Nothing Special   »   [go: up one dir, main page]

18.774 M 9201 MM 500 MM 1500 MM 25 MM 12000 MM 3000 MM 225 MM 65 MM 4 No 300 MM 600 MM

Download as pdf or txt
Download as pdf or txt
You are on page 1of 13
At a glance
Powered by AI
The document discusses the design of a precast reinforced concrete girder bridge, including specifications, dimensions, load calculations, and bearing design.

The bridge has an overall width of 12m and a span of 18.774m. It consists of 4 precast girders spaced 3m apart with a 225mm thick deck slab.

Dead load, superimposed dead load, live load, and wind load calculations are presented. Bending moments and shear forces are calculated at various sections for each load case.

DESIGN OF R.C.

C (PRECAST) GIRDER FOR BRIDGE (overall width = 12 m)


The span of the bridge has been selected as 18.774 m.

DATA
1) Span Of The Bridge = 18.774 m Overall Span = 20 m)
2) Width Of Carriageway = 9201 mm Grade Ec
3) Width Of Kerb = 500 mm Slab conc 30 31220
4) Width Of Footpath = 1500 mm Gird conc 30 31220
5) Width Of Expansion Gap = 25 mm m ratio 1.0
6) Total Width OF Bridge = 12000 mm
7) Spacing of girders = 3000 mm
9) Thickness of deck slab = 225 mm
10 ) Thickness of wearing cou. = 65 mm
11 ) No. of girders = 4 no
Width of web at center = 300 mm
Width of web at end = 600 mm 1775 L/D 10.58
depth of girder rec: 1550 mm
DETAIL OF SUPERSTRUCTURE

1500 3000 3000 3000 1500

ELEVATION OF GIRDER

0.9
2.4
7.04025
3L / 8 9.387
L/2
Midspan Supports
Width of top flange 1.000 1.00 m. Span of girder 18.774 m slab 0.0098 0.0098
Width of bot flange 0.600 0.60 m. L/D 10.577 web 0.0087 0.0586
Thk of top flange 0.150 0.15 m. top fl 0.0010 0.0010
Thk of bot flange 0.250 0.25 m. bot fl 0.0024 0.0024
Web thickness 0.300 0.60 m. Taper section profile Ixx = 0.0219 0.0717
Thk of top fl at web 0.225 0.193 m.
Thk of bot fl at web 0.400 0.25 m. 0.9 0.9
Depth of girder 1.550 1.55 m.
Thickness of top slab 0.225 0.225 m.
Beff of top slab 3.000 3 m.
Spacing of girders 3.000
Actual width of slab 3.000
Mid span Supports
SECTION PROPERTIES web top flangebot flange web top flangebot flangeTop Slab
Area 0.35 0.16 0.16 0.69 0.16 0.15 0.68
distance from cg 0.02 0.60 0.76 0.00 0.62 0.74 0.41
Moment 0.04 0.0003 0.0008 0.08 0.00 0.00 0.00
Total Moment 0.19 0.22
PRE-CAST GIRDER mid span Support
Area 0.669 0.999 m2
Area * x 0.567 0.821
cg. Of girder 0.848 0.822 m
Mom of inertia 0.190 0.220 m4
Top cg 0.702 0.728 m
Ztop 0.271 0.302 m3
Zbot 0.224 0.267 m3
Reaction from gird 168.2 KN
Composite girder mid spanSupport
Area 1.344 1.674
Area * x 1.690 1.969 m2
cg. Of girder 1.257 1.176 m
Mom of inertia 0.416 0.676 m4
Top cg 0.518 0.599 m
Ztop 0.803 1.129 m3
Zbot 0.331 0.575 m3
Dead load of Slab on girder is calculated as per the contributing area of the slab on the girder.
The footpath and sidl load is distributed on the basis of moment distr.
For inner girder the effect of footpath and sidl is in the opposite direction as the dead load on it, so not considered
(( ) ))) ) )
Bending moments for girder at different section for DL
outer inner
AT 9.39 m L/2 = 1506.2 KNm 1506.4 KNm
AT 7.04 m 3L/8 = 1413.7 KNm 1413.3 KNm
AT 4.69 m L/4 = 1297.3 KNm 1296.7 KNm
AT 2.35 m L/8 = 923.9 KNm 925.2 KNm

