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The deepest areas of the ocean (that is, those between 6,000 and 
11,000 m) are commonly referred to as the hadal zone, and 
represent ~1–2% of the global benthic area1. They are among 

the most hostile environments on Earth, due to their high hydro-
static pressure, darkness, limited food resources, low temperatures 
and hypoxia2. The most conspicuous environmental constraint in 
the hadal zone is hydrostatic pressure, which increases by 10 atm per 
100 m of depth, reaching ~1,000 atm in the deepest ocean trenches. 
Nevertheless, life thrives in these poorly explored realms. The first 
major trench-sampling campaigns were conducted during the early 
1950s, and recent technological advances have prompted a renewed 
wave of hadal exploration, resulting in the discovery of hundreds of 
deep-dwelling species, including microbes, protists, worms, Porifera, 
Mollusca, Echinodermata, Crustacea, Cnidaria and fishes2,3.

The most common hadal vertebrate species are liparid snail-
fishes, which have the widest depth range of any marine fish family, 
with habitats ranging from intertidal to depths exceeding 8,100 m4,5. 
Liparid species have been found in seven trenches, indicating that 
snailfishes are a notably successful hadal fish family, extending 
deeper and reaching higher densities than other fish6,7. In addition, 
recent studies have shown that snailfish are top predators in the 
hadal food web and dominate the hadal fish fauna6,8. However, very 
little is known about the genetic basis and evolutionary history of 
snailfishes’ adaptation to deep-sea life.

During a recent expedition in the Mariana Trench—the world’s 
deepest known ocean trench—a previously unknown snailfish was 
observed in situ at a depth of 7,415 m, and was identified as a new 
species, Pseudoliparis swirei9. During a subsequent expedition, we 
successfully observed and collected P. swirei individuals using a 
baited video lander, and were able to sequence their genome. Here, 
we present comparative morphological, genomic and transcrip-
tomic analyses of P. swirei that provide insights into genetic changes 
associated with adaptation to the deep sea.

Results and discussion
Morphological characterization of Mariana hadal snailfish 
(MHS). MHS specimens were caught at a depth of about seven 
kilometres at multiple locations in the Mariana Trench (Fig. 1a) 
using the deep-sea landers Tianya and Haijiao, operated from 
the RV Tan Suo Yi Hao (Fig. 1b–d, Supplementary Table 1 and 
Supplementary Note 1). The fish were observed moving swiftly 
on the sea bed, foraging accurately and quickly (Supplementary 
Video 1). The MHS has a similar body size and shape to the related 
tide pool-dwelling species Tanaka’s snailfish (Liparis tanakae), but 
its skin is so transparent that its muscles and internal organs are 
clearly visible through the skin and abdominal wall (Fig. 1d–g and 
Supplementary Figs. 1–7). It also exhibits many other morpho-
logical adaptations to the hadal environment, including enlarged  
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stomach, liver and eggs, thinner muscles and an incompletely ossified 
skeleton (Supplementary Note 1). Our specimens were identified as 
a new species9, P. swirei, based on morphological observations and 
DNA barcoding (Supplementary Note 1). The stomach of this MHS 
specimen was filled with 98 crustacean individuals (Supplementary  
Fig. 8), most of which were Hirondellea gigas. The dominance of  
H. gigas is consistent with an earlier report10.

De novo assembly of the MHS and sea surface snailfish reference 
genomes. We sequenced one MHS individual using a combination 
of single-molecule real-time sequencing and paired-end sequenc-
ing (Supplementary Figs. 9–11, Supplementary Tables 2 and 3 and 
Supplementary Note 2). The assembly consisted of 6,094 scaffolds, 
with a scaffold N50 of 418 kilobases (kb) (total length = 684 mega-
bases (Mb)) and a contig N50 of 338 kb (total length = 682 Mb) 
(Supplementary Table 4 and Supplementary Fig. 12). A BUSCO 
assessment of single-copy orthologous genes indicated that the 
genome’s completeness was 91.7%, which is comparable to that 
achieved for other teleosts (Supplementary Table 5). To further 
assess the quality of the assembly, 40,154 transcripts were gener-
ated by sequencing messenger RNA from 28 samples of 15 tissues 

(Supplementary Table 6). Over 89% of the transcripts aligned to the 
genome along at least 90% of their length, confirming the assembly’s 
completeness (Supplementary Fig. 13). Additionally, 80% of the tran-
scripts in which over 90% of the sequence aligned with the genome 
were located on single scaffold, demonstrating the contiguity of the 
assembly (Supplementary Fig. 13). We annotated 25,262 protein-
coding genes (Supplementary Table 7), of which 23,043 (91.2%) 
were supported by transcriptome data. For comparative analyses, we 
also performed a de novo assembly of the Tanaka’s snailfish genome 
(Supplementary Fig. 12 and Supplementary Tables 3–5 and 7–9).

The genome of the MHS is about 21.9% (150 Mb) larger than 
that of Tanaka’s snailfish. This may be primarily due to expansions 
of repetitive sequences in the MHS (Supplementary Table 8). Other 
properties of the MHS genome, including its GC content, codon 
usage, gene length and exon number (Supplementary Fig. 14 and 
Supplementary Table 7) are similar to those of the ocean surface 
snailfish, suggesting that they probably do not contribute greatly to 
hadal adaptation.

