Unconventional Germination in Terrestrial Plants: A Counterintuitive Case in Desiccation-Sensitive Garcinia aristata (Clusiaceae) Seeds Showing Seedling Growth Without Roots
<p>Final germination percentages (mean ± SE of <span class="html-italic">Garcinia aristata</span> seeds incubated under different temperatures and light conditions. Temperature significantly affected germination, while light exposure had no statistically significant impact.</p> "> Figure 2
<p>Cumulative germination percentages (mean ± SE of fresh <span class="html-italic">Garcinia aristata</span> seeds incubated at different temperatures. Different letters indicate significant differences after 30 days when germinated at four different temperatures (<span class="html-italic">p</span> ≤ 0.05). The germination percentage of seeds incubated at 25/40 °C after 30 days (shown with a dotted line) was determined after moving the seeds to 25/30 °C.</p> "> Figure 3
<p>The relationship between moisture content, germination percentage (blue line with error bars), and time taken for first germination (just the error bars) after drying fresh <span class="html-italic">Garcinia aristata</span> seeds for different durations above silica gel. Different lower-case blue letters indicate significant differences between groups for germination. Different lower-case red letters indicate significant differences between groups for mean germination time. Error bars represent standard errors.</p> "> Figure 4
<p>The mean temperature and relative humidity experienced during ‘ambient storage’ of <span class="html-italic">Garcinia aristata</span> seeds. The bars indicate the weekly cumulative germination percentage.</p> "> Figure 5
<p>Two different forms of germination observed in fresh <span class="html-italic">Garcinia aristata</span> seeds with and without primary root. Germination of <span class="html-italic">Garcinia aristata</span> seeds without primary roots (<b>a</b>) 2 days, (<b>b</b>) 7 days, (<b>c</b>) 15 days, and (<b>d</b>) 25 days after germination. Germination of <span class="html-italic">Garcinia aristata</span> seeds with primary and secondary roots: (<b>e</b>) 2 days, (<b>f</b>) 7 days, (<b>g</b>) 15 days, (<b>h</b>) 21 days, and (<b>i</b>) 28 days after germination. S, shoot; AR, adventitious or secondary root; PR, primary root. Scale = 0.5 cm.</p> "> Figure 6
<p>Germination and seedling growth of ‘ambient-stored’ <span class="html-italic">Garcinia aristata</span> seeds with shoots emerging without roots after (<b>a</b>) 14 days, (<b>b</b>) 45 days, and (<b>c</b>) 90 days. The seedlings established fully functional leaves without roots. S, shoot; L, leaves. Scale = 0.5 cm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Collection and Habitat Characteristics
2.2. Seed Characteristics
2.3. Seed Imbibition
2.4. Effect of Temperature and Light on Seed Germination of Fresh Seeds
2.5. Effects of Drought Stress on Seed Germination
2.6. Desiccation-Sensitivity Assessment
2.7. Effects of ‘Ambient Storage’ on Seed Germination
2.8. Documenting the Morphological Progression in Germination of Fresh and ‘Ambient Storage’ Seeds
2.9. Statistical Analysis
3. Results
3.1. Seed Characteristics and Imbibition
3.2. Effect of Temperature and Light on Seed Germination on Fresh Seeds
3.3. Desiccation Sensitivity Assessment
3.4. Effects of Drought Stress on Seed Germination
3.5. Effects of ‘Ambient Storage’ on Seed Germination
3.6. Germination and Seedling Structures of Fresh and ‘Ambient Stored’ Seeds
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fenner, M.; Thompson, K. The Ecology of Seeds; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef] [PubMed]
- Nonogaki, H.; Bassel, G.W.; Bewley, J.D. Germination—Still a mystery. Plant Sci. 2010, 179, 574–581. [Google Scholar] [CrossRef]
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.; Nonogaki, H. Seeds: Physiology of Development and Germination, 3rd ed.; Springer: London, UK, 2013. [Google Scholar]
- ISTA. International Rules for Seed Testing; International Seed Testing Association: Wallisellen, Switzerland, 2023. [Google Scholar]
- Baskin, J.M.; Baskin, C.C. The great diversity in kinds of seed dormancy: A revision of the Nikolaeva–Baskin classification system for primary seed dormancy. Seed Sci. Res. 2021, 31, 249–277. [Google Scholar] [CrossRef]
