A Review of Measurement and Characterization of Film Layers of Perovskite Solar Cells by Spectroscopic Ellipsometry
<p>Measurement and characterization of photoelectric and geometric properties for each film layer of a typical SnO<sub>2</sub>-based PSC by SE.</p> "> Figure 2
<p>Three common structures of PSCs.</p> "> Figure 3
<p>Influencing factors of power conversion efficiency of PSCs.</p> "> Figure 4
<p>The basic principle of SE measurement and analysis.</p> "> Figure 5
<p>Fitting strategies of PSC multilayer films stack structure.</p> "> Figure 6
<p>Characterization of SnO<sub>2</sub> films by SE. (<b>a</b>) Different substrates [<a href="#B54-nanomaterials-15-00282" class="html-bibr">54</a>]. (<b>b</b>) Different temperature [<a href="#B53-nanomaterials-15-00282" class="html-bibr">53</a>]. (<b>c</b>) Different thickness [<a href="#B51-nanomaterials-15-00282" class="html-bibr">51</a>]. (<b>d</b>) Different technology [<a href="#B52-nanomaterials-15-00282" class="html-bibr">52</a>]. (<b>e</b>) Different doping ratios [<a href="#B55-nanomaterials-15-00282" class="html-bibr">55</a>].</p> "> Figure 7
<p>Analysis procedure of geometric and photoelectric properties of SnO<sub>2</sub> films by SE.</p> "> Figure 8
<p>Perovskite materials and devices. (<b>a</b>) Element [<a href="#B16-nanomaterials-15-00282" class="html-bibr">16</a>]. (<b>b</b>) Structure [<a href="#B75-nanomaterials-15-00282" class="html-bibr">75</a>]. (<b>c</b>) Device [<a href="#B76-nanomaterials-15-00282" class="html-bibr">76</a>]. (<b>d</b>) Principle [<a href="#B77-nanomaterials-15-00282" class="html-bibr">77</a>].</p> "> Figure 9
<p>Preparation process of perovskite film [<a href="#B80-nanomaterials-15-00282" class="html-bibr">80</a>]. (<b>a</b>) One-step coating. (<b>b</b>) Two-step coating.</p> "> Figure 10
<p>Influence factors of perovskite films. (<b>a</b>) Rough layer [<a href="#B82-nanomaterials-15-00282" class="html-bibr">82</a>,<a href="#B83-nanomaterials-15-00282" class="html-bibr">83</a>]. (<b>b</b>) Ion doping [<a href="#B86-nanomaterials-15-00282" class="html-bibr">86</a>]. (<b>c</b>) Interfacial layer [<a href="#B20-nanomaterials-15-00282" class="html-bibr">20</a>]. (<b>d</b>) Void ratio [<a href="#B61-nanomaterials-15-00282" class="html-bibr">61</a>].</p> "> Figure 11
<p>Influence of the external environment on perovskite films [<a href="#B87-nanomaterials-15-00282" class="html-bibr">87</a>].</p> "> Figure 12
<p>Influence of external environment on the properties of the perovskite film characterized by SE. (<b>a</b>) Humidity [<a href="#B89-nanomaterials-15-00282" class="html-bibr">89</a>]. (<b>b</b>) Temperature [<a href="#B90-nanomaterials-15-00282" class="html-bibr">90</a>].</p> "> Figure 13
<p>(<b>a</b>) Optical constant of the Spiro-OMeTAD film [<a href="#B113-nanomaterials-15-00282" class="html-bibr">113</a>]. (<b>b</b>) Optical constant of PEDOT: PSS, Cu<sub>2</sub>O, and CuI films [<a href="#B114-nanomaterials-15-00282" class="html-bibr">114</a>]. (<b>c</b>) Optical constant of the NiOx film [<a href="#B115-nanomaterials-15-00282" class="html-bibr">115</a>].</p> "> Figure 14
<p>Assist technique in spectroscopic ellipsometry. (<b>a</b>) Scanning electron microscopy (SEM) [<a href="#B61-nanomaterials-15-00282" class="html-bibr">61</a>]. (<b>b</b>) Photoluminescence (PL) [<a href="#B46-nanomaterials-15-00282" class="html-bibr">46</a>]. (<b>c</b>) Atomic force microscopy (AFM) [<a href="#B61-nanomaterials-15-00282" class="html-bibr">61</a>]. (<b>d</b>) Ultraviolet-visible spectroscopy (UV-Vis) [<a href="#B127-nanomaterials-15-00282" class="html-bibr">127</a>].</p> ">
Abstract
:1. Introduction
2. Perovskite Solar Cells and Spectroscopic Ellipsometry
2.1. Influencing Factors of Film Quality
2.2. Spectroscopic Ellipsometry Measurement Technique
3. Measurement and Characterization of Perovskite Solar Cells by Spectroscopic Ellipsometry
3.1. Substrate
3.2. Electron Transfer Layer (ETL)
Materials | Spectral Range | Incidence Angle (°) | Oscillator Model | Roughness (nm) | Film Thickness (nm) | Bandgap (eV) | Ref. |
---|---|---|---|---|---|---|---|
SnO2 | 191–989 nm | 60, 65, 70 | 3Tauc–Lorentz | 0.2, 0.7, 1.8 (AFM) | / | 3.90–4.35 | [62] |
SnO2 | 245–1690 nm | 60, 65 | 3Lorentz | / | 123.59, 156.89, 97.88 | / | [63] |
SnO2 | 400–1800 nm | 70, 75 | / | 8.01, 19.87 (SE) | 110.16, 135.99 (SE) | 3.6, 3.8 (SE) | [64] |
SnO2 | 1.2–5.0 eV | 65, 70, 75 | B-spline | 0.10, 0.21 (AFM) | 15, 126 (AFM) | 4.0–4.25 | [51] |
SnO2 | 400–1700 nm | 65, 75 | Cauchy–Urbach | 0.59, 0.48, 0.11, 0.35 (AFM) | 196.1, 180.4, 178.0 151.8 (SEM), 203.6 (SE) | / | [65] |
SnO2 | 300–1200 nm | 70 | Lorentz | 9.9–27.7 (AFM) | 150–350 (SE) | 3.98–4.09 | [66] |
SnO2 | 300–1000 nm | 55, 65, 75 | Lorentz | / | 256.6–496.8 255.1–537 (SE) | 3.69, 3.83 | [52] |
SnO2 | 350–1100 nm | 65, 75 | Cauchy–Urbach | 9.4 | 166.3 | 3.2 | [67] |
SnO2 | 300–1000 nm | 75 | B-spline | 0.97–1.40 (AFM) | 390–472 (SE) | / | [53] |
SnO2 | 1.46–6.2 eV | 60 | Tauc–Lorentz | / | 30.2, 36.5 (SE) | / | [68] |
SnO2 | 200–1000 nm | / | / | 3.9 (AFM) | / | 3.8–4.4 | [69] |
SnO2 | 300–1700 nm | 50, 60, 70 | Tauc–Lorentz Drude | / | 4 | / | [70] |
SnO2:Fe | 300–800 nm | 70 | Leng–Lorentz | / | / | 3.44–3.58 (SE) | [71] |
SnO2:F | 0.035–5.89 eV 0.75–5.89 eV | / | Drude Tauc–Lorentz | 3.3, 1.4 (SE) | 393, 111.9 (SE) | 3.45, 3.6 (SE) | [54] |
SnO2:F | 300–1700 nm | 65 | Lorentz–Lorentz | / | 338–756 (SE) | 3.7, 4.7 (SE) | [72] |
SnO2:Sb | 0.7–6 eV | 65, 70, 75 | Drude | / | 100 | 4.079 | [73] |
SnO2:Cr | 500–900 nm | 60, 65, 70, 75 | B-spline | 3.45, 6.52 (SE) | 151, 155 (SE) | / | [55] |
3.3. Perovskite Layer
3.4. Hole Transport Layer (HTL)
3.5. Metal Electrode Layer
