Unraveling the Molecular Mechanisms of Blueberry Root Drought Tolerance Through Yeast Functional Screening and Metabolomic Profiling
<p>Blueberry plant growth changes following treatments with different PEG-6000 concentrations. (<b>A</b>) Control; (<b>B</b>) 5% PEG-6000 treatment for 48 h; (<b>C</b>) 10% PEG-6000 treatment for 48 h; (<b>D</b>) 15% PEG-6000 treatment for 48 h; (<b>E</b>) 20% PEG-6000 treatment for 48 h. Bar: 2 cm.</p> "> Figure 2
<p>Trends in the changes in the relative water content of ‘Emerald’ blueberry leaves after treatments with different PEG-6000 concentrations. * indicates a significant difference (<span class="html-italic">p</span> < 0.05) relative to the control group.</p> "> Figure 3
<p>Yeast library was treated with different PEG-4000 concentrations (0, 50, 80, 100, and 120 mM) to select the appropriate simulated drought concentration.</p> "> Figure 4
<p>Top 10 GO terms assigned to drought tolerance-related genes.</p> "> Figure 5
<p>Enriched KEGG pathways among drought tolerance-related genes. The dot area represents the relative number of isolated genes in the pathway, whereas the dot color represents the Q value.</p> "> Figure 6
<p>Verification of drought-tolerant yeast clones. The number above is the number of positive yeast clones.</p> "> Figure 7
<p>Metabolite classifications and proportions.</p> "> Figure 8
<p>Overview of the identified DAMs. (<b>A</b>) Venn diagram of the results of the comparisons of three groups (i.e., A, B, and C); (<b>B</b>–<b>D</b>) Heat maps of DAMs between different groups.</p> "> Figure 9
<p>Association analysis of drought tolerance-related genes and DAMs in carbohydrate metabolism pathways. (<b>A</b>) Inositol phosphate metabolism, glycolysis/gluconeogenesis, and pentose phosphate pathway; (<b>B</b>) qRT-PCR results for four drought tolerance-related genes involved in carbohydrate metabolism; (<b>C</b>) Heat map of DAMs involved in carbohydrate metabolism. Colors reflect the regulation of metabolites under drought conditions (indicated in the scale bar). * and ** represented significant difference under <span class="html-italic">p</span> < 0.05 and <span class="html-italic">p</span> < 0.01, respectively.</p> "> Figure 10
<p>Association analysis of drought tolerance-related genes and DAMs in secondary metabolite biosynthesis pathways. (<b>A</b>) Terpenoid backbone biosynthesis pathway and phenylpropanoid biosynthesis pathway; (<b>B</b>) qRT-PCR results for two drought tolerance-related genes involved in secondary metabolite biosynthesis; (<b>C</b>) Heat map of DAMs involved in secondary metabolite biosynthesis. Colors reflect the regulation of metabolites under drought conditions (indicated in the scale bar). * and ** represented significant difference under <span class="html-italic">p</span> < 0.05 and <span class="html-italic">p</span> < 0.01, respectively.</p> "> Figure 11
<p>Association analysis of drought tolerance-related genes and DAMs in amino acid metabolism pathways. (<b>A</b>) Alanine, aspartate, and glutamate metabolism and glutathione metabolism; (<b>B</b>) qRT-PCR results for six drought tolerance-related genes involved in amino acid metabolism; (<b>C</b>) Heat map of DAMs involved in amino acid metabolism. Colors reflect the regulation of metabolites under drought conditions (indicated in the scale bar). * and ** represented significant difference under <span class="html-italic">p</span> < 0.05 and <span class="html-italic">p</span> < 0.01, respectively.</p> "> Figure 12
<p>Association analysis of drought tolerance-related genes and DAMs in a nucleotide metabolism pathway. (<b>A</b>) Purine metabolism; (<b>B</b>) qRT-PCR results for six drought tolerance-related genes involved in nucleotide metabolism; (<b>C</b>) Heat map of DAMs involved in nucleotide metabolism. Colors reflect the regulation of metabolites under drought conditions (indicated in the scale bar). * and ** represented significant difference under <span class="html-italic">p</span> < 0.05 and <span class="html-italic">p</span> < 0.01, respectively.</p> "> Figure 13