Demographic history. We constructed a high-confidence spe-
cies tree (Fig. 2a and Supplementary Fig. 15) for nine teleosts, 
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Fig. 1 | Sampling information and morphological characteristics of the MHS. a, ArcGIS Online map (left; Map data, 2019 Esri) and topographic base map 
(right; plotted using Generic Mapping Tools software (see Methods) of the collection locations within the Mariana Trench. b, RV Tan Suo Yi Hao. c, The 
deep-sea lander Tianya. d,e, In situ observations of the MHS (P. swirei). f, Fresh MHS specimen (holotype; Liparidae sp. 2 MT-2016; female). g, A Tanaka’s 
snailfish caught off the coast of Matsue city, Shimane Prefecture, Japan. Credit: photo of Tanaka’s snailfish taken by Takuya Morihisa in 2003.
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including the MHS, Tanaka’s snailfish, stickleback, flatfish, pacific 
Bluefin tuna, fugu, platyfish, cod and zebrafish, using the coales-
cent method. The divergence time between the MHS and Tanaka’s 
snailfish was estimated to be about 20.22 million years ago (Ma)  
(Fig. 2a and Supplementary Fig. 16)—over 10 Myr before the 
formation of the Mariana Trench (estimated to have occurred 
8–10 Ma11,12). A more extensive sampling effort including popula-
tions living at intermediate depths will be required to clarify how 
snailfish lived and adapted during the formation of the trench.

Liparids are known to be the dominant fish in the hadal zone6 and 
they are the top predators8. Therefore, as a species of liparids, the MHS 

is likely to have a relatively large population size. Accordingly, its het-
erozygosity was ~0.36–0.51%, which is greater than that of Tanaka’s 
snailfish (0.26%) and comparable to other teleosts (Supplementary 
Fig. 17). Estimates of the dynamic effective population size (Ne) 
for both species indicated that the MHS had a larger population 
than the surface snailfish and underwent a significant population 
expansion around 50,000 years ago (Fig. 2b and Supplementary 
Fig. 18). This expansion was confirmed by multiple sequen-
tially Markovian coalescent13 analyses (Supplementary Fig. 19),  
and might be related to some unknown geographic or environmen-
tal event. The divergence times among the three (sub)populations 
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Fig. 2 | Evolutionary history of the MHS. a, The phylogeny topology of the nine teleosts was reconstructed with coalescent methods based on both 
orthologues and syntenic block datasets. The branch lengths represent divergence times, while the grey rectangle at each node indicates the 95% 
confidence interval. b, Demographic history estimated by PSMC. The three blue lines represent the three collected MHS individuals, while the green line 
represents Tanaka’s snailfish. c, Comparison of mutation rates in the nine sequenced fish species based on 4D sites. d, Mutation rates of three species, 
estimated by syntenic alignment along the stickleback genome. The numbers around the outside represent the chromosome ID of the stickleback genome. 
The blue, green and orange dots indicate the mutation rates for each window in the MHS, Tanaka’s snailfish and sticklebacks, respectively. The green 
and orange dots almost overlap, while the blue dots are appreciably closer to the centre of the figure (corresponding to a lower mutation rate across the 
genome). μ indicates the mutation rate (×10–9 site–1 yr–1) of each window. e–g, Two-dimension kernel density distribution of Ka (e), Ks (f) and Ka/Ks (that is, 
ω; g). The MHS has much lower Ks values but similar Ka values, and so has a much greater Ka/Ks ratio.
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represented by the three individuals were estimated to be ~1.4 and 
~2.9 Ma (Supplementary Fig. 16). These results suggest that the 
MHS population is quite large and has rich genetic diversity.

The MHS has a low rate of mutation across the genome, but a high 
rate of protein evolution. The branch length of the MHS was about 
one-third that for Tanaka’s snailfish in the maximum-likelihood tree 
(Supplementary Fig. 15). Among the nine species included in the 
tree, the MHS has the lowest mutation rate (Fig. 2c). This was not 
only true for the fourfold degenerate (4D) sites; the mutation rate of 
the MHS across the whole genome was also lower than for Tanaka’s 
snailfish and the stickleback (Fig. 2d). Previous studies have sug-
gested that mutation rates are sensitive to many factors, including 
environmental energy14, metabolic rate15, life-history traits16 and, in 
particular, generation times17. Hadal species reportedly have com-
paratively low metabolic rates18, so the MHS may have a ‘slow life'. 
Coincidentally, we observed that the female MHS produced fewer 
but larger eggs than females of other snailfish species, suggesting 
that they may have a specialized reproduction strategy (for example, 
epimeletic behaviour and/or eggs that hatch as juveniles rather than 
larvae), which could further increase the generation time. It is thus 
plausible that the MHS has an extended generation time that con-
tributes to its low mutation rate.