4. Assist Techniques of Spectroscopic Ellipsometry
5. Future Outlook
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFM | Atomic force microscopy |
Cs+ | Cesium |
EDX | Energy dispersive X-ray spectrum |
ETL | Electron transport layer |
ESTI | European solar test installation |
EMA | Effective medium approximation |
EQE | External quantum efficiency |
FTO | Fluorine-doped tin oxide |
HTL | Hole transport layer |
ITO | Indium-doped tin oxide |
LM | Levenberg–Marquardt |
MME | Mueller matrix ellipsometry |
MSE | Mean square error |
MA+ | Methylammonium |
FA+ | Formamidinium |
PSCs | Perovskite solar cells |
PSC | Perovskite solar cell |
PTAA | Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] |
PEDOT: PSS | Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate |
SE | Spectroscopic ellipsometry |
SnO2 | Tin dioxide |
Spiro-OMeTAD | 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamino)-9,9′-spirobifluorene |
SEM | Scanning electron microscope |
TCO | Transparent conductive oxide |
TiO2 | Titanium dioxide |
TLBO | Teaching–learning-based optimization |
UV-Vis | Ultraviolet-visible |
WOA | Whale optimization algorithm |
XRD | X-ray diffraction |
ZnO | Zinc oxide |
References
- Noh, J.H.; Im, S.H.; Heo, J.H.; Mandal, T.N.; Seok, S.I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769. [Google Scholar] [CrossRef]
- Eperon, G.E.; Stranks, S.D.; Menelaou, C.; Johnston, M.B. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy. Environ. Sci. 2014, 7, 982–988. [Google Scholar] [CrossRef]
- AlZoubi, T.; Mourched, B.; Gharram, M.A.; Makhadmeh, G.; Noqta, O.A. Improving photovoltaic performance of hybrid organic-inorganic MAGeI3 perovskite solar cells via numerical optimization of carrier transport materials (HTLs/ETLs). Nanomaterials 2023, 13, 2221. [Google Scholar] [CrossRef]
- Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-hole diffusion lengths>175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970. [Google Scholar] [CrossRef]
- Deng, J.; Jiang, X.; Liu, Y.; Zhao, W.; Tang, G. Enhanced domain wall conductivity in photosensitive ferroelectrics Sn2P2S6 with full-visible-spectrum absorption. Sci. China Mater. 2022, 65, 1049–1056. [Google Scholar] [CrossRef]
- Available online: https://guangfu.bjx.com.cn/news/20240614/1382976.shtml (accessed on 11 November 2024).
- Tu, Y.; Wu, J.; Xu, G.; Yang, X. Perovskite solar cells for space applications: Progress and challenges. Adv. Mater. 2021, 33, 2006545–2006567. [Google Scholar] [CrossRef]
- Ansari, M.I.H.; Qurashi, A.; Nazeeruddin, M.K. Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. J. Photochem. Photobiol. C 2018, 35, 1–24. [Google Scholar] [CrossRef]
- Elumalai, N.K.; Mahmud, M.A.; Wang, D. Perovskite solar cells: Progress and advancements. Energies 2016, 9, 861. [Google Scholar] [CrossRef]
- Lin, L.; Yang, Z.; Jiang, E.; Wang, Z.; Yan, J. ZnO-modified anode for high-performance SnO2-based planar perovskite solar cells. ACS Appl. Energy Mater. 2019, 2, 7062–7069. [Google Scholar] [CrossRef]
- Hu, X.; Wang, H.; Wang, M.; Zang, Z. Interfacial defects passivation using fullerene-polymer mixing layer for planar-structure perovskite solar cells with negligible hysteresis. Sol. Energy 2020, 206, 816–825. [Google Scholar] [CrossRef]
- Park, S.Y.; Zhu, K. Advances in SnO2 for efficient and stable n-i-p perovskite solar cells. Adv. Mater. 2022, 34, 2110438. [Google Scholar] [CrossRef]
- Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications; John Wiley Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Tompkins, H.; Irene, E.A. Handbook of Ellipsometry; William Andrew: Norwich, NY, USA, 2005. [Google Scholar]
- Aspnes, D.E. Spectroscopic ellipsometry-past, present, and future. Thin Solid Films 2014, 571, 334–344. [Google Scholar] [CrossRef]
- Anaya, M.; Lozano, G.; Calvo, M.E.; Miguez, H. ABX3 perovskites for tandem solar cells. Joule 2017, 1, 769–793. [Google Scholar] [CrossRef]
- Mao, X.; Sun, L.; Wu, T.; Chu, T.; Deng, W.; Han, K. First-principles screening of all-inorganic lead-free ABX3 perovskites. J. Phys. Chem. C 2018, 122, 7670–7675. [Google Scholar] [CrossRef]
- Yoo, J.J.; Shin, S.S.; Seo, J. Toward efficient perovskite solar cells: Progress, strategies, and perspectives. ACS Energy Lett. 2022, 7, 2084–2091. [Google Scholar] [CrossRef]
- Tan, S.; Huang, T.; Yavuz, I.; Wang, R. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 2022, 605, 268–273. [Google Scholar] [CrossRef]
- Subedi, B.; Song, Z.; Chen, C.; Li, C. Optical and electronic losses arising from physically mixed interfacial layers in perovskite solar cells. ACS Appl. Mater. Interfaces 2021, 13, 4923–4934. [Google Scholar] [CrossRef]
- Li, H.; Cui, C.; Xu, X.; Bian, S.; Ngaojampa, C.; Ruankham, P.; Jaroenjittchai, A.P. A review of characterization of perovskite film in solar cells by spectroscopic ellipsometry. Sol. Energy 2020, 212, 48–61. [Google Scholar] [CrossRef]
- Soldera, M.; Taretto, K. Combining thickness reduction and light trapping for potential efficiency improvements in perovskite solar cells. Phys. Status Solidi A 2018, 215, 1700906–1700916. [Google Scholar] [CrossRef]
- Dorywalski, K.; Maciejewski, I.; Krzyżyński, T. Spectroscopic ellipsometry technique as a materials characterization tool for mechatronic systems-The case of composition and doping concentration monitoring in SBN crystals. Mechatronics 2016, 37, 33–41. [Google Scholar] [CrossRef]
- Hilfiker, J.N.; Hong, N.; Schoeche, S. Mueller matrix spectroscopic ellipsometry. Adv. Opt. Technol. 2022, 11, 59–91. [Google Scholar] [CrossRef]
- Dorywalski, K.; Schmidt-Gründ, R.; Grundmann, M. Hybrid GA-gradient method for thin films ellipsometric data evaluation. J. Comput. Sci. 2020, 47, 101201. [Google Scholar] [CrossRef]
