Impact of Distributed Generation Integration on Protection Devices: A Case Study in the CIGRE European Medium Voltage Network †
<p>Reach of the overcurrent relay.</p> "> Figure 2
<p>Operational time curves based on M vs. time.</p> "> Figure 3
<p>European CIGRE MV network model.</p> "> Figure 4
<p>IIDG model.</p> "> Figure 5
<p>Variation of pre-fault current for different levels of penetration—phase A.</p> "> Figure 6
<p>Effect of considering a fixed <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>I</mi> </mrow> <mrow> <mi>p</mi> <mi>i</mi> <mi>c</mi> <mi>k</mi> <mi>u</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math> for different levels of penetration.</p> "> Figure 7
<p>Three-phase fault—branch T2-C—0% IIDG penetration level.</p> "> Figure 8
<p>Three-phase fault—branch T2-C—50% IIDG penetration level.</p> "> Figure 9
<p>Current magnitude for different levels of penetration.</p> "> Figure 10
<p>Overcurrent curve—<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>M</mi> </mrow> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
- An adaptive adjustment of the pickup current in overcurrent relays is proposed in response to changes associated with the connection and disconnection of IIDGs. This adjustment, by increasing the current pickup multiplier above one, ensures that the relay maintains its sensitivity and is capable of detecting even the smallest faults in the system, thus mitigating delays in response time and protection blindness.
- A protection scheme specifically designed to combat protection blindness induced by the integration of IIDGs is introduced. This approach is based on modifying the current pickup multiplier used to calculate the tripping time of the protection. By adjusting this single variable, the variability of the penetration of IIDGs into the network, as well as their location and proximity to faults, is taken into account. This modification significantly improves the applicability of the scheme in digital overcurrent relays in emerging systems.
2. Fundamentals of the Inverse-Time Overcurrent Relay
3. Modeling
4. Effects of Inclusion of IIDGs on the Overcurrent Relay
4.1. Pre-Fault Condition
4.2. Fault Current Behaivior Without IIDGs
4.3. Fault Current Behavior with IIDGs
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salazar, E.J.; Rosero, V.; Gabrielski, J.; Samper, M.E. Demand response model: A cooperative-competitive multi-agent reinforcement learning approach. Eng. Appl. Artif. Intell. 2024, 133, 108273. [Google Scholar] [CrossRef]
- Rizwan, M.; Gao, C.; Yan, X.; Ahmad, S.; Zaindin, M. An approach to disparage the blindness of backup protection in grid connected renewable energy sources system by inducing artificial fault current. Int. J. Electr. Power Energy Syst. 2023, 153, 109185. [Google Scholar] [CrossRef]
- Meskin, M.; Domijan, A.; Grinberg, I. Impact of distributed generation on the protection systems of distribution networks: Analysis and remedies—Review paper. IET Gener. Transm. Distrib. 2020, 14, 5816–5822. [Google Scholar] [CrossRef]
- Norshahrani, M.; Mokhlis, H.; Bakar, A.H.A.; Jamian, J.J.; Sukumar, S. Progress on protection strategies to mitigate the impact of renewable distributed generation on distribution systems. Energies 2017, 10, 1864. [Google Scholar] [CrossRef]
- Rosero-morillo, V.A.; Orduña, E.; Riquelme-dominguez, J.M. Evaluation of Grid-Following Inverter Control Models for Fault Response and their Impact on Protection Devices. In Proceedings of the 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON), Porto, Portugal, 25–27 June 2024; pp. 467–472. [Google Scholar] [CrossRef]
- Rosero-Morillo, V.A.; Gonzalez-Longatt, F.; Riquelme-Dominguez, J.M.; Orduña, E. Impact of Inverter-Based Distributed Generation Integration on Current Seen by Overcurrent Relay: CIGGRE European MV Network Case. In Proceedings of the 2023 IEEE 41st Central America and Panama Convention (CONCAPAN XLI), Tegucigalpa, Honduras, 8–10 November 2023; pp. 1–6. [Google Scholar]
- Vijitha, K.; Selvan, M.P.; Raja, P. Short circuit analysis and adaptive zonal protection of distribution system with distributed generators. In Proceedings of the 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE), Shillong, India, 12–13 June 2015. [Google Scholar] [CrossRef]
- Telukunta, V.; Pradhan, J.; Agrawal, A.; Singh, M.; Srivani, S.G. Protection challenges under bulk penetration of renewable energy resources in power systems: A review. CSEE J. Power Energy Syst. 2017, 3, 365–379. [Google Scholar] [CrossRef]
- Uma, U.U.; Nmadu, D.; Ugwuanyi, N.; Ogah, O.E.; Eli-Chukwu, N.; Eheduru, M.; Ekwue, A. Adaptive overcurrent protection scheme coordination in presence of distributed generation using radial basis neural network. Prot. Control Mod. Power Syst. 2023, 8, 63. [Google Scholar] [CrossRef]
- Kavi, M.; Mishra, Y.; Vilathgamuwa, M. Morphological Fault Detector for Adaptive Overcurrent Protection in Distribution Networks with Increasing Photovoltaic Penetration. IEEE Trans. Sustain. Energy 2018, 9, 1021–1029. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. IEC Standard for Measuring Relays and Protection Equipment—Part 151: Functional Requirements for Over/Under Current Protection. IEC 60255-151. 2009. Available online: https://webstore.iec.ch/en/publication/1166 (accessed on 28 August 2009).