- Tutin, T. The autecology of Zostera marina in relation to its wasting disease. New Phytol. 1938, 37, 50–71. [Google Scholar] [CrossRef]
- Taylor, A. Studies of the development of Zostera marina L.: II. Germination and seedling development. Can. J. Bot. 1957, 35, 681–695. [Google Scholar] [CrossRef]
- Kuo, J.; Iizumi, H.; Nilsen, B.E.; Aioi, K. Fruit anatomy, seed germination and seedling development in the Japanese seagrass Phyllospadix (Zosteraceae). Aquat. Bot. 1990, 37, 229–245. [Google Scholar] [CrossRef]
- Zhu, M.; Zang, Y.; Zhang, X.; Shang, S.; Xue, S.; Chen, J.; Tang, X. Insights into the regulation of energy metabolism during the seed-to-seedling transition in marine angiosperm Zostera marina L.: Integrated metabolomic and transcriptomic analysis. Front. Plant Sci. 2023, 14, 1130292. [Google Scholar] [CrossRef]
- Park, J.-I.; Kim, J.H.; Song, H.-J.; Kim, G.Y. Effects of Light, Salinity and Temperature on Germination Characteristics of Surfgrass, Phyllospadix japonicus and P. iwatensis Seeds. Ocean. Sci. J. 2022, 57, 467–474. [Google Scholar] [CrossRef]
- Joshi, G.; Kumar, A.A.; Gowda, B.; Srinivasa, Y. Production of supernumerary plants from seed fragments in Garcinia gummi-gutta: Evolutionary implications of mammalian frugivory. Curr. Sci. 2006, 91, 372–376. [Google Scholar]
- Goh, H.-H.; Bakar, S.A.; Azlan, N.D.K.; Zainal, Z.; Noor, N.M. Transcriptional reprogramming during Garcinia-type recalcitrant seed germination of Garcinia mangostana. Sci. Hortic. 2019, 257, 108727. [Google Scholar] [CrossRef]
- Agyili, J.; Sacande, M.; Koffi, E.; Peprah, T. Improving the collection and germination of West African Garcinia kola Heckel seeds. New For. 2007, 34, 269–279. [Google Scholar] [CrossRef]
- Ha, C.; Sands, V.; Soepadmo, E.; Jong, K. Reproductive patterns of selected understorey trees in the Malaysian rain forest: The sexual species. Bot. J. Linn. Soc. 1988, 97, 295–316. [Google Scholar] [CrossRef]
- Vogel, E.d. Seedlings of Dicotyledons; Pudoc: Wageningen, DC, USA, 1982. [Google Scholar]
- Baskaware, S.V.; Deodhar, M.A. Apomixis and Sexual Systems in Various Species of Garcinia with Special Reference to Garcinia Indica (Thouars) Choisy. Int. J. Fruit Sci. 2023, 23, 25–33. [Google Scholar] [CrossRef]
- Teo, C.K. In vitro culture of the mangosteen seed. Acta Hortic. 1992, 292, 81–86. [Google Scholar] [CrossRef]
- Cardoso, A.A.; Barbosa, S.; Santos, B.R. Optimum conditions for seed propagation of Garcinia brasiliensis: Mimicking natural habitats allows better results. J. Seed Sci. 2021, 43, e202143014. [Google Scholar] [CrossRef]
- Malik, S.; Chaudhury, R.; Abraham, Z. Seed morphology and germination characteristics in three Garcinia species. Seed Sci. Technol. 2005, 33, 595–604. [Google Scholar] [CrossRef]
- Corbineau, F.; Côme, D. Experiments on the storage of seeds and seedlings of Symphonia globulifera Lf (Guttiferae). Seed Sci. Technol. 1986, 14, 585–591. [Google Scholar]
- Kanmegne, G.; Omokolo, N.D. Germination of Garcinia kola (Heckel) seeds in response to different hormone treatments. Fruits 2008, 63, 155–161. [Google Scholar] [CrossRef]
- Normah, M.; Rosnah, H.; Noor-Azza, A. Multiple shoots and callus formation from seeds of mangosteen (Garcinia mangostana L.) cultured in vitro. Acta Hortic. 1992, 292, 87–92. [Google Scholar] [CrossRef]
- Osman, M.B.; Milan, A.R. Mangosteen: Garcinia mangostana L.; University of Southampton, International Centre for Underutilised Crops: Semenyih, Malaysia, 2006. [Google Scholar]
- Roberts, E. Predicting the storage life of seeds. Seed Sci. Technol. 1973, 1, 499–514. [Google Scholar]
- Malik, S.; Chaudhury, R.; Abraham, Z. Desiccation-freezing sensitivity and longevity in seeds of Garcinia indica, G. cambogia and G. xanthochymus. Seed Sci. Technol. 2005, 33, 723–732. [Google Scholar] [CrossRef]
- Normah, M.N.; Aizat, W.M.; Hussin, K.; Rohani, E.R. Seed characteristics and germination properties of four Garcinia (Clusiaceae) fruit species. Fruits 2016, 71, 199–207. [Google Scholar]
- SID. SER, INSR, RBGK, Seed Information Database (SID). 2023. Available online: https://ser-sid.org/about (accessed on 15 April 2024).
