The Symbiotic Relationship between the Antarctic Limpet, Nacella concinna, and Epibiont Coralline Algae
<p>(<b>a</b>) The sampling site for <span class="html-italic">Nacella concinna</span> is marked by a white circle (culture experiments) and white triangles (field survey). The insert on the upper left indicates the location of Marian Cove (red square) on King George Island. (<b>b</b>) Sample images of <span class="html-italic">N. concinna</span> were used in this study. The upper row shows <span class="html-italic">N. concinna</span> partially covered by the coralline algae <span class="html-italic">Clathromorphum obtectulum</span>. The lower row shows <span class="html-italic">N. concinna</span> without <span class="html-italic">C. obtectulum</span> on the shell.</p> "> Figure 2
<p>(<b>a</b>) SEM images of the conceptacles of coralline algae (×250), (<b>b</b>) the cross section of the limpet shell with coralline algae (×100), (<b>c</b>) the in-plane section of the limpet shell after the coralline algae had been removed deliberately (×180), and (<b>d</b>) the in-plane section of limpet shell with no coralline algae (×180). The dashed yellow line indicates the boundary line between the shell and coralline algae and the white arrows indicate irregular holes.</p> "> Figure 3
<p>(<b>a</b>) Mortality, (<b>b</b>) shell weight, and (<b>c</b>) CF of limpets in the presence or absence of coralline algae on the shell. (<b>d</b>) The coverage area (%) of the coralline algae from alive or dead limpets within the group in which coralline algae are present on the shell. Values for shell weight, CF, and coverage area are indicated as mean ± SE. Asterisks indicate significant differences between groups (<span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>Relationship between (<b>a</b>) pH, (<b>b</b>) temperature, (<b>c</b>) salinity, and (<b>d</b>) CF and the coverage of coralline algae on the limpet shell. The red line indicates the trend line.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling (Culture and Field Survey)
2.2. Experiment Setup and Acclimation
2.3. Analysis Method
2.4. Statistical Analysis
3. Results
3.1. Mortality, Shell Weight, and CF
3.2. Fatty Acid Content
3.3. Scanning Electron Microscope (SEM) Analysis
3.4. Environmental Factors and Limpet
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wahl, M. Marine Epibiosis. I. Fouling and Antifouling: Some Basic Aspects. Mar. Ecol. Prog. Ser. 1989, 58, 175–189. [Google Scholar] [CrossRef] [Green Version]
- Wahl, M. (Ed.) Epibiosis: Ecology, Effects and Defenses. In Marine Hard Bottom Communities: Patterns, Dynamics, Diversity, and Change; Springer Series: Ecological Studies, 206; Springer: Berlin/Heidelberg, Germany, 2009; pp. 61–72. ISBN 978-3-540-92703-7. [Google Scholar]
- Bach, C.; Hazlett, B.; Rittschof, D. Sex-Specific Differences and the Role of Predation in the Interaction between the Hermit Crab, Pagurus Longicarpus, and Its Epibiont, Hydractinia Symbiolongicarpus. J. Exp. Mar. Biol. Ecol. 2006, 333, 181–189. [Google Scholar] [CrossRef]
- Buschbaum, C.; Buschbaum, G.; Schrey, I.; Thieltges, D. Shell-Boring Polychaetes Affect Gastropod Shell Strength and Crab Predation. Mar. Ecol.-Prog. Ser. 2007, 329, 123–130. [Google Scholar] [CrossRef]
- Enderlein, P.; Moorthi, S.; Rohrscheidt, H.; Wahl, M. Optimal Foraging versus Shared Doom Effects: Interactive Influence of Mussel Size and Epibiosis on Predator Preference. J. Exp. Mar. Biol. Ecol. 2003, 292, 231–242. [Google Scholar] [CrossRef]