Despite the low nucleotide-level mutation rate of the MHS, its 
protein sequences appear to have evolved at a rate similar to other 
species. While the Ks value (the number of mutations per syn-
onymous site) for the MHS was significantly lower than that for 
Tanaka’s snailfish, the two species had very similar Ka values (num-
bers of mutations per non-synonymous site), so the MHS had a 
significantly greater Ka/Ks ratio (that is, ω) (Fig. 2e–g). The high 
rate of protein evolution in the MHS was verified by comparing the 
ω distribution along the chromosomes of the stickleback genome 
(Supplementary Fig. 20). Overall, the MHS exhibited the largest ω 
value of the nine teleosts considered in this study (Supplementary 
Fig. 21). Its high proportion of mutations at non-synonymous sites 
could be due to factors such as positive selection or relaxation of 
selection19,20, since we have excluded the possibility of a small popu-
lation size21. Additionally, the ratio of the heterozygosity of zero-
fold and fourfold degenerate sites in the MHS is lower than that in 
Tanaka’s snailfish, indicating a stronger positive selection effect in 
the MHS (Supplementary Fig. 22).

Molecular mechanisms underpinning the special phenotypes 
of the MHS. Vertebrates living on the surface of the Earth have 
closed skull spaces surrounded by hard bone, to protect the brain 
and maintain an appropriate intracranial pressure. However, closed 
skulls cannot maintain their structural integrity under the very high 
pressures of the hadal environment, necessitating an open system. 
Consequently, most multicellular hadal species are boneless crea-
tures, such as Decapoda and Crustacea; only a few vertebrates, as 
well as species such as the MHS that exhibit adaptive structural 
features, can inhabit this zone2. Using micro-computed tomogra-
phy, we found that the skull of the MHS is not completely closed 
(Fig. 3a,b and Supplementary Data 1 and 2), allowing internal and 
external pressure equalization. Moreover, most of the bones con-
sist of cartilage rather than being ossified. Notably, we found that 
the osteocalcin gene—also known as the bone Gla protein (bglap) 
gene, which regulates tissue mineralization and skeletal develop-
ment22–24—has a frameshift mutation that may cause premature 
termination of cartilage calcification in the MHS (Fig. 3c and 
Supplementary Fig. 23), which might cause its pseudogenization 
or severe modification. To evaluate the effects of disrupting bglap 
functionality in fish, the expression of bglap in the zebrafish (Danio 
rerio) was knocked down using two types of specific antisense mor-
pholino (MO) oligonucleotides—one to prevent the proper splicing 
of exon 1 (bglap-e1i1-MO) and another to block the translation of 

bglap (bglap-ATG-MO) (Supplementary Fig. 24 and Supplementary  
Note 3). The amount of stained mineralized tissue in treated embryos 
at five days post-fertilization was markedly reduced compared with 
control-MO-injected fish (Fig. 3d–g, Supplementary Table 9 and 
Supplementary Fig. 24), suggesting that disrupting bglap expression 
indeed hinders skeletal development in fish, as has been observed in 
mammals22–24. Therefore, the premature termination of bglap in the 
MHS may be associated with this species’ unusual skull structure 
and reduced bone hardness.

The environment 7,000 m under the sea is almost completely 
devoid of light. The MHS did not respond to the lights of our deep-
sea lander, which is consistent with previous observations25. We 
therefore performed a comparative genomic analysis of changes 
in the crystallin and opsin genes of the hadal fish, revealing that 
it has lost several important photoreceptor genes (Supplementary 
Table 10 and Supplementary Figs. 25 and 26). Only five genes 
exhibited clear expression signals in the transcriptome data, three 
of which (rho, rgra and rgrb) were specifically expressed in the head 
(Supplementary Table 11). Rhodopsin, which is encoded by rho and 
regenerated by rgr26, is an extremely light-sensitive receptor pro-
tein found in rod cells that is responsible for low-light vision27. We 
hypothesize that the MHS may retain some photon-sensing ability 
or has gradually lost its visual ability—first losing colour percep-
tion, followed by the ability to perceive light in any form. Like other 
fish that lives in darkness, the MHS has lost its skin pigmentation 
and has become transparent28. We found that the most well-known 
pigmentation gene, mc1r, has been completely lost in this species 
(Supplementary Figs. 25 and 26).

Changes in cell membranes. The cell membrane is a lipid bilayer 
containing various proteins. High hydrostatic pressures reduce the 
fluidity of lipid bilayers and the reversibility of their phase transi-
tions, ultimately leading to the denaturation and functional disorder 
of membrane-associated proteins29,30. Pressure also rigidifies mem-
branes, impairing their transport functions31. Gene family analysis 
of the 9 teleosts included in our study revealed 310 significantly 
expanded gene families in the MHS (Supplementary Figs. 27 and 28 
and Supplementary Table 12). The gene families exhibiting the most 
significant expansion were those associated with fatty acid metabo-
lism (Fig. 4a and Supplementary Table 13). Phospholipids are major 
constituents of cellular membranes, and their fatty acid composition 
is regulated to maintain membrane order and fluidity. Biochemical 
studies have suggested that the membranes of deep-sea-adapted 
organisms contain a higher weight percentage of unsaturated fatty 
acids than the equivalent membranes of shallow-sea species32,33.  
It has been shown that docosahexaenoic acid (DHA) significantly 
alters many basic properties of membranes, including aryl chain 
order and ‘fluidity', elastic compressibility, permeability and protein 
activity at high pressure34. The last step of DHA biosynthesis is per-
oxisomal β-oxidation, and the protein acetyl-CoA acyltransferase 
encoded by acaa1 is the rate-limiting enzyme in this process. We 
found that the MHS genome has 15 copies of the acaa1 gene, while 
all other fully sequenced teleosts have only 5 copies (Fig. 4b and 
Supplementary Fig. 29). Another gene involved in DHA biosynthe-
sis, fasn, also exhibited copy number increases in the MHS genome 
(Supplementary Fig. 30). These changes may increase the abundance 
of fluid membrane lipids, enabling survival in the world’s deepest 
ocean trench. Other significantly expanded categories include genes 
belonging to families with ion and solute transport-related functions, 
such as tfa and slc29a3 (Supplementary Fig. 30). This is consistent 
with a need to resist high-pressure-induced inhibition of fluid trans-
port in hadal organisms35. The list of expanded gene families pro-
vides clues for future functional tests to reveal their correlation with 
the adaptation of the MHS to the extreme hydrostatic pressure.

