Evaluation of Ocean Color Remote Sensing Algorithms for Diffuse Attenuation Coefficients and Optical Depths with Data Collected on BGC-Argo Floats
"> Figure 1
<p>BGC-Argo profile data distribution maps used in this study, for all points (<b>a</b>) with valid surface E<sub>d</sub>(490,0<sup>−</sup>) (N = 4882), (<b>b</b>) with valid iPAR(0<sup>−</sup>) (N = 2548), (<b>c</b>) with matchup with all satellite K<sub>d</sub>(490) products (N = 946), and (<b>d</b>) with matchup with all satellite K<sub>d</sub>(PAR) products (N = 374, same for z<sub>eu</sub> and z<sub>0.415</sub> products), respectively.</p> "> Figure 2
<p>Flow chart of BGC-Argo radiometry data processing. Note that all derived K<sub>d</sub> values are layer-averaged ones (the layer from sea surface to depth z, thus, z as the subscript in the symbols, e.g., K<sub>d</sub>(490)<sub>z</sub>), rather than K<sub>d</sub> at a specific depth. The same procedure could be used to derive the layer-averaged attenuation coefficient to any depth of interest.</p> "> Figure 3
<p>Diagram of a good match-up between satellite and float data. The 9 squares represent 9 pixels closest to the location of float surfacing, with 5 valid pixels (blue) and 4 invalid ones (white). The spatial resolution is 4 km. In such a condition or with more than 5 valid-value pixels out of 9, a pair of valid satellite-float matchup data is obtained.</p> "> Figure 4
<p>Histogram and boxplot of the distribution of the (<b>a</b>,<b>b</b>) near surface diffuse attenuation coefficient at 490 nm (K<sub>d</sub>(490)<sub>zpd</sub>), (<b>c</b>,<b>d</b>) euphotic layer depth (z<sub>eu</sub>), (<b>e</b>,<b>f</b>) and isolume depth (z<sub>0.415</sub>), for each of the 10 regions (SO: Southern Ocean; AS: Arctic Sea; SPG: Subpolar Gyre; BS: Black Sea; TZ: Transition Zone; WMS: West Med. Sea; RS: Red Sea; EMS: East Med. Sea; NC: New Caledonia; STG: Subtropical Gyre). In the histogram, black and red columns (as well as numbers) represent the full dataset and the satellite-matched ones, respectively. In the boxplot, red points beyond the end of the whiskers represent outliers beyond the 1.5 × IQR (IQR = interquartile range) threshold.</p> "> Figure 5
<p>Assessment of satellite K<sub>d</sub>(490) products based on BGC-Argo dataset. Scatter plot of float-observed K<sub>d</sub>(490)<sub>zpd</sub> v.s. MODIS-Aqua B/G-based empirical K<sub>d</sub>(490)<sub>M-KD2M</sub> (<b>a</b>) semi-analytical K<sub>d</sub>(490)<sub>M-L13</sub>, (<b>b</b>) semi-analytical K<sub>d</sub>(490)<sub>M-L05a</sub>, (<b>c</b>) Chla-based empirical K<sub>d</sub>(490)<sub>M-M07</sub>, (<b>d</b>) GlobColour semi-analytical K<sub>d</sub>(490)<sub>GC-L05a</sub>, (<b>e</b>) Scatter plot of float-observed K<sub>d</sub>(490)<sub>zpd</sub> vs. MODIS-Aqua-retrieved Chla, (<b>f</b>) black dashed line represents the empirical equation (Equation (5)) used in K<sub>d</sub>(490)<sub>GC-M07</sub> and K<sub>d</sub>(490)<sub>M-M07</sub>, and the red solid line represents the relationship obtained in this study (Equation (11)). Black solid lines are the 1:1 lines. Note that in Panel (<b>a</b>)–(<b>e</b>) we use only data for which all algorithms could be evaluated.</p> "> Figure 6
