Analyzing Efficiency of Perovskite Solar Cells Under High Illumination Intensities by SCAPS Device Simulation
<p>(<b>a</b>) Typical J-V curve of a MAPbI3 perovskite solar cell with the forward and reverse scan direction under a simulated AM 1.5 G illumination. (<b>b</b>) J-V curves of a MAPbI<sub>3</sub> perovskite solar cell excited using a continuous wave laser of 532 nm at various intensities. (<b>c</b>–<b>f</b>): J<sub>sc</sub>, V<sub>oc</sub>, FF number, and PCE of a solar cell as the function of the intensity of the excitation laser.</p> "> Figure 2
<p>(<b>a</b>) Device structure diagram. (<b>b</b>) Device structure and energy band diagram of each layer. (<b>c</b>) Simulated J-V curves at various defect intensities.</p> "> Figure 3
<p>(<b>a</b>–<b>d</b>): V<sub>oc</sub>, J<sub>sc</sub>, FF number, and PCE as a function of light intensities at various defect densities.</p> "> Figure 4
<p>(<b>a</b>) Simulated PCE as the function of light intensity at two groups of electron and hole mobility. (<b>b</b>) Simulated PCE as the function of light intensity at two shunt resistances, and the series resistance is fixed at 4.5 Ω·cm<sup>2</sup>. (<b>c</b>,<b>d</b>): Simulated PCE and FF number at three groups of R<sub>s</sub> and R<sub>sh</sub>.</p> ">
Abstract
:1. Introduction
2. Experiments and Methods
3. Results and Discussion
3.1. Device Performance
3.2. Simulation Results
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 1 January 2025).
- Yin, W.J.; Shi, T.; Yan, Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 2014, 26, 4653–4658. [Google Scholar] [CrossRef]
- Jacak, J.E.; Jacak, W.A. Routes for Metallization of Perovskite Solar Cells. Materials 2022, 15, 2254. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Mu, H.; Zhu, L.; Lin, S.; Zhang, L.; Ding, L. Frontier applications of perovskites beyond photovoltaics. J. Semicond. 2002, 43, 040203. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, C.; Kanda, H.; Ding, Y.; Huang, H.; Chen, H.; Ding, B.; Liang, Y.; Liu, X.; Cai, M.; et al. Expanded phase distribution in low average Layer number 2D perovskite films: Toward efficient semitransparent solar cells. Adv. Funct. Mater. 2021, 31, 2104868. [Google Scholar] [CrossRef]
- Jiang, B.-H.; Gao, Z.-J.; Lung, C.-Y.; Shi, Z.-E.; Du, H.-Y.; Su, Y.-W.; Shih, H.-S.; Lee, K.-M.; Hung, H.-H.; Chan, C.K.; et al. Enhancing the Efficiency of Indoor Perovskite Solar Cells through Surface Defect Passivation with Coplanar Heteroacene Cored A–D–A-type Molecules. Adv. Funct. Mater. 2023, 34, 2312819. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar Cell Efficiency Tables (Version 56). Prog. Photovoltaics Res. Appl. 2020, 28, 629–638. [Google Scholar] [CrossRef]
- Li, D.; Zhang, D.; Lim, K.; Hu, Y.; Rong, Y.; Mei, A.; Park, N.; Han, H. A Review on Scaling Up Perovskite Solar Cells. Adv. Funct. Mater. 2021, 31, 2008621. [Google Scholar] [CrossRef]
- Philipps, S.P.; Dimroth, F.; Bett, A.W. High-Efficiency III-V Multijunction Solar Cells. In McEvoy’s Handbook of Photovoltaics; Elsevier Ltd.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Lin, Q.; Wang, Z.; Snaith, H.J.; Johnston, M.B.; Herz, L.M. Hybrid Perovskites: Prospects for Concentrator Solar Cells. Adv. Sci. 2018, 5, 1700792. [Google Scholar] [CrossRef]
- Sadhukhan, P.; Roy, A.; Sengupta, P.; Das, S.; Mallick, T.K.; Nazeeruddin, M.K.; Sundaram, S. The emergence of concentrator photovoltaics for perovskite solar cells. Appl. Phys. Rev. 2021, 8, 041324. [Google Scholar] [CrossRef]
- Baig, H.; Kanda, H.; Asiri, A.M.; Nazeeruddin, M.K.; Mallick, T. Increasing efficiency of perovskite solar cells using low concentrating photovoltaic systems. Sustain. Energy Fuels 2020, 4, 528–537. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, Q.; Wenger, B.; Christoforo, M.G.; Lin, Y.H.; Klug, M.T.; Johnston, M.B.; Herz, L.M.; Snaith, H.J. High irradiance performance of metal halide perovskites for concentrator photovoltaics. Nat. Energy 2018, 3, 855. [Google Scholar] [CrossRef]
- Troughton, J.; Gasparini, N.; Baran, D. Cs0.15FA0.85PbI3 perovskite solar cells for concentrator photovoltaic applications. J. Mater. Chem. A 2018, 6, 21913. [Google Scholar] [CrossRef]
- Simulation Programme SCAPS-1D for Thin Film Solar Cells Developed at ELIS, University of Gent. Available online: https://scaps.elis.ugent.be/ (accessed on 1 June 2022).