- Dorywalski, K.; Lupicka, O.; Grundmann, M.; Sturm, C. Combination of a global-search method with model selection criteria for the ellipsometric data evaluation of DLC coatings. Adv. Opt. Technol. 2022, 11, 173–178. [Google Scholar] [CrossRef]
- Sun, Z.; Lian, J.; Gao, S.; Wang, X.; Wang, Y.; Yu, X. Complex refractive index and thickness characterization based on ant colony algorithm and comprehensive evaluation function. J. Comput. Theor. Nanosc. 2014, 11, 816–820. [Google Scholar] [CrossRef]
- Mohrmann, J.; Tiwald, T.E.; Hale, J.S.; Hilfiker, J.N.; Martin, A.C. Application of a B-spline model dielectric function to infrared spectroscopic ellipsometry data analysis. J. Vac. Sci. Technol. B 2020, 38, 014001–014008. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Saha, R.A.; Pintor-Monroy, M.I.; Song, W.; Lieberman, I.; Solano, E. In situ annealing effect on thermally co-evaporated CsPbI2Br thin films studied via spectroscopic ellipsometry. ACS Appl. Mater. Interfaces 2024, 16, 47889–47901. [Google Scholar] [CrossRef]
- Wee, A.T.S.; Yin, X.; Tang, C. Introduction to Spectroscopic Ellipsometry of Thin Film Materials: Instrumentation, Data Analysis, and Applications; John Wiley Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Gu, H.; Zhu, S.; Song, B.; Fang, M.; Guo, Z.; Chen, X.; Zhang, C.; Jiang, H.; Liu, S. An analytical method to determine the complex refractive index of an ultra-thin film by ellipsometry. Appl. Surf. Sci. 2020, 507, 145091. [Google Scholar] [CrossRef]
- Nestler, P.; Helm, C.A. Determination of refractive index and layer thickness of nm-thin films via ellipsometry. Opt. Express 2017, 25, 27077–27085. [Google Scholar] [CrossRef]
- Li, Z.; Cui, C.; Zhou, X.; Bian, S. Characterization of amorphous carbon films from 5 nm to 200 nm on single-side polished a-plane sapphire substrates by spectroscopic ellipsometry. Front. Phys. 2022, 10, 965. [Google Scholar] [CrossRef]
- Scaramuzza, D.; Scaramuzza, N.; Ciuchi, F.; Versace, C.; Strangi, G.; Bartolino, R. Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude-Lorentz model. Appl. Surf. Sci. 2009, 255, 7203–7211. [Google Scholar]
- Yang, G.; Tao, H.; Qin, P.; Fang, G. Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A 2016, 4, 3970–3990. [Google Scholar] [CrossRef]
- Pham, H.M.; Naqvi, S.D.H.; Tran, H.; Tran, H.V.; Delda, J.; Hong, S. Effects of the electrical properties of SnO2 and C60 on the carrier transport characteristics of pin-structured semitransparent perovskite solar cells. Nanomaterials 2023, 13, 3091. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, J.; Chen, Q.; Ma, H.; Jiang, Z.; Zhang, Z.; Zhou, Y.; Song, B. 3, 5-Difluorophenylboronic acid-modified SnO2 as ETLs for perovskite solar cells: PCE>22.3%, T82>3000 h. Chem. Eng. J. 2022, 433, 133744. [Google Scholar] [CrossRef]
- Hossain, I.M.; Hudry, D.; Mathies, F.; Abzieher, T.; Moghadamzadeh, S. Scalable processing of low-temperature TiO2 nanoparticles for high-efficiency perovskite solar cells. ACS Appl. Energy Mater. 2018, 2, 47–58. [Google Scholar] [CrossRef]
- Zhao, P.; Lin, Z.; Wang, J.; Yue, M.; Su, J.; Zhang, J.; Chang, J.; Hao, Y. Numerical simulation of planar heterojunction perovskite solar cells based on SnO2 electron transport layer. ACS Appl. Energy Mater. 2019, 2, 4504–4512. [Google Scholar] [CrossRef]
- Yeom, E.J.; Shin, S.S.; Yang, W.S. Controllable synthesis of single crystalline Sn-based oxides and their application in perovskite solar cells. J. Mater. Chem. A 2017, 5, 79–86. [Google Scholar] [CrossRef]
- Dong, Q.; Shi, Y.; Zhang, C.; Wu, Y.; Wang, L. Energetically favored formation of SnO2 nanocrystals as electron transfer layer in perovskite solar cells with high efficiency exceeding 19%. Nano Energy 2017, 40, 336–344. [Google Scholar] [CrossRef]
- Dong, Q.; Xue, Y.; Wang, S.; Wang, L.; Chen, F.; Zhang, S.; Chi, R.; Zhao, L.; Shi, Y. Rational design of SnO2-based electron transport layer in mesoscopic perovskite solar cells: More kinetically favorable than traditional double-layer architecture. Sci. China Mater. 2017, 60, 963–976. [Google Scholar] [CrossRef]
- Batzill, M.; Diebold, U. The surface and materials science of tin oxide. Prog. Surf. Sci. 2005, 79, 2–4, 47–154. [Google Scholar] [CrossRef]
- Kuang, Y.; Zardetto, V.; Gils, R.V.; Karwal, S.; Koushik, D.; Verheijen, M.A. Low-temperature plasma-assisted atomic-layer-deposited SnO2 as an electron transport layer in planar perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 30367–30378. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC (NH2)2PbI3-based perovskite solar cells. Nat. Energy 2016, 2, 16177. [Google Scholar] [CrossRef]
- Yan, W.; Liu, L.; Li, W.; Wu, Z.; Zang, Y.; Wang, Y.; Liu, K.; Chen, M.; Zhong, Z. Toward high efficiency for long-term stable Cesium doped hybrid perovskite solar cells via effective light management strategy. J. Power Sources 2021, 510, 230410. [Google Scholar] [CrossRef]
- Kam, M.; Zhang, Q.; Zhang, D.; Fan, Z. Room-temperature sputtered SnO2 as robust electron transport layer for air-stable and efficient perovskite solar cells on rigid and flexible substrates. Sci. Rep. 2019, 9, 6963. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Song, S.; Hörantner, M.T.; Snaith, H.J.; Taiho, P. Well-defined nanostructured, single-crystalline TiO2 electron transport layer for efficient planar perovskite solar cells. ACS Nano 2016, 10, 6029–6036. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Liu, Z.; Ono, L.K.; Jiang, Y.; Son, D.Y.; Hawash, Z.; He, S.; Qi, Y. Scalable fabrication of stable high efficiency perovskite solar cells and modules utilizing room temperature sputtered SnO2 electron transport layer. Adv. Funct. Mater. 2019, 29, 1806779. [Google Scholar] [CrossRef]