The extensive deep-sea adaptations of the MHS are probably 
due to intense selective pressure acting on different gene families. 
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Gene Ontology categories associated with significantly greater 
rates of protein evolution in the MHS compared with Tanaka’s 
snailfish include ‘ion transport’, ‘transmembrane transport’ and 
‘calcium ion transport’ (Fig. 4c and Supplementary Table 14). 
The 86 MHS genes identified as positively selected genes (PSGs) 
(Supplementary Table 15) also exhibited functional enrichment 
with respect to ‘transmembrane transport’, ‘ATP binding’ and 
‘ion transport’ (Supplementary Table 16). Among the PSGs, 79 
have well-known functions, of which 18 are related to membrane 
transport systems, including 3 ATP-dependent transporters, 4 ion 
channel genes and 11 secondary transporter genes (Supplementary 
Table 15). Earlier studies showed that high pressure suppresses the 
activity of membrane transport genes, and that proteins such as 
Na+/K+-ATPases from deep-sea species are less pressure sensitive 
than those of sea-surface species30. The lineage-specific adaptive 
evolution of these genes in the MHS may thus indicate a role in 
maintaining transport activity and cell homeostasis36, helping 
the fish to thrive at high pressures. Analysis of the amino acid  
variations in these genes may yield insights into how transmem-
brane transport proteins adapt to high pressure.

Maintenance of protein activity. Hydrostatic pressure strongly 
inhibits protein function, affecting both folding and enzyme activ-
ity. Consequently, species living at great depths must maintain an 
intracellular milieu that preserves the intrinsic properties of pro-
teins and confers pressure resistance2. Mechanisms based on physi-
ological and structural adaptations have been proposed to explain 
the preservation of protein functionality in deep-sea organisms35,37.

The physiological adaptation mechanism involves accumulat-
ing small organic solutes such as trimethylamine N-oxide (TMAO) 
to preserve protein function at elevated hydrostatic pressures38. 
TMAO is a physiologically important protein stabilizer that can 
restore denatured proteins to their native structure39. Its abundance 
in teleosts increases with depth; deep-caught species have signifi-
cantly higher TMAO levels in all tissues than shallow species40. 
Most teleost genomes contain five copies of the TMAO-generating 
enzyme flavin monooxygenase 3 (fmo3), four of which are tandem 
repeats (Fig. 5a and Supplementary Fig. 31). The first gene (fmo3a) 
of these four tandem-repeated copies was strongly expressed in the 
liver of the MHS (Supplementary Table 17). We found that the most 
strongly expressed copy of fmo3 of the MHS differs from species 
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to species (Supplementary Table 17). It should be noted that this 
could be impacted by degraded transcriptome. Because these copies 
diverged long ago and the corresponding proteins’ structures differ 
appreciably, it is likely that different copies of fmo3 have different 
catalytic efficiencies. Interestingly, fmo3a was positively selected 
in the MHS. In addition, we predicted more putative promoters 
(five copies) upstream of this gene in the MHS than in Tanaka’s 
snailfish (one copy) or sticklebacks (two copies) (Supplementary  
Fig. 32). These changes in the gene’s protein-coding and regulatory 
sequences may help the MHS increase intracellular TMAO levels to 
enhance protein stability.

Structural adaptations of proteins to deep-sea conditions may 
include changes in amino acid substitution patterns and protein struc-
ture that counteract the effects of pressure on protein function41,42. 
To characterize these adaptations, we compared the MHS with other  
species with respect to the amino acid composition and substitution of 
all coding genes together (Supplementary Fig. 14 and Supplementary 
Tables 18 and 19) and each gene separately (Supplementary Fig. 33). 

No clear signal was identified in this analysis, suggesting that there 
is no global composition and substitution change that is present in 
all proteins. However, it has previously been reported that the evo-
lutionary patterns of some proteins responded to hydrostatic pres-
sure43,44. We further investigated whether any gene family of the MHS 
has convergent amino acid substitutions that are different from the 
ancestral genotypes at the homologous position (see Methods). The 
only gene family found to exhibit convergent amino acid changes 
in most of its family members with high confidence was hsp90; the 
same alanine-to-serine substitution occurred independently in four 
of five copies of the hsp90 protein of the MHS, at a site that is highly 
conserved in the corresponding proteins of humans, mice, chickens, 
chameleons and yeast (Fig. 5b and Supplementary Fig. 34). This con-
vergent substitution was also found to be very rare under random 
conditions (Supplementary Fig. 35). Therefore, the recurrence and 
fixation of the substitution in such a conservative site suggest it is 
very likely to be beneficial for the adaptation of the MHS. Hsp90 is an 
evolutionarily conserved and highly abundant molecular chaperone 
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that promotes the correct folding and activation of over 200 proteins, 
many of which are involved in essential cellular processes such as 
signal transduction, cell survival and responses to cellular stress45,46. 
We performed homology modelling using four MHS hsp90 isoforms, 
examining both the complete sequences and the amino (N)-terminal 
regions (representing the ATP-binding domains) separately46,47. The 
MHS hsp90 proteins feature an alanine-to-serine mutation in the 
relatively conserved motif FYSSX, which is predicted to exist as a 
short α-helix (Fig. 5c and Supplementary Fig. 36). In all cases, the 
mutated serine lies in close proximity to the ATP-binding pocket, and 
may contribute significantly to a local structural interaction affecting 
hsp90 activity (Fig. 5c). Further structural and chaperone function 
studies will shed light on this unique mutation’s structural and func-
tional effects on the N-terminal regions of hsp90 proteins.