Shear force for girder at different section


outer inner
AT 9.39 m L/2 = 118.70 KN 118.87 KN
AT 7.04 m 3L/8 = 158.30 KN 158.28 KN
AT 4.69 m L/4 = 237.47 KN 237.63 KN
AT 2.35 m L/8 = 286.61 KN 287.02 KN
AT support m L = 335.97 KN 336.01 KN

A LIVE LOAD ANALYSIS

Moments in outer girder

MOMENTS with footpath


Section SIDL LL Max FPLL Total
m KNm KNm
9.387 744 1751 0 2495
7.0403 698 1622 0 2319
4.6935 640 1491 0 2131
2.3468 452 1074 0 1526

Moments in inner girder

MOMENTS MAX
Section LL Max FPLL MOMENT
m SIDL KNm KNm AT SECTION
9.387 366 1693 0 2060
7.0403 344 1601 0 1945
4.6935 315 1453 0 1768
2.3468 222 1102 0 1324

CALCULATION OF SHEAR FORCE AT DIFFERENT SECTION


Shear force for classA and class 70R loading at different section

Shear in outer girder


with footpath
SHEAR FORCE
position SIDL LL FPLL Total
m KN KN KN
9.39 51 191 0 241
7.04 71 229 0 300
4.69 111 298 0 409
2.35 130 332 0 462
support 148 360 0 508

shear in inner girder


SHEAR FORCE MAX
SECTION LL FPLL SHEAR
m SIDL KN KN AT SECTION
9.387 26 216 0 242
7.0403 36 237 0 273
4.6935 56 309 0 365
2.3468 65 341 0 406
support 73 390 0 463
SUPPORT REACTION (OUTPUT FROM STAAD)
span = 18.774 1.182 Class A/70R W
1.1 70R Tr with Impact

JOINT DL SIDL WC FPLL 2CLA 3rd CLA CL 70R WCL 70R tr Max LL
11 375.2 116.1 62.7 0.0 321.3 8.9 340.9 263.6 402.9
13 410.7 -35.7 57.7 0.0 313.4 23.0 465.3 426.7 549.9
15 402.1 -36.5 56.1 0.0 121.5 250.5 48.1 47.4 395.6
17 378.6 116.1 63.5 0.0 14.1 158.7 20.4 18.1 190.5
155 378.7 116.1 63.5 0.0 297.1 8.0 339.7 280.7 401.4
157 402.1 -36.5 56.1 0.0 260.6 21.3 460.4 457.9 544.0
159 410.8 -35.7 57.7 0.0 108.4 188.9 44.2 49.3 316.1
161 375.2 116.1 62.7 0.0 13.8 124.5 18.7 17.2 152.3

JOINT DL SIDL FPLL Max LL with Impact Max LoadMin load


11 375.2 179 0 403 957 554
13 410.7 22 0 550 983 433
15 402.1 20 0 396 817 422
17 378.6 180 0 191 749 558
155 378.7 180 0 401 960 558
157 402.1 20 0 544 966 422
159 410.8 22 0 316 749 433
161 375.2 179 0 152 706 554