- Burgelman, M.; Nollet, P.; Degrave, S. Modelling polycrystalline semiconductor solar cells. Thin Solid Films 2000, 361–362, 527–532. [Google Scholar] [CrossRef]
- Chen, S.; Shen, N.; Zhang, L.; Kong, W.; Zhang, L.; Cheng, C.; Xu, B. Binary organic spacer-based quasi-two-dimensional perovskites with preferable vertical orientation and efficient charge transport for high-performance planar solar cells. J. Mater. Chem. A 2019, 7, 9542–9549. [Google Scholar] [CrossRef]
- Zhao, B.; Abdi-Jalebi, M.; Tabachnyk, M.; Glass, H.; Kamboj, V.S.; Nie, W.; Pearson, A.J.; Puttisong, Y.; Gödel, K.C.; Beere, H.E.; et al. High Open-Circuit Voltages in Tin-Rich Low-Bandgap Perovskite-Based Planar Heterojunction Photovoltaics. Adv. Mater. 2017, 29, 1604744. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Huang, Y.; Zhang, Y.; Yan, P.; Li, H.; Sheng, C. Slow Hot-Carrier-Cooling in a 2D Lead-Iodide Perovskite Film and Its Photovoltaic Device. J. Phys. Chem. C 2022, 126, 2374–2382. [Google Scholar] [CrossRef]
- Raifuku, I.; Ishikawa, Y.; Ito, S.; Uraoka, Y. Characteristics of Perovskite Solar Cells under Low-Illuminance Conditions. J. Phys. Chem. C 2016, 120, 18986–18990. [Google Scholar] [CrossRef]
- Ompong, D.; Ram, K.S.; Setsoafia, D.; Rad, H.; Singh, J. Saturation of Open-Circuit Voltage at Higher Light Intensity Caused by Interfacial Defects and Nonradiative Recombination Losses in Perovskite Solar Cells. Adv. Mater. Interfaces 2023, 10, 2201578. [Google Scholar] [CrossRef]
- Sherkar, T.S.; Momblona, C.; Gil-Escrig, L.; Ávila, J.; Sessolo, M.; Bolink, H.J.; Koster, L.J.A. Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions. ACS Energy Lett. 2017, 2, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Sheng, C.X.; Zhang, C.; Zhai, Y.; Mielczarek, K.; Wang, W.; Ma, W.; Zakhidov, A.; Vardeny, Z.V. Exciton versus free carrier photogeneration in organometal trihalide perovskites probed by broadband ultrafast polarization memory dynamics. Phys. Rev. Lett. 2015, 114, 116601. [Google Scholar] [CrossRef] [PubMed]
- Baranowki, M.; Plochocka, P. Excitons in Metal-Halide Perovskites. Adv. Energy Mater. 2020, 10, 1903659. [Google Scholar] [CrossRef]
- Rai, S.; Pandey, B.K.; Dwivedi, D.K. Modeling of highly efcient and low cost CH3NH3Pb(I1−xClx)3 based perovskite solar cell by numerical simulation. Opt. Mater. 2020, 100, 109631. [Google Scholar] [CrossRef]
- Fang, Z.M.; Sun, J.; Liu, S.Z.; Ding, L.M. Defects in perovskite crystals. J. Semicond. 2023, 44, 080201. [Google Scholar] [CrossRef]
- Chang, C.Y.; Huang, W.K.; Chang, Y.C. Highly-efficient and long-term stable perovskite solar cells enabled by a cross-linkable n-doped hybrid cathode interfacial layer. Chem. Mater. 2016, 28, 6305–6312. [Google Scholar] [CrossRef]
- Grzibovskis, R.; Vembris, A. Energy level determination in bulk heterojunction systems using photoemission yield spectroscopy: Case of P3HT:PCBM. J. Mater. Sci. 2018, 53, 7506–7515. [Google Scholar] [CrossRef]
- Ye, M.; He, C.; Iocozzia, J.; Liu, X.; Cui, X.; Meng, J.; Rager, M.; Hong, X.; Liu, X.; Lin, Z. Recent advances in interfacial engineering of perovskite solar cells. J. Phys. D Appl. Phys. 2017, 50, 373002. [Google Scholar] [CrossRef]
- Jahantigh, F.; Safikhani, M.J. The effect of HTM on the performance of solid-state dye-sanitized solar cells (SDSSCs): A SCAPS-1D simulation study. Appl. Phys. A Mater. Sci. Process. 2019, 125, 276. [Google Scholar] [CrossRef]