- Manning, L.M.; Lindquist, N. Helpful Habitant or Pernicious Passenger: Interactions between an Infaunal Bivalve, an Epifaunal Hydroid and Three Potential Predators. Oecologia 2003, 134, 415–422. [Google Scholar] [CrossRef]
- Marin, A.; López Belluga, M.D. Sponge Coating Decreases Predation On The Bivalve Arca Noae. J. Molluscan Stud. 2005, 71, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Wahl, M.; Hay, M.E. Associational Resistance and Shared Doom: Effects of Epibiosis on Herbivory. Oecologia 1995, 102, 329–340. [Google Scholar] [CrossRef]
- Cerrano, C.; Puce, S.; Chiantore, M.; Bavestrello, G.; Cattaneo-Vietti, R. The Influence of the Epizoic Hydroid Hydractinia Angusta on the Recruitment of the Antarctic Scallop Adamussium Colbecki. Polar Biol. 2001, 24, 577–581. [Google Scholar] [CrossRef]
- Cerrano, C.; Bertolino, M.; Valisano, L.; Bavestrello, G.; Calcinai, B. Epibiotic Demosponges on the Antarctic Scallop Adamussium Colbecki (Smith, 1902) and the Cidaroid Urchins Ctenocidaris Perrieri Koehler, 1912 in the Nearshore Habitats of the Victoria Land, Ross Sea, Antarctica. Polar Biol. 2009, 32, 1067–1076. [Google Scholar] [CrossRef]
- Gutt, J.; Schickan, T. Epibiotic Relationships in the Antarctic Benthos. Antarct. Sci. 1998, 10, 398–405. [Google Scholar] [CrossRef]
- Jones, E.M.; Fenton, M.; Meredith, M.P.; Clargo, N.M.; Ossebaar, S.; Ducklow, H.W.; Venables, H.J.; de Baar, H.J.W. Ocean Acidification and Calcium Carbonate Saturation States in the Coastal Zone of the West Antarctic Peninsula. Deep Sea Res. Part II Top. Stud. Oceanogr. 2017, 139, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Montes, M.; Doney, S.; Ducklow, H.; Fraser, W.; Martinson, D.; Stammerjohn, S.; Schofield, O. Recent Changes in Phytoplankton Communities Associated with Rapid Regional Climate Change Along the Western Antarctic Peninsula. Science 2009, 323, 1470–1473. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-M.; Lee, Y.; Hwang, J.-Y.; Kim, Y.-K.; Kim, T.W.; Kim, I.-N.; Kang, S.; Kim, J.-H.; Rhee, J.-S. Physiological and Molecular Responses of the Antarctic Harpacticoid Copepod Tigriopus Kingsejongensis to Salinity Fluctuations—A Multigenerational Study. Environ. Res. 2022, 204, 112075. [Google Scholar] [CrossRef] [PubMed]
- Servetto, N.; de Aranzamendi, M.C.; Bettencourt, R.; Held, C.; Abele, D.; Movilla, J.; González, G.; Bustos, D.M.; Sahade, R. Molecular Mechanisms Underlying Responses of the Antarctic Coral Malacobelemnon Daytoni to Ocean Acidification. Mar. Environ. Res. 2021, 170, 105430. [Google Scholar] [CrossRef] [PubMed]
- de Aranzamendi, M.C.; Servetto, N.; Movilla, J.; Bettencourt, R.; Sahade, R. Ocean Acidification Effects on the Stress Response in a Calcifying Antarctic Coastal Organism: The Case of Nacella Concinna Ecotypes. Mar. Pollut. Bull. 2021, 166, 112218. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Ahn, I.-Y.; Sin, E.; Shim, J.; Kim, T. Ocean Freshening and Acidification Differentially Influence Mortality and Behavior of the Antarctic Amphipod Gondogeneia Antarctica. Mar. Environ. Res. 2020, 154, 104847. [Google Scholar] [CrossRef]
- Picken, G.B. The Distribution, Growth, and Reproduction of the Antarctic Limpet Nacella (Patinigera) Concinna (Strebel, 1908). J. Exp. Mar. Biol. Ecol. 1980, 42, 71–85. [Google Scholar] [CrossRef]