<p>Assessment of satellite K<sub>d</sub>(PAR) products based on BGC-Argo dataset. Scatter plots of float-observed K<sub>d</sub>(PAR) and satellite-derived K<sub>d</sub>(PAR)<sub>z-L05b</sub> [<a href="#B10-remotesensing-12-02367" class="html-bibr">10</a>] at (<b>a</b>) z<sub>pd</sub>, (<b>b</b>) 2z<sub>pd</sub>, (<b>c</b>) 3z<sub>pd</sub>, (<b>d</b>) 4z<sub>pd</sub>, (<b>e</b>) 5z<sub>pd</sub>, and (<b>f</b>) 6z<sub>pd</sub>, respectively. All black solid lines represent 1:1 lines.</p> "> Figure 7
<p>Assessment of satellite z<sub>eu</sub> and z<sub>0.415</sub> algorithms through comparison with the BGC-Argo dataset. z<sub>eu</sub> retrieved from a Chla-based algorithm (z<sub>eu-M07</sub>; [<a href="#B29-remotesensing-12-02367" class="html-bibr">29</a>]) (<b>a</b>) and from the IOPs-based algorithm (z<sub>eu-L07</sub>; [<a href="#B32-remotesensing-12-02367" class="html-bibr">32</a>]); (<b>b</b>) z<sub>0.415</sub> retrieved from a Chla-based algorithm (z<sub>0.415-B10</sub>; [<a href="#B31-remotesensing-12-02367" class="html-bibr">31</a>]); (<b>c</b>) and from IOPs-based algorithm (z<sub>0.415-L0</sub> [<a href="#B32-remotesensing-12-02367" class="html-bibr">32</a>]); (<b>d</b>) Black solid lines are the 1:1 lines.</p> "> Figure A1
<p>Evaluation of BGC-Argo data processing methods suggested here using the BIOSOPE data. Scatter plot of Measured and Estimated values, of E<sub>d</sub>(490,0<sup>−</sup>) (<b>a</b>) iPAR(0<sup>−</sup>), (<b>b</b>) z<sub>pd</sub>, (<b>c</b>) z<sub>eu</sub>, (<b>d</b>) K<sub>d</sub>(490)<sub>zpd</sub>, (<b>e</b>) and K<sub>d</sub>(PAR)<sub>zpd</sub>, (<b>f</b>) respectively. “Measured (meas.)” means determination of E<sub>d</sub>(490,0<sup>−</sup>) and iPAR(0<sup>−</sup>) based on measured radiometry above sea surface; “Estimated (Est.)” means determination of E<sub>d</sub>(490,0<sup>−</sup>) and iPAR(0<sup>−</sup>) is based on a linear (blue) or second-degree polynomial extrapolation (red) within the upper10 m of the ocean. The black solid lines represent the 1:1 lines.</p> "> Figure A2
<p>Comparison of different methodology of K<sub>d</sub> calculation. (<b>a</b>) float-observed K<sub>d</sub>(490)<sub>zpd-O17</sub> following the methodology of [<a href="#B15-remotesensing-12-02367" class="html-bibr">15</a>] vs. our determined K<sub>d</sub>(490)<sub>zpd</sub>; (<b>b</b>) z<sub>eu</sub> vs. z<sub>1%490</sub>; (<b>c</b>) z<sub>1%490</sub>/4.6 vs. z<sub>pd</sub>; (<b>d</b>) z<sub>eu</sub>/4.6 vs. z<sub>pd</sub>.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. BGC-Argo Data
2.1.1. Layer-Averaged Diffuse Attenuation Coefficients, Penetration, and Euphotic Depths
2.1.2. The 0.415 mol Photons m−2 d−1 Isolume Depth (z0.415)
2.2. Satellite Data
2.2.1. Auxiliary Satellite Data Products
2.2.2. Satellite-Based Kd(490)
2.2.3. Satellite-Based Kd(PAR)z
2.2.4. Satellite-Based zeu and z0.415
2.2.5. Satellite-Float Matchup Criteria
2.3. Statistical Metrics
3. Results and Discussion
3.1. Distribution of Kd(490)zpd, zeu, and z0.415 for the BGC-Argo Dataset
3.2. Assessment of Satellite Algorithms for Kd(490)
3.3. Assessment of the Satellite Algorithm for Kd(PAR)
3.4. Assessment of Satellite Algorithms for zeu and z0.415
4. Final Remarks and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Independent Evaluation of Processing Methods of BGC-Argo Data
Appendix B. Should We Use zpd = zeu/4.6?