- Dong, Q.; Shi, Y.; Wang, K.; Li, Y.; Wang, S.; Zhang, H. Insight into perovskite solar cells based on SnO2 compact electron-selective layer. J. Phys. Chem. C 2015, 119, 10212–10217. [Google Scholar] [CrossRef]
- Rus, S.F.; Ward, T.Z.; Herklotz, A. Strain-induced optical band gap variation of SnO2 films. Thin Solid Films 2016, 615, 103–106. [Google Scholar] [CrossRef]
- Shanker, G.; Prathap, P.; Srivatsa, K.M.K.; Singh, P. Effect of balanced and unbalanced magnetron sputtering processes on the properties of SnO2 thin films. Curr. Appl. Phys. 2019, 19, 697–703. [Google Scholar] [CrossRef]
- Gong, J.; Wang, X.; Fan, X.; Dai, R.; Wang, Z.; Zhang, Z.; Ding, Z. Temperature dependent optical properties of SnO2 film study by ellipsometry. Opt. Mater. Express 2019, 9, 3691–3699. [Google Scholar] [CrossRef]
- Uprety, P.; Lambright, K.J.; Grice, C.R.; Junda, M.M.; Giolando, D.M.; Podraza, N.J. Morphological and optical properties of low temperature processed SnO2: F. Phys. Status Solidi B 2017, 254, 1700102. [Google Scholar] [CrossRef]
- Emam-Ismail, M.; Gharieb, A.A.; Moustafa, S.H.; Mahasen, M.M.; Shaaban, E.R.; El-Hagary, M. Enhancement of multifunctional optoelectronic and spintronic applications of nanostructured Cr-doped SnO2 thin films by conducting microstructural, optical, and magnetic measurements. J. Phys. Chem. Solids 2021, 15, 110195. [Google Scholar] [CrossRef]
- Sago, Y.; Fujiwara, H. Mapping characterization of SnO2: F transparent conductive oxide layers by ellipsometry technique. J. Appl. Phys. 2012, 51, 10NB01. [Google Scholar] [CrossRef]
- Huang, Y.; Li, S.; Wu, C.; Wang, S.; Wang, C.; Ma, R. Introduction of LiCl into SnO2 electron transport layer for efficient planar perovskite solar cells. Chem. Phys. Lett. 2020, 745, 137220. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, X.; You, J. SnO2: A wonderful electron transport layer for perovskite solar cells. Small. 2018, 14, 1801154. [Google Scholar] [CrossRef]
- Luo, T.; Ye, G.; Chen, X.; Wu, H.; Zhang, W.; Chang, H. F-doping-enhanced carrier transport in the SnO2/perovskite interface for high-performance perovskite solar cells. ACS Appl. Mater. Interfaces 2022, 14, 42093–42101. [Google Scholar] [CrossRef]
- Song, S.; Kang, G.; Pyeon, L.; Lim, C.; Lee, G.Y.; Park, T.; Choi, J. Systematically optimized bilayered electron transport layer for highly efficient planar perovskite solar cells (η = 21.1%). ACS Energy Lett. 2017, 2, 2667–2673. [Google Scholar] [CrossRef]
- Alias, M.S.; Dursun, I.; Saidaminov, M.I.; Diallo, E.M.; Mishra, P.; Ng, T.K.; Bakr, O.M.; Ooi, B.S. Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry. Opt. Express 2016, 24, 16586–16594. [Google Scholar] [CrossRef] [PubMed]
- Çetinörgü, E.; Goldsmith, S.; Rosenberg, Y. Influence of annealing on the physical properties of filtered vacuum arc deposited tin oxide thin films. J. Non-Cryst. Solids 2007, 353, 2595–2602. [Google Scholar] [CrossRef]
- Carvalho, D.H.Q.; Schiavon, M.A.; Raposo, M.T. Synthesis and characterization of SnO2 thin films prepared by dip-coating method. Phys. Procedia 2012, 28, 22–27. [Google Scholar] [CrossRef]
- Howari, H.; Tomsah, I.B.I. Structural, optical and ellipsometric characteristics of PVD synthesized SnO2 thin films on Pt coated silicon wafers. Optik 2017, 144, 467–474. [Google Scholar] [CrossRef]
- Muhire, E.; Yang, J.; Hou, X.; Gao, M. Dependence of electrical and optical properties of sol-gel-derived SnO2 thin films on Sb-substitution. Mater. Sci. 2019, 25, 21–27. [Google Scholar]
- Yahi, A.H.; Bouzidi, A.; Miloua, R.; Nakrela, A.; Khadraoui, M.; Tabet-Derraz, H.; Desfeux, R.; Ferri, A.; Blach, J.F. The relationship between processing and structural, optical, electrical properties of spray pyrolysed SnO2 thin films prepared for different deposition times. Optik 2019, 196, 163198. [Google Scholar] [CrossRef]
- Mohamed, S.H. SnO2 dendrites-nanowires for optoelectronic and gas sensing applications. J. Alloys Compd. 2012, 510, 119–124. [Google Scholar] [CrossRef]
- Jellison, G.E., Jr.; Hermann, R.P.; Specht, E.D.; Boatner, T.; Ward, Z.; Herklotz, A. Generalized ellipsometry measurements of crystalline thin film and bulk tin oxide. Phys. Status Solidi A 2022, 219, 2100378. [Google Scholar] [CrossRef]
- Ganchev, M.; Katerski, A.; Stankova, S.; Eensalu, J.S.; Terziyska, P.; Gergova, R.; Popkirov, G.; Vitanov, P. Spin-coating of SnO2 thin films. J. Phys. Conf. Ser. 2019, 1186, 012027. [Google Scholar] [CrossRef]
- Manzoor, S.; Häusele, J.; Bush, K.A.; Palmstrom, A.F. Optical modeling of wide-bandgap perovskite and perovskite/silicon tandem solar cells using complex refractive indices for arbitrary-bandgap perovskite absorbers. Opt. Express 2018, 26, 27441–27460. [Google Scholar] [CrossRef] [PubMed]
- Moradi, S.; Sedghi, H. Spectroscopic ellipsometry investigation on optical properties of Fe: SnO2 thin films: Effects of iron concentration. Surf. Rev. Lett. 2021, 28, 2050044. [Google Scholar] [CrossRef]
- Afzaal, M.; Yates, H.M.; Al-Ahmed, A.; Ul-Hamid, A.; Salhi, B.; Ali, M. Understanding nanomechanical and surface ellipsometry of optical F-doped SnO2 thin films by in-line APCVD. Appl. Phys. A 2020, 126, 840. [Google Scholar] [CrossRef]
- So, H.S.; Park, J.; Jung, D.H.; Ko, K.H.; Lee, H. Optical properties of amorphous and crystalline Sb-doped SnO2 thin films studied with spectroscopic ellipsometry: Optical gap energy and effective mass. J. Appl. Phys. 2015, 118, 085303. [Google Scholar] [CrossRef]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef]
- Available online: https://commons.wikimedia.org/wiki (accessed on 23 November 2024).
