[1]
Matyszczak, G., Sędkowska, A., and Kuś, S., Comparative degradation of Metanil Yellow in the electro-Fenton process with different catalysts: A simplified kinetic model study, Dyes Pigm. 174(10) (2020).
DOI: 10.1016/j.dyepig.2019.108076
Google Scholar
[2]
Ren, G., Han, H., Wang, Y., Liu, S., Zhao, J., Meng, X., and Li, Z., Recent advances of photocatalytic application in water treatment: A review, Nanomater. 11(7) (2021).
Google Scholar
[3]
Manchala, S., Elayappan, V., Lee, H. G., and Shanker, V., Plasmonic photocatalysis: An extraordinary way to harvest visible light. In Photocatalytic Systems by Design: Materials, Mechanisms and Applications (Issue January) (2021)
DOI: 10.1016/b978-0-12-820532-7.00015-1
Google Scholar
[4]
Sheikhmohammadi, A., Asgari, E., Nourmoradi, H., Fazli, M. M., and Yeganeh, M., Ultrasound-assisted decomposition of metronidazole by synthesized TiO2/Fe3O4 nanocatalyst: Influencing factors and mechanisms, J. Environ. Chem. Eng. 9(5) (2021) 105844.
DOI: 10.1016/j.jece.2021.105844
Google Scholar
[5]
Iqbal, A., Ibrahim, N. H., Rahman, N. R. A., Saharudin, K. A., Adam, F., Sreekantan, S., Yusop, R. M., Jaafar, N. F., and Wilson, L. D., ZnO surface doping to ehance the photocatalytic activity of lithium titanate/TiO2 for Methylene Blue photodegradation under visible light irradiation, Surf. 3(3) (2020) 301–318.
DOI: 10.3390/surfaces3030022
Google Scholar
[6]
Chu, A. C., Sahu, R. S., Chou, T. H., and Shih, Y. H., Magnetic Fe3O4@TiO2 nanocomposites to degrade bisphenol A, one emerging contaminant, under visible and long wavelength UV light irradiation, J. Environ. Chem. Eng. 9(4) (2021) 105539.
DOI: 10.1016/j.jece.2021.105539
Google Scholar
[7]
Khlyustova, A., Sirotkin, N., Kusova, T., Kraev, A., Titov, V., and Agafonov, A., Doped TiO2: The effect of doping elements on photocatalytic activity, Adv. Mater. 1(5) (2020) 1193–1201.
DOI: 10.1039/d0ma00171f
Google Scholar
[8]
Yalçin, Y., Kiliç, M., and Çinar, Z., The role of non-metal doping in TiO2 photocatalysis, J. Adv. Oxid. Technol. 13(3) (2010) 281–296.
Google Scholar
[9]
Qamaruddin, M., Khan, I., Ajumobi, O. O., Ganiyu, S. A., and Qurashi, A., Sulfur doped ceria-titania (S-CeTiO4−x) nanocomposites for enhanced solar-driven water splitting, J. Sol. Energy. 188(5) (2019) 890–897.
DOI: 10.1016/j.solener.2019.05.058
Google Scholar
[10]
Devi, L. G., and Kavitha, R., Enhanced photocatalytic activity of sulfur doped TiO2 for the decomposition of phenol: A new insight into the bulk and surface modification, Mater. Chem. Phys. 143 (2014) 1300-1308.
DOI: 10.1016/j.matchemphys.2013.11.038
Google Scholar
[11]
Kunarti, E. S., Kartini, I., Mardjan, M. I. D., and Prameswari, E. H., Sulfur-doped-titania coated on magnetite as magnetically recoverable photocatalyst for the UV-visible light-assisted-degradation of Congo red solution, Rasayan J. Chem. 14(2) (2021) 1199–1207.
DOI: 10.31788/rjc.2021.1426304
Google Scholar
[12]
Basavarajappa, P. S., Patil, S. B., Ganganagappa, N., Reddy, K. R., Raghu, A. V., and Reddy, C. V., Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis, Int. J. Hydrog. Energy. 45(13) (2020) 7764–7778.
DOI: 10.1016/j.ijhydene.2019.07.241
Google Scholar
[13]
Popa, A., Stefan, M., Toloman, D., Pana, O., Mesaros, A., Leostean, C., Macavei, S., Marincas, O., Suciu, R., and Barbu-Tudoran, L., Fe3O4-TiO2: Gd nanoparticles with enhanced photocatalytic activity and magnetic recyclability, Powder Technol. 325 (2018) 441–451.