- McClintock, J.B.; Angus, R.A.; Mcdonald, M.R.; Amsler, C.D.; Catledge, S.A.; Vohra, Y.K. Rapid Dissolution of Shells of Weakly Calcified Antarctic Benthic Macroorganisms Indicates High Vulnerability to Ocean Acidification. Antarct. Sci. 2009, 21, 449–456. [Google Scholar] [CrossRef]
- Nolan, C.P. Size, Shape and Shell Morphology in the Antarctic Limpet Nacella concinna at Signy Island, South Orkney Islands. J. Molluscan Stud. 1991, 57, 225–238. [Google Scholar] [CrossRef]
- Wulff, A.; Iken, K.; Quartino, M.; Al-Handal, A.; Wiencke, C.; Clayton, M. Biodiversity, Biogeography and Zonation of Marine Benthic Micro- and Macroalgae in the Arctic and Antarctic. Bot. Mar. 2009, 56, 491–507. [Google Scholar] [CrossRef]
- Schoenrock, K.M.; Schram, J.B.; Amsler, C.D.; McClintock, J.B.; Angus, R.A.; Vohra, Y.K. Climate Change Confers a Potential Advantage to Fleshy Antarctic Crustose Macroalgae over Calcified Species. J. Exp. Mar. Biol. Ecol. 2016, 474, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Wiencke, C. Biology of Polar Benthic Algae; Walter de Gruyter: Berlin, Germany, 2011; ISBN 978-3-11-022970-7. [Google Scholar]
- Adey, W.H.; Hernandez-Kantun, J.J.; Johnson, G.; Gabrielson, P.W. DNA Sequencing, Anatomy, and Calcification Patterns Support a Monophyletic, Subarctic, Carbonate Reef-Forming Clathromorphum (Hapalidiaceae, Corallinales, Rhodophyta). J. Phycol. 2015, 51, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Sin, E.; Ahn, I.-Y.; Park, S.; Kim, T. Effects of Low PH and Low Salinity Induced by Meltwater Inflow on the Behavior and Physical Condition of the Antarctic Limpet, Nacella Concinna. J. Mar. Sci. Eng. 2020, 8, 822. [Google Scholar] [CrossRef]
- Saad, A.E.-H.A. Age, Growth and Morphometry of the Limpet Cellana Eucosmia (Mollusca: Gastropoda) from the Gulf of Suez. Indian J. Geo-Mar. Sci. 1997, 262, 169–172. [Google Scholar]
- González, P.M.; Puntarulo, S.; Malanga, G. Natural Adaptation to the Environmental Conditions Affects the Oxidation-Dependent Processes in Limpets. Int. J. Environ. Health 2017, 8, 302–315. [Google Scholar] [CrossRef]
- Garces, R.; Mancha, M. One-Step Lipid Extraction and Fatty Acid Methyl Esters Preparation from Fresh Plant Tissues. Anal. Biochem. 1993, 211, 139–143. [Google Scholar] [CrossRef]
- Tan, K.; Zhang, H.; Ma, H.; Li, S.; Zheng, H. Effects of Tidal Zones and Seasons on Nutritional Properties of Commercially Importance Gastropods. Estuar. Coast. Shelf Sci. 2021, 254, 107289. [Google Scholar] [CrossRef]
- Valles-Regino, R.; Tate, R.; Kelaher, B.; Savins, D.; Dowell, A.; Benkendorff, K. Ocean Warming and CO2-Induced Acidification Impact the Lipid Content of a Marine Predatory Gastropod. Mar. Drugs 2015, 13, 6019–6037. [Google Scholar] [CrossRef] [Green Version]
- Rice, W.R. Analyzing Tables of Statistical Tests. Evolution 1989, 43, 223–225. [Google Scholar] [CrossRef]
- Wahl, M. Increased Drag Reduces Growth of Snails: Comparison of Flume and in Situ Experiments. Mar. Ecol. Prog. Ser. 1997, 151, 291–293. [Google Scholar] [CrossRef] [Green Version]
- Thieltges, D.W. Impact of an Invader: Epizootic American Slipper Limpet Crepidula Fornicata Reduces Survival and Growth in European Mussels. Mar. Ecol. Prog. Ser. 2005, 286, 13–19. [Google Scholar] [CrossRef]
- Obermüller, B.E.; Morley, S.A.; Clark, M.S.; Barnes, D.K.A.; Peck, L.S. Antarctic Intertidal Limpet Ecophysiology: A Winter–Summer Comparison. J. Exp. Mar. Biol. Ecol. 2011, 403, 39–45. [Google Scholar] [CrossRef]