Conclusions
Advances in deep-diving and genome-sequencing technologies have 
allowed us to complete this study on the genetic basis of vertebrate 
adaptation to the extreme environment of deep-sea trenches. A 
Liparidae species discovered 6,000 m below the ocean surface was 
found to have adapted to life in the hadal zone over a period of only 
several million years. Although its mutation rate has declined, its rate 
of amino acid substitution was found to be high, allowing plasticity 
and adaptation. The species has undergone extensive internal and 
external adaptations to tolerate the immense pressures and other 
challenges of the deep-sea environment. Genomic analyses revealed 
molecular adaptations consistent with pressure-tolerant cartilage, 
loss of visual function and skin colour, enhanced cell membrane flu-
idity and transport protein activity, and increased protein stability. 
The numerous genetic changes identified in this study shed light on 
how vertebrate species can survive and thrive in the deep oceans.

Methods
Sample collection and identification. The MHS samples were collected from three 
sites in the Mariana Trench, at depths of 7,125, 7,034 and 6,879 m (Supplementary 
Note 1). On the basis of morphological observations, the specimens were identified 
as conspecific with P. swirei (Gerringer and Linley, 2017), also collected in the 
Mariana Trench, close to our collection sites9. One specimen—snailfish number 
0 MT-2016 (named hadal01 in the main text)—was confirmed to be P. swirei by 
DNA barcoding analysis (Supplementary Note 1). The topographic base map 
in Fig. 1a was plotted using Generic Mapping Tools software48. The bathymetric 
data were integrated using high-resolution (~100 m) multibeam data collected by 
the cruises of the University of New Hampshire’s US Extended Continental Shelf 
Bathymetry Mapping Project in 201049 and Chinese TS09 in 2018. The ETOPO1 
(ref. 50) bathymetric data were filled where high-resolution data do not exist in 
the ocean. Tanaka’s snailfish specimens were collected in the southern Yellow 
Sea in 2017 and identified as L. tanakae (Gilbert and Burke, 1912) on the basis of 
morphological observations (Supplementary Note 1).

Sequencing and assembly of MHS and Tanaka’s snailfish. For the MHS, a total of 
55 gigabases of PacBio reads and 671 gigabases of Illumina reads were sequenced. 
The PacBio reads were used for initial assembly with FALCON pipeline, and 
the Illumina reads were used for extending, closing the gap and polishing the 
assembly (for details, see Supplementary Note 2.1). For Tanaka’s snailfish, a total 
of 1.15 terabases of Illumina reads were sequenced and the genome was assembled 
using Platanus version 1.24 (ref. 51). For details, see Supplementary Note 2.2.

Transcriptome sequencing and assembly. A total of 28 transcriptomes were 
generated from 15 tissues (abdominal skin, blood, bone, brain, brain fluid, 
cholecyst, gill, head, heart, liver, muscle, oesophagus, reproductive organ, spinal 
cord and stomach) from two MHS individuals collected from the second site. 
Total RNA was extracted from these individuals using TRIzol (Invitrogen) and 
subsequently purified using an RNeasy Mini Kit (Qiagen). Paired-end reads with 
insert sizes of 500 bp were generated using an Illumina HiSeq 2000 sequencing 
platform. The sequenced reads were filtered and trimmed by fastp52, then 
assembled using Binpacker53 with default parameters.

Genome annotation. Both homology-based and de novo predictions were used 
to identify repeat elements in the MHS and Tanaka’s snailfish genome sequences. 
For homology-based analysis, transposable elements were identified using 
RepeatMasker version 4.0.7 (ref. 54) and RepeatProteinMask version 1.36 with the 
Repbase transposable element library55. For de novo predictions, RepeatModeler 

version 1.0.11 (ref. 52) was used to construct a de novo transposable element library, 
which was then used to predict repeats with RepeatMasker. We also predicted 
tandem repeats using TRF version 4.0.4 (ref. 56).