- IEEE Standard for Inverse-Time Characteristics Equations for Overcurrent Relays. 2018. Available online: https://ieeexplore.ieee.org/document/8635630 (accessed on 5 February 2019).
- Enríquez, A.C. Overcurrent Relay Advances for Modern Electricity Networks; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Rosero-morillo, V.A. Advanced Grid–Tied Inverter Modeling in Matlab-Simulink for Protection Studies in Modern Distribution Networks. In Proceedings of the IEEE PES General Meeting, Seattle, WA, USA, 21–25 July 2024. [Google Scholar]
Phases | Penetration Level | |||||
---|---|---|---|---|---|---|
0% | 16% | 33% | 44% | 50% | 60% | |
Ia [A] | 132.865 | 114.472 | 94.9389 | 82.6763 | 78.7549 | 66.5616 |
Location | B1 | B2 | B3 | B4 | B5 | B6 | B8 | B9 | B10 | B11 | B7 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Branch T2-A | X | X | X | X | X | X | |||||||
Branch T2-B | X | X | X | X | X | X | X | ||||||
Branch T2-C | X | X | X | X | X | ||||||||
Types of Faults | 1φ | B | 630.999 | 572.573 | 493.159 | 484.914 | 477.735 | 459.736 | 475.29 | 471.225 | 462.066 | 458.373 | 456.564 |
2φ-g | B | 5258.74 | 2568.59 | 1406.18 | 1322.36 | 1253.91 | 1098.66 | 1239.13 | 1203.97 | 1127.15 | 1097.25 | 1075.72 | |
C | 4456.26 | 2067.22 | 1128.54 | 1064.93 | 1013.38 | 897.682 | 1001.65 | 975.229 | 917.937 | 895.774 | 880.627 | ||
3φ | A | 5635 | 2677.5 | 1439.27 | 1352.58 | 1282.11 | 1123.43 | 1266.55 | 1230.43 | 1151.91 | 1121.47 | 1100.04 |
Location | B1 | B2 | B3 | B4 | B5 | B6 | B8 | B9 | B10 | B11 | B7 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Branch T2-A | X | X | X | X | X | X | |||||||
Branch T2-B | X | X | X | X | X | X | X | ||||||
Branch T2-C | X | X | X | X | X | ||||||||
Types of Faults | 1φ | B | 571.457 | 521.264 | 460.37 | 451.874 | 444.521 | 423.41 | 444.201 | 439.455 | 428.853 | 424.559 | 428.05 |
2φ-g | B | 4849.18 | 2473.65 | 1381.74 | 1298.96 | 1231.32 | 1074.83 | 1219.27 | 1183.69 | 1105.8 | 1075.53 | 1059.65 | |
C | 4047.37 | 1967.81 | 1096.48 | 1036.28 | 987.186 | 875.458 | 975.944 | 950.821 | 895.669 | 874.151 | 859.481 | ||
3φ | A | 5157.78 | 2561.66 | 1403.93 | 1318.43 | 1248.29 | 1087.3 | 1235.91 | 1199.19 | 1119.55 | 1088.43 | 1073.1 |
Location | B1 | B2 | B3 | B4 | B5 | B6 | B8 | B9 | B10 | B11 | B7 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Branch T2-A | X | X | X | X | X | X | |||||||
Branch T2-B | X | X | X | X | X | X | X | ||||||
Branch T2-C | X | X | X | X | X | ||||||||
Types of Faults | 1φ | B | 5.44 | 4.96 | 4.38 | 4.30 | 4.23 | 4.03 | 4.23 | 4.19 | 4.08 | 4.04 | 4.08 |
2φ-g | B | 46.18 | 23.56 | 13.16 | 12.37 | 11.73 | 10.24 | 11.61 | 11.27 | 10.53 | 10.24 | 10.09 | |
C | 38.54 | 18.74 | 10.44 | 9.87 | 9.40 | 8.34 | 9.29 | 9.05 | 8.53 | 8.32 | 8.19 | ||