NET ROTATION (NET OF X AND Z DIRECTIONS NET Rotation


JOINT DL SIDL Max LL with ImpactDiff SH Diff Temp
11 0.0008 0.0004 0.0008 0.0009 0.0004
13 0.0008 0.0001 0.0008 0.0009 0.0004
15 0.0008 0.0001 0.0006 0.0009 0.0004
17 0.0008 0.0004 0.0004 0.0009 0.0004
155 0.0008 0.0004 0.0008 0.0009 0.0004
157 0.0008 0.0001 0.0008 0.0009 0.0004
159 0.0008 0.0001 0.0006 0.0009 0.0004
161 0.0008 0.0004 0.0004 0.0009 0.0004
ROTATION -X DIRECTION (milli radians)
JOINT DL SIDL WC 2CLA 3rd CLA CL 70R WCL 70R tr Max LL Diff Sh diff temp
11 -0.155 -0.061 -0.030 0.121 0.005 0.145 0.121 0.171 0.186 0.087
13 -0.158 0.015 -0.026 0.104 0.013 0.147 0.124 0.174 0.183 0.086
15 -0.155 0.007 -0.027 0.049 0.063 0.030 0.028 0.119 0.183 0.086
17 -0.163 -0.035 -0.028 0.006 0.068 0.011 0.009 0.084 0.185 0.087
155 0.163 0.035 0.028 0.112 0.004 0.156 0.124 0.184 0.185 0.087
157 0.155 -0.007 0.027 0.100 0.013 0.133 0.120 0.157 0.183 0.086
159 0.158 -0.015 0.026 0.045 0.066 0.029 0.026 0.118 0.183 0.086
161 0.155 0.061 0.030 0.005 0.055 0.011 0.009 0.070 0.186 0.087

JOINT DL SIDL Max LL with ImpactDiff SH Diff Temp


11 -0.155 -0.091 0.171 0.186 0.087
13 -0.158 -0.011 0.174 0.183 0.086
15 -0.155 -0.020 0.119 0.183 0.086
17 -0.163 -0.063 0.084 0.185 0.087
155 0.163 0.063 0.184 0.185 0.087
157 0.155 0.020 0.157 0.183 0.086
159 0.158 0.011 0.118 0.183 0.086
161 0.155 0.091 0.070 0.186 0.087

ROTATION -Z DIRECTION (milli radians)


JOINT DL SIDL WC 2CLA 3rd CLA CL 70R WCL 70R tr Max LL Diff Sh diff temp
11 -0.742 -0.228 -0.135 0.563 0.022 0.696 0.571 0.822 0.867 0.408
13 -0.742 0.054 -0.124 0.488 0.062 0.678 0.577 0.801 0.867 0.408
15 -0.742 0.054 -0.124 0.227 0.309 0.134 0.127 0.570 0.866 0.408
17 -0.742 -0.227 -0.135 0.021 0.288 0.050 0.043 0.359 0.866 0.408
155 0.742 0.227 0.135 0.543 0.022 0.684 0.574 0.808 0.866 0.408
157 0.742 -0.054 0.124 0.468 0.064 0.655 0.574 0.774 0.866 0.408
159 0.742 -0.054 0.124 0.220 0.292 0.134 0.125 0.545 0.867 0.408
161 0.742 0.228 0.135 0.021 0.277 0.050 0.043 0.348 0.867 0.408

