Trimethylamine N-Oxide (TMAO) and Trimethylamine (TMA) Determinations of Two Hadal Amphipods
<p>(<b>a</b>,<b>b</b>) Violin diagram of total TMAO and TMA content of two hadal amphipods and a shallow water decapods <span class="html-italic">P. vannamei</span>. Red represents <span class="html-italic">A. gigantea</span>, orange represents <span class="html-italic">H. gigas</span>, and blue represents <span class="html-italic">P. vannamei</span>.</p> "> Figure 2
<p>(<b>a</b>,<b>b</b>) TMAO and TMA content in eight tissues (eye, brain, muscle, exoskeleton, gonad, fat, gut, muscle and liver) content in <span class="html-italic">A. gigantea</span>, <span class="html-italic">H. gigas</span> and <span class="html-italic">P. vannamei</span> (unit: mmol/kg wet weight; mean ± SD). * represents significant difference (<span class="html-italic">p</span> < 0.05), and *** represents significant difference (<span class="html-italic">p</span> < 0.001).</p> "> Figure 3
<p>(<b>a</b>,<b>b</b>) TMAO and TMA concrete content in eight tissues (eye, brain, muscle, exoskeleton, gonad, fat, gut, muscle and liver) content in <span class="html-italic">A. gigantea</span>, <span class="html-italic">H. gigas</span> and <span class="html-italic">P. vannamei</span> (unit: mmol/kg wet weight; mean ± SD).</p> "> Figure 4
<p>TMAO–TMA correlation comparison and fitting curve. (<b>a</b>) represents the TMAO-TMA correlation scatter plot of each tissue of the two hadal amphipod species, and the size and color of each point represent the magnitude of correlation coefficient. (<b>b</b>–<b>d</b>) represents the fitting curve of the order of <span class="html-italic">A. gigantea</span>, <span class="html-italic">H. gigas</span> and <span class="html-italic">P. vannamei</span>, with Pearson correlation coefficient and <span class="html-italic">p</span> value, respectively.</p> "> Figure 5
<p>The three-dimensional crystal structure of FMO3 gene of <span class="html-italic">A. gigantea</span> and the positively selected site and specific mutation site of the FMO3 gene, (<b>a</b>) represents a three-dimensional view of the FMO3 protein, highlighting the locations of three positive selected sites (yellow spheres) and specific substitution sites on two conserved motifs (green spheres). Conserved motifs and the ligand FAD are also represented in green; (<b>b</b>) represents the location of positively selected sites in <span class="html-italic">A. gigantea</span>. Positively selected sites are represented in red, and * represents <span class="html-italic">p</span> < 0.05; (<b>c</b>) represents the locations of specific mutation sites that occur on a conserved motif in <span class="html-italic">A. gigantea</span> compared with the four amphipods in Gammaroidea, marked in red.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of the Sample
2.2. Pretreatment of Experimental Samples
2.3. Settings of the UPLC-MS/MS Parameters
2.4. Evolutionary Analysis and Protein Crystal Structure Prediction of FMO3
3. Results
3.1. TMAO and TMA Concentrations of the Two Hadal Amphipods
3.2. Expression Profiling of TMAO and TMA in the Two Hadal Amphipods
3.3. Correlation Analysis with TMAO and TMA Concentrations
3.4. FMO3 Gene Analysis and Prediction of Three-Dimensional Crystal Structure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cressey, D. The Hadal Zone: Life in the Deepest Oceans. Nature 2015, 523, SB1. [Google Scholar]