References
- Kirk, J.T.O. A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. III. Cylindrical and spheroidal cells. New Phytol. 1976, 77, 341–358. [Google Scholar] [CrossRef]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Elsevier: New York, NY, USA, 1994. [Google Scholar]
- Ryther, J.H. Photosynthesis in the ocean as a function of light intensity. Limnol. Oceanogr. 1956, 1, 61–70. [Google Scholar] [CrossRef]
- Letelier, R.M.; Karl, D.M.; Abbott, M.R.; Bidigare, R.R. Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre. Limnol. Oceanogr. 2004, 49, 508–519. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhang, X.; Xing, X.; Ishizaka, J.; Yu, Z. A spectrally selective attenuation mechanism-based Kpar algorithm for biomass heating effect simulation in the open ocean. J. Geophys. Res. Oceans 2017, 122, 9370–9386. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, S.; Tse, W.-H.; Xu, H.; Denaxa, D.; Jansen, E.; Korres, G.; Mirouze, I.; Storto, A. Modeling the near-surface diurnal cycle of sea surface temperature in the Mediterranean Sea. J. Geophys. Res. Oceans 2019, 124, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Skákala, J.; Bruggeman, J.; Brewin, R.J.W.; Ford, D.A.; Ciavatta, S. Improved representation of underwater light field and its impact on ecosystem dynamics: A study in the North Sea. J. Geophys. Res. Oceans 2020, 125, e2020jc016122. [Google Scholar] [CrossRef]
- Frouin, R.; McPherson, J.; Ueyoshi, K.; Franz, B.A. A time series of photosynthetically available radiation at the ocean surface from SeaWiFS and MODIS data. In Proceedings of the SPIE Asia-Pacific Remote Sensing; SPIE-Intl Soc Optical Eng, San Jose, CA, USA, 12–16 February 2012; p. 85251. [Google Scholar] [CrossRef]
- Lee, Z.; Du, K.; Arnone, R. A model for the diffuse attenuation coefficient of downwelling irradiance. J. Geophys. Res. Oceans 2005, 110, C02016. [Google Scholar] [CrossRef]
- Lee, Z.; Du, K.; Arnone, R.; Liew, S.C.; Penta, B. Penetration of solar radiation in the upper ocean—A numerical model for oceanic and coastal waters. J. Geophys. Res. Oceans 2005, 110, C09019. [Google Scholar] [CrossRef]
- Johnson, K.S.; Claustre, H. Bringing Biogeochemistry into the Argo Age. Eos 2016, 97, 11–15. [Google Scholar] [CrossRef]
- Claustre, H.; Johnson, K.S.; Takeshita, Y. Observing the Global Ocean with Biogeochemical-Argo. Annu. Rev. Mar. Sci. 2020, 12, 23–48. [Google Scholar] [CrossRef]
- Biogeochemical-Argo Planning Group. The Scientific Rationale, Design, and Implementation Plan for a Biogeochemical-Argo Float Array; Johnson, K., Claustre, H., Eds.; Ifremer: Issy-les-Moulineaux, France, 2016. [Google Scholar] [CrossRef]
- Roemmich, D.; Alford, M.H.; Claustre, H.; Johnson, K.; King, B.; Moum, J.; Oke, P.; Owens, W.B.; Pouliquen, S.; Purkey, S.; et al. On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array. Front. Mar. Sci. 2019, 6, 439. [Google Scholar] [CrossRef] [Green Version]
- Organelli, E.; Barbieux, M.; Claustre, H.; Schmechtig, C.; Poteau, A.; Bricaud, A.; Boss, E.; Briggs, N.; Nencioli, F.; D’Ortenzio, F.; et al. Two databases derived from BGC-Argo float measurements for marine biogeochemical and bio-optical applications. Earth Syst. Sci. Data 2017, 9, 861–880. [Google Scholar] [CrossRef] [Green Version]
- Organelli, E.; Claustre, H.; Bricaud, A.; Barbieux, M.; Uitz, J.; D’Ortenzio, F.; Dall’Olmo, G. Bio-optical anomalies in the world’s oceans: An investigation on the diffuse attenuation coefficients for downward irradiance derived from Biogeochemical Argo float measurements. J. Geophys. Res. Oceans 2017, 122, 3543–3564. [Google Scholar] [CrossRef] [Green Version]