JOINT DL SIDL Max LL with ImpactDiff SH Diff Temp


11 -0.742 -0.363 0.822 0.867 0.408
13 -0.742 -0.070 0.801 0.867 0.408
15 -0.742 -0.070 0.570 0.866 0.408
17 -0.742 -0.362 0.359 0.866 0.408
155 0.742 0.362 0.808 0.866 0.408
157 0.742 0.070 0.774 0.866 0.408
159 0.742 0.070 0.545 0.867 0.408
161 0.742 0.363 0.348 0.867 0.408
Total
Girder Outer
DL SIDL FPLL LL max with Impact Moment
SHEAR-YTORSIONMOM-Z SHEAR-YTORSIONMOM-Z SHEAR-YTORSIONMOM-Z SHEAR-YTORSIONMOM-Z
0 336 0 360 148 22 174 0 0 0 360 46 417
.9D 287 0 669 130 12 323 0 0 0 332 28 776
L/8 237 0 924 111 6 452 0 0 0 298 17 1074
L/4 158 1 1297 71 3 640 0 0 0 229 15 1491
3L/8 119 1 1414 51 2 698 0 0 0 191 14 1622
L/2 40 1 1506 11 1 744 0 0 0 130 15 1751 4001
Inner Gird
0 336 0 360 73 2 82 0 0 0 390 30 458
.9D 287 0 669 65 1 158 0 0 0 341 24 817
L/8 238 0 925 56 1 222 0 0 0 309 15 1102
L/4 158 1 1297 36 1 315 0 0 0 237 12 1453
3L/8 119 1 1413 26 1 344 0 0 0 216 12 1601
L/2 40 1 1506 6 0 366 0 0 0 180 10 1693 3566
Inner Gird
0 336 0 360 73 1 82 0 0 0 287 32 325
.9D 287 0 669 65 1 158 0 0 0 261 27 592
L/8 238 0 925 56 1 222 0 0 0 230 16 815
L/4 158 1 1297 36 1 315 0 0 0 168 13 1120
3L/8 119 1 1413 26 1 344 0 0 0 144 12 1202
L/2 40 1 1506 6 0 366 0 0 0 99 11 1235 3108
Outer Gird
0 336 0 360 148 17 174 0 0 0 165 25 190
.9D 287 0 669 130 12 323 0 0 0 152 21 345
L/8 237 0 924 111 6 452 0 0 0 135 13 483
L/4 158 1 1297 71 3 640 0 0 0 103 11 686
3L/8 119 1 1414 51 2 698 0 0 0 82 11 744
L/2 40 1 1506 11 1 744 0 0 0 53 10 767 3017
DESIGN OF A TYPICAL GIRDER (OUTER IN THIS CASE)
Grade of concrete = 40 M30
Grade of steel = Fe500
Permissible bending stress = 13.3 ( From IRC:21-1987, clause 303.1)
Permissible stress in steel = 240 ( From IRC:21-1987, clause 303.2.1)
modular ratio m = 10 ( From IRC:21-1987, clause 303.1,note 1)
clear cover = 40
Neutral axis constant (n ) = 0.36
Lever arm constant ( j ) = 0.88
MR constant ( Q ) = 2.09
stress check DESIGN OKAY
DESIGN OF CENTRAL SECTION shear check design okay

Design live load+SIDL moment = 2494.64 KNm


Design dead load+Slab moment = 1506 KNm
Total design moment = 4000.8 KNm
davaliable = 1662.50 - 40 - 144
Assuming 5 layers of 32 dia. bar
davaliable = 1478.50 mm

Ast required = Moment ( sst X j X d )


= 4000.82 312665.1
2
= 12795.85 mm
No. of bars/layer
Provide 20.0 nos 32 dia bar in 4.0 layers 5
Ast provided = 16076.8 mm2
drevised = 1510.5 mm

As per IRC Effective flange width = 3000.00 mm

3000
112.50

1662.50

300
Assuming N.A. lies within the web

Bf X Df X( Xna - Df / 2 )
= m X Ast X( d - Xna )
3000 X 112.5 X( Xna - 112.5 / 2 )
= 10.00 X 16076.8 X( 1510.5 - Xna )
Xna - 56.25 = 0.47635 X( 1510.5 - Xna )
Xna = 525.47 mm
Let scbc be the compressive stress developed in concrete at the top
of the flange.
Let scbc' be the compressive stress developed in concrete at the bottom
of the flange.

scbc scbc'
Xna = Xna - Df

scbc' = Xna - Df Xna X scbc


= 0.79 X scbc

YBAR = scbc + 2scbc' Df


scbc + scbc' 3

YBAR = 54.00 mm
Lever arm = 1456.50 mm
MR = ( scbc +scbc' ) X Bf X Df X Lever arm
2
4000.82 = 4.39E+08 X scbc
scbc
2 2
= 9.11 N/mm < 13.3 N/mm safe
MR = sst X Ast X lever arm
4000.82 = sst X 23415823
sst = 170.86 N/mm
2
< 240 N/mm2 safe