- Weston, J.N.J.; Espinosa-Leal, L.; Wainwright, J.A.; Stewart, E.C.D.; Gonzalez, C.E.; Linley, T.D.; Reid, W.D.K.; Hidalgo, P.; Oliva, M.E.; Ulloa, O.; et al. Eurythenes atacamensis sp. nov. (Crustacea: Amphipoda) exhibits ontogenetic vertical stratification across abyssal and hadal depths in the Atacama Trench, eastern South Pacific Ocean. Mar. Biodivers. 2021, 51, 51. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.L.; Geng, D.Q.; Pan, B.B.; Zhang, Q.M.; Xu, Q.H. Metagenomic Insights Into the Structure and Function of Intestinal Microbiota of the Hadal Amphipods. Front. Microbiol. 2021, 12. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2021.668989/full (accessed on 5 February 2022). [CrossRef]
- Zhang, W.P.; Tian, R.M.; Sun, J.; Bougouffa, S.; Ding, W.; Cai, L.; Lan, Y.; Tong, H.Y.; Li, Y.X.; Jamieson, A.J.; et al. Genome Reduction in Psychromonas Species within the Gut of an Amphipod from the Ocean’s Deepest Point. Msystems 2018, 3, e00009-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartlett, D.H. Microbial life at high pressures. Sci. Prog. 1992, 76, 479–496. [Google Scholar] [PubMed]
- Jamieson, A.J.; Fujii, T.; Mayor, D.J.; Solan, M.; Priede, I.G. Hadal trenches: The ecology of the deepest places on Earth. Trends Ecol. Evol. 2010, 25, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Somero, G.N. Adaptations to high hydrostatic pressure. Annu. Rev. Physiol. 1992, 54, 557–577. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, A.G. Hydrostatic pressure as an environmental factor in life processes. Comp. Biochem. Phys. A 1997, 116, 291–297. [Google Scholar] [CrossRef]
- Thurston, M.H. Scavenging abyssal amphipods from the North-East Atlantic ocean. Mar. Biol. 1979, 51, 55–68. [Google Scholar] [CrossRef]
- Blankenship, L.E.; Yayanos, A.A.; Cadien, D.B.; Levin, L.A. Vertical zonation patterns of scavenging amphipods from the Hadal zone of the Tonga and Kermadec Trenches. Deep Sea Res. Part I Oceanogr. Res. Pap. 2006, 53, 48–61. [Google Scholar] [CrossRef]
- Beliaev, G.M.; Vinogradov, M.Y. Deep-sea ocean trenches and their fauna. Scripps Inst. Oceanogr. 1989. Available online: https://escholarship.org/uc/item/46n6148x (accessed on 5 February 2022).
- Jamieson, A.J.; Lacey, N.C.; Lorz, A.N.; Rowden, A.A.; Piertney, S.B. The supergiant amphipod Alicella gigantea (Crustacea: Alicellidae) from hadal depths in the Kermadec Trench, SW Pacific Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2013, 92, 107–113. [Google Scholar] [CrossRef]
- Zhu, L.Y.; Geng, D.Q.; Pan, B.B.; Li, W.H.; Jiang, S.W.; Xu, Q.H. Trace Elemental Analysis of the Exoskeleton, Leg Muscle, and Gut of Three Hadal Amphipods. Biol. Trace Elem. Res. 2021, 200, 1395–1407. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Hatada, Y.; Tsubouchi, T.; Nagahama, T.; Takami, H. The Hadal Amphipod Hirondellea gigas Possessing a Unique Cellulase for Digesting Wooden Debris Buried in the Deepest Seafloor. PLoS ONE 2012, 7, e42727. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.L.; Vieira, T.C.R.G.; Gomes, M.P.B.; Bom, P.A.; Lima, L.M.T.R.; Freitas, M.S.; Ishimaru, D.; Cordeiro, Y.; Foguel, D. Ligand Binding and Hydration in Protein Misfolding: Insights from Studies of Prion and p53 Tumor Suppressor Proteins. Acc. Chem. Res. 2010, 43, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Sun, J.; Xu, T.; Chen, C.; Tian, R.M.; Qiu, J.W.; Qian, P.Y. De novo transcriptome assembly and positive selection analysis of an individual deep-sea fish. BMC Genom. 2018, 19, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Brooks, N.J. Pressure effects on lipids and bio-membrane assemblies. IUCrJ 2014, 1, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Somero, G.N. Protein adaptations to temperature and pressure: Complementary roles of adaptive changes in amino acid sequence and internal milieu. Comp. Biochem. Phys. B 2003, 136, 577–591. [Google Scholar] [CrossRef]