- Mignot, A.; Claustre, H.; Uitz, J.; Poteau, A.; D’Ortenzio, F.; Xing, X. Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: A Bio-Argo float investigation. Glob. Biogeochem. Cycles 2014, 28, 856–876. [Google Scholar] [CrossRef]
- Barbieux, M.; Uitz, J.; Gentili, B.; De Fommervault, O.P.; Mignot, A.; Poteau, A.; Schmechtig, C.; Taillandier, V.; Leymarie, E.; Penkerch, C.; et al. Bio-optical characterization of subsurface chlorophyll maxima in the Mediterranean Sea from a Biogeochemical-Argo float database. Biogeosciences 2019, 16, 1321–1342. [Google Scholar] [CrossRef] [Green Version]
- Terzić, E.; Lazzari, P.; Organelli, E.; Solidoro, C.; Salon, S.; D’Ortenzio, F.; Conan, P. Merging bio-optical data from Biogeochemical-Argo floats and models in marine biogeochemistry. Biogeosciences 2019, 16, 2527–2542. [Google Scholar] [CrossRef] [Green Version]
- Xing, X.; Morel, A.; Claustre, H.; Antoine, D.; D’Ortenzio, F.; Poteau, A.; Mignot, A. Combined processing and mutual interpretation of radiometry and fluorimetry from autonomous profiling Bio-Argo floats: Chlorophyll a retrieval. J. Geophys. Res. Oceans 2011, 116, C06020. [Google Scholar] [CrossRef]
- Xing, X.; Morel, A.; Claustre, H.; D’Ortenzio, F.; Poteau, A. Combined processing and mutual interpretation of radiometry and fluorometry from autonomous profiling Bio-Argo floats: 2. Colored dissolved organic matter absorption retrieval. J. Geophys. Res. Oceans 2012, 117, C04022. [Google Scholar] [CrossRef] [Green Version]
- Xing, X.; Briggs, N.; Boss, E.; Claustre, H. Improved correction for non-photochemical quenching of in situ chlorophyll fluorescence based on the synchronous irradiance profile. Opt. Express 2018, 26, 24734–24751. [Google Scholar] [CrossRef]
- Boss, E.; Swift, D.; Taylor, L.; Brickley, P.; Zaneveld, R.; Riser, S.; Perry, M.J.; Strutton, P.G. Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite. Limnol. Oceanogr. 2008, 53, 2112–2122. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.S.; Plant, J.N.; Dunne, J.P.; Talley, L.D.; Sarmiento, J.L. Annual nitrate drawdown observed by SOCCOM profiling floats and the relationship to annual net community production. J. Geophys. Res. Oceans 2017, 122, 6668–6683. [Google Scholar] [CrossRef] [Green Version]
- Haëntjens, N.; Boss, E.; Talley, L.D. Revisiting Ocean Color algorithms for chlorophyll a and particulate organic carbon in the Southern Ocean using biogeochemical floats. J. Geophys. Res. Oceans 2017, 122, 6583–6593. [Google Scholar] [CrossRef] [Green Version]
- Organelli, E.; Claustre, H.; Bricaud, A.; Schmechtig, C.; Poteau, A.; Xing, X.G.; Prieur, L.; D’Ortenzio, F.; Dall’Olmo, G.; Vellucci, V. A Novel Near-Real-Time Quality-Control Procedure for Radiometric Profiles Measured by Bio-Argo Floats: Protocols and Performances. J. Atmos. Oceans Technol. 2016, 33, 937–951. [Google Scholar] [CrossRef]
- Barbieux, M.; Organelli, E.; Claustre, H.; Schmechtig, C.; Poteau, A.; Boss, E.; Bricaud, A.; Briggs, N.; Dall’Olmo, G.; D’Ortenzio, F.; et al. A global database of vertical profiles derived from Biogeochemical Argo float measurements for biogeochemical and bio-optical applications. SEANOE 2017. [Google Scholar] [CrossRef]
- NASA (2020). Available online: https://oceancolor.gsfc.nasa.gov/atbd/kd_490/ (accessed on 22 July 2020).
