6.815; 40 0 6.9 0;

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 47


41 2.6 6.9 0; 42 5.075 6.9 0; 43 8.469 6.9 0; 44 11.863 6.9 0; 45 0 6.9 2.25;
46 2.6 6.9 2.25; 47 0 6.9 4.215; 48 5.075 6.9 4.215; 49 8.469 6.9 4.215;
50 11.863 6.9 4.215; 51 0 6.9 6.815; 52 5.075 6.9 6.815; 53 0 8.4 0;
54 2.6 8.4 0; 55 5.075 8.4 0; 56 8.469 8.4 0; 57 11.863 8.4 0; 58 0 8.4 2.25;
59 0 8.4 4.215; 60 5.075 8.4 4.215; 61 8.469 8.4 4.215; 62 11.863 8.4 4.215;
63 0 8.4 6.815; 64 5.075 8.4 6.815; 65 5.075 2.3 2.25; 66 2.6 2.3 4.215;
67 2.6 2.3 6.815; 68 8.469 2.3 2.25; 69 11.863 2.3 2.25; 70 5.075 4.6 2.25;
71 2.6 4.6 4.215; 72 2.6 4.6 6.815; 73 8.469 4.6 2.25; 74 11.863 4.6 2.25;
75 5.075 6.9 2.25; 76 2.6 6.9 4.215; 77 2.6 6.9 6.815; 78 8.469 6.9 2.25;
79 11.863 6.9 2.25; 80 0.85 2.3 2.25; 81 0.85 2.3 0; 82 0.85 6.9 0;
83 0.85 6.9 2.25; 84 0.85 4.6 0; 85 0.85 4.6 2.25; 86 2.6 1.15 0;
87 2.6 1.15 2.25; 88 2.6 3.45 0; 89 2.6 5.75 0; 90 2.6 3.45 2.25;
91 2.6 5.75 2.25;
MEMBER INCIDENCES
18 1 14; 19 2 86; 20 3 16; 21 4 17; 22 5 18; 23 6 19; 24 7 87; 25 8 21;
26 9 22; 27 10 23; 28 11 24; 29 12 25; 30 13 26; 31 14 81; 32 15 16; 33 16 17;
34 17 18; 35 19 80; 36 21 66; 37 22 23; 38 23 24; 39 25 67; 40 14 19; 41 19 21;
42 21 25; 43 81 80; 44 16 65; 45 22 26; 46 17 68; 47 18 69; 48 14 27; 49 15 88;
50 16 29; 51 17 30; 52 18 31; 53 19 32; 54 20 90; 55 21 34; 56 22 35; 57 23 36;
58 24 37; 59 25 38; 60 26 39; 61 27 84; 62 28 29; 63 29 30; 64 30 31; 65 32 85;
66 34 71; 67 35 36; 68 36 37; 69 38 72; 70 27 32; 71 32 34; 72 34 38; 73 84 85;
74 29 70; 75 35 39; 76 30 73; 77 31 74; 78 27 40; 79 28 89; 80 29 42; 81 30 43;
82 31 44; 83 32 45; 84 33 91; 85 34 47; 86 35 48; 87 36 49; 88 37 50; 89 38 51;
90 39 52; 91 40 82; 92 41 42; 93 42 43; 94 43 44; 95 45 83; 96 47 76; 97 48 49;
98 49 50; 99 51 77; 100 40 45; 101 45 47; 102 47 51; 103 82 83; 104 42 75;
105 48 52; 106 43 78; 107 44 79; 108 40 53; 109 41 54; 110 42 55; 111 43 56;
112 44 57; 113 45 58; 114 47 59; 115 48 60; 116 49 61; 117 50 62; 118 51 63;
119 52 64; 120 53 54; 121 54 55; 122 55 56; 123 56 57; 125 60 61; 126 61 62;
127 63 64; 128 53 58; 129 58 59; 130 59 63; 132 60 64; 134 57 62; 135 65 22;
136 20 65; 137 66 22; 138 20 66; 139 67 26; 140 66 67; 141 68 23; 142 65 68;
143 69 24; 144 68 69; 145 70 35; 146 71 35; 147 72 39; 148 73 36; 149 74 37;
150 33 70; 151 33 71; 152 71 72; 153 70 73; 154 73 74; 155 75 48; 156 76 48;
157 77 52; 158 78 49; 159 79 50; 160 46 75; 161 46 76; 162 76 77; 163 75 78;
164 78 79; 165 80 20; 166 81 15; 167 82 41; 168 83 46; 169 84 28; 170 85 33;
171 86 15; 172 87 20; 173 86 87; 174 88 28; 175 89 41; 176 15 20; 177 90 33;
178 88 90; 179 28 33; 180 91 46; 181 89 91; 182 41 46;
DEFINE MATERIAL START
ISOTROPIC STEEL
E 2.05e+008
POISSON 0.3
DENSITY 76.8195
ALPHA 1.2e-005
DAMP 0.03
TYPE STEEL
STRENGTH FY 253200 FU 407800 RY 1.5 RT 1.2
END DEFINE MATERIAL
MEMBER PROPERTY TATASTRUCTURA