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Dong, Q.; Li, J.; Shi, Y.; Chen, M.; Ono, L.K.; Zhou, K.; Zhang, C.; Qi, Y.; Zhou, Y.; Padture, N.P.; et al. Improved SnO2 electron transport layers solution-deposited at near room temperature for rigid or flexible perovskite solar cells with high efficiencies. Adv. Energy Mater. 2019, 9, 1900834. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, P.; Liu, Z.; Wei, L.; Yang, Z.; Chen, H.; Fang, X.; Liu, X.; Mai, Y. Controlled reaction for improved CH3NH3PbI3 transition in perovskite solar cells. Dalton Trans. 2015, 44, 17841–17849. [Google Scholar] [CrossRef] [PubMed]
- Jamal, M.S.; Bashar, M.S.; Hasan, A.K.M.; Almutairi, Z.A.; Alharbi, H.F.; Alharthi, N.H. Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: A review. Renew. Sustain. Energy Rev. 2018, 98, 469–488. [Google Scholar] [CrossRef]
- Im, J.H.; Kim, H.S.; Park, N.G. Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Mater. 2014, 2, 081510. [Google Scholar] [CrossRef]
- Rhaleb, H.E.; Benamar, E.; Rami, M.; Poger, J.P.; Hakam, A.; Ennaoui, A. Spectroscopic ellipsometry studies of index profile of indium tin oxide films prepared by spray pyrolysis. Appl. Surf. Sci. 2002, 201, 138–145. [Google Scholar] [CrossRef]
- Fujiwara, H.; Fujimoto, S.; Tamakoshi, M.; Kato, M.; Kadowaki, H.; Miyadera, T.; Tampo, H.; Chikamatsu, H.S. Determination and interpretation of the optical constants for solar cell materials. Appl. Surf. Sci. 2017, 421, 276–282. [Google Scholar] [CrossRef]
- Shirayama, M.; Kadowaki, H.; Miyadera, T.; Sugita, T.; Tamakoshi, M.; Kato, M.; Fujiseki, T.; Murata, D.; Hara, S.; Murakami, T.N.; et al. Optical transitions in hybrid perovskite solar cells: Ellipsometry, density functional theory, and quantum efficiency analyses for CH3NH3PbI3. Phys. Rev. Appl. 2016, 5, 014012. [Google Scholar] [CrossRef]
- Ndione, P.F.; Li, Z.; Zhu, K. Effects of alloying on the optical properties of organic-inorganic lead halide perovskite thin films. J. Mater. Chem. C 2016, 4, 7775–7782. [Google Scholar] [CrossRef]
- El-Naggar, A.M.; Osman, M.M.; Alanazi, A.Q.; Mohamed, M.B.; Ebdah, M.A.; Aldhafiri, A.M.; Heiba, Z.K.; Albrithen, H.A. Spectroscopic ellipsometry and solar cell performance of Cs-doped MA0.05FA0.95Pb(I0.98Br0.02)3 triple cation perovskite thin films for solar cell applications. Appl. Phys. A 2022, 128, 378. [Google Scholar] [CrossRef]
- Zhang, W.; Fei, T.; Cheng, T.; Zheng, C.; Dong, Y.; Yang, J.; Liu, L. Doping and temperature-dependent UV-Vis optical constants of cubic SrTiO3: A combined spectroscopic ellipsometry and first-principles study. Opt. Mater. Express 2021, 11, 895–904. [Google Scholar] [CrossRef]
- Kundu, S.; Kelly, T.L. In situ studies of the degradation mechanisms of perovskite solar cells. EcoMat 2020, 2, e12025. [Google Scholar] [CrossRef]
- Jiang, Y.; Soufiani, A.M.; Gentle, A.; Huang, F.; Ho-Baillie, A.; Green, M. Temperature dependent optical properties of CH3NH3PbI3 perovskite by spectroscopic ellipsometry. Appl. Phys. Lett. 2016, 108, 061905. [Google Scholar] [CrossRef]
- Leguy, A.M.A.; Hu, Y.; Campoy-Quiles, M.; Alonso, M.I.; Weber, O.J. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 2015, 27, 3397–3407. [Google Scholar] [CrossRef]
- Raja, W.; Allen, T.G.; Said, A.A.; Alharbi, O.; Aydin, E.; Bastiani, M.D.; Wolf, S.D. Temperature-dependent optical modeling of perovskite solar cells. J. Phys. Chem. C 2022, 126, 14366–14374. [Google Scholar] [CrossRef]
- Mannino, G.; Deretzis, I.; Smecca, E.; Giannazzo, F.; Valastro, S. CsPbBr3, MAPbBr3, and FAPbBr3 bromide perovskite single crystals: Interband critical points under dry N2 and optical degradation under humid Air. J. Phys. Chem. C 2021, 125, 4938–4945. [Google Scholar] [CrossRef]
- Zhao, M.; Shi, Y.; Dai, J.; Lian, J. Ellipsometric study of the complex optical constants of a CsPbBr3 perovskite thin film. J. Mater. Chem. C 2018, 6, 10450–10455. [Google Scholar] [CrossRef]
- Bailey, C.G.; Piana, G.M.; Lagoudakis, P.G. High-energy optical transitions and optical constants of CH3NH3PbI3 measured by spectroscopic ellipsometry and spectrophotometry. J. Phys. Chem. C 2019, 123, 28795–28801. [Google Scholar] [CrossRef]
- Wang, X.; Gong, J.; Shan, X.; Zhang, M.; Xu, Z.; Dai, R.; Wang, Z.; Wang, S.; Fang, X.; Zhang, Z. In situ monitoring of thermal degradation of CH3NH3PbI3 films by spectroscopic ellipsometry. J. Phys. Chem. C 2018, 123, 1362–1369. [Google Scholar] [CrossRef]
- Yan, W.; Guo, Y.; Beri, D.; Dottermusch, S.; Chen, H.; Richards, B.S. Experimental determination of complex optical constants of air-stable inorganic CsPbI3 perovskite thin films. Phys. Status Solidi RRL 2020, 14, 2000070. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, K.; Shao, Y.; Xu, L.; Huang, Y.; Li, W. Evolutions of optical constants, interband electron transitions, and bandgap of Sn-doped CH3NH3PbI3 perovskite films. Appl. Phys. Lett. 2020, 116, 261902. [Google Scholar] [CrossRef]