- Morel, A.; Huot, Y.; Gentili, B.; Werdell, P.J.; Hooker, S.B.; Franz, B.A. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote. Sens. Environ. 2007, 111, 69–88. [Google Scholar] [CrossRef]
- Lee, Z.; Hu, C.; Shang, S.; Du, K.; Lewis, M.; Arnone, R.; Brewin, R. Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing. J. Geophys. Res. Oceans 2013, 118, 4241–4255. [Google Scholar] [CrossRef] [Green Version]
- Boss, E.; Behrenfeld, M. In situ evaluation of the initiation of the North Atlantic phytoplankton bloom. Geophys. Res. Lett. 2010, 37, 18603. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.; Weidemann, A.; Kindle, J.; Arnone, R.; Carder, K.L.; Davis, C. Euphotic zone depth: Its derivation and implication to ocean-color remote sensing. J. Geophys. Res. Oceans 2007, 112, C03009. [Google Scholar] [CrossRef] [Green Version]
- Mobley, C.D.; Boss, E.S. Improved irradiances for use in ocean heating, primary production, and photo-oxidation calculations. Appl. Opt. 2012, 51, 6549–6560. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Arnone, R. Deriving inherent optical properties from water color: A multi-band quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [Google Scholar] [CrossRef]
- NASA (2020). Available online: https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/ (accessed on 22 July 2020).
- Gordon, H.R.; McCluney, W.R. Estimation of the depth of sunlight penetration in the sea for remote sensing. Appl. Opt. 1975, 14, 413–416. [Google Scholar] [CrossRef]
- Cetinić, I.; Perry, M.J.; D’Asaro, E.; Briggs, N.; Poulton, N.; Sieracki, M.E.; Lee, C.M. A simple optical index shows spatial and temporal heterogeneity in phytoplankton community composition during the 2008 North Atlantic Bloom Experiment. Biogeosciences 2015, 12, 2179–2194. [Google Scholar] [CrossRef] [Green Version]
- Schulien, J.A.; Behrenfeld, M.J.; Hair, J.W.; Hostetler, C.A.; Twardowski, M.S. Vertically- resolved phytoplankton carbon and net primary production from a high spectral resolution lidar. Opt. Express 2017, 25, 13577. [Google Scholar] [CrossRef]
- Thushara, V.; Vinayachandran, P.N.M.; Matthews, A.J.; Webber, B.G.M.; Queste, B.Y. Vertical distribution of chlorophyll in dynamically distinct regions of the southern Bay of Bengal. Biogeosciences 2019, 16, 1447–1468. [Google Scholar] [CrossRef] [Green Version]
- Banse, K. Should we continue to use the 1% light depth for estimating the compensation depth of phytoplankton for another 70 years? Limnol. Oceanogr. 2004, 13, 49–52. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Boss, E.S. Student’s tutorial on bloom hypotheses in the context of phytoplankton annual cycles. Glob. Chang. Biol. 2018, 24, 1–23. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. Oceans 2012, 117, C01011. [Google Scholar] [CrossRef] [Green Version]
- Fanton d’Andon, O.; Mangin, A.; Lavender, S.; Antoine, D.; Maritorena, S.; Morel, A.; Barrot, G.; Demaria, J.; Pinnock, S. GlobColour—The European Service for Ocean Colour. In Proceedings of the 2009 IEEE International Geoscience & Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Zhang, X.; Hu, L.; He, M.-X. Scattering by pure seawater: Effect of salinity. Opt. Express 2009, 17, 5698–5710. [Google Scholar] [CrossRef] [Green Version]
- Bailey, S.W.; Werdell, P.J. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ. 2006, 102, 12–23. [Google Scholar] [CrossRef]