DESIGN OF SECTION AT 3L/8


Design live load moment = 2319.45 KNm
Design dead load moment = 1413.72 KNm
Total design moment = 3733.17 KNm

davaliable = 1662.5 - 40 - 144


Assuming 4 layers of 32 dia. bar
davaliable = 1478.5 mm
Ast required = Moment sst X j X d
= 3733.17 312665.1
2
= 11939.83 mm
Provide 19.0 nos 32 dia bar in 4.0 layers
Ast provided = 15272.96 mm2
drevised = 1510.5 mm
CHECK FOR GIRDER AT DEAD LOADS ONLY
DESIGN OF PRECAST RC GIRDER

Grade of concrete = 40 M30


Grade of steel = Fe500
Permissible bending stress = 13.3 ( From IRC:21-1987, clause 303.1)
Permissible stress in steel = 240 ( From IRC:21-1987, clause 303.2.1)
modular ratio m = 10 ( From IRC:21-1987, clause 303.1,note 1)
clear cover = 40
Neutral axis constant (n ) = 0.36
Lever arm constant ( j ) = 0.88
MR constant ( Q ) = 2.09
stress safe
DESIGN OF CENTRAL SECTION shear safe
Live load+SIDL+slab = 3097 KNm
Design dead load moment = 904 KNm
2
Ast provided = 16077 mm( . )
drevised = 1366 mm Tf (gird) = 150 y bar fl (gird) 71
Beff gird = 1000 mm Bweb gird = 300 mm cg of compr. force 132 mm from top
c' = 0.743 xc Bavg gird = 569
NA (web)gird 787 mm NA critical = 487 mm
NA (flange)gird 521 mm NA in WEB
NA of gird = 585 mm p = 1.18
COMPOSITE PROPERTIES .
Beff comp = 3000 mm c' = 0.68
dcomp = 1479 mm Tf (slab) = 112.50
NA (web) comp 832 mm NA critical = 527 mm Y bar sl (comp) 53
NA (flange) comp 348 mm Bavg comp = 2336 cg of compr. force 63 mm from top
NA of comp 348 p 0.36
Icr of comp = 0.225 m4 Igross of comp = 0.42 m4
Let scbc be the compressive stress developed in concrete at the top
of the precast girder
Stress in steel = 46
Stress in conc gird top = 4.6 3.4
with LL
Stress in steel 136.1 182 Mpa
Stress in conc gird top 2.0 2.837 6.6
Stress in conc slab top 5.6 4.192 6
DIFFERENTIAL SHRINKAGE

Ecm (long term) =Ec f = 32500 x 0.43


= 22727.27 Mpa
There will be effect of net differential shrinkage

Hence, net differential shrinkage= 0.000200 as minimum

Shrinkage stress = = 0.000200 x 22727.27


= 4.5455 Mpa

Force due to shrinkage in deckslab = 4.545 x 3 x 0.225


= 3068.182 kN

Difference in CG of slab and Composite RC girder = 0.52 - 0.1125


= 0.41 m

Moment due to shrinkage of slab = 3068.182 x 0.41


= 1244.657 kNm
Stress Calculations for Temperature
Thermal Expansion
o
for concrete = 1.17E-05 / c
Grade of Concrete = M40
Young's Modulus = 32500 Mpa
Properties of the Section
Depth of CG of the Section (mm)
Area (A) the MI ( Ix)
Location
(mm2) Section (mm4)
From Top From Bottom
(mm)