- Chen, C.; Wu, D.; Yuan, M.; Yu, C.; Zhang, J.; Li, C.; Duan, Y. Spectroscopic ellipsometry study of CsPbBr3 perovskite thin films prepared by vacuum evaporation. J. Phys. D Appl. Phys. 2021, 54, 224002. [Google Scholar] [CrossRef]
- Tejada, A.; Peters, S.; Al-Ashouri, A.; Turren-Cruz, S.H.; Abate, A. Hybrid perovskite degradation from an optical perspective: A spectroscopic ellipsometry study from the deep ultraviolet to the middle infrared. Adv. Opt. Mater. 2022, 10, 2101553. [Google Scholar] [CrossRef]
- Shil, S.K.; Wang, F.; Egbo, K.O.; Wang, Y.; Kwok, C.K.G.; Tsang, S.W.; Ho, J.C.; Yu, K.M. Chemical vapor deposition growth and photodetector performance of lead-free all-inorganic crystalline Cs3Sb2X9 (X = I, Br) perovskite thin films. J. Mater. Chem. C 2023, 11, 4603–4613. [Google Scholar] [CrossRef]
- Yadav, C.; Kumar, M.; Lodhi, K.; Kumar, S. Methyl ammonium iodide via novel PECVD process for the growth of 2-step vacuum based perovskite (MAPbI3) thin films. Mater. Today Commun. 2023, 36, 106736. [Google Scholar] [CrossRef]
- Villa-Bracamonte, M.F.; Montes-Bojorquez, J.R.; Ayon, A.A. Optical properties study of a perovskite solar cell film stack by spectroscopic ellipsometry and spectrophotometry. Results Opt. 2024, 15, 100640. [Google Scholar] [CrossRef]
- Khan, M.T.; Haris, M.P.U.; Alhouri, B.; Kazim, S.; Ahmad, S. Optical constants manipulation of formamidinium lead iodide perovskites: Ellipsometric and spectroscopic twigging. Energy Adv. 2024, 3, 2512. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Nughays, R.; Rossi, T.C.; Oppermann, M.; Ogieglo, W.; Bian, T.; Shih, C.; Guo, T.; Pinnau, I.; Yin, J. Disentangling thermal from electronic contributions in the spectral response of photoexcited perovskite materials. J. Am. Chem. Soc. 2024, 146, 5393–5401. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, X.; Jin, J.; Liu, W.; Dong, B.; Bai, X.; Song, H.; Peiss, P. Inverted perovskite solar cells employing doped NiO hole transport layers: A review. Nano Energy 2019, 63, 103860. [Google Scholar] [CrossRef]
- Kong, M.; Garriga, M.; Reparaz, J.S.; Alonso, M.I. Advanced optical characterization of PEDOT: PSS by combining spectroscopic ellipsometry and Raman scattering. ACS Omega 2022, 7, 39429–39436. [Google Scholar] [CrossRef] [PubMed]
- Tumen-Ulzii, G.; Qin, C.; Matsushima, T.; Leyden, M.R.; Balijipalli, U.; Klotz, D.; Adachi, C. Understanding the degradation of Spiro-OMeTAD-based perovskite solar cells at high temperature. Sol. RRL 2020, 4, 2000305. [Google Scholar] [CrossRef]
- Woods-Robinson, R.; Fioretti, A.N.; Haschke, J.; Boccard, M.; Persson, K.A.; Ballif, C. Linking simulation and synthesis of nickel oxide hole-selective contacts for silicon heterojunction solar cells. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 15 June–21 August 2020; pp. 0569–0573. [Google Scholar]
- Kim, Y.C.; Yang, T.Y.; Jeon, N.J.; Im, J.; Jang, S.; Shin, T.J. Engineering interface structures between lead halide perovskite and copper phthalocyanine for efficient and stable perovskite solar cells. Energy Environ. Sci. 2017, 10, 2109–2116. [Google Scholar] [CrossRef]
- Lu, H.L.; Scarel, G.; Alia, M.; Fanciulli, M.; Ding, S.; Zhang, D. Spectroscopic ellipsometry study of thin NiO films grown on Si (100) by atomic layer deposition. Appl. Phys. Lett. 2008, 92, 22. [Google Scholar] [CrossRef]
- Park, J.H.; Seo, J.; Park, S.; Shin, S.S.; Kim, Y.C.; Jeon, N.J.; Shin, H.W. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Adv. Mater. 2015, 27, 4013–4019. [Google Scholar] [CrossRef]
- Wang, K.; Shen, P.; Li, M.; Chen, S.; Lin, M.; Chen, P.; Guo, T. Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. ACS Appl. Mater. Interfaces 2014, 6, 11851–11858. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, L.A.A.; Carlsson, F.; Inganäs, O.; Arwin, H. Spectroscopic ellipsometry studies of the optical properties of doped poly (3, 4-ethylenedioxythiophene): An anisotropic metal. Thin Solid Films 1998, 313–314, 356–361. [Google Scholar] [CrossRef]
- Eerden, M.; Jaysankar, M.; Hadipour, A. Optical analysis of planar multicrystalline perovskite solar cells. Adva. Adv. Opt. Mater. 2017, 5, 1700151. [Google Scholar] [CrossRef]
- Hasan, M.; Lyon, K.; Trombley, L.; Smith, C.; Zakhidov, A. Thickness measurement of multilayer film stack in perovskite solar cell using spectroscopic ellipsometry. AIP Adv. 2019, 9, 125107. [Google Scholar] [CrossRef]
- Zhumagali, S.; Isikgor, F.H.; Maity, P.; Yin, J.; Ugur, E.; Bastiani, M.D. Linked nickel oxide/perovskite interface passivation for high-performance textured monolithic tandem solar cells. Adv. Energy Mater. 2021, 11, 2101662. [Google Scholar] [CrossRef]
- Shim, J.W.; Fuentes-Hernandez, C.; Dindar, A.; Zhou, Y.; Khan, T.M.; Kippelen, B. Polymer solar cells with NiO hole-collecting interlayers processed by atomic layer deposition. Org. Electron. 2013, 14, 2802–2808. [Google Scholar] [CrossRef]