- Churilova, T.; Suslin, V.; Krivenko, O.; Efimova, T.; Moiseeva, N.; Mukhanov, V.; Smirnova, L. Light absorption by phytoplankton in the upper mixed layer of the Black Sea: Seasonality and Parametrization. Front. Mar. Sci. 2017, 4, 90. [Google Scholar] [CrossRef] [Green Version]
- Uitz, J.; Claustre, H.; Morel, A.; Hooker, S.B. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J. Geophys. Res. Oceans 2006, 111, C08005. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Falkowski, P.G. A consumer’s guide to phytoplankton primary productivity models. Limnol. Oceanogr. 1997, 42, 1479–1491. [Google Scholar] [CrossRef] [Green Version]
- Morel, A.; Claustre, H.; Gentili, B. The most oligotrophic subtropical zones of the global ocean: Similarities and differences in terms of chlorophyll and yellow substance. Biogeosciences 2010, 7, 3139–3151. [Google Scholar] [CrossRef] [Green Version]
- Morel, A.; Gentili, B. A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data. Remote Sens. Environ. 2009, 113, 998–1011. [Google Scholar] [CrossRef]
- Brody, S.R.; Lozier, M.S. Characterizing upper-ocean mixing and its effect on the spring phytoplankton bloom with in situ data. Ices J. Mar. Sci. 2015, 72, 1961–1970. [Google Scholar] [CrossRef] [Green Version]
- Itoh, S.; Yasuda, I.; Saito, H.; Tsuda, A.; Komatsu, K. Mixed layer depth and chlorophyll a: Profiling float observations in the Kuroshio-Oyashio Extension region. J. Marine Systems 2015, 151, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mayot, N.; D’Ortenzio, F.; Taillandier, V.; Prieur, L.; de Fommervault, O.P.; Claustre, H.; Bosse, A.; Testor, P.; Conan, P. Physical and Biogeochemical Controls of the Phytoplankton Blooms in North Western Mediterranean Sea: A Multiplatform Approach Over a Complete Annual Cycle (2012–2013 DEWEX Experiment). J. Geophys. Res. Oceans 2017, 122, 9999–10019. [Google Scholar] [CrossRef]
- Balaguru, K.; Doney, S.C.; Bianucci, L.; Rasch, P.J.; Leung, L.R.; Yoon, J.-H.; Lima, I.D. Linking deep convection and phytoplankton blooms in the northern Labrador Sea in a changing climate. PLoS ONE 2018, 13, e0191509. [Google Scholar] [CrossRef] [Green Version]
- Chai, F.; Johnson, K.S.; Claustre, H.; Xing, X.; Wang, Y.; Boss, E.; Riser, S.; Fennel, K.; Schofield, O.; Sutton, A. Monitoring ocean biogeochemistry with autonomous platforms. Nat. Rev. Earth Environ. 2020, 1, 315–326. [Google Scholar] [CrossRef]
- Xiu, P.; Chai, F. Connections between physical, optical and biogeochemical processes in the Pacific Ocean. Progr. Oceanogr. 2014, 122, 30–53. [Google Scholar] [CrossRef]
- Morel, A. Optical modeling of the upper ocean in relation to its biogenous matter content. J. Geophys. Res. 1988, 93, 10749–10768. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z. KPAR: An optical property associated with ambiguous values. J. Lake Sci. 2009, 21, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Westberry, T.; Behrenfeld, M.J.; Siegel, D.A.; Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob. Biogeochem. Cycles 2008, 22, GB2024. [Google Scholar] [CrossRef] [Green Version]
- Joint Committee for Guides in Metrology. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. Available online: https://ncc.nesdis.noaa.gov/documents/documentation/JCGM_100_2008_E.pdf (accessed on 22 July 2020).