We annotated the coding gene structure of the two genome sequences by 
integrating ab initio predictions, homology-based gene predictions and direct gene 
models produced by transcriptome assembly (only for the MHS). First, Augustus 
version 3.2.1 (ref. 57), GeneID version 1.4 (ref. 58), GlimmerHMM version 3.0.4 
(ref. 59) and SNAP version 2013-11-29 (ref. 60) were used to generate ab initio 
predictions with internal gene models. Next, the protein sequences of seven species 
(cod, fugu, medaka, puffer, stickleback, zebrafish and human; ENSEMBL 89) were 
aligned to genome sequences with Exonerate. The MHS transcripts were assembled 
using both Binpacker version 1.0 (ref. 53) (de novo) and Hisat2 version 2.1.0 (ref. 61)/ 
StringTie version 1.3.3b62 (reference-guided) with default parameters. We then 
integrated the two assemblies using Evidence Modeler (EVM) version 1.1.1 (ref. 63) 
with different weights for each. The integrated gene set was translated into amino 
acid sequences, which were used to search the InterPro database with InterProScan 
version 5.15 (ref. 64) to obtain Gene Ontology and PANTHER information for each 
gene, and the genes were further annotated using the KEGG databases65.

Phylogeny reconstruction. Protein sequences from nine species (the MHS and 
Tanaka’s snailfish (assembled in this study), stickleback, fugu, platyfish, cod 
and zebrafish (V89; downloaded from ENSEMBL), flatfish (GCF_001970005.1; 
downloaded from the National Centre for Biotechnology Information) and Pacific 
bluefin tuna (Ver.1; downloaded from http://nrifs.fra.affrc.go.jp) were clustered 
with OrthoMCL version 2.0.9 (ref. 66) using default parameters, and 3,915 one-to-
one orthologues were identified. Five species from ENSEMBL were chosen with the 
aim of covering more teleost groups (one species for one order). We chose flatfish 
and Pacific bluefin tuna because of their closer relationship to MHS. The protein 
sequences of each orthologue were aligned with MAFFT version 7.310 (ref. 67) 
using default parameters, and alignments of the coding sequences were generated 
with pal2nal version 14 (ref. 68) using default parameters. We then generated five 
datasets using the first, second and third base in each codon, 4D sites and whole 
coding sequence alignments. The five datasets were used to construct maximum-
likelihood trees, separately, with RAxML version 8.2.10 (ref. 69) using the following 
parameters: -f a -m GTRGAMMAI -x 271828 -N 100 -p 31415, under the GTR + I 
model, which was suggested by jmodeltest2 (ref. 70). The maximum-likelihood 
tree for each gene was also constructed (as above) and plotted using Densitree71, 
to reveal phylogeny heterogeneity at the gene level. Then, a species tree was built 
with these gene trees using MP-EST version 2.0 (ref. 72). We also performed 
whole-genome synteny alignment for these nine teleosts using Last version 
894 (ref. 73) and Multiz version 11.2 (ref. 74) with default parameters to generate 
another dataset. The 12-Mb one-to-one synteny alignment was used to construct a 
maximum-likelihood tree, and the 13,051 synteny blocks with a length larger than 
200 bp were used to constructed a species tree. The divergence time was estimated 
using MCMCtree version 4.5 (ref. 75), with the topology of the species tree, 4D site 
alignments and three soft-bound calibration time points (zebrafish–stickleback: 
~205–252 Ma; cod–stickleback: ~141–170 Ma; and snailfish–stickleback: ~32–
73 Ma)76 based on previous studies.

Demographic history and genetic diversity. We inferred demographic histories 
of the MHS and Tanaka’s snailfish by applying the pairwise sequentially Markovian 
coalescence model (PSMC version 0.6.5-r67)77 to the complete diploid genome 
sequences. Consensus sequences were obtained using SAMtools version 1.3.1 (ref. 78)  
using the parameters ‘mpileup -q 20 -Q 20', and divided into non-overlapping 
100-bp bins. Bases of low sequencing depth (less than one-third of the average 
depth) or high depth (twice the average depth) were masked. The analysis was 
performed using the following parameters: -N25 -t15 -r5 -p “4 + 25*2 + 4 + 6”. The 
mutation rate per site per year was set at 1.93 × 10−9 for the MHS and 6.77 × 10−9 
for Tanaka’s snailfish; these values were estimated by r8s version 1.81 (ref. 79) with 
the penalized likelihood method. As no information about the snailfish generation 
time is available, we tested generation times of six months, one year, two years and 
three years for both species. We also performed an analysis with MSMC version 
2.0.0 (ref. 13; an extension of pairwise sequential Markovian coalescent analysis) 
with default parameters, to infer a more recent demographic history for the MHS. 
All segregating sites were phased and imputed using fastPHASE version 1.1 (ref. 80) 
with default parameters, and the four above-mentioned combinations of generation 
times and mutation rates were evaluated.

The Illumina-sequenced reads from three MHS and one Tanaka’s snailfish 
were aligned to the genome sequences of the MHS with BWA version 0.7.15-
r1140 (ref. 81) using the parameters: mem -t 16. Duplicated reads were filtered 
with SAMtools ‘rmdup’. Reads around indels were realigned by GATK version 3.6 
(ref. 82) using default parameters, and the genotype of each site in every individual 
was called by SAMtools using the parameters: -t DP -A -q 20 -Q 20. We then 
used the mappability module in GEM version 20130406-045632 (ref. 83) using the 
parameters ‘-l 150' to extract 407 Mb of regions that could be uniquely mapped. 
Conservatively, we excluded polymorphic sites that were not bi-allelic or for which 
QUAL < 30. Finally, we masked any site that lacked 2- to 100-fold depth of aligned 
read coverage. The 4D sites were extracted and the divergence time of the four 
MHS individuals was estimated by MCMCtree with the same calibration as above.
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Whole-genome alignment and mutation rate across the genome. We chose five 
species (the MHS, Tanaka’s snailfish, stickleback, flatfish and Pacific bluefin tuna) 
for whole-genome synteny alignment. We did not include more species because 
their divergence times were too long ago. Using the stickleback genome sequence 
as a reference, we performed synteny alignment for these five species with Last 
version 894 (ref. 73) using the parameters ‘-m100 -P 4 -E0.05', generating a total of 
121 Mb (of which 66 Mb was informative for all species) of one-to-one alignment 
sequences with Multiz version 11.2 (ref. 74) using the default parameters.