- Morris, J.P.; Thatje, S.; Hauton, C. The use of stress-70 proteins in physiology: A re-appraisal. Mol. Ecol. 2013, 22, 1494–1502. [Google Scholar] [CrossRef]
- Genest, O.; Wickner, S.; Doyle, S.M. Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling. J. Biol. Chem. 2019, 294, 2109–2120. [Google Scholar] [CrossRef] [Green Version]
- Yancey, P.H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 2005, 208, 2819–2830. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; Dugar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canyelles, M.; Tondo, M.; Cedo, L.; Farras, M.; Escola-Gil, J.C.; Blanco-Vaca, F. Trimethylamine N-Oxide: A Link among Diet, Gut Microbiota, Gene Regulation of Liver and Intestine Cholesterol Homeostasis and HDL Function. Int. J. Mol. Sci. 2018, 19, 3228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamieson, D.A. Marine fish may be biochemically constrained from inhabiting deepest ocean depths. Proc. Natl. Acad. Sci. USA 2014, 111, 4461–4465. [Google Scholar]
- Yancey, P.H. Cellular responses in marine animals to hydrostatic pressure. J. Exp. Zool. Part A 2020, 333, 398–420. [Google Scholar] [CrossRef] [PubMed]
- Bolen, D.W.; Baskakov, I.V. The osmophobic effect: Natural selection of a thermodynamic force in protein folding. J. Mol. Biol. 2001, 310, 955–963. [Google Scholar] [CrossRef]
- Qin, Q.L.; Wang, Z.B.; Su, H.N.; Chen, X.L.; Miao, J.; Wang, X.J.; Li, C.Y.; Zhang, X.Y.; Li, P.Y.; Wang, M.; et al. Oxidation of trimethylamine to trimethylamine N-oxide facilitates high hydrostatic pressure tolerance in a generalist bacterial lineage. Sci. Adv. 2021, 7, eabf9941. [Google Scholar] [CrossRef]
- Yancey, P.H.; Speers-Roesch, B.; Atchinson, S.; Reist, J.D.; Majewski, A.R.; Treberg, J.R. Osmolyte Adjustments as a Pressure Adaptation in Deep-Sea Chondrichthyan Fishes: An Intraspecific Test in Arctic Skates (Amblyraja hyperborea) along a Depth Gradient. Physiol. Biochem. Zool. 2018, 91, 788–796. [Google Scholar] [CrossRef]
- Kelly, R.H.; Yancey, P.H. High Contents of Trimethylamine Oxide Correlating with Depth in Deep-Sea Teleost Fishes, Skates, and Decapod Crustaceans. Biol. Bull. 1999, 196, 1825. [Google Scholar] [CrossRef]
- Downing, A.B.; Wallace, G.T.; Yancey, P.H. Organic osmolytes of amphipods from littoral to hadal zones: Increases with depth in trimethylamine N-oxide, scyllo-inositol and other potential pressure counteractants. Deep Sea Res. Part I Oceanogr. Res. Pap. 2018, 138, 1–10. [Google Scholar] [CrossRef]
- Linley, T.D.; Gerringer, M.E.; Yancey, P.H.; Drazen, J.C.; Weinstock, C.L.; Jamieson, A.J. Fishes of the hadal zone including new species, in situ observations and depth records of Liparidae. Deep-Sea Res. Part I 2016, 114, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Swan, J.A.; Jamieson, A.J.; Linley, T.D.; Yancey, P.H. Worldwide distribution and depth limits of decapod crustaceans (Penaeoidea, Oplophoroidea) across the abyssal-hadal transition zone of eleven subduction trenches and five additional deep-sea features. J. Crustacean Biol. 2021, 41, ruaa102. [Google Scholar] [CrossRef]
- Winnikoff, J.R.; Wilson, T.M.; Thuesen, E.V.; Haddock, S.H.D. Enzymes feel the squeeze: Biochemical adaptation to pressure in the deep sea. Biochemist 2017, 39, 26–29. [Google Scholar] [CrossRef]