- Claustre, H.; Sciandra, A.; Vaulot, D. Introduction to the special section: Bio-optical and biogeochemical conditions in the South East Pacific in late 2004—The BIOSOPE program. Biogeosciences 2008, 5, 679–691. [Google Scholar] [CrossRef] [Green Version]
- Morel, A.; Maritorena, S. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res. Oceans 2001, 106, 7163–7180. [Google Scholar] [CrossRef] [Green Version]
Region Name in This Study | Basin Name Classified in the SEANOE-BGC-Argo Dataset | Ed(490) Num * | iPAR Num * |
---|---|---|---|
Southern Ocean | ATL (Southern Ocean Atlantic sector) ATOI (Southern Ocean Atlantic to Indian sector) IND (Southern Ocean Indian sector) | 974 (894) | 1097 (471) |
Subpolar Gyre | LAS (Labrador Sea) IRM (Irminger Sea) ICB (Iceland Basin) SLAS (South Labrador Sea) | 1618 (1465) | 1610 (885) |
Transition Zone | NASTZ (North Atlantic Transition Zone) EQNASTZ (North Atlantic South Transition Zone) SASTZ (South Atlantic Transition Zone) | 197 (137) | 205 (83) |
Red Sea | RED (Red Sea) | 62 (39) | 56 (8) |
Black Sea | BLACK (Black Sea) | 128 (118) | 134 (84) |
West Mediterranean (Med.) Sea | NW (Northwestern) SW (Southwestern) TYR (Tyrrhenian Sea) | 1121 (939) | 1141 (472) |
East Med. Sea | ION (Ionian Sea) LEV (Levantine Sea) | 886 (683) | 801 (206) |
Subtropical Gyre | NASTG (North Atlantic Subtropical Gyre) ENASTG (Eastern North Atlantic Subtropical Gyre) WNASTG (Western North Atlantic Subtropical Gyre) SASTG (South Atlantic Subtropical Gyre) SSASTG (South Atlantic South Subtropical Gyre) SPSTG (South Pacific Subtropical Gyre) | 549 (505) | 630 (282) |
Arctic Sea | NOR (Norwegian Sea) | 61 (57) | 83 (39) |
New Caledonia | NC (New Caledonia) | 52 (45) | 58 (18) |
TOTAL | 5648 (4882) | 5815 (2548) |
Symbol | Definition | Algorithm | Reference |
---|---|---|---|
α | Air-sea interface transmission factor | Modeled | [33] |
a(490) | Absorption coefficient at 490 nm | Quasi-analytical | [34] |
bb(490) | Backscattering coefficient at 490 nm | Quasi-analytical | [34] |
Chlasat | Downloaded MODIS-Aqua chlorophyll-a concentration | Empirical | [35] |
Ed(490) | Downwelling irradiance at 490 nm | Observed | [26] |
iPAR | Instantaneous photosynthetically available radiation | Observed | [26] |
Kd(490)M-L05a | Derived MODIS-Aqua Kd(490) product | Semi-analytical | [9] |
Kd(490)M-L13 | Derived MODIS-Aqua Kd(490) product | Semi-analytical | [30] |
Kd(490)M-KD2M | Downloaded MODIS-Aqua Kd(490) product | Empirical | [28] |
Kd(490)M-M07 | Derived MODIS-Aqua Kd(490) product | Equation (5) | [29] |
Kd(490)GC-L05a | Downloaded GlobColour Kd(490) product | Semi-analytical | [9] |
Kd(490)GC-M07 | Downloaded GlobColour Kd(490) product | Equation (5) | [29] |
Kd(PAR)z | Layer-averaged Kd(490) from surface to any depth | Equation (1) | / |
Kd(490)zpd | Float-observed near surface Kd(490) | Equation (3) | [36] |
Kd(490)zpd-O17 | Float-observed near surface Kd(490) | Appendix A | [15] |
Kd(PAR)z-L05b | Derived MODIS-Aqua layer-averaged Kd(PAR) from surface to any depth | IOPs-based | [10] |
Kd(PAR)z | Layer-averaged Kd(PAR) from surface to any depth | Equation (2) | / |
PARsat | Downloaded MODIS-Aqua daily PAR | / | [8] |
z0.415 | Isolume depth at 0.415 mol photons m−2 d−1 | Equation (4) | [4] |
z0.415-B10 | Derived MODIS-Aqua z0.415 product | Equations (6) and (7) | [31] |