We applied a sliding window (100 kb) along the synteny alignment to estimate the 
mutation rate across the genome. For each window, only neutral regions were retained 
(repetitive sequences and regions located within genes, or 3 kb upstream/downstream 
of them, were removed) to estimate branch lengths with RAxML and a given topology. 
The branch lengths were then used to estimate mutation rates for each branch with r8s 
and the previously estimated divergence time in the root node of these five species.

Strength of natural selection. A total of 18,620 genes were extracted from the 
synteny alignments, together with gene annotations based on the corresponding 
stickleback genes. Any gene not annotated in all five species at a given position in 
the synteny alignment was excluded from further analysis. We then filtered the 
alignments with Gblocks version 0.91b84 using default parameters, and excluded 
those with less than 150 bp of informative sites in all species, ultimately retaining 
12,370 genes. The ratio of non-synonymous to synonymous substitutions (Ka/Ks) 
in each branch was estimated using the free ratio model of codeml in the PAML 
version 4.9e75 software package using default parameters. To enable comparisons 
with more species, we calculated the Ka/Ks ratios of the 3,915 one-to-one 
orthologues with codeml. For this part, the genes with Ks values above 2 in any 
branch due to the possibility of false alignment or pseudogenes were filtered.

To assess the ratio of diversity in neutral and functional sites, which should 
theoretically reflect the strength of natural selection, we first calculated the ratio of 
heterozygosity at zerofold relative to fourfold sites in the three MHS and one Tanaka’s 
snailfish. We identified a total of 24.2 Mb zerofold and 6.1 Mb fourfold sites with gene 
annotations in the MHS, and estimated the heterozygosity of each individual at these 
sites. We then calculated the Ka/Ks substitution ratio (based on heterozygous single 
nucleotide polymorphisms) within the four individuals. The non-synonymous and 
synonymous mutations were identified using SnpEff version 4.1 (ref. 85).

Putative gene loss. We identified genes putatively lost in the MHS using a 
four-step method. (1) The opsin- and pigment-related protein sequences 
(Supplementary Table 10) were downloaded from UniProt and searched against 
the MHS, Tanaka’s snailfish and stickleback protein sets with blastp86. (2) Genes 
absent in the MHS but present in the other two species were searched against 
the genome sequences and assembled transcripts with tblastn86. (3) The synteny 
alignment between the MHS and Tanaka’s snailfish was plotted to determine 
whether such genes had been partially or fully lost, or simply mis-annotated. Only 
fully lost genes were retained for further analysis. (4) The reads from the three 
MHS individuals and Tanaka’s snailfish were further mapped to the stickleback 
genome sequence (ENSEMBL V89) using BWA. For each putative gene, we plotted 
the read depth of the four individuals along the corresponding coding sequences in 
the stickleback genome. Genes were identified as lost in the MHS only if the reads 
from all three MHS individuals could not be mapped to the stickleback genome 
but the corresponding read from Tanaka’s snailfish could be mapped.

Bglap gene knockdown experiment and calcein staining. Antisense 
morpholino oligomers (Gene Tools) were microinjected into fertilized 
one-cell-stage embryos according to standard protocols87. The sequences 
of the bglap translation-blocking and splice-blocking morpholino 
oligomers were 5′-GGACTGTCAGGCTCTTCATATTCG-3′ (bglap-
ATG-MO) and 5′-CACATACATGCACACTGACCTG-3′ (bglap-e1i1-
MO), respectively. The sequence for the standard control morpholino was 
5′-CCTCTTACCTCAGTTACAATTTATA-3′. The amounts of the morpholino 
used for injection were as follows: control-MO and bglap-e1i1-MO: 4 ng per 
embryo; bglap-ATG-MO: 2 ng per embryo. Calcein staining of morpholino-
injected embryos was performed using 0.2% calcein solution 5 d post-fertilization 
of the zebrafish. For details of this protocol, see Supplementary Note 3.

Estimation of gene expression in the MHS and other species. The sequenced 
transcriptome reads were aligned to the coding sequences using Bowtie 2 version 
2.3.2 (ref. 88) with default parameters. After alignment, the count of mapped 
reads from each sample was derived and normalized to transcripts per million 
using custom scripts. Transcriptome data for zebrafish and sticklebacks were 
downloaded from the Sequence Read Archive database (Supplementary Table 17) 
and aligned to the corresponding non-redundant gene catalogue by keeping the 
longest open reading frame. However, it should be noted that decompression as 
the samples were brought to the surface may have reduced the accuracy of the gene 
expression measurements.