DOI: 10.1016/j.powtec.2017.11.049
Google Scholar
[14]
Khashan, S., Dagher, S., Tit, N., Alazzam, A., and Obaidat, I., Novel method for synthesis of Fe3O4@TiO2 core/shell nanoparticles, Surf. Coat. Technol. 322 (2017) 92–98.
DOI: 10.1016/j.surfcoat.2017.05.045
Google Scholar
[15]
Almeida, L. A., Habran, M., Carvalho, R. D. S., da Costa, M. E. H. M., Cremona, M., Silva, B. C., Krambrock, K., Pandoli, O. G., Morgado, E., and Marinkovic, B. A., The influence of calcination temperature on photocatalytic activity of TiO2-acetylacetone charge transfer complex towards degradation of Nox under visible light, CAT. 10(12) (2020) 1–18.
DOI: 10.3390/catal10121463
Google Scholar
[16]
Lin, Y. H., Hsueh, H. T., Chang, C. W., and Chu, H., The Visible Light-Driven Photodegradation of Dimethyl Sulfide on S-Doped TiO2: Characterization, Kinetics, and Reaction Pathways, Appl. Catal. B., 199 (2016) 1–10.
DOI: 10.1016/j.apcatb.2016.06.024
Google Scholar
[17]
Olowoyo, J. O., Kumar, M., Jain, S. L., Shen, S., Zhou, Z., Mao, S. S., Vorontsov, A. V., and Kumar, U., Reinforced Photocatalytic Reduction of CO2 to Fuel by Efficient S-TiO2: Significance of Sulfur Doping, Int. J. Hydrog. Energy, 43(37) (2018) 17682–17695.
DOI: 10.1016/j.ijhydene.2018.07.193
Google Scholar
[18]
Cravanzola, S., Cesano, F., Gaziano, F., and Scarano, D., Sulfur-Doped TiO2: Structure and Surface Properties, Catalysts, 7(7) (2017)
DOI: 10.3390/catal7070214
Google Scholar
[19]
Bento, R. T., Correa, O. V., and Pillis, M. F., Photocatalytic Activity of Undoped and Sulfur-Doped TiO2 Films Grown by MOCVD for Water Treatment under Visible Light, J. Eur. Ceram. Soc., 39(12) (2019) 3498–3504.
DOI: 10.1016/j.jeurceramsoc.2019.02.046
Google Scholar
[20]
Hong, T., Mao, J., Tao, F., and Lan, M., Recyclable magnetic titania nanocomposite from ilmenite with enhanced photocatalytic activity, Molecules, 22(12) (2017)
DOI: 10.3390/molecules22122044
Google Scholar
[21]
Gibbs, Z. M., Lalonde, A., and Snyder, G. J., Optical band gap and the Burstein-Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy, New J. Phys. 15(7) (2013).
DOI: 10.1088/1367-2630/15/7/075020
Google Scholar
[22]
Toor, A. T., Verma, A., Jotshi, C. K., Bajpai, P. K., and Singh, V., Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor, Dyes Pigm. 68(1) (2006) 53–60.
DOI: 10.1016/j.dyepig.2004.12.009
Google Scholar
[23]
Kim, Y. S., and Kim, J. G., Improvement of Corrosion Resistance for Low Carbon Steel Pipeline in District Heating Environment Using Transient Oxygen Injection Method, J Ind Eng Chem., 70(October) (2019) 169–177.
DOI: 10.1016/j.jiec.2018.10.011
Google Scholar
[24]
Nabavi, N., Peyda, M., and Sadeghi, G., The Photocatalytic Kinetics of the Methyl Orange Degradation in the Aqueous Suspension of Irradiated TiO2, J. Hum. Environ. Health Promot., 2(3) (2017) 154–160.
DOI: 10.29252/jhehp.2.3.154
Google Scholar
[25]
Rahmi, Lubis, S., Az-Zahra, N., Puspita, K., and Iqhrammullah, M., Synergetic Photocatalytic and Adsorptive Removals of Metanil Yellow using TiO2/Grass-Derived Cellulose/Chitosan Film Composite, Int. J. Eng. Trans. B: Appl. 34(8) (2021) 1827–1836.
DOI: 10.5829/ije.2021.34.08b.03
Google Scholar