<p>A conceptual model of key genes and metabolites affecting blueberry root drought resistance. This model identifies key genes and metabolites involved in carbon metabolism, secondary metabolite biosynthesis, and amino acid and nucleotide metabolism. The squares represent the genes, while the ellipses represent the metabolites. Solid arrows indicate the direct regulation of metabolites by genes, whereas dotted arrows suggest metabolites that are presumed to ultimately have functional roles.</p> ">
Abstract
:1. Introduction
2. Results
2.1. High PEG-6000 Concentrations Affect Blueberry Growth
2.2. Construction of a Yeast Expression System and Drought Tolerance Screening
2.3. Gene Ontology (GO) Annotation of Genes in the Drought Stress Tolerance Library
2.4. Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis of Genes in the Drought Stress Tolerance Library
2.5. Candidate Genes That Significantly Enhance Yeast Drought Tolerance
2.6. Identification and Analysis of Differentially Abundant Metabolites (DAMs)
2.7. Carbohydrate Metabolism and Its Association with Blueberry Drought Tolerance
2.8. Involvement of Terpenoid and Phenylpropanoid Biosynthesis in the Regulation of Blueberry Root Drought Tolerance
2.9. Enrichment of Drought Tolerance-Related Genes in the Amino Acid and Nucleotide Metabolism Pathways
3. Discussion
3.1. Effects of Drought Stress on Blueberry Physiology
3.2. Rapid Yeast-Based Screening of Blueberry Drought Tolerance
3.3. Drought-Induced Changes in Blueberry Root Gene Expression and Metabolic Pathways
4. Materials and Methods
4.1. Plant Materials, Drought Stress Treatments, and Evaluation of Drought Tolerance
4.2. Construction of a Yeast Expression System
4.3. Functional Screening of the Yeast Expression System
4.4. High-Throughput Sequencing and Identification of Potential Drought Tolerance-Related Genes
4.5. Metabolite Analysis
4.6. qRT-PCR Analysis
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choudhary, A.; Senthil-Kumar, M. Drought: A context-dependent damper and aggravator of plant diseases. Plant Cell Environ. 2024, 47, 2109–2126. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Bochmann, H.; Liu, Z.; Kant, J.; Schrey, S.D.; Wojciechowski, T.; Postma, J.A. Plant root plasticity during drought and recovery: What do we know and where to go? Front. Plant Sci. 2023, 14, 1084355. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-S.; Kidokoro, S.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Regulatory networks in plant responses to drought and cold stress. Plant Physiol. 2024, 195, 170–189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-J.; Wu, C.; Liu, B.-Y.; Liang, H.-L.; Wang, M.-L.; Li, H. Transcriptomic and metabolomic profiling reveals the drought tolerance mechanism of Illicium difengpi (Schisandraceae). Front. Plant Sci. 2024, 14, 1284135. [Google Scholar] [CrossRef]
- Yasmeen, T.; Arif, M.S.; Tariq, M.; Akhtar, S.; Syrish, A.; Haidar, W.; Rizwan, M.; Hussain, M.I.; Ahmad, A.; Ali, S. Biofilm producing plant growth promoting bacteria in combination with glycine betaine uplift drought stress tolerance of maize plant. Front. Plant Sci. 2024, 15, 1327552. [Google Scholar] [CrossRef]
- Zuo, H.; Chen, J.; Lv, Z.; Shao, C.; Chen, Z.; Zhou, Y.; Shen, C. Tea-Derived Polyphenols Enhance Drought Resistance of Tea Plants (Camellia sinensis) by Alleviating Jasmonate-Isoleucine Pathway and Flavonoid Metabolism Flow. Int. J. Mol. Sci. 2024, 25, 3817. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Zhen, B.; Lv, M.; Zhou, X.; Yong, B.; Niu, Q.; Yang, S. Proline Spray Relieves the Adverse Effects of Drought on Wheat Flag Leaf Function. Plants 2024, 13, 957. [Google Scholar] [CrossRef]
- Liu, X.; Gao, T.; Liu, C.; Mao, K.; Gong, X.; Li, C.; Ma, F. Fruit crops combating drought: Physiological responses and regulatory pathways. Plant Physiol. 2023, 192, 1768–1784. [Google Scholar] [CrossRef]
- Chen, C.; Wang, P.; Yan, Y.; Jiao, Z.; Xie, S.; Li, Y.; Di, P. Integrated metabolome and transcriptome analysis provide insight into the biosynthesis of flavonoids in Panax japonicus. Front. Plant Sci. 2024, 15, 1432563. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, Z.; Yang, X.; Sheng, L.; Mao, H.; Zhu, S. Integrated transcriptomics and metabolomics reveal key metabolic pathway responses in Pistia stratiotes under Cd stress. J. Hazard. Mater. 2023, 452, 131214. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Li, Y.; Ling, W.; Fan, X.; Feng, Q.; Ming, R.; Yang, F. Combined analyses of transcriptome and metabolome reveal the mechanism of exogenous strigolactone regulating the response of elephant grass to drought stress. Front. Plant Sci. 2023, 14, 1186718. [Google Scholar] [CrossRef] [PubMed]