- Rai, N.; Rai, S.; Singh, P.K.; Lohia, P.; Dwivedi, D.K. Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. J. Mater. Sci. Mater. Electron. 2020, 31, 16269–16280. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Liang, C.; Xing, G.; Liu, X.; Li, F.; Liu, X.; Hu, X.; Shao, G.; Song, Y. Phase pure 2D perovskite for high-performance 2D–3D heterostructured perovskite solar cells. Adv. Mater. 2018, 30, 1805323. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Kober-Czerny, M.; Lin, Y.H.; Ball, J.M.; Sakai, N.; Duijnstee, E.A.; Hong, M.J.; Snaith, H.J. Long-range charge carrier mobility in metal halide perovskite thin-films and single crystals via transient photo-conductivity. Nat. Commun. 2022, 13, 4201. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Long, G. Low density of conduction and valence band states contribute to the high open-circuit voltage in perovskite solar cells. J. Phys. Chem. C 2017, 121, 1455–1462. [Google Scholar] [CrossRef]
- Yamashita, M.; Otani, C.; Okuzaki, H.; Shimizu, M. Nondestructive measurement of carrier mobility in conductive polymer PEDOT:PSS using Terahertz and infrared spectroscopy. In Proceedings of the 2011 XXXth URSI General Assembly and Scientific Symposium, Istanbul, Turkey, 13–20 August 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Rutledge, S.; Helmy, A. Carrier mobility enhancement in poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) having undergone rapid thermal annealing. J. Appl. Phys. 2013, 114, 133708. [Google Scholar] [CrossRef]
- Lee, J.; Baik, S. Enhanced crystallinity of CH3NH3PbI3 by the pre-coordination of PbI2–DMSO powders for highly reproducible and efficient planar heterojunction perovskite solar cells. RSC Adv. 2018, 8, 1005–1013. [Google Scholar] [CrossRef]
- Klingshirn, C.F. Semiconductor Optics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Yu, P.Y.; Cardona, M. Fundamentals of Semiconductors Physics and Materials Properties; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Taheri, S.; Minbashi, M.; Hajjiah, A. Effect of defects on high efficient perovskite solar cells. Opt. Mater. 2021, 111, 110601. [Google Scholar] [CrossRef]
- Algor, C.; Ortiz, E.; Rey-Stolle, I.; Díaz, V.; Peña, R.; Andreev, V.M.; Khvostikov, V.P.; Rumyantsev, V.D. A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns. IEEE Trans. Electron Devices 2021, 48, 840–844. [Google Scholar] [CrossRef]
PCBM | MAPbI3 | PEDOT:PSS | |
---|---|---|---|
Thickness (nm) | 50 | 500 | 100 |
Bandgap (eV) | 1.8 [26,27] | 1.5 [28] | 2.2 [29] |
Electron affinity (eV) | 4.1 [26] | 3.9 [28] | 2.9 [29] |
Relative dielectric constant | 3.9 [30] | 32 [31] | 3 [29] |
Effective state density of conduction band (cm−3) | 2.5 × 1021 [30] | 2.49 × 1018 [32] | 1 × 1019 [29] |
Effective state density of valance band (cm−3) | 2.5 × 1021 [30] | 6.98 × 1018 [32] | 1 × 1019 [33] |
Hole mobility (cm2/V·s) | 2 × 10−1 [30] | 2 [34] | 0.01 [34] |
Electron mobility (cm2/V·s) | 2 × 10−1 [30] | 2 [34] | 7.7 × 10−1 [35] |
Defect type | Neutral | Neutral | Neutral |
Defect density (cm−3) | 1 × 1015 [30] | ** | 3.7 × 1017 [36] |
Series resistance (Ω·cm2) | 4.5 [37] | ||
Shunt resistance (Ω·cm2) | 3000 [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Huang, Y.; Zhu, M.; Yan, P.; Sheng, C. Analyzing Efficiency of Perovskite Solar Cells Under High Illumination Intensities by SCAPS Device Simulation. Nanomaterials 2025, 15, 286. https://doi.org/10.3390/nano15040286
Li H, Huang Y, Zhu M, Yan P, Sheng C. Analyzing Efficiency of Perovskite Solar Cells Under High Illumination Intensities by SCAPS Device Simulation. Nanomaterials. 2025; 15(4):286. https://doi.org/10.3390/nano15040286
Chicago/Turabian StyleLi, Heng, Yongtao Huang, Muyan Zhu, Pingyuan Yan, and Chuanxiang Sheng. 2025. "Analyzing Efficiency of Perovskite Solar Cells Under High Illumination Intensities by SCAPS Device Simulation" Nanomaterials 15, no. 4: 286. https://doi.org/10.3390/nano15040286
APA StyleLi, H., Huang, Y., Zhu, M., Yan, P., & Sheng, C. (2025). Analyzing Efficiency of Perovskite Solar Cells Under High Illumination Intensities by SCAPS Device Simulation. Nanomaterials, 15(4), 286. https://doi.org/10.3390/nano15040286