- Wang, K.; Shen, Y.; Yang, Y.; Gan, X.; Liu, G.; Hu, K.; Li, Y.; Gao, Z.; Zhu, L.; Yan, G. Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation. Nat. Ecol. Evol. 2019, 3, 823–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Berkel, W.J.H.; Kamerbeek, N.M.; Fraaije, M.W. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J. Biotechnol. 2006, 124, 670–689. [Google Scholar] [CrossRef] [Green Version]
- Eswaramoorthy, S.; Bonanno, J.B.; Burley, S.K.; Swaminathan, S. Mechanism of action of a flavin-containing monooxygenase. Proc. Natl. Acad. Sci. USA 2006, 103, 9832–9837. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Howington, M.B.; Dobry, C.J.; Evans, C.R.; Leiser, S.F. Flavin-Containing Monooxygenases Are Conserved Regulators of Stress Resistance and Metabolism. Front. Cell Dev. Biol. 2021, 9, 630188. [Google Scholar] [CrossRef]
- Beaty, N.B.; Ballou, D.P. The oxidative half-reaction of liver microsomal FAD-containing monooxygenase. J. Biol. Chem. 1981, 256, 4619–4625. [Google Scholar] [CrossRef]
- Wu, Q.; Zhao, Y.; Zhang, X.; Yang, X. A faster and simpler UPLC-MS/MS method for the simultaneous determination of trimethylamine N-oxide, trimethylamine and dimethylamine in different types of biological samples. Food Funct. 2019, 10, 6484–6491. [Google Scholar] [CrossRef]
- Gao, F.; Chen, C.; Arab, D.A.; Du, Z.; He, Y.; Ho, S.Y.W. EasyCodeML: A visual tool for analysis of selection using CodeML. Ecol. Evol. 2019, 9, 3891–3898. [Google Scholar] [CrossRef] [Green Version]
- Zerbst-Boroffka, I.; Kamaltynow, R.M.; Harjes, S.; Kinne-Saffran, E.; Gross, J. TMAO and other organic osmolytes in the muscles of amphipods (Crustacea) from shallow and deep water of Lake Baikal. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2005, 142, 58–64. [Google Scholar] [CrossRef]
- Li, W.H.; Wang, F.X.; Jiang, S.W.; Pan, B.B.; Chan, J.L.; Xu, Q.H. The Adaptive Evolution and Gigantism Mechanisms of the Hadal “Supergiant” Amphipod Alicella gigantea. Front. Mar. Sci. 2021, 8. Available online: https://www.frontiersin.org/articles/10.3389/fmars.2021.743663/full (accessed on 5 February 2022). [CrossRef]
- Copilas-Ciocianu, D.; Borko, S.; Fiser, C. The late blooming amphipods: Global change promoted post-Jurassic ecological radiation despite Palaeozoic origin. Mol. Phylogenet. Evol. 2020, 143, 106664. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Zhang, C.; Li, Y.; Pearce, R.; Zhang, Y. Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Rep. Methods 2021, 1, 100014. [Google Scholar] [CrossRef]
- Piccard, J. Man’s deepest dive. Natl. Geogr. 1960, 118, 224–239. [Google Scholar]
- Brown, A.; Thatje, S. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: Physiological contributions to adaptation of life at depth. Biol. Rev. 2013, 89, 406–426. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.E.; Brown, A.; Thatje, S. The metabolic cost of developing under hydrostatic pressure: Experimental evidence supports macroecological pattern. Mar. Ecol. Prog. Ser. 2015, 524, 71–82. [Google Scholar] [CrossRef]
- Jamieson, A.J.; Fujii, T.; Solan, M.; Matsumoto, A.K.; Bagley, P.M.; Priede, I.G. First findings of decapod crustacea in the hadal zone. Deep Sea Res. Part I Oceanogr. Res. Pap. 2009, 56, 641–647. [Google Scholar] [CrossRef]