- Chi, Z.; Liu, X.; Wen, S.; Wang, Y.; Lv, W.; Guo, Q.; Xia, Y.; Jing, D.; Liang, G. Integrated metabolomic profiling and transcriptome analysis of fruit quality and ripeness in early-maturing seedless triploid loquat. Sci. Hortic. 2023, 316, 112012. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, L.; Zhang, B.; Huang, W.; Zhang, Z.; An, B. Integrated analysis of the metabolome and transcriptome provides insights into anthocyanin biosynthesis of cashew apple. Food Res. Int. 2024, 175, 113711. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Li, J.; Sun, X.; Liu, Y.; Wang, X.; Zhang, H.; Pan, H. Exploration for the Salinity Tolerance-Related Genes from Xero-Halophyte Atriplex canescens Exploiting Yeast Functional Screening System. Int. J. Mol. Sci. 2017, 18, 2444. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; He, Z.; Xu, X.; Shi, X.; Ji, X.; Wang, Y. Revealing the salt tolerance mechanism of Tamarix hispida by large-scale identification of genes conferring salt tolerance. Tree Physiol. 2021, 41, 2153–2170. [Google Scholar] [CrossRef]
- Ru, S.; Sanz-Saez, A.; Leisner, C.P.; Rehman, T.; Busby, S. Review on blueberry drought tolerance from the perspective of cultivar improvement. Front. Plant Sci. 2024, 15, 1352768. [Google Scholar] [CrossRef]
- Molnar, S.; Clapa, D.; Mitre, V. Response of the Five Highbush Blueberry Cultivars to In Vitro Induced Drought Stress by Polyethylene Glycol. Agronomy 2022, 12, 732. [Google Scholar] [CrossRef]
- Arif, T.; Chaudhary, M.T.; Majeed, S.; Rana, I.A.; Ali, Z.; Elansary, H.O.; Moussa, I.M.; Sun, S.; Azhar, M.T. Exploitation of various physio-morphological and biochemical traits for the identification of drought tolerant genotypes in cotton. BMC Plant Biol. 2023, 23, 508. [Google Scholar] [CrossRef]
- Zahid, Z.; Khan, M.K.R.; Hameed, A.; Akhtar, M.; Ditta, A.; Hassan, H.M.; Farid, G. Dissection of Drought Tolerance in Upland Cotton Through Morpho-Physiological and Biochemical Traits at Seedling Stage. Front. Plant Sci. 2021, 12, 627107. [Google Scholar] [CrossRef]
- Nielsen, J. Yeast Systems Biology: Model Organism and Cell Factory. Biotechnol. J. 2019, 14, e1800421. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, H.; Zheng, J.-X.; Mo, H.; Xia, K.-F.; Jian, S.-G. Functional Identification of Salt-Stress-Related Genes Using the FOX Hunting System from Ipomoea pes-caprae. Int. J. Mol. Sci. 2018, 19, 3446. [Google Scholar] [CrossRef] [PubMed]
- Eswaran, N.; Parameswaran, S.; Sathram, B.; Anantharaman, B.; Kumar, R.K.G.; Tangirala, S.J. Yeast functional screen to identify genetic determinants capable of conferring abiotic stress tolerance in Jatropha curcas. BMC Biotechnol. 2010, 10, 23. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Zhan, C.; Yang, C.; Fernie, A.R.; Luo, J. Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives. Mol. Plant 2023, 16, 43–63. [Google Scholar] [CrossRef]
- Popova, L.G.; Khramov, D.E.; Nedelyaeva, O.I.; Volkov, V.S. Yeast Heterologous Expression Systems for the Study of Plant Membrane Proteins. Int. J. Mol. Sci. 2023, 24, 10768. [Google Scholar] [CrossRef]
- Li, Y.; Gao, J.; Xu, X.; Wu, Y.; Zhuang, J.; Zhang, X.; Zhang, H.; Lei, B.; Zheng, M.; Liu, Y.; et al. Carbon Dots as a Protective Agent Alleviating Abiotic Stress on Rice (Oryza sativa L.) through Promoting Nutrition Assimilation and the Defense System. Acs Appl. Mater. Interfaces 2020, 12, 33575–33585. [Google Scholar] [CrossRef]
- Saddhe, A.A.; Manuka, R.; Penna, S. Plant sugars: Homeostasis and transport under abiotic stress in plants. Physiol. Plant. 2021, 171, 739–755. [Google Scholar] [CrossRef]
- Mittler, R.; Zandalinas, S.I.; Fichman, Y.; Van Breusegem, F. Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 663–679. [Google Scholar] [CrossRef]