3φ | A | 49.12 | 24.40 | 13.37 | 12.56 | 11.89 | 10.35 | 11.77 | 11.42 | 10.66 | 10.37 | 10.22 |
0% IIDG | 16% IIDG | 33% IIDG | 44% IIDG | 50% IIDG | 60% IIDG | |
---|---|---|---|---|---|---|
I pre-fault [A] | 132.87 | 114.47 | 94.94 | 82.68 | 78.75 | 66.56 |
I pickup [A] | 265.73 | 228.94 | 189.88 | 165.35 | 157.51 | 133.12 |
I fault max [A] | 5635.00 | 5461.90 | 5309.78 | 5204.11 | 5157.78 | 5030.21 |
[pu] | 31.81 | 35.79 | 41.95 | 47.21 | 49.12 | 56.7 |
IIDG | Fault B1 | Fault B7 | ||||||
---|---|---|---|---|---|---|---|---|
1φ | 2φ-g | 3φ | 1φ | 2φ-g | 3φ | |||
b | b | c | a | b | b | c | a | |
0% | 3.56 | 29.68 | 25.15 | 15.11 | 2.58 | 6.07 | 4.97 | 6.21 |
16% | 4.01 | 33.48 | 28.22 | 17.28 | 2.90 | 6.99 | 5.72 | 7.12 |
33% | 4.66 | 39.34 | 33.00 | 20.54 | 3.47 | 8.44 | 6.85 | 8.58 |
44% | 5.23 | 44.33 | 37.05 | 23.34 | 3.93 | 9.65 | 7.82 | 9.78 |
50% | 5.44 | 46.18 | 38.54 | 24.40 | 4.08 | 10.09 | 8.19 | 10.22 |
60% | 6.29 | 53.37 | 44.35 | 28.48 | 4.75 | 11.87 | 9.61 | 11.99 |
IIDG | Fault B1 | Fault B7 | ||||||
---|---|---|---|---|---|---|---|---|
1φ | 2φ-g | 3φ | 1φ | 2φ-g | 3φ | |||
b | b | c | a | b | b | c | a | |
0% | 5.06 | 31.18 | 26.65 | 33.31 | 4.08 | 7.57 | 6.47 | 7.71 |
16% | 4.95 | 30.35 | 25.82 | 32.33 | 4.00 | 7.52 | 6.43 | 7.64 |
33% | 4.83 | 29.61 | 25.08 | 31.47 | 3.98 | 7.53 | 6.39 | 7.63 |
44% | 4.76 | 29.08 | 24.56 | 30.88 | 3.94 | 7.50 | 6.37 | 7.59 |
50% | 4.73 | 28.87 | 24.35 | 30.61 | 3.92 | 7.48 | 6.35 | 7.56 |
60% | 4.65 | 28.23 | 23.72 | 29.89 | 3.88 | 7.45 | 6.32 | 7.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosero-Morillo, V.; Salazar-Pérez, S.; Gonzalez-Longatt, F.; Salazar, E.; Pham, L.N.H.; Orduña, E. Impact of Distributed Generation Integration on Protection Devices: A Case Study in the CIGRE European Medium Voltage Network. Eng. Proc. 2024, 77, 9. https://doi.org/10.3390/engproc2024077009
Rosero-Morillo V, Salazar-Pérez S, Gonzalez-Longatt F, Salazar E, Pham LNH, Orduña E. Impact of Distributed Generation Integration on Protection Devices: A Case Study in the CIGRE European Medium Voltage Network. Engineering Proceedings. 2024; 77(1):9. https://doi.org/10.3390/engproc2024077009
Chicago/Turabian StyleRosero-Morillo, Verónica, Sebastián Salazar-Pérez, F. Gonzalez-Longatt, Eduardo Salazar, Le Nam Hai Pham, and Eduardo Orduña. 2024. "Impact of Distributed Generation Integration on Protection Devices: A Case Study in the CIGRE European Medium Voltage Network" Engineering Proceedings 77, no. 1: 9. https://doi.org/10.3390/engproc2024077009
APA StyleRosero-Morillo, V., Salazar-Pérez, S., Gonzalez-Longatt, F., Salazar, E., Pham, L. N. H., & Orduña, E. (2024). Impact of Distributed Generation Integration on Protection Devices: A Case Study in the CIGRE European Medium Voltage Network. Engineering Proceedings, 77(1), 9. https://doi.org/10.3390/engproc2024077009