- Hupalo, K.; Teixeira, M.A.L.; Rewicz, T.; Sezgin, M.; Iannilli, V.; Karaman, G.S.; Grabowski, M.; Costa, F.O. Persistence of phylogeographic footprints helps to understand cryptic diversity detected in two marine amphipods widespread in the Mediterranean basin. Mol. Phylogenet. Evol. 2019, 132, 53–66. [Google Scholar] [CrossRef]
- Gillett, M.B.; Suko, J.R.; Santoso, F.O.; Yancey, P.H. Elevated levels of trimethylamine oxide in muscles of deep-sea gadiform teleosts: A high-pressure adaptation? J. Exp. Zool. 1997, 279, 386–391. [Google Scholar] [CrossRef]
- Yancey, P.H.; Clark, M.E.; Hand, S.C.; Bowlus, R.D.; Somero, G.N. Living with water stress: Evolution of osmolyte systems. Science 1982, 217, 1214–1222. [Google Scholar] [CrossRef]
- Subramaniam, S.; Fletcher, C. Trimethylamine N-oxide: Breathe new life. Br. J. Pharmacol. 2018, 175, 1344–1353. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.; Geng, D.; Pan, B.; Zhang, Q.; Xu, Q. Gut Microbial Divergence Between Three Hadal Amphipod Species from the Isolated Hadal Trenches. Microb. Ecol. 2021, 1–11. [Google Scholar] [CrossRef]
- Janeiro, M.H.; Ramirez, M.J.; Milagro, F.I.; Martinez, J.A.; Solas, M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients 2018, 10, 1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.Q.; Wang, Y.J.; Zhang, A.; Ding, Y.J.; Zhang, X.N.; Jia, Q.J.; Zhu, Y.P.; Li, Y.Y.; Lv, S.C.; Zhang, J.P. TMA/TMAO in Hypertension: Novel Horizons and Potential Therapies. J. Cardiovasc. Transl. Res. 2021, 14, 1117–1124. [Google Scholar] [CrossRef]
- King, G.M. Metabolism of trimethylamine, choline, and glycine betaine by sulfate-reducing and methanogenic bacteria in marine sediments. Appl. Environ. Microbiol. 1984, 48, 719–725. [Google Scholar] [CrossRef] [Green Version]
- Leiser, S.F.; Miller, H.; Rossner, R.; Fletcher, M.; Leonard, A.; Primitivo, M.; Rintala, N.; Ramos, F.J.; Miller, D.L.; Kaeberlein, M. Cell nonautonomous activation of flavin-containing monooxygenase promotes longevity and health span. Science 2015, 350, 1375–1378. [Google Scholar] [CrossRef]
- Yafremava, L.S.; Di Giulio, M.; Caetano-Anolles, G. Comparative analysis of barophily-related amino acid content in protein domains of Pyrococcus abyssi and Pyrococcus furiosus. Archaea 2013, 2013, 680436. [Google Scholar] [CrossRef]
- Ritchie, H.; Jamieson, A.J.; Piertney, S.B. Heat-shock protein adaptation in abyssal and hadal amphipods. Deep Sea Res. Part II Top. Stud. Oceanogr. 2018, 155, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Mu, Y.; Bian, C.; Liu, R.; Wang, Y.; Shao, G.; Li, J.; Qiu, Y.; He, T.; Li, W.; Ao, J.; et al. Whole genome sequencing of a snailfish from the Yap Trench (~7000 m) clarifies the molecular mechanisms underlying adaptation to the deep sea. PLoS Genet. 2021, 17, e1009530. [Google Scholar] [CrossRef] [PubMed]
Tissue | Tissue Trimethylamine Oxide (TMAO) Content (mmol/kg) | Significant Difference | ||||
---|---|---|---|---|---|---|
A. gigantea | H. gigas | P. vannamei | Ag-Hg | Ag-Pv | Hg-Pv | |
eye | 68.52 ± 12.36 | 42.80 ± 2.26 | 2.49 ± 0.44 | *** | *** | *** |
brain | 66.69 ± 14.87 | 18.99 ± 7.93 | 1.96 ± 0.75 | *** | *** | ** |
exoskeleton | 55.47 ± 11.76 | 31.62 ± 9.56 | 2.75 ± 0.80 | *** | *** | *** |
gonad | 43.87 ± 1.16 | 15.70 ± 5.81 | 1.82 ± 0.28 | *** | *** | *** |
fat | 40.55 ± 7.12 | 22.22 ± 5.13 | 2.88 ± 0.13 | *** | *** | *** |
gut | 34.53 ± 19.78 | 28.12 ± 8.38 | 2.22 ± 0.32 | - | *** | *** |
muscle | 27.36 ± 16.02 | 23.09 ± 21.13 | 2.48 ± 0.65 | - | ** | * |
liver | 20.48 ± 12.20 | 16.24 ± 6.44 | 2.84 ± 0.32 | ** | **** | ** |
Tissue | Tissue Trimethylamine (TMA) Content (mmol/kg) | Significant Difference | ||||