- Ericson, J.A.; Hellessey, N.; Kawaguchi, S.; Nichols, P.D.; Nicol, S.; Hoem, N.; Virtue, P. Near-Future Ocean Acidification Does Not Alter the Lipid Content and Fatty Acid Composition of Adult Antarctic Krill. Sci. Rep. 2019, 9, 12375. [Google Scholar] [CrossRef] [PubMed]
- Puccinelli, E.; McQuaid, C.D. Commensalism, Antagonism or Mutualism? Effects of Epibiosis on the Trophic Relationships of Mussels and Epibiotic Barnacles. J. Exp. Mar. Biol. Ecol. 2021, 540, 151549. [Google Scholar] [CrossRef]
- Fokina, N.N.; Ruokolainen, T.R.; Nemova, N.N.; Bakhmet, I.N. Changes of Blue Mussels Mytilus Edulis L. Lipid Composition under Cadmium and Copper Toxic Effect. Biol. Trace Elem. Res. 2013, 154, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Ab Lah, R.; Kelaher, B.P.; Bucher, D.; Benkendorff, K. Ocean Warming and Acidification Affect the Nutritional Quality of the Commercially-Harvested Turbinid Snail Turbo Militaris. Mar. Environ. Res. 2018, 141, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Nemova, N.N.; Fokina, N.N.; Nefedova, Z.A.; Ruokolainen, T.R.; Bakhmet, I.N. Modifications of Gill Lipid Composition in Littoral and Cultured Blue Mussels Mytilus Edulis L. under the Influence of Ambient Salinity. Polar Rec. 2013, 49, 272–277. [Google Scholar] [CrossRef]
- Babaran, D.; Koprivnikar, J.; Parzanini, C.; Arts, M.T. Parasites and Their Freshwater Snail Hosts Maintain Their Nutritional Value for Essential Fatty Acids despite Altered Algal Diets. Oecologia 2021, 196, 553–564. [Google Scholar] [CrossRef]
- Tocher, D.R. Metabolism and Functions of Lipids and Fatty Acids in Teleost Fish. Rev. Fish. Sci. 2003, 11, 107–184. [Google Scholar] [CrossRef]
- De Carvalho, C.C.C.R.; Caramujo, M.J. The Various Roles of Fatty Acids. Molecules 2018, 23, 2583. [Google Scholar] [CrossRef] [Green Version]
- Cadee, G. Shell Damage and Shell Repair in the Antarctic Limpet Nacella Concinna from King George Island. J. Sea Res. 1999, 41, 149–161. [Google Scholar] [CrossRef]
- Golubic, S.; Friedmann, E.I.; Schneider, J. The Lithobiontic Ecological Niche, with Special Reference to Microorganisms. J. Sediment. Res. 1981, 51, 475–478. [Google Scholar] [CrossRef]
- Le Campion-Alsumard, T.; Golubic, S.; Hutchings, P. Microbial Endoliths in Skeletons of Live and Dead Corals: Porites Lobata (Moorea, French Polynesia). Mar. Ecol. Prog. Ser. 1995, 117, 149–157. [Google Scholar] [CrossRef]
- Verbruggen, H.; Tribollet, A. Boring Algae. Curr. Biol. 2011, 21, R876–R877. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Kim, T.W.; Choe, J.C. Commensalism or Mutualism: Conditional Outcomes in a Branchiobdellid–Crayfish Symbiosis. Oecologia 2009, 159, 217–224. [Google Scholar] [CrossRef]
- Kagawa, O.; Uchida, S.; Yamazaki, D.; Osawa, Y.; Ito, S.; Chiba, S. Citizen Science via Social Media Revealed Conditions of Symbiosis between a Marine Gastropod and an Epibiotic Alga. Sci. Rep. 2020, 10, 19647. [Google Scholar] [CrossRef]
- Guinotte, J.M.; Fabry, V.J. Ocean Acidification and Its Potential Effects on Marine Ecosystems. Ann. N. Y. Acad. Sci. 2008, 1134, 320–342. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Pulido, G.; Anthony, K.R.N.; Kline, D.I.; Dove, S.; Hoegh-Guldberg, O. Interactions Between Ocean Acidification and Warming on the Mortality and Dissolution of Coralline Algae1. J. Phycol. 2012, 48, 32–39. [Google Scholar] [CrossRef]