Support 1673571 1775 6.76126E+11 599 1176

Mid 1344375 1775 4.15951E+11 518 1257

Temperature Rise case Temperature Fall case


17.8°C -10.6°C

A E
B F 0.25
h1 0.15 h1
4.0°C -0.7°C
C G
h2 0.25 h2
0.2
h
1.225 0.875

0.2
H h3
h3 0.15
D -0.8°C I h4
J 0.25
2.1°C -6.6°C

1 Calculation For Temperature Rise Condition

1.1 Calculation of Restraint Forces and Restraint Moments


F = EC βT Ti Ai

CG of Restraint Moments
Lever Arm to the CG of
Temp about CG of Section
Section Area Restraint Section (mm)
Description Diagram (KNm)
2
(mm ) Forces (KN) At
From Top
At Support At Mid At Mid
(mm) Support
Section Contributing A 450000 50.0 1180.67625 548.63 468.17 647.757 552.7524
Section Contributing B 450000 75.0 6.84E+02 523.63 443.17 358.4001 303.3249
Section Contributing C 378750 233.3 288.039375 365.30 284.83 105.2205 82.04301
Section Contributing D 90000 1725.0 35.933625 -1126.37 -1206.83 -40.4745 -43.3659

Description At Support Section At Mid Section


Total Restraint Forces (KN) 2189 2189
Total Restraint Moments (KNm) 1071 895
2 Calculation For Temperature Fall Condition

2.1 Calculation of Restraint Forces and Restraint Moments


F = EC βT Ti Ai
CG of Restraint Moments
Lever Arm to the CG of
Temp about CG of Box
Section Area Restraint Box (mm)
Description Diagram (KNm)
2
(mm ) Forces (KN)
From Top At
At Support At Mid At Mid
(mm) Support

Section Contributing E 750000 83.3


-1411.7 515.3 434.8 -727.4 -613.8
Section Contributing F 750000 125.0
-199.6 473.6 393.2 -94.6 -78.5
Section Contributing G 93750 316.7
-12.5 282.0 201.5 -3.5 -2.5
Section Contributing H 82500 1458.3
-12.5 -859.7 -940.2 10.8 11.8
Section Contributing I 150000 1650.0
-45.6 -1051.4 -1131.8 48.0 51.6
Section Contributing J 150000 1691.7
-165.4 -1093.0 -1173.5 180.8 194.1

Description At Support Section At Mid Section


Total Restraint Forces (KN) -1847 -1847
Total Restraint Moments (KNm) -586 -437
11.0 WIND LOAD CALCULATION AS PER IRC: 6
Basic Wind Speed as per IS:875-Part 3 36 m/s (With LL Case)
Avg Ht of the deck above BL 8 m (ht of superstr+1m Crash barrier)
Pressure as per table 0.464 kN/sqm
Design Pressure Pz= 0.552 kN/sqm

Force on Superstructure (considered on the longer of 2 supported spans-conservatively)


Force in Transverse direction = Pz X A1 X G X Cd
G = gust factor = 2
Cd = drag coeff = 1.1 for Slab bridges with b/d>10
1.5 for Box/single beam b/d 2
1.3 for Box/single beam b/d> 6
2.25 for 2 or more Box/ beam b/d 2
1.95 for 2 or more Box/ beam b/d > 6
2.2 for single plate girder
2(1+c/20/d) for multiple plate girders
A1 = 2.78 m X 21.00 m = 58.275 sqm
Ft = 0.552 X 58.275 X 2 X 1.95
125.5 kN

Force in long dirn = 25% of F transverse = 31.4 kN

Force in Vertical (+/-) Fv = Pz X A3 X G X CL


CL = lift coeff = 0.75 for Slab/ box/ I girders and plate girders
A3 = 21.00 mX 12.00 m = 252 sqm
Fv = 0.552 x 252 X 2 X 0.75
208.73 kN

Force on Live Load


Force in Transverse direction = Pz X A1 X G X Cd
A1 = 2.00 m X 21.00 m = 42 sqm
Ft = 0.552 X 42 X 2 X 1.2
55.7 kN
Force in long dirn = 25% of F transverse = 13.9 kN
DESIGN OF POT-CUM-PTFE BEARING
Impact factor for 18.774 m 1.182 impact for tracked = 1.1
Total
JOINT DL SIDL FPLL LL W/I reaction DL+SIDL
11 375 179 0 403 957 554 kN
13 411 22 0 550 983 433 kN
15 402 20 0 396 817 422 kN
17 379 180 0 191 749 558 kN
155 379 180 0 401 960 558 kN
157 402 20 0 544 966 422 kN
159 411 22 0 316 749 433 kN
161 375 179 0 152 706 554 kN