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 48


120 TO 123 125 TO 130 132 134 TABLE ST 88.9X3.2CHS
MEMBER PROPERTY INDIAN
31 TO 35 37 TO 42 45 47 61 TO 65 67 TO 72 75 77 91 TO 95 97 TO 102 105 107 -
139 143 147 149 157 159 165 TO 170 173 176 178 179 181 -
182 TABLE ST ISHB150
43 73 103 136 138 140 142 144 150 TO 154 160 TO 164 TABLE ST ISHB150
18 19 22 TO 25 28 TO 30 48 49 52 TO 55 58 TO 60 78 79 82 TO 85 88 TO 90 108 -
109 112 TO 114 117 TO 119 171 172 174 175 177 180 TABLE ST ISHB250
20 21 26 27 50 51 56 57 80 81 86 87 110 111 115 116 TABLE ST ISHB400
36 44 46 66 74 76 96 104 106 135 137 141 145 146 148 155 156 -
158 TABLE ST ISHB200
CONSTANTS
MATERIAL STEEL ALL
SUPPORTS
1 TO 13 FIXED
MEMBER RELEASE
43 73 103 136 138 140 142 144 150 TO 154 160 TO 164 START MZ
43 73 103 136 138 140 142 144 150 TO 154 160 TO 164 END MZ
DEFINE REFERENCE LOADS
LOAD R1 LOADTYPE Dead TITLE DL
SELFWEIGHT Y -1.05
FLOOR LOAD
YRANGE 0 7 FLOAD -0.2 XRANGE 0 24 ZRANGE 0 18 GY
MEMBER LOAD
43 73 103 173 176 178 179 181 182 UNI GY -10
31 TO 34 37 TO 42 45 47 61 TO 64 67 TO 72 75 77 91 TO 94 97 TO 102 105 107 -
139 143 147 149 157 159 166 167 169 UNI GY -1
LOAD R2 LOADTYPE Live REDUCIBLE TITLE LL
FLOOR LOAD
YRANGE 0 7 FLOAD -7.5 XRANGE 0 24 ZRANGE 0 18 GY
END DEFINE REFERENCE LOADS
DEFINE 1893 ACCIDENTAL LOAD PART4
ZONE 0.36 RF 4 I 1.5 SS 2 ST 2 DM 0.05 PX 0.362 PZ 0.362
REFERENCE LOAD Y
R1 1.0 R2 0.25
LOAD 3 LOADTYPE Seismic TITLE EQ +VE X
1893 LOAD X 1
LOAD 4 LOADTYPE Seismic TITLE EQ -VE X
1893 LOAD X -1
LOAD 5 LOADTYPE Seismic TITLE EQ +VE Z
1893 LOAD Z 1
LOAD 6 LOADTYPE Seismic TITLE EQ -VE Z
1893 LOAD Z -1
LOAD 1 LOADTYPE Dead TITLE DL
REFERENCE LOAD
R1 1.0
LOAD 2 LOADTYPE Live TITLE LL

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 49


REFERENCE LOAD
R2 1.0
LOAD 7 LOADTYPE Temperature TITLE Temp
TEMPERATURE LOAD
18 TO 123 125 TO 130 132 134 TO 182 TEMP 0 15
LOAD COMB 101 1.5DL + 1.5LL
1 1.5 2 1.5
LOAD COMB 102 1.5DL + 1.5EQ +VE X
1 1.5 3 1.5
LOAD COMB 103 1.5DL + 1.5EQ -VE X
1 1.5 4 1.5
LOAD COMB 104 1.5DL + 1.5EQ +VE Z
1 1.5 5 1.5
LOAD COMB 105 1.5DL + 1.5EQ -VE Z
1 1.5 6 1.5
LOAD COMB 106 0.9DL + 1.5EQ +VE X
1 0.9 3 1.5
LOAD COMB 107 0.9DL + 1.5EQ -VE X
1 0.9 4 1.5
LOAD COMB 108 0.9DL + 1.5EQ +VE Z
1 0.9 5 1.5
LOAD COMB 109 0.9DL + 1.5EQ -VE Z
1 0.9 6 1.5
LOAD COMB 110 1.2DL + 1.2LL + 1.2EQ +VEX
1 1.2 2 1.2 3 1.2
LOAD COMB 111 1.2DL + 1.2LL + 1.2EQ -VEX
1 1.2 2 1.2 4 1.2
LOAD COMB 112 1.2DL + 1.2LL + 1.2EQ +VEZ
1 1.2 2 1.2 5 1.2
LOAD COMB 113 1.2DL + 1.2LL + 1.2EQ -VEZ
1 1.2 2 1.2 6 1.2
LOAD COMB 201 DL + LL
1 1.0 2 1.0
LOAD COMB 202 DL + EQ +VE X
1 1.0 3 1.0
LOAD COMB 203 DL + EQ -VE X
1 1.0 4 1.0
LOAD COMB 204 DL + EQ +VE Z
1 1.0 5 1.0
LOAD COMB 205 DL + EQ -VE Z
1 1.0 6 1.0
LOAD COMB 206 DL + LL + EQ +VEX
1 1.0 2 1.0 3 1.0
LOAD COMB 207 DL + LL + EQ -VEX
1 1.0 2 1.0 4 1.0
LOAD COMB 208 DL + LL + EQ +VEZ
1 1.0 2 1.0 5 1.0

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 50


LOAD COMB 209 DL + LL + EQ -VEZ
1 1.0 2 1.0 6 1.0
PERFORM ANALYSIS
PARAMETER 1
CODE IS800 LSD
FYLD 250000 ALL
TRACK 2 ALL
CHECK CODE ALL
PARAMETER 2
CODE IS800 LSD
STEEL TAKE OFF ALL
CHECK CODE ALL
FINISH

5. INPUTFILE OF A5

13 REFERENCE
• LIMIT STATE DESING OF STEEL STRUCTURE BY N. SUBRAMANIAN
• STEEL FRAME VERSUS RACK SUPPORTED WAREHOUSE STRUCTURES,
ISSN 1330-3651 (Print), ISSN 1848-6339 (Online), https://doi.org/10.17559/TV-
20140226220936
• www.steel-insdag.org
• www.coolingindia.in
• nhb.gov.in

S. V. NATIONAL INSTITUTE OF TECHNOLOGY, SURAT-395 007. 51

You might also like