- Jafarzadeh, F.; Castriotta, L.A.; Calabrò, E.; Spinelli, P. Optimized NiOx deposition for industrial compatible perovskite solar modules on 15 × 15 cm2: A green route towards stable methylammonium-free devices. Res. Square 2024. [Google Scholar] [CrossRef]
- Mateos-Anzaldo, D.; Nedev, R.; Perez-Landeros, O.; Curiel-Alvarez, M.; Castillo-Saenz, J. High-performance broadband photodetectors based on sputtered NiOx/n-Si heterojunction diodes. Opt. Mater. 2023, 145, 114422. [Google Scholar] [CrossRef]
- Steirer, K.X.; Richards, R.E.; Sigdel, A.K.; Garcia, A.; Ndione, P.F.; Mammond, S. Nickel oxide interlayer films from nickel formate-ethylenediamine precursor: Influence of annealing on thin film properties and photovoltaic device performance. J. Mater. Chem. A 2015, 3, 10949–10958. [Google Scholar] [CrossRef]
- Filipič, M.; Löper, P.; Niesen, B.; Wolf, S.D.; Krč, J.; Ballif, C.; Topič, M. CH3NH3PbI3 perovskite/silicon tandem solar cells: Characterization based optical simulations. Opt. Express 2015, 23, A263–A278. [Google Scholar] [CrossRef] [PubMed]
- Girtan, M.; Mallet, R.; Socol, M.; Stanculescu, A. On the physical properties PEDOT: PSS thin films. Mater. Today Commun. 2020, 22, 100735. [Google Scholar] [CrossRef]
- Sittinger, V.; Schulze, P.S.C.; Messmer, C.; Pflug, A.; Goldschmidt, J.C. Complex refractive indices of Spiro-TTB and C60 for optical analysis of perovskite silicon tandem solar cells. Opt. Express 2022, 30, 37957–37970. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ji, C.; Park, Y.; Guo, L.J. Thin-metal-film-based transparent conductors: Material preparation, optical design, and device applications. Adv. Opt. Mater. 2021, 9, 2001298. [Google Scholar] [CrossRef]
- Hilfiker, J.N.; Singh, N.; Tiwald, T.; Convey, D.; Smith, S.M.; Baker, J.H.; Tompkins, H.G. Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry. Thin Solid Films 2008, 516, 7979–7989. [Google Scholar] [CrossRef]
- Gong, J.; Dai, R.; Wang, Z.; Zhang, Z. Thickness dispersion of surface plasmon of Ag nano-thin films: Determination by ellipsometry iterated with transmittance method. Sci. Rep. 2015, 5, 9279. [Google Scholar] [CrossRef] [PubMed]
- Sundari, S.T.; Chandra, S.; Tyagi, A.K. Temperature dependent optical properties of silver from spectroscopic ellipsometry and density functional theory calculations. J. Appl. Phys. 2013, 114, 033515. [Google Scholar] [CrossRef]
- Singh, R.K.; Kumar, R.; Jain, N.; Dash, S.R.; Singh, J.; Srivastava, A. Investigation of optical and dielectric properties of CsPbI3 inorganic lead iodide perovskite thin film. J. Taiwan Inst. Chem. Eng. 2019, 96, 538–542. [Google Scholar] [CrossRef]
- Ma, L.; Xu, X.; Cui, C.; Lou, S.; Qin, Y.; Scott, P.; Zeng, W. Enhancing ellipsometry analysis with whale optimisation: A novel approach for precise material characterisation. Proc. CIRP 2024, 129, 127–132. [Google Scholar] [CrossRef]
- Ma, L.; Xu, X.; Cui, C.; Gao, M.; Li, T.; Lou, S.; Scott, P.; Jiang, X.; Zeng, W. A whale optimization algorithm-based data fitting method to determine the parameters of films measured by spectroscopic ellipsometry. Photonics 2025, 12, 60. [Google Scholar] [CrossRef]
- Patel, S.J.; Jariwala, A.; Panchal, C.J.; Kheraj, V. Determination of thickness and optical parameters of thin films from reflectivity spectra using teaching-learning based optimization algorithm. J. Nanoelectron. Phys. 2020, 12, 02015. [Google Scholar] [CrossRef]
- Arunachalam, A.; Berriel, S.N.; Feit, C.; Kumar, U.; Seal, S.; Basu, K.; Banerjee, P. Machine learning approach to thickness prediction from in situ spectroscopic ellipsometry data for atomic layer deposition processes. J. Vac. Sci. Technol. A 2022, 40, 012405. [Google Scholar] [CrossRef]
Material | Spectral Range | Incidence Angle (°) | Oscillator Model | Roughness (nm) | Thickness (nm) | Bandgap (eV) | Ref. | Year |
---|---|---|---|---|---|---|---|---|
CH3NH3PbI3 | 300–1700 nm | 55, 60, 70 | 3Tauc–Lorentz | 25 (AFM) | 460.2 (SEM) | 1.58 (SE) | [70] | 2018 |
CsPbBr3 | 300–800 nm | 75 | 7Tauc–Lorentz | 37.43 (AFM) | 800 | 2.39 (SE) | [92] | 2018 |
CH3NH3PbI3 | 0.73–6.45 eV | 65, 70, 75 | Tauc–Lorentz | 10 (SE), 13 (AFM) | 446 (SE), 452 | 1.58 (SE) | [93] | 2019 |
CH3NH3PbI3 | 245–1000 nm | 60, 65, 70 | Tauc–Lorentz | 10 (AFM) | 372 (SEM) | 1.6 (SE) | [94] | 2019 |
CsPbI3 | 300–1200 nm | 43.9, 48.9, 53.9, 58.9, 63.9 | Tauc–Lorentz, Gaussian | 15 (AFM), 9 (SE) | 468 (SE) 500 ± 25 (SEM) | 1.69 (SE) (Tauc–plot) | [95] | 2020 |
MAPb1-xSnxI3 (x = 0, 0.4, 0.8, 1) | 248–1240 nm | 70 | 3Tauc–Lorentz | 5.18, 8.89, 15.1, 19.2 (AFM) | 96 ± 3 (SE) | 1.54, 1.51, 1.49, 1.46 | [96] | 2020 |
MAPbBr3 (monocrystal) | 245–1240 nm | 60, 65, 70, 75 | 7Tauc–Lorentz | / | / | 2.332 (SE) | [91] | 2021 |
CsPbBr3 | 300–900 nm | 55, 60, 65 | 1Tanguy, 2Lorentz | / | 142.58 | 2.37 (Tauc–plot) | [97] | 2021 |
Cs0.05(MA0.17FA0.83)0.95 Pb(Br0.17I0.83)3 | 200–2500 nm | 55, 65, 75 | 2Tauc–Lorentz, 7Gaussian | 20–30, 1–6 (SE) | 400–550 | / | [98] | 2022 |