- Joshi, G.; Phartyal, S.; Arunkumar, A. Non-deep physiological dormancy, desiccation and low-temperature sensitivity in seeds of Garcinia gummi-gutta (Clusiaceae): A tropical evergreen recalcitrant species. Trop. Ecol. 2017, 58, 241–250. [Google Scholar]
- Mathew, K.; George, S.T. Dormancy and storage of seeds in Garcinia cambogia Desr.(Kodampuli). J. Trop. Agric. 1995, 33, 77–79. [Google Scholar]
- Chacko, K.; Pillai, P. Seed characteristics and germination of Garcinia gummi-gutta (L.) Robs. Indian For. 1997, 123, 123–126. [Google Scholar]
- Anilkumar, C.; Babu, K.; Krishnan, P. Dormancy mechanism and effects of treatments on the germination of Garcinia gummi-gutta (Clusiaceae) seeds. J. Trop. Sci. 2002, 14, 322–328. [Google Scholar]
- Subbiah, A.; Ramdhani, S.; Pammenter, N.W.; Macdonald, A.H. Towards understanding the incidence and evolutionary history of seed recalcitrance: An analytical review. Perspect. Plant Ecol. Evol. Syst. 2019, 37, 11–19. [Google Scholar] [CrossRef]
- Jaganathan, G.K. Ecological insights into the coexistence of dormancy and desiccation-sensitivity in Arecaceae species. Ann. Sci. 2021, 78, 10. [Google Scholar] [CrossRef]
- Tweddle, J.C.; Dickie, J.B.; Baskin, C.C.; Baskin, J.M. Ecological aspects of seed desiccation sensitivity. J. Ecol. 2003, 91, 294–304. [Google Scholar] [CrossRef]
- Guedje, N.M.; Lejoly, J.; Nkongmeneck, B.-A.; Jonkers, W.B. Population dynamics of Garcinia lucida (Clusiaceae) in Cameroonian Atlantic forests. For. Ecol. Manag. 2003, 177, 231–241. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, Y.P.; Zhang, L.; Chen, J. Dormancy breaking and storage behavior of Garcinia cowa Roxb. (Guttiferae) seeds: Implications for ecological function and germplasm conservation. J. Integr. Plant Biol. 2005, 47, 38–49. [Google Scholar] [CrossRef]
- Ancy, J.; Satheeshan, K.; Jomy, T. Seed germination studies in Garcinia spp. J. Spices Aromat. Crops. 2007, 16, 118–121. [Google Scholar]
- Ng, F. Germination ecology of Malaysian woody plants IV. Malays. For. 1979, 42, 221–224. [Google Scholar]
- Ng, F. Germination of fresh seeds of Malaysian trees. Malays. For. 1973, 36, 54–65. [Google Scholar]
- Viana, W.G.; Lando, A.P.; Silva, R.A.d.; Costa, C.D.d.; Vieira, P.H.M.; Steiner, N. Physiological performance of Garcinia gardneriana (Planch. & Triana) Zappi: A species with recalcitrant and dormant seeds. J. Seed Sci. 2020, 42, e202042001. [Google Scholar]
- Borhidi, A. New names and new species in the Flora of Cuba, II. Acta Bot. Acad. Sci. Hung. 1980, 26, 255–2275. [Google Scholar]
- Greuter, W.; Rankin, R. Vascular Plants of Cuba. A Checklist. Third, Updated Edition of The Spermatophyta of Cuba; Botanischer Garten und Botanisches Museum Berlin: Berlin, Germany, 2022. [Google Scholar] [CrossRef]
- González-Oliva, L.; González-Torres, L.R.; Palmarola, A.; Barrios, D.; Testé, E. Categorización de taxones de la flora de Cuba—2015. Bissea 2015, 9, 3–707. [Google Scholar]
- Fuentes, I.M.; González-Oliva, L.; Baró, I.; González, M.T.; Mancina, C.A. Efecto potencial del cambio climático sobre la distribución de plantas asociadas a bosques húmedos del oriente de Cuba. Acta Botánica Cuba 2019, 218, 160–170. [Google Scholar]