For Fixed Bearing (Refer Detailed Calculation of horizontal forces in the following sections)
F=Fh-u(Rg+Rq) or Fh/2+u(Rg+Rq) Vehicular LL Normal Seimic case
F= 228 - 0.03 x( 1966.7 + 630 ) = 149.8 kN -40.0 kN
113.85 + 0.05 x( 1966.7 + 630 ) = 243.7 kN 116.0 kN

Seismic oefficient Ah (lo) = 0.120 Z/2xI/RxSa/g with R =2


Ah (tr) = 0.120
Total Seismic Force in long direction = 472 kN No LL
Total Seismic Force in trans direction = 496 kN LL = 20% of 100 Tons

Summary of Wind Load


Wind on superstr
Wind force Vertical 104.4 kN
Wind force Transverse 181.2 kN
Wind force Longitudinal 45.3 kN

COMPUTATION OF LOADS ON BEARINGS


Normal Case (Fixed Bearings)
Min Vertical load on Bearings 42 T (Rounded)
Vertical load on Fixed Bearing 100 T (Rounded)
Vertical load on Transverse/ Long Guided 100 T (Rounded)
Vertical load on Free Bearing 100 T (Rounded)
Horizontal Load on fixed bearing 7 T (Rounded)Sqrt (long normal^2+trans normal^2)
Longitudinal load on Transverse Guided 7 T (Rounded)
Transverse load on Long. Guided 0 T (Rounded)
Seismic Case (Fixed Bearings)
Min Vertical load on Bearings 39 T (Rounded)
Vertical load on Fixed Bearing 55 T (Rounded)
Vertical load on Transverse/ Long Guided 55 T (Rounded)
Vertical load on Free Bearing 55 T (Rounded)
Horizontal Load on fixed bearing 26 T (Rounded)Sqrt (long normal^2+trans seismicl^2)
Longitudinal load on Transverse Guided 7 T (Rounded) 0.3 x Long Seismic
Transverse load on Long. Guided 25 T (Rounded) 1.0 x Trans Seismic
Wind Case (Fixed Bearings)
Min Vertical load on Bearings 41 T (Rounded)
Vertical load on Fixed Bearing 105 T (Rounded)
Vertical load on Transverse/ Long Guided 105 T (Rounded)
Vertical load on Free Bearing 105 T (Rounded)
Horizontal Load on fixed bearing 12 T (Rounded)Sqrt (long normal^2+trans seismicl^2)
Longitudinal load on Transverse Guided 8 T (Rounded)
Transverse load on Long. Guided 9 T (Rounded) Transverse

Summary of Bearing Rotations


JOINT DL SIDL LL+impact Diff SH Diff Temp DL+SDL max rotn Max rotation
11 0.00076 0.00037 0.00084 0.00089 0.00042 0.00113 0.0033 0.0033
13 0.00076 7.1E-05 0.00082 0.00089 0.00042 0.00083 0.0030 OR = 0.01 radians
15 0.00076 7.3E-05 0.00058 0.00089 0.00042 0.00083 0.0027
17 0.00076 0.00037 0.00037 0.00089 0.00042 0.00113 0.0028
155 0.00076 0.00037 0.00083 0.00089 0.00042 0.00113 0.0033
157 0.00076 7.3E-05 0.00079 0.00089 0.00042 0.00083 0.0029
159 0.00076 7.1E-05 0.00056 0.00089 0.00042 0.00083 0.0027
161 0.00076 0.00037 0.00035 0.00089 0.00042 0.00113 0.0028

You might also like