Gene family expansion/contraction. To evaluate gene family expansion and 
contraction in the MHS, we first used CAFE version 3.1 (ref. 89) with default 
parameters, which applies a maximum-likelihood framework, with results from 

the OrthoMCL pipeline90 with default parameters and estimated divergence times 
between species as input. A conditional P value was calculated for each gene family, 
and families with conditional P values lower than 0.05 were considered to have a 
significantly accelerated rate of expansion or contraction. Genes with >200 copies 
in 1 of the species were filtered out. We also annotated the protein sequences 
with Pfam91 using default parameters, and those with a z score above 1.96 and >5 
members in the MHS were identified as expanded domains.

Identification of rapidly evolving Gene Ontology terms and PSGs. To identify 
rapidly evolving Gene Ontology terms in the MHS, which had a significantly 
higher Ka/Ks ratio than expected, we designed a new statistic that accounts for 
differences in Ka/Ks between two species (the MHS and Tanaka’s snailfish in this 
case) for a given Gene Ontology, as well as differences in Ka/Ks between that Gene 
Ontology and the genome background (for details, see Supplementary Note 4).

The 12,370 genes extracted from the synteny alignment described above 
were used to identify genes that have evolved under positive selection (PSGs) 
by applying the likelihood ratio test using the branch model implemented in the 
PAML package75. We first excluded genes with a Ks value above 2 in any branch 
due to the possibility of false alignment or pseudogenes. We then performed a 
likelihood ratio test comparing the two-ratio model (which calculates the Ka/Ks 
ratio for the lineage of interest and the background lineage) with the one-ratio 
model (which assumes a uniform Ka/Ks ratio across all branches) to determine 
whether the focal lineage is evolving significantly faster (false discovery rate-
adjusted P < 0.05). We also required PSGs to have Ka/Ks > 1 in the focal lineage.

Amino acid preferences. Frequencies of amino acids in orthologues were 
calculated, and the significance of differences in these frequencies was tested by 
calculating z scores. We then tested the hypothesis that there may be significant 
differences in the frequencies of any two or three consecutive amino acids in 
MHS proteins relative to the mean frequency in orthologues from other species. 
In addition, the protein sequences in the ancestral node of the MHS and Tanaka’s 
snailfish were reconstructed with RAxML (version 8.2.10). We then counted the 
frequency of every type of amino acid replacement from the ancestor to the MHS 
or Tanaka’s snailfish, and subjected each replacement pattern in the two species to a 
two-sided binomial test using custom scripts.

Convergence within paralogues. We defined cases where the same amino 
acid replacement (that is, a replacement at the same position involving the 
same mutant amino acid) occurred independently in paralogous genes of a 
single species as instances of ‘convergence within paralogues', based on the 
approach adopted in common convergent analysis (which considers such events 
in orthologues from different species). Across the 9 studied species, 7,148 
PANTHER gene families were identified with InterProScan, of which 3,058 
are represented by at least 2 copies in the MHS. For each such gene family, the 
protein sequences were aligned using MAFFT with the default parameters. The 
phylogenetic tree and ancestral sequences were reconstructed with RAxML 
using the parameters ‘-m PROTGAMMAWAG'. Sites exhibiting the same 
amino acid substitution from the ancestral state in more than three gene copies 
within the MHS genome were identified as potential convergent sites. For each 
potential convergent site, we performed 100,000 Monte-Carlo simulations of 
protein sequence evolution with Seq-Gen (version 1.3.4)92, using the parameters 
‘-n100000 -m WAG -wa -k1', based on the corresponding ancestral sequence and 
the protein’s phylogenetic tree to determine whether such convergence could 
plausibly have occurred by random chance.

Homology modelling of protein structures. To identify the presumable functional 
region formed by the amino acid sequence containing a serine mutation in four 
MHS hsp90 isoforms, we aligned their complete sequences with the high-resolution 
structures of yeast93 and human94 hsp90 isoforms using Clustal Omega version 1.2.4 
(ref. 95). The results clearly indicate that each serine-substituted relevant fragment 
folds into an ATP-binding domain. We then probed the relative positions of the 
serine mutations in the three-dimensional structures by submitting the full-length 
and N-terminal region sequences of each isoform to the web-based server Phyre2 
for homology modelling96. The ending residue in the N-terminal region was 
determined by sequence alignment to yeast heat-shock protein93. We chose the 
normal mode on the submitting page for all of the isoforms and downloaded the 
generated first-ranked model with the highest reported confidence and sequence 
coverage compared with the template thereafter. When we superimposed the 
generated pseudo-atomic models from the full-length and N-terminal sequences 
for each isoform using UCSF Chimera97, despite differences in several loop regions, 
the two models exhibited high similarity in the relatively rigid core structure, which 
consists of α-helices packed opposing an antiparallel β-sheet (comparisons for 
each isoform are shown in Supplementary Fig. 36); the serine is located in the fifth 
short α-helix. Further analysis of the N-terminal models using the protein cavity 
detection algorithm fpocket2 (ref. 98) indicated that the serine is in close proximity 
to a putative nucleotide-binding cavity in each isoform.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.
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Data availability
The sequence data have been deposited in the NCBI BioProject database 
with accession numbers PRJNA472845, PRJNA472846 (genome data) and 
PRJNA472245 (transcriptome data). The assemblies and annotation files have been 
deposited in GitHub (http://github.com/wk8910/hadal_snailfish).

Code availability
The custom scripts have deposited in GitHub (http://github.com/wk8910/hadal_
snailfish).
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