- González-Torres, L.R.; Palmarola, A.; González-Oliva, L.; Bécquer, E.R.; Testé, E.; Barrios, D. Lista Roja de la Flora de Cuba. Bissea 2016, 10, 33–283. [Google Scholar]
- Sánchez, J.A.; Montejo, L.A.; Gamboa, A.; Albert-Puentes, D.; Hernández, F. Germinación y dormancia de arbustos y trepadoras del bosque siempreverde de la Sierra del Rosario, Cuba. Pastos y Forrajes 2015, 38, 11–28. [Google Scholar]
- Sánchez, J.A.; Pernús, M.; Martínez, J. Tratamientos de semillas para mejorar la germinación de Guazuma ulmifolia bajo estrés hídrico y calórico: Comparación entre árboles tropicales pioneros. Rev. Jard. Bot. Nac. Univ. Habana 2020, 41, 93–108. [Google Scholar]
- Borhidi, A. Phytogeography and Vegetation Ecology of Cuba; Akadémiai Kiadó: Budapest, Hungary, 1996. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Thompson, K.; Band, S.R.; Hodgson, J.G. Seed size and shape predict persistence in soil. Funct. Ecol. 1993, 7, 236–241. [Google Scholar] [CrossRef]
- Daws, M.; Garwood, N.C.; Pritchard, H. Prediction of desiccation sensitivity in seeds of woody species: A probabilistic model based on two seed traits and 104 species. Ann. Bot. 2006, 97, 667–674. [Google Scholar] [CrossRef]
- Baskin, J.M.; Davis, B.H.; Baskin, C.C.; Gleason, S.M.; Cordell, S. Physical dormancy in seeds of Dodonaea viscosa (Sapindales, Sapindaceae) from Hawaii. Seed Sci. Res. 2004, 14, 81–90. [Google Scholar] [CrossRef]
- Villela, F.A.; Filho, L.D.; Sequeira, E.L. Tabela de potential osmótico em função da concentração de polietileno glicol 6.000 e da temperatura. Pesqui. Agropecu. Bras. 1991, 26, 1957–1968. [Google Scholar]
- Michel, B.E.; Kaufmann, M.R. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 1973, 51, 914–916. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Horo, S.; Ranjani, R.; Waman, A.A.; Bohra, S.K.J.a.P. Seed Germination Studies in Andaman Kokum (Garcinia dhanikhariensis SK Srivastava): An Endemic Species from Bay Islands, India. J. Andaman. Sci. Assoc. 2022, 27, 95–103. [Google Scholar]
- Asomaning, J.; Olympio, N.; Sacande, M. Desiccation sensitivity and germination of recalcitrant Garcinia kola heckel seeds. Res. J. Seed Sci. 2011, 4, 15–27. [Google Scholar] [CrossRef]
- Onyekwelu, S. Germination and seedling morphology of Garcinia kola Heckel. J. Trop. For. Resour. 1987, 3, 10–14. [Google Scholar]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Pritchard, H.W.; Tsan, F.Y.; Wen, B.; Jaganathan, G.K.; Calvi, G.; Pence, V.C.; Mattana, E.; Ferraz, I.D.; Seal, C.E. (Eds.) Regeneration in Recalcitrant-Seeded Species and Risks from Climate Change (Plant Regeneration from Seeds); Academic Press: Cambridge, MA, USA, 2022; pp. 259–273. [Google Scholar]
- Nzegbule, E.; Mbakwe, R. Effect of pre-sowing and incubation treatment on germination of Garcinia kola (Heckel) seeds. Fruits 2001, 56, 437–442. [Google Scholar] [CrossRef]