---|---|---|---|---|---|---|
A. gigantea | H. gigas | P. vannamei | Ag-Hg | Ag-Pv | Hg-Pv | |
eye | 5.48 ± 3.68 | 7.99 ± 0.40 | 7.89 ± 1.55 | - | - | - |
brain | 4.02 ± 1.60 | 3.40 ± 0.85 | 6.52 ± 0.99 | - | *** | *** |
exoskeleton | 6.67 ± 3.90 | 4.90 ± 2.51 | 4.97 ± 2.09 | - | - | - |
gonad | 5.65 ± 4.52 | 2.98 ± 0.66 | 7.77 ± 2.98 | - | - | ** |
fat | 3.13 ± 0.93 | 3.08 ± 0.91 | 3.67 ± 2.50 | - | - | - |
gut | 3.55 ± 2.37 | 3.98 ± 1.35 | 12.93 ± 5.26 | - | *** | *** |
muscle | 2.09 ± 1.11 | 7.12 ± 12.41 | 3.65 ± 0.96 | - | ** | ** |
liver | 3.08 ± 1.13 | 3.07 ± 0.82 | 7.08 ± 1.82 | - | *** | *** |
Species | Tissue | Depth | Location | TMAO | Reference |
---|---|---|---|---|---|
Megalorchestia columbiana | whole body | −1 m | Sandy beach | 15 | Downing et al., 2018 |
Anisogammarus pugettensi | whole body | 0.1 m | Sandy beach | 12 | Downing et al., 2018 |
Acanthogammarus lappadeus | muscle | 50 m | Lake Baikal | 6.0 | Zerbst et al., 2005 |
Acanthogammarus grewingki | muscle | 170–930 m | Lake Baikal | 18.1–28.4 | Zerbst et al., 2005 |
Acanthogammarus albus | muscle | 200 m | Lake Baikal | 16.1 | Zerbst et al., 2005 |
Scypholanceola aestiva | whole body | 763 m | Tidepool | 17 | Downing et al., 2018 |
Acanthogammarus reicherti | muscle | 930 m | Lake Baikal | 31.6 | Zerbst et al., 2005 |
Ceratogammarus dybowskii | muscle | 930–1170 m | Lake Baikal | 43.3–47.3 | Zerbst et al., 2005 |
Parapallasea lagowskii | muscle | 1170 m | Lake Baikal | 32.0 | Zerbst et al., 2005 |
Valettietta sp. | whole body | 1561 m | Southwest of Oahu | 30 | Downing et al., 2018 |
Paralicella tenupies | whole body | 3569–4779 m | Kermadec Trench | 45–50 | Downing et al., 2018 |
Eurythenes gryllus | whole body | 3865–4817 m | Kermadec Trench | 26–42 | Downing et al., 2018 |
Cyclocaris | whole body | 4897 m | Marina Trench | 25 | Downing et al., 2018 |
Bathycallisoma schellenbergi | whole body | 5958–9198 m | Kermadec Trench | 46–82 | Downing et al., 2018 |
Abyssorchomene musculosus | whole body | 6081 m | Marina Trench | 30 | Downing et al., 2018 |
Hirondellea gigas | whole body | 6974–10,991 m | Marina Trench | 38–64 | Downing et al., 2018 |
Hirondellea dubia | whole body | 7515–10,005 m | Kermadec Trench | 56–75 | Downing et al., 2018 |
Princaxelia jamiesoni | whole body | 8189 m | Marina Trench | 43 | Downing et al., 2018 |
Alicella gigantea | combined | 8824 m | New Britain Trench | 20–68 | This study |
Hirondellea gigas | combined | 10,839 m | Marina Trench | 15.7–42.8 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Jiang, S.; Li, W.; Pan, B.; Xu, Q. Trimethylamine N-Oxide (TMAO) and Trimethylamine (TMA) Determinations of Two Hadal Amphipods. J. Mar. Sci. Eng. 2022, 10, 454. https://doi.org/10.3390/jmse10040454
Liu Q, Jiang S, Li W, Pan B, Xu Q. Trimethylamine N-Oxide (TMAO) and Trimethylamine (TMA) Determinations of Two Hadal Amphipods. Journal of Marine Science and Engineering. 2022; 10(4):454. https://doi.org/10.3390/jmse10040454
Chicago/Turabian StyleLiu, Qi, Shouwen Jiang, Wenhao Li, Binbin Pan, and Qianghua Xu. 2022. "Trimethylamine N-Oxide (TMAO) and Trimethylamine (TMA) Determinations of Two Hadal Amphipods" Journal of Marine Science and Engineering 10, no. 4: 454. https://doi.org/10.3390/jmse10040454
APA StyleLiu, Q., Jiang, S., Li, W., Pan, B., & Xu, Q. (2022). Trimethylamine N-Oxide (TMAO) and Trimethylamine (TMA) Determinations of Two Hadal Amphipods. Journal of Marine Science and Engineering, 10(4), 454. https://doi.org/10.3390/jmse10040454