- Fine, M.; Loya, Y. Endolithic Algae: An Alternative Source of Photoassimilates during Coral Bleaching. Proc. R. Soc. Lond. B Biol. Sci. 2002, 269, 1205–1210. [Google Scholar] [CrossRef] [Green Version]
- Tribollet, A.; Godinot, C.; Atkinson, M.; Langdon, C. Effects of Elevated PCO2 on Dissolution of Coral Carbonates by Microbial Euendoliths. Glob. Biogeochem. Cycles 2009, 23, GB3008. [Google Scholar] [CrossRef]
- Reyes-Nivia, C.; Diaz-Pulido, G.; Kline, D.; Guldberg, O.-H.; Dove, S. Ocean Acidification and Warming Scenarios Increase Microbioerosion of Coral Skeletons. Glob. Change Biol. 2013, 19, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
Fatty Acid | Trivial Name | Presence | Absence | p-Value |
---|---|---|---|---|
N = 20 | N = 20 | |||
C14:0 | Myristic acid (tetradecanoic acid) | 0.192 (±0.007) | 0.178 (±0.006) | 0.145 |
C16:0 | Palmitic acid (hexadecanoic acid) | 3.463 (±0.061) | 3.228 (±0.038) | 0.002 * |
C17:0 | Margaric acid (heptadecanoic acid) | 0.248 (±0.010) | 0.179 (±0.004) | <0.001 * |
C18:0 | Stearic acid (octadecanoic acid) | 0.952 (±0.020) | 0.868 (±0.011) | 0.001 * |
Ʃ SFA 1 | - | 4.855 (±0.090) | 4.452 (±0.050) | <0.001 * |
C18:1 | Oleic acid | 0.531 (±0.021) | 0.536 (±0.016) | 0.84 |
C20:1 | Eicosenoic acid | 0.992 (±0.027) | 1.065 (±0.025) | 0.052 |
Ʃ MUFA 2 | - | 1.523 (±0.044) | 1.602 (±0.031) | 0.153 |
C18:2 | Linoleic acid | 0.062 (±0.006) | 0.093 (±0.006) | 0.001 * |
C18:3 | Alpha-linolenic acid (ALA) | 0.131 (±0.015) | 0.222 (±0.014) | <0.001 * |
C20:2 | Eicosadienoic acid | 0.928 (±0.039) | 0.951 (±0.026) | 0.613 |
C20:3 | Eicosatrienoic acid (ETE) | 0.817 (±0.028) | 0.842 (±0.019) | 0.478 |
C20:4 | Arachidonic acid (AA) | 2.240 (±0.089) | 2.451 (±0.061) | 0.058 |
C20:5 | Eicosapentaenoic acid (EPA, Timnodonic acid) | 4.039 (±0.174) | 3.948 (±0.091) | 0.648 |
Ʃ PUFA 3 | - | 8.217 (±0.281) | 8.507 (±0.091) | 0.337 |
Ʃ n–3 4 | - | 1.662 (±0.072) | 1.671 (±0.041) | 0.912 |
Ʃ n–6 5 | - | 1.077 (±0.044) | 1.165 (±0.031) | 0.089 |
n–3:n–6 | - | 1.565 (±0.063) | 1.457 (±0.056) | 0.212 |
pH | Temperature | Salinity | Condition Factor × 1000 | |
---|---|---|---|---|
Coverage | y = 31.876x − 258.95 r = 0.664, N = 69, p < 0.001 | y = 2.5621x − 4.0368 r = 0.539, N = 69, p < 0.001 | y = −0.0349x + 7.1865 r = 0.036, N = 69, p = 0.772 | y = 7.1391x − 3.1859 r = −0.055, N = 69, p = 0.654 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, B.; Bae, H.; Kim, T. The Symbiotic Relationship between the Antarctic Limpet, Nacella concinna, and Epibiont Coralline Algae. J. Mar. Sci. Eng. 2022, 10, 496. https://doi.org/10.3390/jmse10040496
Cho B, Bae H, Kim T. The Symbiotic Relationship between the Antarctic Limpet, Nacella concinna, and Epibiont Coralline Algae. Journal of Marine Science and Engineering. 2022; 10(4):496. https://doi.org/10.3390/jmse10040496
Chicago/Turabian StyleCho, Boongho, Hyeonmi Bae, and Taewon Kim. 2022. "The Symbiotic Relationship between the Antarctic Limpet, Nacella concinna, and Epibiont Coralline Algae" Journal of Marine Science and Engineering 10, no. 4: 496. https://doi.org/10.3390/jmse10040496
APA StyleCho, B., Bae, H., & Kim, T. (2022). The Symbiotic Relationship between the Antarctic Limpet, Nacella concinna, and Epibiont Coralline Algae. Journal of Marine Science and Engineering, 10(4), 496. https://doi.org/10.3390/jmse10040496