z0.415-L07 | Derived MODIS-Aqua z0.415 product | IOPs-based | Modified from [32] |
z1%490 | Float-observed 1% light depth for Ed(490) | Equation (1) | / |
zeu | Float-observed 1% light depth for iPAR | Equation (2) | [3] |
zeu-L07 | Downloaded MODIS-Aqua zeu product | IOPs-based | [32] |
zeu-M07 | Derived MODIS-Aqua zeu product | Equation (6) | [29] |
zpd | Penetration depth at 490 nm | Equation (3) | [36] |
Product | Platform | Source | Algorithm | MAD | MAPD | MPD | Figure |
---|---|---|---|---|---|---|---|
Kd(490)M-KD2M | MODIS-Aqua | Downloaded | B/G-based | 0.010 m−1 | 14.1% | −0.3% | Figure 5a |
Kd(490)M-L13 | MODIS-Aqua | Calculated | IOPs-based | 0.009 m−1 | 14.4% | 2.2% | Figure 5b |
Kd(490)M-L05a | MODIS-Aqua | Calculated | IOPs-based | 0.009 m−1 | 15.2% | 4.6% | Figure 5c |
Kd(490)GC-L05a | GlobColour | Downloaded | IOPs-based | 0.025 m−1 | 52.4% | 51.5% | Figure 5e |
Kd(490)M-M07 | MODIS-Aqua | Calculated | Chla-based | 0.010 m−1 | 19.1% | 8.7% | Figure 5d |
Kd(490)GC-M07 | GlobColour | Downloaded | Chla-based | 0.011 m−1 | 19.5% | 11.7% | / |
Product | Algorithm | Number # | MAD# | MAPD # | MPD # | Figure |
---|---|---|---|---|---|---|
Kd(PAR)zpd-L05b | IOPs-based | 374(49) | 0.013 m−1 (0.005 m−1) | 12.8%(11.1%) | 8.3%(4.4%) | Figure 6a |
Kd(PAR)2zpd-L05b | IOPs-based | 374(49) | 0.011 m−1 (0.004 m−1) | 12.5%(10.9%) | −0.4%(−1.3%) | Figure 6b |
Kd(PAR)3zpd-L05b | IOPs-based | 374(49) | 0.012 m−1 (0.006 m−1) | 14.7%(14.7%) | −4%(−10.6%) | Figure 6c |
Kd(PAR)4zpd-L05b | IOPs-based | 364(40) | 0.012 m−1 (0.007 m−1) | 15.2%(17.1%) | −2.5%(−14.3%) | Figure 6d |
Kd(PAR)5zpd-L05b | IOPs-based | 315(14) | 0.012 m−1 (0.005 m−1) | 15.1%(12.5%) | 4.2%(−2.9%) | Figure 6e |
Kd(PAR)6zpd-L05b | IOPs-based | 264(5) | 0.014 m−1 (0.006 m−1) | 17.9%(15.5%) | 12.6%(1.6%) | Figure 6f |
zeu-M07 | Chla-based | 374(49) | 8.0 m (12.6 m) | 12.5%(9.9%) | −1.7%(−8.4%) | Figure 7a |
zeu-L07 | IOPs-based | 374(49) | 14.0 m (20.5 m) | 19.7%(16.7%) | 8.4%(12.0%) | Figure 7b |
z0.415-B10 | Chla-based | 374(49) | 7.7 m (12.7 m) | 12.2%(9.8%) | −1.1%(−8.2%) | Figure 7c |
z0.415-L07 | IOPs-based | 374(49) | 16.4 m (32.7 m) | 21.3%(24.7%) | 10.2%(20.6%) | Figure 7d |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, X.; Boss, E.; Zhang, J.; Chai, F. Evaluation of Ocean Color Remote Sensing Algorithms for Diffuse Attenuation Coefficients and Optical Depths with Data Collected on BGC-Argo Floats. Remote Sens. 2020, 12, 2367. https://doi.org/10.3390/rs12152367
Xing X, Boss E, Zhang J, Chai F. Evaluation of Ocean Color Remote Sensing Algorithms for Diffuse Attenuation Coefficients and Optical Depths with Data Collected on BGC-Argo Floats. Remote Sensing. 2020; 12(15):2367. https://doi.org/10.3390/rs12152367
Chicago/Turabian StyleXing, Xiaogang, Emmanuel Boss, Jie Zhang, and Fei Chai. 2020. "Evaluation of Ocean Color Remote Sensing Algorithms for Diffuse Attenuation Coefficients and Optical Depths with Data Collected on BGC-Argo Floats" Remote Sensing 12, no. 15: 2367. https://doi.org/10.3390/rs12152367
APA StyleXing, X., Boss, E., Zhang, J., & Chai, F. (2020). Evaluation of Ocean Color Remote Sensing Algorithms for Diffuse Attenuation Coefficients and Optical Depths with Data Collected on BGC-Argo Floats. Remote Sensing, 12(15), 2367. https://doi.org/10.3390/rs12152367