FA0.95MA0.05Pb (Br0.02I0.98)3(CsI)x (x = 0, 0.02, 0.05, 0.07) | / | 70, 75 | Tauc–Lorentz, Gaussian, Herzinger–Johs (HJ) Psemi-M0 parametric | 5.18 (SE) | 742.53 (SE) | 1.63–1.72 (Tauc–plot) | [85] | 2022 |
Cs3Sb2×9 (X = I/Br) | / | / | 7Tauc–Lorentz | 84 (AFM) | / | 2.85 | [99] | 2023 |
MAPbI3 | 200–1000 nm | 55, 65, 75 | Several Tauc–Lorentz, Gaussian | / | / | 1.57 (Tauc–plot), 1.5 (SE) | [100] | 2023 |
MAPbI3 | 300–1000 nm | 50, 60, 70 | 1Tauc–Lorentz, 3Gaussian | / | 151 | / | [101] | 2024 |
FAPbI3/Cs0.1FA0.9PbI3 | 550–1000 nm | / | 3Tauc–Lorentz | 15, 23 /21, 15 | 374, 360 (SE) /382, 364 (SE) | / | [102] | 2024 |
MAPbBr3 | 193–1690 nm | 65, 70, 75 | B-spline | / | / | 2.35–2.46 | [103] | 2024 |
Material | Spectral Range | Incidence Angle (°) | Oscillator Model | Roughness (nm) | Thickness (nm) | Bandgap (eV) | Ref. | Year |
---|---|---|---|---|---|---|---|---|
NiOx | 245–967 nm | 70 | Tauc–Lorentz and Drude | / | 42.2, 40.0, 36.2 (SE) | / | [117] | 2024 |
NiOx | 350–1000 nm | 50–70 | Cauchy | 1.32 (AFM) | 42.6, 43.3., 48.4 (SE) | 3.77 | [118] | 2023 |
NiOx | 250–1000 nm | 65–75 | Lorentz | 1.46, 0.46, 0.65, 1.35 | 9.5 | / | [119] | 2015 |
NiOx | 0.735–5.887 eV | 65 | 2Lorentz | 3.66, 3.67, 3.69, 3.70 | ||||
NiOx | 300–1100 nm | 55, 65, 75 | Tauc–Lorentz | / | 20 | / | [70] | 2018 |
Spiro-OMeTAD | 380–1200 nm | 50, 60, 70 | 4 Lorentz and a Cauchy | / | 100–300 | / | [120] | 2015 |
PEDOT: PSS | 0.5–5 eV | 70 | Lorentz and Drude | 10.3, 1.9 (AFM) | 75 (SE) | / | [121] | 2020 |
C60 | 250–1200 nm | 50, 60, 70 | 3 Lorentz | / | 15 | / | [122] | 2022 |
Techniques | Abbreviation | Type | Film Property | Feature |
---|---|---|---|---|
X-ray diffraction spectrum | XRD | X-ray | Crystallinity and grain size | The matter structure is determined according to the diffraction phenomenon |
X-ray photoelectron spectroscopy | XPS | X-ray | Composition, content, and chemical valence state | Electrons with characteristic energy are collected to characterize the film components |
Energy dispersive X-ray spectrum | EDX | X-ray | Film composition and content | Different elements have different characteristic X-rays |
Photoluminescence spectrum | PL | Illuminant | Bandgap, carrier recombination, and extraction | Molecular luminescence is caused by absorption of light energy |
Atomic force microscope | AFM | Probe | Surface morphology and thickness | The atomic force between the probe and the sample surface is detected |
Scanning electron microscope | SEM | Electron beam | Surface, surface morphology, and thickness | The sample is scanned using a high-energy electron beam |
White light interference microscope | / | Illuminant | Surface morphology | The principle of light interference is used |
Transmission electron microscope | TEM | Electron beam | Surface morphology and thickness | The sample is scanned using a high-energy electron beam |
Spectroscopic ellipsometry | SE | Illuminant | Geometric characteristics and photoelectric characteristics | Multiple characteristic parameters can be lossless characterized, simultaneously |
Step profiler | / | Probe | Surface morphology and thickness | The probe moves over the film surface to measure the height difference for obtaining the film thickness |
Surface profiler | / | Illuminant | Surface morphology | The interaction between light beams and matter is measured |
Raman spectrometer | / | Laser | Chemical structure and stress | The light scattering technique is used |
Ultraviolet visible spectrophotometer | UV-Vis | Illuminant | Absorption spectrum, reflection spectrum, transmission spectrum, and optical bandgap | The radiation intensity of absorbed/transmitted light of molecules or ions of the substance is measured |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Xu, X.; Cui, C.; Li, T.; Lou, S.; Scott, P.J.; Jiang, X.; Zeng, W. A Review of Measurement and Characterization of Film Layers of Perovskite Solar Cells by Spectroscopic Ellipsometry. Nanomaterials 2025, 15, 282. https://doi.org/10.3390/nano15040282
Ma L, Xu X, Cui C, Li T, Lou S, Scott PJ, Jiang X, Zeng W. A Review of Measurement and Characterization of Film Layers of Perovskite Solar Cells by Spectroscopic Ellipsometry. Nanomaterials. 2025; 15(4):282. https://doi.org/10.3390/nano15040282
Chicago/Turabian StyleMa, Liyuan, Xipeng Xu, Changcai Cui, Tukun Li, Shan Lou, Paul J. Scott, Xiangqian Jiang, and Wenhan Zeng. 2025. "A Review of Measurement and Characterization of Film Layers of Perovskite Solar Cells by Spectroscopic Ellipsometry" Nanomaterials 15, no. 4: 282. https://doi.org/10.3390/nano15040282
APA StyleMa, L., Xu, X., Cui, C., Li, T., Lou, S., Scott, P. J., Jiang, X., & Zeng, W. (2025). A Review of Measurement and Characterization of Film Layers of Perovskite Solar Cells by Spectroscopic Ellipsometry. Nanomaterials, 15(4), 282. https://doi.org/10.3390/nano15040282