- Ndehedehe, C.E.; Haile, G.G.; Agutu, N.O.; Ferreira, V.G.; Getirana, A.; Okwuashi, O. Hydrological hotspots of climatic influence in Brazil: A two-step regularization approach. Atmos. Res. 2020, 246, 105116. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, S.; Zhao, S.; Chen, D.; Tian, H.; Li, J.; Zhang, L.; Li, S.; Liu, L.; Shi, C.; et al. Global crotonylatome and GWAS revealed a TaSRT1-TaPGK model regulating wheat cold tolerance through mediating pyruvate. Sci. Adv. 2023, 9, eadg1012. [Google Scholar] [CrossRef]
- Godoy, F.; Olivos-Hernandez, K.; Stange, C.; Handford, M. Abiotic Stress in Crop Species: Improving Tolerance by Applying Plant Metabolites. Plants 2021, 10, 186. [Google Scholar] [CrossRef]
- Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 2019, 52, 39. [Google Scholar] [CrossRef] [PubMed]
- Kleiber, A.; Duan, Q.; Jansen, K.; Junker, L.V.; Kammerer, B.; Rennenberg, H.; Ensminger, I.; Gessler, A.; Kreuzwieser, J. Drought effects on root and needle terpenoid content of a coastal and an interior Douglas fir provenance. Tree Physiol. 2017, 37, 1648–1658. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, M.M.; Christensen, S.; Schmelz, E.A.; Huffaker, A.; McAuslane, H.J.; Alborn, H.T.; Romero, M.; Allen, L.H.; Teal, P.E.A. Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant Cell Environ. 2015, 38, 2195–2207. [Google Scholar] [CrossRef]
- Liu, L.; Wang, B.; Liu, D.; Zou, C.; Wu, P.; Wang, Z.; Wang, Y.; Li, C. Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots. BMC Plant Biol. 2020, 20, 138. [Google Scholar] [CrossRef]
- Cao, Q.; Lv, W.; Jiang, H.; Chen, X.; Wang, X.; Wang, Y. Genome-wide identification of glutathione S-transferase gene family members in tea plant (Camellia sinensis) and their response to environmental stress. Int. J. Biol. Macromol. 2022, 205, 749–760. [Google Scholar] [CrossRef]
- Nutricati, E.; Miceli, A.; Blando, F.; De Bellis, L. Characterization of two Arabidopsis thaliana glutathione S-transferases. Plant Cell Rep. 2006, 25, 997–1005. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Luo, Z.-x.; Lai, J.-l.; Li, C.; Luo, X.-g. Effects of polystyrene nanoplastics (PSNPs) on the physiology and molecular metabolism of corn (Zea mays L.) seedlings. Sci. Total Environ. 2022, 806, 150895. [Google Scholar] [CrossRef]
- Mu, H.; Chen, J.; Huang, W.; Huang, G.; Deng, M.; Hong, S.; Ai, P.; Gao, C.; Zhou, H. OmicShare tools: A zero-code interactive online platform for biological data analysis and visualization. iMeta 2024, 3, e228. [Google Scholar] [CrossRef]
- Xiao, J.F.; Zhou, B.; Ressom, H.W. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. Trac-Trends Anal. Chem. 2012, 32, 1–14. [Google Scholar] [CrossRef]
- Zhou, Z.; Luo, M.; Zhang, H.; Yin, Y.; Cai, Y.; Zhu, Z.-J. Metabolite annotation from knowns to unknowns through knowledge-guided multi-layer metabolic networking. Nat. Commun. 2022, 13, 6656. [Google Scholar] [CrossRef]
- Yang, H.; Wu, Y.; Zhang, C.; Wu, W.; Lyu, L.; Li, W. Comprehensive resistance evaluation of 15 blueberry cultivars under high soil pH stress based on growth phenotype and physiological traits. Front. Plant Sci. 2022, 13, 1072621. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Lin, B.; Yin, Y.; Zong, Y.; Li, Y.; Zhu, Y.; Guo, W. Unraveling the Molecular Mechanisms of Blueberry Root Drought Tolerance Through Yeast Functional Screening and Metabolomic Profiling. Plants 2024, 13, 3528. https://doi.org/10.3390/plants13243528
Fan X, Lin B, Yin Y, Zong Y, Li Y, Zhu Y, Guo W. Unraveling the Molecular Mechanisms of Blueberry Root Drought Tolerance Through Yeast Functional Screening and Metabolomic Profiling. Plants. 2024; 13(24):3528. https://doi.org/10.3390/plants13243528
Chicago/Turabian StyleFan, Xinyu, Beijia Lin, Yahong Yin, Yu Zong, Yongqiang Li, Youyin Zhu, and Weidong Guo. 2024. "Unraveling the Molecular Mechanisms of Blueberry Root Drought Tolerance Through Yeast Functional Screening and Metabolomic Profiling" Plants 13, no. 24: 3528. https://doi.org/10.3390/plants13243528
APA StyleFan, X., Lin, B., Yin, Y., Zong, Y., Li, Y., Zhu, Y., & Guo, W. (2024). Unraveling the Molecular Mechanisms of Blueberry Root Drought Tolerance Through Yeast Functional Screening and Metabolomic Profiling. Plants, 13(24), 3528. https://doi.org/10.3390/plants13243528