- Kranner, I.; Minibayeva, F.V.; Beckett, R.P.; Seal, C.E. What is stress? Concepts, definitions and applications in seed science. New Phytol. 2010, 188, 655–673. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, B.; Yi, X.; Yan, C.; Zhang, Z.; Cao, L. Re-caching behaviour of rodents improves seed dispersal effectiveness: Evidence from seedling establishment. For. Ecol. Manag. 2019, 444, 207–213. [Google Scholar] [CrossRef]
- Anto, M.; Jothish, P.; Angala, M.; Anilkumar, C. Fruit predation and adaptive strategies of Garcinia imberti, an endangered species of southern Western Ghats. Curr. Sci. 2018, 115, 2315–2321. [Google Scholar] [CrossRef]
- McConkey, K.R.; Brockelman, W.Y.; Saralamba, C.; Nathalang, A. Effectiveness of primate seed dispersers for an “oversized” fruit Garcinia benthamii. Ecology 2015, 96, 2737–2747. [Google Scholar] [CrossRef]
Seed Traits | Mean (±SD) | Maximum Value | Minimum Value | Coefficient of Variation |
---|---|---|---|---|
Length (mm) | 17.20 (2.62) | 21.17 | 12.30 | 15.23 |
Width (mm) | 11.40 (1.90) | 13.71 | 7.82 | 16.71 |
Depth (mm) | 9.75 (1.69) | 13.50 | 6.36 | 17.34 |
Seed shape | 0.05 (0.01) | 0.09 | 0.02 | 25.58 |
Fresh mass (g) | 2.01 (0.68) | 3.07 | 0.65 | 33.89 |
Dry mass (g) | 0.69 (0.22) | 1.08 | 0.18 | 32.15 |
Initial moisture content (%) | 67.22 (3.38) | 76.10 | 61.04 | 5.03 |
Seed embryo dry mass (g) | 0.61 (0.20) | 1.00 | 0.14 | 33.24 |
Seed coat dry mass (g) | 0.07 (0.03) | 0.18 | 0.04 | 30.96 |
Seed coat ratio | 0.11(0.04) | 0.21 | 0.07 | 36.77 |
Probability of desiccation sensitivity | 0.82 (0.13) | 0.93 | 0.32 | 16.23 |
Increase in seed mass after imbibition (%) | 12.02 (2.21) | 15.38 | 10.02 | 8.39 |
Factor | df | Deviance | Resid. Df | Resid. Dev | p (>Chi) |
---|---|---|---|---|---|
Null | 39 | 481.48 | |||
Light | 1 | 0.05 | 38 | 481.43 | 0.8252 |
Temperature | 3 | 466.71 | 35 | 14.72 | 0.0001 |
Light × Temperature | 3 | 3.64 | 32 | 11.08 | 0.3035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaganathan, G.K.; Sánchez, J.A.; Pernús, M.; Liu, B. Unconventional Germination in Terrestrial Plants: A Counterintuitive Case in Desiccation-Sensitive Garcinia aristata (Clusiaceae) Seeds Showing Seedling Growth Without Roots. Plants 2024, 13, 3269. https://doi.org/10.3390/plants13233269
Jaganathan GK, Sánchez JA, Pernús M, Liu B. Unconventional Germination in Terrestrial Plants: A Counterintuitive Case in Desiccation-Sensitive Garcinia aristata (Clusiaceae) Seeds Showing Seedling Growth Without Roots. Plants. 2024; 13(23):3269. https://doi.org/10.3390/plants13233269
Chicago/Turabian StyleJaganathan, Ganesh K., Jorge A. Sánchez, Mayté Pernús, and Baolin Liu. 2024. "Unconventional Germination in Terrestrial Plants: A Counterintuitive Case in Desiccation-Sensitive Garcinia aristata (Clusiaceae) Seeds Showing Seedling Growth Without Roots" Plants 13, no. 23: 3269. https://doi.org/10.3390/plants13233269
APA StyleJaganathan, G. K., Sánchez, J. A., Pernús, M., & Liu, B. (2024). Unconventional Germination in Terrestrial Plants: A Counterintuitive Case in Desiccation-Sensitive Garcinia aristata (Clusiaceae) Seeds Showing Seedling Growth Without Roots. Plants, 13(23), 3269. https://doi.org/10.3390/plants13233269